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Abstract

In this paper we use the spine decomposition and martingale change of measure
to establish a Kesten-Stigum L logL theorem for branching Hunt processes. This
result is a generalization of the results in [1] and [9] for branching diffusions.
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1 Introduction

Suppose that {Zn;n ≥ 1} is a Galton-Watson process with each particle having probability pn

of giving birth to n offspring. Let L stand for a random variable with this offspring distribution.

Letm :=
∑∞

n=1 npn be the mean number of offspring per particle. Then Zn/m
n is a non-negative

martingale. Let W be the limit of Zn/m
n as n→ ∞. Kesten and Stigum proved in [10] that if

1 < m <∞ ( that is, in the supercritical case) then W is non-degenerate (i.e., not almost surely

zero) if and only if

E(L log+ L)) =

∞∑

n=1

pnn log n <∞, (1.1)

here, and in the rest of this paper, we use the notation that log+ r = 0∨ log r for all r > 0. This

result is usually referred to the Kesten-Stigum L logL theorem.

In 1995, Lyons, Pemantle and Peres developed a martingale change of measure method in [20]

to give a new proof for the Kesten-Stigum L logL theorem for single type branching processes.

Later this method was extended to prove the L logL theorem for multiple and general multiple

type branching processes in [2], [14] and [19].

In this paper we will extend this method to supercritical branching Hunt processes and

establish an L logL criterion for branching Hunt processes. To review the known results and

state our main result, we need to introduce the setup we are going to work with first.

∗The research of this author is supported by NSFC (Grant No. 10871103 and 10971003)
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In this paper E always stands for a locally compact separable metric space. We will use

E∆ := E ∪ {∆} to denote the one-point compactification of E. We will use B(E) and B(E∆) to

denote the Borel σ-fields on E and E∆, respectively. Bb(E)( respectively, B+(E)) will denote the

set of all bounded (respectively, non-negative) B(E)-measurable functions on E. All functions

f on E will be automatically extended to E∆ by setting f(∆) = 0. Let Mp(E) be the space

of finite point measures on E, that is, measures of the form µ =
∑n

i=1 δxi
where n = 0, 1, 2, . . .

and xi ∈ E, i = 1, . . . , n. (When n = 0, µ is the trivial zero measure.) For any function f on E

and any measure µ ∈ Mp(E) we use 〈f, µ〉 to denote the integral of f with respect to µ.

We will always assume that Y = {Yt,Πx, ζ} is a Hunt process on E, where ζ = inf{t > 0 :

Yt = ∆} is the lifetime of Y . Let {Pt, t ≥ 0} be the transition semigroup of Y :

Ptf(x) = Πx[f(Yt)] for f ∈ B+(E).

Let m be a positive Radon measure on E with full support. {Pt, t ≥ 0} can be extended to a

strongly continuous semigroup on L2(E,m). Let {P̂t, t ≥ 0} be the semigroup on L2(E,m) such

that ∫

E

f(x)Ptg(x)m(dx) =

∫

E

g(x)P̂tf(x)m(dx), f, g ∈ L2(E,m).

We will use A and Â to denote the generators of the semigroups {Pt} and {P̂t} on L2(E,m)

respectively.

Throughout this paper we assume that

Assumption 1.1 (i) There exists a family of continuous strictly positive functions {p(t, ·, ·); t >

0} on E × E such that for any (t, x) ∈ (0,∞) × E, we have

Ptf(x) =

∫

E

p(t, x, y)f(y)m(dy), P̂tf(x) =

∫

E

p(t, y, x)f(y)m(dy).

(ii) The semigroups {Pt} and {P̂t} are ultracontractive, that is, for any t > 0, there exists a

constant ct > 0 such that

p(t, x, y) ≤ ct for any (x, y) ∈ E × E.

Consider a branching system determined by the following three parameters:

(a) a Hunt process Y = {Yt,Πx, ζ} with state space E;

(b) a nonnegative bounded measurable function β on E;

(c) an offspring distribution {(pn(x))
∞
n=0; x ∈ E}.

Put

ψ(x, z) =

∞∑

n=0

pn(x)z
n, z ≥ 0. (1.2)

ψ is the generating function for the number of offspring generated at point x.

This branching system is characterized by the following properties:
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(i) Each particle has a random birth and a random death time.

(ii) Given that a particle is born at x ∈ E, the conditional distribution of its path after birth

is determined by Πx.

(iii) Given the path Y of a particle and given that the particle is alive at time t, its probability

of dying in the interval [t, t+ dt) is β(Yt)dt+ o(dt).

(iv) When a particle dies at x ∈ E, it splits into n particles at x with probability pn(x).

(v) The point ∆ is a cemetery. When a particle reaches ∆, it stays at ∆ for ever and there is

no branching at ∆.

We assume that the functions pn(x), n = 0, 1, · · · , and A(x) := ψ′(x, 1) =
∑∞

n=0 npn(x)

are bounded B(E)-measurable and that p0(x) + p1(x) = 0 on E. The last condition implies

A(x) ≥ 2 on E. The assumption p0(x) = 0 on E is essential for the probabilistic proof of this

paper since we need the spine to be defined for all t ≥ 0. The assumption p1(x) = 0 on E is

just for convenience as the case p1(x) > 0 can be reduced to the case p1(x) = 0 by changing the

parameters β and ψ of the branching Hunt process.

For any c ∈ Bb(E), we define

ec(t) = exp

(
−

∫ t

0
c(Ys)ds

)
.

Let Xt(B) be the number of particles located in B ∈ B(E) at time t. Then {Xt, t ≥ 0} is a

Markov process in Mp(E). This process is called a (Y, β, ψ)-branching Hunt process. For any

µ ∈ Mp(E), let Pµ be the law of {Xt, t ≥ 0} when X0 = µ. Then we have

Pµ exp〈−f,Xt〉 = exp〈log ut(·), µ〉 (1.3)

where ut(x) satisfies the equation

ut(x) = Πx

[
eβ(t) exp(−f(Yt)) +

∫ t

0
eβ(s)β(Ys)ψ(Ys, ut−s(Ys))ds

]
for t ≥ 0. (1.4)

The formula (1.4) deals with a process started at time 0 with one particle located at x, and

it has a clear heuristic meaning: the first term in the brackets corresponds to the case when the

particle is still alive at time t; the second term corresponds to the case when it dies before t.

The formula (1.4) implies that

ut(x) = Πx

∫ t

0
[ψ(Ys, ut−s(Ys))− ut−s(Ys)] β(Ys)ds +Πx exp(−f(Yt)) for t ≥ 0 (1.5)

(see [7, Section 2.3]). For any µ ∈ Mp(E), f ∈ B+
b (E) and t ≥ 0, we have

Pµ [〈f,Xt〉] = Πµ

[
e(1−A)β(t)f(Yt)

]
. (1.6)
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Let {P
(1−A)β
t , t ≥ 0} be the Feynman-Kac semigroup defined by

P
(1−A)β
t f(x) := Πx

[
f(Yt) e(1−A)β(t)f(Yt)

]
, f ∈ B(E).

Let {P̂
(1−A)β
t , t ≥ 0} be the dual semigroup of {P

(1−A)β
t , t ≥ 0} on L2(E,m).

Under Assumption 1.1, we can easily show that the semigroups {P
(1−A)β
t } and {P̂

(1−A)β
t }

are strongly continuous on L2(E,m). Moreover, P
(1−A)β
t admits a density p(1−A)β(t, x, y) that

is jointly continuous in (x, y) for each t > 0:

P
(1−A)β
t f(x) =

∫

E

p(1−A)β(t, x, y)f(y)m(dy), for every f ∈ B+(E).

The generators of {P
(1−A)β
t } and {P̂

(1−A)β
t } can be formally written as A + (A − 1)β and

Â+ (A− 1)β respectively.

Let σ(A + (A − 1)β) and σ(Â + (A − 1)β) denote the spectrum of operator A + (A − 1)β

and Â + (A − 1)β, respectively. It follows from Jentzch’s Theorem (Theorem V.6.6 on page

333 of [23] ) and the strong continuity of {P
(1−A)β
t } and {P̂

(1−A)β
t } that the common value

λ1 := supRe(σ(A+ (A− 1)β)) = supRe(σ(Â+ (A− 1)β)) is an eigenvalue of multiplicity 1 for

both A+ (A− 1)β and Â+ (A− 1)β, and that an eigenfunction φ of A+ (A− 1)β associated

with λ1 can be chosen to be strictly positive a.e. on E and an eigenfunction φ̃ of Â+ (A− 1)β

associated with λ1 can be chosen to be strictly positive a.e. on E. By [11, Proposition 2.3]

we know that φ and φ̃ are strictly positive and continuous on E. We choose φ and φ̃ so that∫
E
φ(x)φ̃(x)m(dx) = 1. Then

φ(x) = e−λ1tP
(1−A)β
t φ(x), φ̃(x) = e−λ1tP̂

(1−A)β
t φ̃, x ∈ E. (1.7)

Throughout this paper we assume that

Assumption 1.2 λ1 > 0.

The above assumption is the condition for the supercriticality of the branching Hunt process.

Indeed, if λ1 < 0, it is easy to see that extinction occurs almost surely from the martingaleMt(φ)

defined below.

Let Et = σ(Ys; s ≤ t). Note that

φ(Yt)

φ(x)
e−λ1te(1−A)β(t)

is a martingale under Πx, and so we can define a martingale change of measure by

dΠφ
x

dΠx

∣∣∣
Et

=
φ(Yt)

φ(x)
e−λ1te(1−A)β(t).

Then {Y, Πφ
x} is a conservative Markov process, and φφ̃ is the unique invariant probability

density for the semigroup P
(1−A)β
t , that is, for any f ∈ B+(E),

∫

E

φ(x)φ̃(x)P
(1−A)β
t f(x)m(dx) =

∫

E

f(x)φ(x)φ̃(x)m(dx).



5

Let pφ(t, x, y) be the transition density of Y in E under Πφ
x. Then

pφ(t, x, y) =
e−λ1t

φ(x)
p(1−A)β(t, x, y) φ(y).

Throughout this paper, we assume the following

Assumption 1.3 The semigroups {P
(1−A)β
t } and {P̂

(1−A)β
t } are intrinsic ultracontractive , that

is, for any t > 0 there exists a constant ct such that

p(1−A)β(t, x, y) ≤ ctφ(x)φ̃(y), x, y ∈ E.

Remark 1.4 Here are some examples of Hunt processes satisfying Assumptions 1.1 and 1.3.

(1) Suppose E = D, a domain in R
d, and m is the Lebesgue measure on D. If {Y, Πx, x ∈

D} is a diffusion killed upon leaving D with generator

A =
1

2
∇ · a∇+ b · ∇

where (aij(x))ij is uniformly elliptic and bounded with aij, i, j = 1, · · · , d, being bounded functions

in C1(Rd) such that all their first partial derivatives are bounded, and bi, i = 1, · · · , d, are

bounded Borel functions on R
d. It was proven in [11] and [12] that the semigroups {P

(1−A)β
t }t≥0

and {P̂
(1−A)β
t } are intrinsic ultracontractive when D is a bounded Lipschitz domain. For more

general conditions on D and the coefficients for {P
(1−A)β
t }t≥0 and {P̂

(1−A)β
t } to be intrinsic

ultracontractive, see [12].

(2) Suppose E = D, a bounded open set in R
d, and m is the Lebesgue measure on D. If

{Y, Πx, x ∈ D} is a symmetric α−stable process killed upon exiting D, where 0 < α < 2, then

it follows from [5] and [15] that the semigroups {P
(1−A)β
t }t≥0 and {P̂

(1−A)β
t }t≥0 are intrinsic

ultracontractive.

(3) For examples in which E is unbounded, see [16] and [17].

(4) For more examples of discontinuous Markov processes satisfying Assumptions 1.1 and

1.3, we refer our readers to [13] and the references therein.

It follows from [11, Theorem 2.8] that
∣∣∣∣∣
e−λ1tp(1−A)β(t, x, y)

φ(x)φ̃(y)
− 1

∣∣∣∣∣ ≤ c e−νt, x ∈ E, (1.8)

for some positive constants c and ν, which is equivalent to

sup
x∈E

∣∣∣∣
pφ(t, x, y)

φ(y)φ̃(y)
− 1

∣∣∣∣ ≤ c e−νt. (1.9)

Thus for any f ∈ B+
b (E) we have

sup
x∈E

∣∣∣∣
∫

E

pφ(t, x, y)f(y)m(dy) −

∫

E

φ(y)φ̃(y)f(y)m(dy)

∣∣∣∣ ≤ c e−νt

∫

E

φ(y)φ̃(y)f(y)m(dy).
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Consequently we have

lim
t→∞

∫
E
pφ(t, x, y)f(y)m(dy)

∫
E
φ(y)φ̃(y)f(y)m(dy)

= 1, uniformly for f ∈ B+
b (E) and x ∈ E. (1.10)

For any nonzero measure µ ∈ Mp(E), we define

Mt(φ) := e−λ1t
〈φ,Xt〉

〈φ, µ〉
t ≥ 0.

Lemma 1.5 For any nonzero measure µ ∈ Mp(E), Mt(φ) is a nonnegative martingale under

Pµ, and therefore there exists a limit M∞(φ) ∈ [0,∞), Pµ-a.s.

Proof. By the Markov property of X, (1.6) and (1.7),

Pµ

[
Mt+s(φ)

∣∣F t

]
=

1

〈φ, µ〉
e−λ1tPXt

[
e−λ1s〈φ,Xs〉

]

=
1

〈φ, µ〉
e−λ1t

〈
e−λ1sΠ·

[
e(1−A)β(s)φ(Ys)

]
, Xt

〉

=
1

〈φ, µ〉
e−λ1t〈φ, Xt〉 =Mt(φ).

This proves that {Mt(φ), t ≥ 0} is a non-negative Pµ-martingale and so it has an almost sure

limit M∞(φ) ∈ [0,∞) as t→ ∞. 2

In this paper we are concerned with the following classical question: under what condition

is the limit M∞(φ) non-degenerate (that is, Pµ(M∞(φ) > 0) > 0)? In [1], Asmussen and

Hering gave a criterion for M∞(φ) to be non-degenerate for a general class of branching Markov

processes under regularity conditions. More precisely, it was proved in [1] that if the underlying

Markov process Y is positive regular (see [1] for the precise definition),M∞(φ) is non-degenerate

if and only if
∫

E

m(dy)φ̃(y)Pδy

[
〈φ,Xt〉 log

+〈φ,Xt〉
]
<∞ for some t > 0. (1.11)

This condition is not easy to verify since it involves the branching process X itself. It is more

desirable to have a criterion in terms of the natural model parameters A, β and {pn(x)} of the

branching process. Such a criterion is found in [1] and [9] for branching diffusions and it was

proved that, in the case of branching diffusions on a bounded open set E ⊂ R
d with E being

the union of finite number of bounded C3-domains, M∞(φ) is non-degenerate if and only if

∫

E

φ̃(y)β(y)l(y)m(dy) <∞. (1.12)

where

l(x) =

∞∑

k=2

kφ(x) log+(kφ(x)) pk(x), x ∈ E. (1.13)
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The arguments of [1] and [9] are mainly analytic.

The purpose of this paper is two-folds. First, we generalize the result above to general

branching Hunt processes. Even in the case of branching diffusions, our main result is more

general than the corresponding result in [9] in some aspect since our requirement on the regularity

of the domain is very weak. Secondly, we give a more probabilistic proof of the result, using the

spine decomposition and martingale change of measure. Our probabilistic proof is similar to the

probabilistic proofs of [8], [18] and [20].

The main result of this paper can be stated as follows.

Theorem 1.6 Suppose that {Xt; t ≥ 0} is a (Y, β, ψ)-branching Hunt process and that Assump-

tions 1.1–1.3 are satisfied. Then M∞(φ) is non-degenerate under Pµ for any nonzero measure

µ ∈ Mp(E) if and only if ∫

E

φ̃(x)β(x)l(x)m(dx) <∞, (1.14)

where l is defined in (1.13).

It follows from the branching property that when µ ∈ Mp(E) is given by µ =
∑n

i=1 δxi
, n =

1, 2, . . . , {xi; i = 1, · · · , n} ⊂ E, we have

Mt(φ) =

n∑

i=1

e−λ1t
〈φt,Xi

t〉

φ(xi)
·
φ(xi)

〈φ, µ〉
,

where Xi
t is a branching Hunt process starting from δxi

, i = 1, . . . , n. If the conclusions hold for

the cases that µ = δx, for any x ∈ E, then the conclusions also hold for the general cases. So

in the remainder of this paper, we assume that the initial measure is of the form µ = δx, x ∈ E,

and Pδx will be denoted as P x.

This paper is organized as follows. In the next section we will discuss the spine decomposition

of branching Markov processes. The main result, Theorem 1.6, is proved in the last section.

2 Spine decomposition

The materials of this section are mainly taken from [8]. We also refer to [18] for some materials.

The main reason we present the details here is to clarify some of the points in [8].

Let N = {1, 2, . . . }. We will use

Γ :=

∞⋃

n=0

N
n

(where N
0 = {∅}) to describe the genealogical structure of our branching Hunt process. The

length (or generation) |u| of each u ∈ N
n is defined to be n. When n ≥ 1 and u = (u1, . . . , un),

we denote (u1, . . . , un−1) by u−1 and call it the parent of u. For each i ∈ N and u = (u1, . . . , un),

we write ui = (u1, . . . , un, i) for the i-th child of u. More generally, for u = (u1, . . . , un), v =

(v1, . . . , vm) ∈ Γ, we will use uv to stand for the concatenation (u1, . . . , un, v1, . . . , vm) of u and
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v. We will use the notation v < u to mean that v is an ancestor of u. The set of all ancestors of

u is given by {v ∈ Γ : v < u} = {v ∈ Γ : ∃ w ∈ Γ \ {∅} such that vw = u}. The notation v ≤ u

has the obvious meaning that either v < u or v = u.

A subset τ ⊂ Γ is called a Galton-Watson tree if a) ∅ ∈ τ ; b) if u, v ∈ Γ, then uv ∈ τ

implies u ∈ τ ; c) for all u ∈ τ, there exists ru ∈ N such that when j ∈ N, uj ∈ τ if and only if

1 ≤ j ≤ ru. We will denote the collection of Galton-Watson trees by T. Each u ∈ τ is called a

node of τ or an individual in τ or just a particle.

To fully describe the branching Hunt process X, we need to introduce the concept of marked

Galton-Watson trees. We suppose that each individual u ∈ τ has a mark (Yu, σu, ru) where:

(i) σu is the lifetime of u, which determines the fission time or the death time of particle u as

ζu =
∑

v≤u σv (ζ∅ = σ∅), and the birth time of u as bu =
∑

v<u σv (b∅ = 0);

(ii) Yu : [bu, ζu) → E∆ gives the location of u. Given Yu−1(ζu−1−) and bu, (Yu, u ∈ [bu, ζu)) is

the restriction to [bu, ζu) of a copy of a Hunt process starting from Yu−1(ζu−1−) at time

bu, i.e., a process with law ΠYu−1(ζu−1−) shifted by bu.

(iii) ru gives the number of the offspring born by u when it dies. It is distributed as P (Yu(ζu−)) =

(pk(Yu(ζu−)))k∈N which is as defined in Section 1.

We will use (τ, Y, σ, r) (or simply (τ,M)) to denote a marked Galton-Watson tree. We

denote the set of all marked Galton-Watson trees by T = {(τ,M) : τ ∈ T}.

For any τ ∈ T, we can select a line of decent ξ = {ξ0 = ∅, ξ1, ξ2, · · · }, where ξn+1 ∈ τ is an

offspring of ξn ∈ τ, n = 0, 1, · · · . Such a genealogical line is called a spine. We will write (M, ξ)

for a marked spine. We will write u ∈ ξ to mean that u = ξi for some i ≥ 0. We will use

T̃ = {(τ, Y, σ, r, ξ) : ξ ⊂ τ ∈ T}

denote the set of marked trees with distinguished spines. Lt = {u ∈ τ : bu ≤ t < ζu} is the set

of particles that are alive at time t.

We will use Ỹ = (Ỹt)t≥0 to denote the spatial path followed by a spine and n = (nt : t ≥ 0)

to denote the counting process of fission times along the spine. More precisely, Ỹt = Yu(t) and

nt = |u|, if u ∈ Lt ∩ ξ. We use nodet((τ,M, ξ)), or simply nodet(ξ), to denote the node in the

spine that is alive at time t:

nodet(ξ) := nodet((τ,M, ξ)) := u if u ∈ ξ ∩ Lt.

It is clear that nodet(ξ) = ξnt .

If v ∈ ξ, then at the fission time ζv, it gives birth to rv offspring, one of which continues the

spine whilst the others go off to create sub-trees which are copies of the original branching Hunt

process. Let Ov be the set of offspring of v except the one belonging to the spine, then for any

j = 1, . . . , rv such that vj ∈ Ov, we will use (τ, M)vj to denote the marked tree rooted at vj.
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Now we introduce five filtrations on T̃ that we shall use. Define

F t := σ {[u, ru, σu, (Yu(s), s ∈ [bu, ζu)) : u ∈ τ ∈ T with ζu ≤ t] and

[u, (Yu(s), s ∈ [bu, t]) : u ∈ τ ∈ T with t ∈ [bu, ζu)]} ;

F̃ t := σ(F t, (nodes(ξ), s ≤ t));

Gt := σ(Ỹs : 0 ≤ s ≤ t);

Ĝt := σ(Gt, (nodes(ξ) : s ≤ t), (ζu, u < nodet(ξ)));

G̃t := σ(Gt, (nodes(ξ) : s ≤ t), (ζu, u < nodet(ξ)), (ru : u < nodet(ξ))).

The filtrations F t, F̃ t, Gt, and G̃t were introduced in [8], while the filtration Ĝt is newly

defined. It is obvious that Gt ⊂ Ĝt ⊂ G̃t ⊂ F̃ t. Set F =
⋃

t≥0 F t, F̃ =
⋃

t≥0 F̃ t, G =
⋃

t≥0 Gt,

Ĝ =
⋃

t≥0 Ĝt and G̃ =
⋃

t≥0 G̃t.

For each x ∈ E, let P x be the measure on (T̃ ,F) such that the filtered probability space

(T̃ ,F , (F t)t≥0, (P
x)x∈E) is the canonical model for X, the branching Hunt process in E. For

detailed constructions of P x, we refer our readers to [3], [4] and [21]. As noted by Hardy and

Harris [8], it is convenient to consider P x as a measure on the enlarged space T̃ , rather than on

T . We shall use P x
t for the restriction of P x to F t.

We need to extend the probability measures P x to probability measures P̃ x on (T̃ , F̃) so

that the spine is a single genealogical line of descent chosen from the underlying tree. We will

assume that at each fission time we make a uniform choice amongst the offspring to decide which

line of descent continues the spine ξ. Then for u ∈ τ we have

Prob(u ∈ ξ) =
∏

v<u

1

rv
.

It is easy to see that ∑

u∈Lt

∏

v<u

1

rv
= 1.

To define P̃ x we recall the following representation from [19].

Theorem 2.1 Every F̃t-measurable function f can be written as

f =
∑

u∈Lt

fu(τ,M)I{u∈ξ}, (2.15)

where fu is Ft-measurable.

We define the measure P̃ x on F̃ t by

dP̃ x(τ,M, ξ)
∣∣∣
˜F t

= dΠx(Ỹ )dLβ(Ỹ )(n)
∏

v<ξnt

prv(Ỹζv)
∏

v<ξnt

1

rv

∏

j: vj∈Ov

dP
Ỹζv

t−ζv
((τ,M)vj ), (2.16)
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where Lβ(Ỹ )(n) is the law of the Poisson random measure n = {{σi : i = 1, · · · , nt} : t ≥ 0} with

intensity β(Ỹt)dt along the path of Ỹ , Πx(Ỹ ) is the law of the diffusion Ỹ staring from x ∈ E,

and prv(y) =
∑

k≥2 pk(y)I(rv=k) is the probability that individual v, located at y ∈ E, has rv

offspring.

It follows from Theorem 2.1 that for any bounded f ∈ F̃ t,

P̃ x(f |F t) = P̃ x

(
∑

u∈Lt

fu(τ,M)I{u∈ξ}

∣∣∣∣∣F t

)

=
∑

u∈Lt

fu(τ,M)P̃ x
(
I{u∈ξ}

∣∣F t

)

=
∑

u∈Lt

fu(τ,M)
∏

v<u

1

rv
.

Then we have

P̃ x(f) = P x

(
∑

u∈Lt

fu(τ,M)
∏

v<u

1

rv

)
, for any bounded f ∈ F̃ t, t ≥ 0. (2.17)

In particular,

P̃ x(T̃ ) = P x

(
∑

u∈Lt

∏

v<u

1

rv

)
= P x(1) = 1,

which implies P̃ x is a probability measure. P̃ x is an extension of P x onto (T̃ , F̃) and for any

bounded f ∈ F̃ t we have ∫

˜T
f dP̃ x =

∫

˜T

∑

u∈Lt

fu
∏

v<u

1

rv
dP x. (2.18)

The decomposition (2.16) of P̃ x suggests the following intuitive construction of the system

under P̃ x:

(i) the root of τ is at x, and the spine process Ỹt moves according to the measure Πx;

(ii) given the trajectory Ỹ· of the spine, the fission time ζv of node v on the spine is distributed

according to Lβ(Ỹ ), where Lβ(Ỹ ) is the law of the Poisson random measure with intensity

β(Ỹt)dt;

(iii) at the fission time of node v on the spine, the single spine particle is replaced by a ran-

dom number rv of offspring with rv being distributed according to the law P (Ỹζv ) =

(pk(Ỹζv))k≥1;

(vi) the spine is chosen uniformly from the rv offspring of v at the fission time of v;

(v) each of the remaining rv−1 particles vj ∈ Ov gives rise to the independent subtrees (τ,M)vj ,

which evolve as independent subtrees determined by the probability measure P Ỹζv shifted

to the time of creation.
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Definition 2.2 Suppose that (Ω,H, P ) is a probability space, {Ht, t ≥ 0} is a filtration on

(Ω,H) and that K is a sub-σ-field of H. A real-valued process Ut on (Ω,F , P ) is called a

P (·| K)-martingale with respect to {Ht, t ≥ 0} if (i) it is adapted to {Ht ∨K, t ≥ 0}; (ii) for any

t ≥ 0, E(|Ut|) <∞ and (iii) for any t > s,

E(Ut

∣∣Hs ∨ K) = Us, a.s.

We also say that Ut is a martingale with respect to {Ht, t ≥ 0}, given K.

Lemma 2.3 Suppose that (Ω,H, P ) is a probability space, {Ht, t ≥ 0} is a filtration on (Ω,H)

and that K1,K2 are two sub-σ-fields of H such that K1 ⊂ K2. Assume that U1
t is a P (·| K1)-

martingale with respect to {Ht, t ≥ 0}, U2
t is a P (·|K2)-martingale with respect to {Ht, t ≥ 0}.

If U1
t ∈ K2, U

2
t ∈ Ht, and E

(
|U1

t U
2
t |
)
<∞ for any t ≥ 0, then the product U1

t U
2
t is a P (·| K1)-

martingale with respect to {Ht, t ≥ 0}.

Proof. Suppose that t ≥ s ≥ 0. The assumption that U1
t ∈ K2 implies that U1

t ∈ Hs ∨ K2.

Then

P (U1
t U

2
t |Hs ∨ K1) = P

[
P (U1

t U
2
t |Hs ∨ K2)|Hs ∨ K1

]

= P
[
U1
t P (U

2
t |Hs ∨ K2)|Hs ∨ K1

]

= P
[
U1
t U

2
s |Hs ∨ K1

]

= U2
sP
[
U1
t |Hs ∨ K1

]

= U1
sU

2
s ,

where in the last second equality we used the assumption that U2
s ∈ Hs. 2

Lemma 2.4 Suppose that n = {{ζi : i = 1, · · · , nt} : t ≥ 0} is a Poisson random measure with

intensity β(Ỹt)dt along the path of Ỹ . Then

η
(1)
t :=

∏

i≤nt

A(Ỹζi) · exp

(
−

∫ t

0
((A− 1)β)(Ỹs)ds

)

is an Lβ(Ỹ )-martingale with respect to the natural filtration {Lt} of n.

Proof. First note that

Lβ(Ỹ )



∏

i≤nt

A(Ỹζi)


 = exp

(∫ t

0
((A− 1)β)(Ỹs)ds

)
, (2.19)

which implies that Lβ(Ỹ )(η
(1)
t ) = 1. It is easy to check that η

(1)
t is a martingale under Lβ(Ỹ ) by

using the Markov property of n. We omit the details. 2
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It follows from the lemma above that we can define a measure L(Aβ)(Ỹ ) by

dL(Aβ)(Ỹ )

dLβ(Ỹ )

∣∣∣∣∣
Lt

=
∏

i≤nt

A(Ỹζi) · exp

(
−

∫ t

0
((A− 1)β)(Ỹs)ds

)
.

Lemma 2.5 For any x ∈ E and t ≥ 0, we have

P̃ x


 ∏

v<ξnt

rv

A(Ỹζv )

∣∣∣∣∣∣
Ĝ


 = 1. (2.20)

Proof. It follows from (2.16) that, given Ĝ, for each v < ξnt ,

P̃ x(r(Ỹζv)|Ĝ) = A(Ỹζv).

Since, given Ĝ, {rv, v < ξnt} are independent, we have

P̃ x


 ∏

v<ξnt

r(Ỹζi)

A(Ỹζi)

∣∣∣∣∣∣
Ĝ


 = 1.

2

The following lemma corresponds to Theorems 5.4 and 5.5 in [8] which were not proved

there. Our results are somewhat different from those stated in Theorems 5.4 and 5.5 in [8].

Lemma 2.6 (1) The process

η̃
(1)
t :=

∏

v<ξnt

A(Ỹζv ) · exp

(
−

∫ t

0
((A− 1)β)(Ỹs)ds

)

is a P̃ x(·| G)-martingale with respect to {F̃ t, t ≥ 0}.

(2) The process

η̃
(2)
t :=

∏

v<ξnt

rv

A(Ỹζv)

is a P̃ x(·|Ĝ)-martingale with respect to {F̃ t, t ≥ 0}.

Proof. (1) For s, t ≥ 0, by the Markov property, we have

P̃ x
[
η̃
(1)
t+s

∣∣∣ F̃ t ∨ G
]
= P̃ x


 ∏

v<ξnt+s

A(Ỹζv ) · exp

(
−

∫ t+s

0
((A− 1)β)(Ỹr)dr

)∣∣∣∣∣∣
F̃ t ∨ G




=
∏

v<ξnt

A(Ỹζv) · exp

(
−

∫ t

0
((A− 1)β)(Ỹr)dr

)
·

P̃ x




∏

ξnt≤v<ξnt+s

A(Ỹζv ) · exp

(
−

∫ s

0
((A − 1)β)(Ỹr+t)dr

)∣∣∣∣∣∣
F̃ t ∨ G




= η̃
(1)
t exp

(
−

∫ s

0
((A− 1)β)(Ỹr+t)dr

)
P̃ x


 ∏

ξnt≤v<ξnt+s

A(Ỹζv)

∣∣∣∣∣∣
G


 .
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For fixed t > 0, given the path of Ỹ , the collection of fission times {{ζv : ξnt ≤ v < ξnt+s
} : s ≥ 0}

is a Poisson randommeasure with intensity β(Ỹt+s)ds, and has law Lβ(Ỹt+·). It follows from (2.19)

that

P x




∏

ξnt≤v<ξnt+s

A(Ỹζv )

∣∣∣∣∣∣
G


 = exp

(∫ s

0
((A− 1)β)(Ỹr+t)dr

)
.

Then we get

P̃ x
[
η̃
(1)
t+s

∣∣∣ F̂ t ∨ G
]
= η̃

(1)
t .

(2) For s, t ≥ 0, by the Markov property, we have

P x
[
η̃
(2)
t+s

∣∣∣ F̃ t ∨ Ĝ
]
= P̃ x




∏

v<ξnt+s

rv

A(Ỹζv)

∣∣∣∣∣∣
F̃ t ∨ Ĝ




=
∏

v<ξnt

rv

A(Ỹζv)
· P̃ x


 ∏

ξnt≤v<ξns+t

rv

A(Ỹζv)

∣∣∣∣∣∣
Ĝ




= η̃
(2)
t ,

where in the last equality we used (2.20). Then we have

P̃ x
[
η̃
(2)
t+s

∣∣∣ F̃ t ∨ Ĝ
]
= η̃

(2)
t .

2

The effect of a change of measure using the martingale η̃
(1)
t will increase the fission rate

along the spine from β(Ỹt) to (Aβ)(Ỹt). The effect of a change of measure using the martingale

η̃
(2)
t will change offspring distribution from P (Ỹζi) = (pk(Ỹζi))k≥1 to the size-biased distribution

P̂ (Ỹζi) = (p̂k(Yζi))k≥1, where p̂k(y) is defined by

p̂k(y) =
kpk(y)

A(y)
, k ≥ 1, y ∈ E.

Define

η̃
(3)
t (φ) :=

φ(Ỹt)

φ(x)
exp

(
−

∫ t

0
(λ1 − (A− 1)β)(Ỹs)ds

)
.

η̃
(3)
t (φ) is a P̃ x-martingale with respect to {Gt, t ≥ 0}, and it is also a P̃ x-martingale with respect

to {F̃ t, t ≥ 0}, since η̃
(3)
t (φ) can be expressed as

η̃
(3)
t (φ) =

∑

u∈Lt

φ(x)−1φ(Ỹu(t)) exp

(
−

∫ t

0
(λ1 − (A− 1)β)(Ỹs)ds

)
I{u∈ξ}. (2.21)

And then we define

η̃t(φ) =
∏

v<ξnt

rv exp

(
−

∫ t

0
((A− 1)β)(Ỹs)ds

)
× η̃

(3)
t (φ)

=
∏

v<ξnt

rv

A(Ỹζv )

∏

v<ξnt

A(Ỹζv ) exp

(
−

∫ t

0
((A− 1)β)(Ỹs)ds

)
× η̃

(3)
t (φ)

= η̃
(1)
t × η̃

(2)
t × η̃

(3)
t (φ).
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The following result corresponds to Definition 5.6 in [8].

Lemma 2.7 η̃t(φ) is a P̃ x-martingale with respect to F̃ t.

Proof. η̃
(1)
t is a P̃ x(·| G)-martingale with respect to {F̃ t, t ≥ 0}, and η̃

(2)
t is a P̃ x(·|Ĝ)-

martingale with respect to {F̃ t, t ≥ 0}. Note that G ⊂ Ĝ, and η̃
(1)
t ∈ Ĝ, η̃

(2)
t ∈ F̃ t for any

t ≥ 0. Using Lemma 2.3, η̃
(1)
t η̃

(2)
t is a P̃ x(·|G)-martingale with respect to {F̃ t, t ≥ 0}. Note

that η̃
(3)
t (φ) ∈ G and η̃

(1)
t η̃

(2)
t ∈ F̃ t for any t ≥ 0. Using Lemma 2.3 again, we see that η̃t(φ) =

η̃
(1)
t η̃

(2)
t η̃

(3)
t (φ) is a P̃ x-martingale with respect to {F̃ t, t ≥ 0}. 2

Lemma 2.8 Mt(φ) is the projection of η̃t(φ) onto F t, i.e.,

Mt(φ) = P̃ x(η̃t(φ)|F t).

Proof. By (2.21), we have

η̃t(φ) =
∑

u∈Lt

∏

v<u

rve
−λ1tφ(x)−1φ(Yu(t))I(u∈ξ).

Then

P̃ x(η̃t(φ)|F t) =
∑

u∈Lt

e−λ1tφ(x)−1φ(Yu(t))
∏

v<u

rv P̃
x(I(u∈ξ)|F t)

=
∑

u∈Lt

e−λ1tφ(x)−1φ(Yu(t)) =Mt(φ),

where in the second equality we used the fact that P̃ x(I(u∈Lt∩ξ)|F t) = I(u∈Lt) ×
∏

v<u r
−1
v . 2

Now we define a probability measure Q̃x on (T̃ , F̃) by

dQ̃x

dP̃ x

∣∣∣˜F t

= η̃t(φ),

which says that on F̃ t,

dQ̃x = η̃t(φ)dP̃
x

=
φ(Ỹt∧τB )

φ(x)
exp

(
−

∫ t∧τB

0
(λ1 − (A− 1)β)(Ỹs)ds

)
dΠx(Ỹ )

× exp

(
−

∫ t

0
((A − 1)β)(Ỹs)ds

)
dLβ(Ỹ )

∏

v<ξnt

prv(Ỹζv)
∏

j: vj∈Ov

dP
Ỹζv

t−ζv
((τ,M)vj )

= dΠφ
x(Ỹ )dLAβ(Ỹ )(n)

∏

v<ξnt

prv(Ỹζv )

A(Ỹζv)

∏

j: vj∈Ov

dP
Ỹζv

t−ζv
((τ,M)vj )

= dΠφ
x(Ỹ )dLAβ(Ỹ )(n)

∏

v<ξnt

p̂rv(Ỹζv )
∏

v<ξnt

1

rv

∏

j: vj∈Ov

dP
Ỹζv

t−ζv
((τ,M)vj ).
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Thus the change of measure from P̃ x to Q̃x has three effects: the spine will be changed to a

Hunt process under Πφ
x, its fission times will be increased and the distribution of its family sizes

will be sized-biased. More precisely, under Q̃x,

(i) the spine process Ỹt moves according to the measure Πφ
x;

(ii) the fission times along the spine occur at an accelerated intensity (Aβ)(Ỹt)dt;

(iii) at the fission time of node v on the spine, the single spine particle is replaced by a

random number rv of offspring with size-biased offspring distribution P̂ (Ỹζv ) :=
(
p̂k(Ỹζv )

)
k≥1

,

where p̂k(y) is defined by p̂k(y) :=
kpk(y)
A(y) , k = 1, 2. · · · , y ∈ E;

(iv) the spine is chosen uniformly from the rv particles at the fission point v;

(v) each of the remaining rv − 1 particles vj ∈ Ov gives rise to independent subtrees (τ,M)vj

which evolve as independent subtrees determined by the probability measure P Ỹζv shifted to the

time of creation.

We define a measure Qx on (T̃ ,F) by

Qx := Q̃x|F .

It follows from Theorem 6.4 in [8] and its proof that Qx is a martingale change of measure by

the martingale Mt(φ):
dQx

dP x

∣∣∣∣
Ft

=Mt(φ).

Theorem 2.9 (Spine decomposition) We have the following spine decomposition for the

martingale Mt(φ):

Q̃x
[
φ(x)Mt(φ)

∣∣∣G̃
]
= φ(Ỹt)e

−λ1t +
∑

u<ξnt

(ru − 1)φ(Ỹζu)e
−λ1ζu . (2.22)

Proof. We first decompose the martingale φ(x)Mt(φ) as

φ(x)Mt(φ) = e−λ1tφ(Ỹt) + e−λ1t
∑

u∈Lt,u 6=ξnt

φ(Yu(t)).

The individuals {u ∈ Lt, u 6= ξnt} can be partitioned into subtrees created from fissions along

the spines. That is, each node u < ξnt in the spine ξ has given birth at time ζu to ru offspring

among which one has been chosen as a node of the spine whilst the other ru − 1 individuals go

off to make the subtree (τ,M)uj . Put

Xj
t =

∑

v∈Lt,v∈(τ,M)uj

δYv(t)(·), t ≥ ζu.

(Xj
t , t ≥ ζu) is a (Y, β, ψ)-branching Hunt process with birth time ζu and staring point Ỹζu .

Then

φ(x)Mt(φ) = e−λ1tφ(Ỹt) +
∑

u<ξnt

∑

j: uj∈Ou

Mu,j
t (φ)φ(Ỹζu)e

−λ1ζu , (2.23)



16

where

Mu,j
t (φ) := e−λ1(t−ζu)

〈φ,Xj
t−ζu

〉

φ(Ỹζu)

is, conditional on G̃, a P̃ x-martingale on the subtree (τ,M)uj , and therefore

P̃ x(Mu,j
t (φ)|G̃) = 1.

Thus taking Q̃x conditional expectation of (2.23) gives

Q̃x
[
φ(x)Mφ

t

∣∣∣G̃
]
= φ(Ỹt)e

−λ1t +
∑

u<ξnt

(ru − 1)φ(Ỹζu)e
−λ1ζu ,

which completes the proof. 2

3 Proof of the main result

First, we give two lemmas. The first lemma is basically [6, Theorem 4.3.3].

Lemma 3.1 Suppose that P and Q are two probability measures on a measurable space (Ω,F∞)

with filtration (Ft)t≥0, such that for some nonnegative martingale Zt,

dQ

dP

∣∣∣
Ft

= Zt.

The limit Z∞ := lim supt→∞ Zt therefore exists and is finite almost surely under P. Furthermore,

for any F ∈ F∞

Q(F ) =

∫

F

Z∞dP+Q(F ∩ {Z∞ = ∞}),

and consequently,

(a) P(Z∞ = 0) = 1 ⇐⇒ Q(Z∞ = ∞) = 1

(b)

∫
Z∞dP =

∫
Z0dP ⇐⇒ Q(Z∞ <∞) = 1.

Now we are going to give a lemma which is the key to the proof of Theorem 1.6. To state

this lemma, we need some more notation. Note that under Q̃x, given G̃, Nt := {{(ζξi , rξi) :

i = 0, 1, 2, · · · , nt − 1} : t ≥ 0} is a Poisson point process with instant intensity measure

(Aβ)(Ỹt)dtdP̂ (Ỹt) at time t, where for each y ∈ E, P̂ (y) is the size-biased probability measure

on N defined in Lemma 2.6. To simplify notation, ζξi and rξi will be denoted as ζi and ri,

respectively.

Recall that l(x) =
∑∞

i=2(iφ(x)) log
+(iφ(x)) pi(x).
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Lemma 3.2 (1) If
∫
E
φ̃(y)β(y)l(y)m(dy) <∞, then

∞∑

i=0

e−λ1ζiriφ(Ỹζi) <∞, Q̃x − a.s.

(2) If
∫
E
φ̃(y)β(y)l(y)m(dy) = ∞, then

lim sup
i→∞

e−λ1ζiriφ(Ỹζi) = ∞, Q̃x − a.s.

Proof. (1) For any ǫ > 0,

∞∑

i=0

e−λ1ζiriφ(Ỹζi)

=
∑

i

e−λ1ζiriφ(Ỹζi)I{riφ(Ỹζi
)≤eεζi} +

∑

i

e−λ1ζiriφ(Ỹζi)I{riφ(Ỹζi
)>eεζi}

=: I + II. (3.24)

Note that (1.9) implies that there is a constant c > 0 such that for any t > c and any nonnegative

measurable function f with ||f ||∞ ≤ 1,

1

2

∫

E

φ(y)φ̃(y)f(y)m(dy) ≤

∫

E

pφ(t, x, y)f(y)m(dy) ≤ 2

∫

E

φ(y)φ̃(y)f(y)m(dy), x ∈ E.

(3.25)

Then,

Q̃x

[
∑

i

I{riφ(Ỹζi
)>eεζi}

]

= Πφ
x

[∫ ∞

0
β(Ỹs)

(
∞∑

k=2

kpk(Ỹs)I{kφ(Ỹs)>eǫs}

)
ds

]

=

∫ ∞

0
ds

∫

E

pφ(s, x, y)m(dy)

[
β(y)

∞∑

k=2

kpk(y)I{kφ(y)>eεs}

]

=

∫ c

0
ds

∫

E

pφ(s, x, y)m(dy)

[
β(y)

∞∑

k=2

kpk(y)I{kφ(y)>eεs}

]

+

∫ ∞

c

ds

∫

E

pφ(s, x, y)m(dy)

[
β(y)

∞∑

k=2

kpk(y)I{kφ(y)>eεs}

]
(3.26)

Applying Fubini’s theorem and using the assumption that A and β are bounded, we get

∫ c

0
ds

∫

E

pφ(s, x, y)m(dy)

[
β(y)

∞∑

k=2

kpk(y)I{kφ(y)>eεs}

]
≤ ‖βA‖∞

∫ c

0
ds ≤ C1, (3.27)

where C1 is positive constant which only depends on c. Using (3.25), we get

∫ ∞

c

ds

∫

E

pφ(s, x, y)m(dy)

[
β(y)

∞∑

k=2

kpk(y)I{kφ(y)>eεs}

]
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≤ 2

∫

E

m(dy)φ(y)φ̃(y)β(y)

∞∑

k=2

kpk(y)

∫ 1

ε
log+[kφ(y)]

0
ds

=
2

ε

∫

E

φ̃(y)β(y)l(y)m(dy). (3.28)

Combining (3.26), (3.27) and (3.28), we have

Q̃x

[
∑

i

I{riφ(Ỹζi
)>eεζi}

]
≤ C1 +

2

ε

∫

E

φ̃(y)β(y)l(y)m(dy).

Therefore, the condition
∫
E
φ̃(y)β(y)l(y)m(dy) <∞ implies that

∑

i

I{riφ(Ỹζi
)>eεζi} <∞, Q̃x − a.s.

for all ε > 0. Then we have

II <∞, Q̃x − a.s. (3.29)

Meanwhile for ε < λ1,

Q̃x(I) = Q̃x

[
∑

i

e−λ1ζiriφ(Ỹζi)I{riφ(Ỹζi
)≤eεζi}

]

= Πφ
x

∫ ∞

0
dte−λ1tφ(Ỹt)β(Ỹt)A(Ỹt)

∞∑

k=2

kp̂k(Ỹt)I{kφ(Ỹt)≤eεt}

= Πφ
x

∫ ∞

0
dte−λ1tφ(Ỹt)β(Ỹt)A(Ỹt)

∞∑

k=2

k
k

A(Ỹt)
pk(Ỹt)I{kφ(Ỹt)≤eεt}

≤ Πφ
x

∫ ∞

0
dte−(λ1−ε)tβ(Ỹt)

∞∑

k=2

kpk(Ỹt)I{kφ(Ỹt)≤eεt}

≤ C2

∫ ∞

0
e−(λ1−ε)tdt <∞,

where in the second to the last inequality we used the assumption that β and A are bounded

and C2 is a positive constant. Then we have

I <∞, Q̃x − a.s. (3.30)

Combining (3.24), (3.29) and (3.30), we see that
∑∞

i=0 e
−λ1ζiriφ(Ỹζi) <∞, Q̃x − a.s.

(2) It is enough to prove that for any K > 1,

lim sup
i→∞

e−λ1ζiriφ(Ỹζi) > K, Q̃x − a.s. (3.31)

For any fixed K > 1, define γ(t, y) := β(y)
∑

k kpk(y)I{kφ(y)>Keλ1t}. Since for any x ∈ E,

Πφ
x

∫ T

0
γ(t, Ỹt)dt =

∫ T

0
dt

∫

E

m(dy)pφ(t, x, y)γ(t, y)
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≤

∫ T

0
dt

∫

E

m(dy)pφ(t, x, y)β(y)A(y) <∞,

we have
∫ T

0 γ(t, Ỹt)dt <∞, Πφ
x − a.s.. Note that for any T ∈ (0,∞), conditional on σ(Ỹ ),

♯
{
i : ζi ∈ (0, T ]; ri > Kφ(Ỹζi)

−1eλ1ζi
}

is a Poisson random variable with intensity
∫ T

0 γ(t, Ỹt)dt a.s. Hence, to prove (3.31), we just

need to prove

Z∞ =:

∫ ∞

0
γ(t, Ỹt)dt = ∞, Πφ

x − a.s. (3.32)

Recall the choice of the constant c > 0 in the statement above the inequalities (3.25).

Applying Fubini’s theorem and (3.25), we get

Πφ
xZ∞ =

∫ ∞

0
dt

∫

E

pφ(t, x, y)γ(t, y)m(dy)

≥

∫ ∞

c

dt

∫

E

pφ(t, x, y)γ(t, y)m(dy)

≥
1

2

∫ ∞

c

dt

∫

E

φ(y)φ̃(y)γ(t, y)m(dy) =:
1

2
A∞. (3.33)

Exchanging the order of integration in A∞, we get that

A∞ ≥

∫

E

φ(y)φ̃(y)β(y)m(dy)
∑

k

kpk(y)I{k>Kφ(y)−1}

[
1

λ1
log(kφ(y)) −

logK

λ1
− c

]+

≥ C3

∫

E

φ(y)φ̃(y)β(y)m(dy)
∑

k

k log(kφ(y))pk(y)I{k>Kφ(y)−1} − C4, (3.34)

where C3 = 1/λ1 and C4 = ‖βA‖∞(logK+cλ1)/λ1. The assumption that
∫
E
φ̃(y)β(y)l(y)m(dy) =

∞ says that ∫

E

φ(y)φ̃(y)β(y)m(dy)
∑

k

k log(kφ(y))pk(y)I{k>φ(y)−1} = ∞.

Since
∫

E

φ(y)φ̃(y)β(y)m(dy)
∑

k

k log(kφ(y))pk(y)I{φ(y)−1<k≤Kφ(y)−1}

≤ logK

∫

E

φ(y)φ̃(y)β(y)A(y)m(dy) <∞,

it follows from (3.34) that

A∞ = ∞. (3.35)

Then by (3.33),

Πφ
xZ∞ = ∞. (3.36)



20

For any finite time T > 0, put ZT =
∫ T

0 γ(t, Ỹt)dt and

ΛT =

∫ T

c

dt

∫

E

φ(y)φ̃(y)γ(t, y)m(dy).

Then limT→∞ZT = Z∞, and limT→∞ΛT = A∞ = Πφ
xZ∞ = ∞.

An argument similar to (3.33) yields that there exists a constant C5 which is independent of

T and sufficiently large, such that

1

C5
ΛT ≤ Πφ

xZT ≤ C5ΛT . (3.37)

By the Paley-Zygmund inequality (see, for instance, [6, Ex. 1.3.8]),

Πφ
x

(
ZT ≥

1

2
Πφ

xZT

)
≥

(Πφ
xZT )

2

4Πφ
x[Z2

T ]
. (3.38)

Now we estimate Πφ
x(Z2

T ).

Πφ
xZ

2
T = Πφ

x

∫ T

0
γ(t, Ỹt)dt

∫ T

0
γ(s, Ỹs)ds

= 2Πφ
x

∫ T

0
γ(t, Ỹt)dt

∫ T

t

γ(s, Ỹs)ds

= 2Πφ
x

∫ T

0
γ(t, Ỹt)dt

∫ (t+c)∧T

t

γ(s, Ỹs)ds+ 2Πφ
x

∫ T

0
γ(t, Ỹt)dt

∫ T

(t+c)∧T
γ(s, Ỹs)ds

=: III + IV.

By the Markov property of Ỹ , we have

IV = 2Πφ
x

∫ T

0
γ(t, Ỹt)dtΠ

φ

Ỹt

∫ T

(c+t)∧T
γ(s, Ỹs−t)ds

= 2Πφ
x

∫ T

0
γ(t, Ỹt)dtΠ

φ

Ỹt

∫ T−t

(c+t)∧T−t

γ(u+ t, Ỹu)du

≤ 2Πφ
x

∫ T

0
γ(t, Ỹt)dtΠ

φ

Ỹt

∫ T

c

γ(u, Ỹu)du

= 2Πφ
x

∫ T

0
dtγ(t, Ỹt)

∫ T

c

du

∫

E

m(dy)pφ(u, Ỹt, y)γ(u, y),

where in above inequality we used the fact that γ(s, y) is decreasing in s, which is obvious by

the definition of γ. Using (3.25) and (3.37), we see that

IV ≤ 4ΛTΠ
φ
xZT ≤ 4C5(Π

φ
xZT )

2.

Meanwhile,

III ≤ 2Πφ
x

∫ T

0
dtγ(t, Ỹt)

∫ (t+c)∧T

t

(Aβ)(Ỹs)ds
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≤ 2c‖βA‖∞Πφ
x

∫ T

0
γ(t, Ỹt)dt

= C6 Πφ
xZT ,

where C6 = 2c‖βA‖∞. Therefore, there exists a constant C > 0 which does not depend on T ,

such that

Πφ
x(Z

2
T ) ≤ C(Πφ

x(ZT ))
2.

Then by (3.38) we get

Πφ
x

(
ZT ≥

1

2
Πφ

xZT

)
≥ (4C)−1,

and therefore,

Πφ
x

(
Z∞ ≥

1

2
Πφ

xZT

)
≥ Πφ

x

(
ZT ≥

1

2
Πφ

xZT

)
≥ (4C)−1 > 0.

Since limT→∞ΛT = ∞, (3.37) and the above inequality imply that Πφ
x(Z∞ = ∞) > 0. Since for

any t0 > 0,
∫ t0
0 γ(t, Ỹt)dt ≤ ‖βA‖∞t0 < ∞, the event Γ := {Z∞ = ∞} =

{∫∞
0 γ(t, Ỹt)dt = ∞

}

is invariant, that is, θ−1
t (Γ) = Γ for all t ≥ 0, where {θt : t ≥ 0} are the shift operators of

the process Ỹ . It follows from (1.9) and [22, Proposition X.3.9] that the process Ỹ is Harris-

recurrent. Thus it follows from [22, Propositions X.3.6 and X.3.10] that Πφ
x (Z∞ = ∞) = 1,

which is (3.32). And our second conclusion follows. 2

Proof of Theorem 1.6. The proof heavily depends on the decomposition (2.22).

When
∫
E
φ̃(x)β(x)l(x)m(dx) <∞, the first conclusion of Lemma 3.2 says that

sup
t>0

Q̃x
[
φ(x)Mt(φ)

∣∣∣G̃
]
≤
∑

u∈ξ

ruφ(Ỹζu)e
−λ1ζu + ‖φ‖∞ <∞.

Fatou’s lemma for conditional probability implies that lim inft→∞Mt(φ) < ∞, Q̃x-a.s. The

Radon-Nikodym derivative tells us that Mt(φ)
−1 is a nonnegative supermartingale under Qx

and therefore has a finite limit Qx-a.s. So limt→∞Mt(φ) = M∞ < ∞, Qx-a.s. Lemma 3.1

implies that in this case,

P x[M∞(φ)] = lim
t→∞

P x[Mt(φ)] = 1.

When
∫
E
φ̃(x)β(x)l(x)m(dx) = ∞, using the second conclusion in Lemma 3.2, we can get

under Q̃x,

lim sup
t→∞

φ(x)Mt(φ) ≥ lim sup
t→∞

φ(Ỹζnt
)(rnt − 1)e−λ1ζnt = ∞.

This yields that M∞(φ) = ∞, Qx-a.s. Using Lemma 3.1 again, we get M∞(φ) = 0, P x-a.s. The

proof is finished. 2
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