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Abstract. We give a comprehensive study on regularized approximate
electromagnetic cloaking via the transformation optics approach. The
following aspects are investigated: (i) near-invisibility cloaking of passive
media as well as active/radiating sources; (ii) the existence of cloak-
busting inclusions without lossy medium lining; (iii) overcoming the
cloaking-busts by employing a lossy layer outside the cloaked region;
(iv) the frequency dependence of the cloaking performances. We address
these issues and connect the obtained asymptotic results to singular
ideal cloaking. Numerical verifications and demonstrations are provided
to show the sharpness of our analytical study.

1. Introduction

A region is said to be cloaked if its contents together with the cloak
are invisible to certain noninvasive wave detections. Blueprints for making
objects invisible to electromagnetic waves were proposed by Pendry et al.
[18] and Leonhardt [11] in 2006. In the case of electrostatics, the same idea
was discussed by Greenleaf et al. [8] in 2003. The key ingredient for those
constructions is that optical parameters have transformation properties and
could be push-forwarded to form new material parameters. The obtained
materials/media are called transformation media, which we shall further
examine in the current work for cloaking of the full system of Maxwell’s
equations.

The transformation-optics-approach-based scheme proposed in [8, 18] is
rather singular. This poses much challenge to both theoretical analysis
and practical fabrication. In order to avoid the singular structures, several
regularized approximate cloaking schemes are proposed in [6, 9, 10, 12, 22].
The works [6] and [22] are based on truncation, whereas in [9, 10, 12], the
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‘blow-up-a-point’ transformation in [8, 18] is regularized to be the ‘blow-
up-a-small-ball’ transformation. The performances of both regularization
schemes have been assessed for cloaking of acoustic waves to give successful
near-invisibility effects. Particularly, in [9], the authors show that in order
to ‘nearly-cloak’ an arbitrary content, it is necessary to employ an absorbing
(‘lossy’) layer lining right outside the cloaked region. Since otherwise, there
exist cloaking-busting inclusions which defy any attempts of cloaking. This
idea of introducing a lossy layer has recently been intensively investigated for
approximate acoustic cloaking (see [15, 16]), whose behaviors are now much
well understood. However, very little progress has been made in the study
of approximate EM cloaking for full Maxwell’s equations due to the more
complicated structure of Maxwell’s equations. This is the main concern of
the present article.

We have considered both the ‘truncation-scheme’ and the ‘blow-up-a-
small-ball-scheme’ for approximate EM cloaking. However, in our study, the
two regularization schemes have the same performances for near-invisibility,
so we focus our exposition on the latter one. Based on a model problem, the
following aspects on the approximate EM cloaking are addressed in detail.

(i) The near-cloak of EM waves for both passive media and active/radiating
sources. For approximate cloaking of passive media, the near-cloak is shown
to be within ρ3 of the singular ideal cloaking, where ρ is the regularization
parameter. Whereas if there is a delta point source present in the cloaked
region, the near-cloak is shown to be within ρ2 of the perfect cloaking. That
is, we could still achieve the near-invisibility effect, but with one order reduc-
tion on the approximation. Compared to the near-invisibility assessments
in [6, 9, 12, 15, 16, 22] for approximate acoustic cloaking (which is of O(ρ)
when spatial dimension is 3; and O(1/ ln ρ) when spatial dimension is 2),
the performances for near-cloak of EM waves are much better. We point out
that the study in [9, 12, 15, 16, 22] lacks the analysis on the approximate
cloaking when there is an active/radiating source present inside the cloaked
region. Another rather interesting observation we would like to make is
that in [5], it is shown one cannot perfectly cloak an H−1-source inside the
cloaked region since otherwise there would be a conflict with certain ‘hidden’
boundary conditions of the finite energy solutions underlying the singular
ideal EM cloaking, but our analysis here shows that one could nearly-cloak
a delta point source inside the cloaked region.

(ii) If one allows that the contents in the cloaked region could be arbitrary,
then for a fixed near-cloak construction, there always exist cloaking-busting
inclusions which defy any attempts of cloaking. These are similar to the res-
onant inclusions observed in [9] for approximate acoustic cloaking. Following
[9], we employ a lossy layer with conducting medium outside the cloaked re-
gion to overcome the resonance and re-achieve all the approximate cloaking
results for passive media and active sources in (i).

(iii) The performance of the approximate EM cloaking in asymptotically
low and high frequency regimes. We show that it is impossible, with a fixed
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near-cloaking scheme, to obtain cloaking uniformly in frequency, especially
for the cloaking of active/radiating objects. Our observation is closely re-
lated to the very recent study in [16], where frequency dependence for the
approximate acoustic cloaking is considered.

(iv) The limiting behaviors of solutions to regularized approximate cloak-
ing problems, and their connections to finite energy solutions considered in
[5] for singular ideal cloaking problems.

Our study has been mainly restricted to spherical cloaking devices with
uniform cloaked contents. We base our analysis on spherical wave functions
expansions of EM wave fields. Nonetheless, we believe similar results would
equally hold for general approximate EM cloaking study.

In this paper, we focus entirely on transformation-optics-approach in con-
structing cloaking devices. We refer to [4, 17, 23] for state-of-the-art surveys
on the rapidly growing literature and many striking applications of trans-
formation optics. But we would also like to mention in passing the other
promising cloaking schemes including the one based on anomalous local-
ized resonance [13], and another one based on special (object-dependent)
coatings [1].

The rest of the paper is organized as follows. In Section 2, we present
the basics on transformation optics in a rather general setting and apply
them to the construction of EM cloaking devices. Sections 3–5 are devoted
to the main results, respectively on, cloaking of passive media, cloaking of
radiating objects and, cloaking-busting inclusions and retaining of cloaking
by employing a lossy layer. The numerical experiments are given in Section
6.

2. Transformation optics and electromagnetic cloaking

Let Ω be a bounded body in R3 whose electric permittivity, conductiv-
ity, and magnetic permeability are described by the R3×3-valued functions
ε, σ and µ, respectively. Consider the time-harmonic electric field E and
magnetic field H inside Ω satisfying Maxwell’s equations

∇× E = iωµH, ∇×H = −iω(ε+ i
σ

ω
)E + J in Ω (2.1)

with ω > 0 representing a frequency, J an internal current density. Let ν
be the exterior unit normal on the boundary ∂Ω. By Λωε,µ,σ,J we denote

the linear mapping that takes the tangential component of E|∂Ω to that of
H|∂Ω, i.e.,

Λωε,µ,σ,J(ν × E|∂Ω) = ν ×H|∂Ω. (2.2)

Λωε,µ,σ,J is known as impedance map which encodes the exterior (boundary)
measurements of the EM wave fields. In noninvasive detections, one intends
to recover the interior object, namely µ, ε, σ and J , by knowing Λωε,µ,σ,J . It
is pointed out that knowledge of the impedance map is equivalent to that
of the corresponding scattering measurements (cf. [3]). We refer readers to
[19] and [20] for uniqueness results of this inverse problem. Throughout the
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rest of the paper, we shall denote by {Ω; ε, µ, σ, J} the object (EM medium
and internal current) supported in Ω. We would also use Λω0 to denote the
impedance map in the free space; that is, it corresponds to the case with
ε = µ = I, σ = 0 and J = 0 in Ω. In this context, invisibility cloaking can
be generally introduced as follows.

Definition 2.1. Let Ω and D be bounded domains in R3 with D b Ω. Ω\D̄
and D represent, respectively, the cloaking region and the cloaked region.
{Ω\D̄; εc, µc, σc} is said to be an invisibility cloaking for the region D if

Λωεe,µe,σe,Je = Λω0 on ∂Ω for all ω > 0, (2.3)

where the extended object {Ω; εe, µe, σe, Je} is given by

{Ω; εe, µe, σe, Je} =

{
{Ω\D̄; εc, µc, σc, 0} in Ω\D̄,
{D; εa, µa, σa, Ja} in D,

(2.4)

with {D; εa, µa, σa, Ja} being the target object (which could be arbitrary).

According to Definition 2.1, the cloaking medium {Ω\D̄; εc, µc, σc} makes
the target object, namely the interior EM medium {D; εa, µa, σa} and the
interior source/sink J , invisible to exterior boundary measurements.

Next we present the transformation invariance of Maxwell’s equations
and transformation properties of EM material parameters, which shall form
the key ingredients for our construction of invisibility cloaking devices. To
that end, we first briefly discuss the well-posedness of the Maxwell equations
(2.1). In the following, let Ω be an open bounded domain in R3 with smooth
boundary. Assume that ε, µ and σ are in L∞(Ω)3×3, and they have the
following properties: There are constants cm, cM > 0 such that for all x ∈ Ω
and arbitrary ξ ∈ R3

cm|ξ|2 ≤ ξT ε(x)ξ ≤ cM |ξ|2, cm|ξ|2 ≤ ξTµ(x)ξ ≤ cM |ξ|2 (2.5)

and
0 ≤ ξTσξ ≤ cM |ξ|2. (2.6)

We remark that the conditions (2.5) and (2.6) are physical conditions for
regular EM media. We also assume that J ∈ L2(Ω)3. For the Maxwell
equations (2.1), we seek solutions (E,H) ∈ H(curl; Ω)×H(curl; Ω), where

H(curl; Ω) = {u ∈ L2(Ω)3;∇× u ∈ L2(Ω)3}. (2.7)

We shall not give a complete review on the study of existence and uniqueness
of solutions to (2.1) in the setting described above, and we refer to [14] for
results related to our present study. It is noted that there is a well-defined
continuous impedance map

Λωε,µ,σ,J : H−1/2(Div; ∂Ω)→ H−1/2(Div; ∂Ω), (2.8)

provided ω avoids a discrete set of frequencies corresponding to resonances
(cf. [14]). Here,

H−
1
2 (Div; ∂Ω) = {s ∈ H−

1
2 (∂Ω)3; s·ν = 0 a.e. on ∂Ω and Div s ∈ H−

1
2 (∂Ω)},
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with Div denoting the surface divergence on ∂Ω.

Lemma 2.2. Consider a transformation x̃ = F (x) : Ω → Ω̃, which is
assumed to be bi-Lipschitz and orientation-preserving. Let M = DF :=
( ∂x̃i∂xj

)3
i,j=1 be the Jacobian matrix of F . Assume that (E,H) ∈ H(curl; Ω)×

H(curl; Ω) are EM fields to (2.1), then for the pull-back fields given by

Ẽ = (F−1)∗E := (MT )−1E◦F−1, H̃ = (F−1)∗H := (MT )−1H ◦F−1 (2.9)

and

J̃ = (F−1)∗J =
1

det(M)
MJ ◦ F−1, (2.10)

we have (Ẽ, H̃) ∈ H(curl; Ω̃)×H(curl; Ω̃) satisfying Maxwell’s equations

∇̃ × Ẽ = iωµ̃H̃, ∇̃ × H̃ = −iω(ε̃+ i
σ̃

ω
)Ẽ + J̃ in Ω̃, (2.11)

where ∇̃× denotes the curl in the x̃-coordinates, and ε̃, µ̃, σ̃ are the push-
forwards of ε, µ, σ via F , defined respectively by

ε̃ = F∗ε :=
1

det(M)
M · ε ·MT ◦ F−1, (2.12)

µ̃ = F∗µ :=
1

det(M)
M · µ ·MT ◦ F−1, (2.13)

σ̃ = F∗σ :=
1

det(M)
M · σ ·MT ◦ F−1. (2.14)

Proof. The key ingredient for the proof of the lemma is the following trans-
formation rule on curl operation (see, e.g. [14])

∇̃×Ẽ =
1

det(M)
M(∇×E)◦F−1, ∇̃×H̃ =

1

det(M)
M(∇×H)◦F−1. (2.15)

Using (2.15) along with (2.1), (2.9) and (2.13), we have

∇̃ × Ẽ =
1

det(M)
(∇× E) ◦ F−1 =

1

det(M)
M(iωµH) ◦ F−1

=iω
1

det(M)
MµMT (M−TH) ◦ F−1 = iωµ̃H̃. (2.16)

Similarly, using (2.15), together with (2.1), (2.9), (2.10), (2.12) and (2.14),
we have

∇̃ × H̃ =
1

det(M)
(∇×H) ◦ F−1 =

1

det(M)
(−iωεrE + J) ◦ F−1

=− iω 1

det(M)
MεrE ◦ F−1 +

1

det(M)
MJ ◦ F−1

=− iωε̃rẼ + J̃ , (2.17)

where

εr = ε+ i
σ

ω
and ε̃r = ε̃+ i

σ̃

ω
.

The proof is completed. �
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Corollary 1. Assume that F : Ω → Ω is bi-Lipschitz and orientation-
preserving with F |∂Ω = Id. Using Green’s identity, it is directly verified
that

ν × E = ν̃ × Ẽ, ν ×H = ν̃ × H̃ on ∂Ω, (2.18)

which together with Lemma 2.2 yields

Λωε,µ,σ,J = ΛωF∗ε,F∗µ,F∗σ,(F−1)∗J . (2.19)

Lemma 2.2 and Corollary 1 summarize the basics of transformation op-
tics in a rather general setting, which we shall make essential use of in the
present paper. In the rest of this section, we give a short discussion on
the singular ideal cloaking device construction considered in [5] and [18]
using transformation optics, and introduce the notion of approximate cloak-
ing from a regularization viewpoint. In the sequel, let Br denote the ball
centered at the origin with radius r. Let M1 = B2, M2 = B1 and M be
the disjoint union M = M1 ∪M2. Also, let N1 = B2\B1, N2 = B1 and
N = N1 ∪N2. Moreover, set Σ := ∂B1. Consider the map

F1 : M1\{0} → N1, F1(y) =

(
1 +

1

2
|y|
)
y

|y|
, 0 < |y| < 2 (2.20)

which blows up {0} to N2 while keeps the boundary ∂M1 fixed. In [5]
and [18], the authors consider the lossless setting, i.e., one always assume
that σ = 0. In the cloaking region N1, the EM material parameters of the
corresponding cloaking medium are given by

µ̃(x) = ε̃(x) = (F1)∗I :=
(DF1)I(DF1)T

det(DF1)

∣∣∣∣
y=F−1

1 (x)

, x ∈ N1. (2.21)

In the cloaked region N2 = B1, we consider cloaking an arbitrary but regular
EM medium (ε0, µ0), i.e.,

µ̃(x) = µ0(x), ε̃(x) = ε0(x) x ∈ N2, (2.22)

which can be viewed as the push-forwards of (µ0, ε0) in M2 by F2 = Id. We
denote the transformation by

F = (F1, F2) : (M1\{0},M2)→ (N1, N2). (2.23)

By (2.21) together with straightforward calculations, we have in the standard
spherical coordinates x 7→ (r cosφ cos θ, r sinφ cos θ, r sin θ) that

µ̃ = ε̃ = 2
(r − 1)2

r2
er + 2eθ, 1 < r < 2, (2.24)

where er and eθ are respectively, the unit projections along radial and an-
gular directions, i.e.,

er = I − x̂x̂T , eθ = x̂x̂T , x̂ =
x

|x|
.

It is readily seen that as one approaches the cloaking interface Σ the cloaking
medium becomes singular, since ε̃ and µ̃ no longer satisfy the condition (2.5).
Finite energy solutions to the singular Maxwell’s equations underlying the
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cloaking are investigated in [5]. It is shown that {0} is a removable singular

point. Specifically, let (Ẽ, H̃) be the EM fields corresponding to {N ; ε̃, µ̃},
then (E+, H+) = (F1)∗(Ẽ, H̃) are EM fields in free space on M1, which
implies by Corollary 1 that

Λωε̃,µ̃ = Λω0 .

On the other hand, (E−, H−) = (F2)∗(Ẽ, H̃) satisfy the Maxwell equations{
∇× E− = iωµ0H

−, ∇×H− = −iωε0E
− on M2

ν × E− = 0, ν ×H− = 0 on ∂M2.
(2.25)

Generically, one would have E− = H− = 0 for (2.25) due to the homoge-
neous ‘hidden’ PEC and PMC boundary conditions in (2.25) on ∂M2. Also,
due to such ‘hidden’ boundary conditions, it is claimed in [5] that one cannot
perfectly cloak a generic internal current in the cloaked region B1.

As can be seen from (2.24) the cloaking medium for the ideal cloaking is
singular, which poses challenges to both mathematical analysis and physical
realization. In order to construct practical nonsingular cloaking devices, it is
natural to incorporate regularization by considering approximate cloaking,
which we shall investigate in the subsequent sections. We conclude this
section by introducing the notion of approximate EM cloaking.

Definition 2.3. Let Ω and D be bounded domains in R3 with D b Ω,
representing respectively the cloaking region and the cloaked region. Let
ρ > 0 denote a parameter and e(ρ) be a positive function such that

e(ρ)→ 0 as ρ→ 0+.

{Ω\D̄; ερc , µ
ρ
c , σ

ρ
c} is said to be an approximate invisibility cloaking for the

region D if
‖Λωερe ,µρe ,σρe ,Je − Λω0 ‖ = e(ρ) as ρ→ 0+, (2.26)

where the extended object {Ω; ερe, µ
ρ
e, σ

ρ
e , Je} is defined similarly to (2.4) by

replacing εc, µc, σc with ερc , µ
ρ
c , σ

ρ
c .

According to (2.26), with the cloaking device {Ω\D̄; ερc , µ
ρ
c , σ

ρ
c} we shall

have the ‘near-invisibility’ cloaking effect. In order for the invisibility cloak-
ing and approximate invisibility cloaking in Definitions 2.1 and 2.3 make the
right sense, throughout the rest of the paper, we always assume that there
is a well-defined impedance map Λω0 in the free space; namely, it is assumed
that there is no resonance occurring in the free space.

3. Nonsingular approximate cloaking of passive medium

In this section, we consider the approximate EM cloaking for a relatively
simpler case by assuming that all the EM media concerned are lossless, i.e.
σ = 0, and also there is no source/sink present, i.e. J = 0.

For approximate acoustic cloaking by regularization, Kohn et al., in [9],
proposed blowing up a small ball Bρ to B1 using a nonsingular transfor-
mation Fρ which degenerates to the singular transformation F in (2.23) as
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ρ → 0, while Greenleaf et al., in [6], proposed blowing up Bρ to BR with
R > 1 by the original singular transformation F . For the present study on
approximate EM cloaking, we shall focus on the ‘blow-up-a-small-ball-to-B1’
scheme and evaluate its performance. However, it is remarked that the other
regularization scheme has been verified to yield the same performances for
approximate EM cloaking.

3.1. Construction of approximate EM cloaking. Let 0 < ρ < 1 denote
a regularizer and

a =
2(1− ρ)

2− ρ
, b =

1

2− ρ
. (3.1)

Consider the nonsingular transformation from B2 to B2 defined by

x := Fρ(y) =

{
F

(1)
ρ (y) = (a+ b|y|) y

|y| ρ < |y| < 2,

F
(2)
ρ (y) = y

ρ |y| ≤ ρ.
(3.2)

Our approximate cloaking device is obtained by the push-forward of a homo-

geneous medium in B2\Bρ by F
(1)
ρ . Suppose we hide a regular but arbitrary

uniform EM medium (ε0, µ0) in the cloaked region B1. Then the corre-
sponding EM material parameter in B2 is

(ε̃ρ(x), µ̃ρ(x)) =

{
((F

(1)
ρ )∗I, (F

(1)
ρ )∗I) 1 < |x| < 2,

(ε0, µ0) |x| < 1

which are obviously nonsingular. The EM fields (Ẽρ, H̃ρ) ∈ H(curl;B2) ×
H(curl;B2) corresponding to {B2; ε̃ρ, µ̃ρ} satisfy Maxwell’s equations{

∇× Ẽρ = iωµ̃ρ(x)H̃ρ, ∇× H̃ρ = −iωε̃ρ(x)Ẽρ in B2,

ν × Ẽρ|∂B2 = f ∈ H−1/2(Div; ∂B2).
(3.3)

By Lemma 2.2, the pull-back EM fields

(Eρ, Hρ) = ((Fρ)
∗Ẽρ, (Fρ)

∗H̃ρ) ∈ H(curl;B2)×H(curl;B2)

satisfy Maxwell’s equations{
∇× Eρ = iωµρ(y)Hρ, ∇×Hρ = −iωερ(y)Eρ, in B2\Bρ,
ν × Eρ|∂B2 = f ∈ H−1/2(Div; ∂B2),

(3.4)

where

(ερ(y), µρ(y)) =

{
(I, I) ρ < |y| < 2,

((F
(2)
ρ )∗ε0, (F

(2)
ρ )∗µ0) |y| < ρ.

By Corollary 1, we see that

Λωερ,µρ = Λωε̃ρ,µ̃ρ .

Hence, the estimate of Λωε̃ρ,µ̃ρ for the approximate EM cloaking is the same

to that of Λωερ,µρ .
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3.2. Convergence and hidden boundary conditions. Henceforth, the
following notations for EM fields shall be adopted

Ẽρ := (Ẽ+
ρ , Ẽ

−
ρ ), H̃ρ := (H̃+

ρ , H̃
−
ρ ) for x ∈ (B2\B1, B1)

and

Eρ := (E+
ρ , E

−
ρ ), Hρ := (H+

ρ , H
−
ρ ) for y ∈ (B2\Bρ, Bρ).

We also use Ẽ, H̃ to represent the finite-energy EM fields considered in [5]
for singular ideal cloaking which we discussed earlier in Section 2. (3.3) and
(3.4) can be reformulated as the following transmission problems

∇× Ẽ+
ρ = iωµ̃ρ(x)H̃+

ρ , ∇× H̃+
ρ = −iωε̃ρ(x)Ẽ+

ρ in B2\B1,

∇× Ẽ−ρ = iωµ0H̃
−
ρ , ∇× H̃−ρ = −iωε0Ẽ

−
ρ in B1,

ν × Ẽ+
ρ |Σ+ = ν × Ẽ−ρ |Σ− , ν × H̃+

ρ |Σ+ = ν × H̃−ρ |Σ− ,

ν × Ẽ+
ρ |∂B2 = f.

(3.5)

and
∇× E+

ρ = iωH+
ρ , ∇×H+

ρ = −iωE+
ρ in B2\Bρ,

∇× E−ρ = iωµρ(y)H−ρ , ∇×H−ρ = −iωερ(y)E−ρ in Bρ,
ν × E+

ρ |Σ+
ρ

= ν × E−ρ |Σ−
ρ
, ν ×H+

ρ |Σ+
ρ

= ν ×H−ρ |Σ−
ρ
,

ν × E+
ρ |∂B2 = f.

(3.6)

where Σρ := ∂Bρ.
Our arguments rely heavily on expanding the EM fields into series of

spherical wave functions. To that end, we introduce for n ∈ Z+ and m ∈ Z,

Mm
n,ζ(x) := ∇× {xjn(ζ|x|)Y m

n (x̂)}, Nm
n,ζ(x) := ∇× {xh(1)

n (ζ|x|)Y m
n (x̂)},

where ζ ∈ C is a complex number and x̂ = x/|x| for x ∈ R3. Here, Y m
n (x̂) are

spherical harmonics and, h
(1)
n (z) := jn(z) + iyn(z) with jn(z) and yn(z), for

z ∈ C, being the spherical Bessel functions of the first and second kind, re-
spectively. The most important property of such functions for our argument
are their asymptotical behavior with respect to small variables:

jn(z) = O(|z|n), hn(z) = O(|z|−n−1), for |z| � 1. (3.7)

We refer to [3] and [14] for more properties of the functions introduced here.
The second Maxwell’s equations in (3.5) and the first of (3.6) would give

rise to waves for x ∈ B1
Ẽ−ρ = ε

−1/2
0

∞∑
n=1

n∑
m=−n

αmnM
m
n,kω + βmn ∇×Mm

n,kω,

H̃−ρ =
1

ikω
µ
−1/2
0

∞∑
n=1

n∑
m=−n

k2ω2βmn M
m
n,kω + αmn ∇×Mm

n,kω,

(3.8)
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and for y ∈ B2\Bρ
E+
ρ =

∞∑
n=1

n∑
m=−n

cmn N
m
n,ω + dmn ∇×Nm

n,ω + γmn M
m
n,ω + ηmn ∇×Mm

n,ω,

H+
ρ =

1

iω

∞∑
n=1

n∑
m=−n

ω2dmn N
m
n,ω + cmn ∇×Nm

n,ω + ω2ηmn M
m
n,ω + γmn ∇×Mm

n,ω,

(3.9)

where k = (µ0ε0)1/2.
The following lemma characterizes the asymptotic behaviors of the coef-

ficients in the spherical expansions (3.8) and (3.9) as ρ goes to zero.

Lemma 3.1. Assume ω is not an eigenvalue of (3.5), namely, the corre-

sponding homogeneous equations have only trivial solutions. Let (Ẽρ, H̃ρ)

be the unique solutions to (3.5), whereas (Eρ, Hρ) = ((Fρ)
∗Ẽρ, (Fρ)

∗H̃ρ) be

the unique solutions to (3.6). (Ẽ−ρ , H̃
−
ρ ) and (E+

ρ , H
+
ρ ) are given by (3.8)

and (3.9), respectively, whose coefficients are uniquely determined by the
boundary data f . As ρ→ 0+, we have

γmn = O(1), ηmn = O(1); cmn = O(ρ2n+1), dmn = O(ρ2n+1), (3.10)

and

αmn = O(ρn+1), βmn = O(ρn+1). (3.11)

Proof. We need to introduce the vector spherical harmonics

Umn :=
1√

n(n+ 1)
Grad Y m

n , V m
n := ν × Umn ,

where Grad denotes the surface gradient. Define

Hn(t) := h(1)
n (t) + th(1)

n

′
(t), Jn(t) := jn(t) + tj′n(t).

For t� 1, one can verify Jn(t) = O(tn) and Hn(t) = O(t−n−1). Then on a
sphere ∂BR, we have for 0 < R < 1,

ν × Ẽ−ρ |∂BR = ε
−1/2
0

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
αmn jn(kωR)Umn

+βmn
1
RJn(kωR)V m

n

)
,

ν × H̃−ρ |∂BR =
1

ikω
µ
−1/2
0

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
βmn k

2ω2jn(kωR)Umn

+αmn
1
RJn(kωR)V m

n

)
,

(3.12)
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whereas for ρ < R < 2,

ν × E+
ρ |∂BR =

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
cmn h

(1)
n (ωR)Umn + dmn

1

R
Hn(ωR)V m

n

+γmn jn(ωR)Umn + ηmn
1
RJn(ωR)V m

n

)
,

ν ×H+
ρ |∂BR =

1

iω

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
ω2dmn h

(1)
n (ωR)Umn

+cmn
1
RHn(ωR)V m

n + ω2ηmn jn(ωR)Umn + γmn
1
RJn(ωR)V m

n

)
.

(3.13)
Expanding the boundary value on ∂B2 in terms of the vector spherical

harmonics, we have

f =

∞∑
n=1

n∑
m=−n

√
n(n+ 1)(f (1)

nmU
m
n + f (2)

nmV
m
n ), (3.14)

the boundary condition ν × E+
ρ |∂B2 = f implies

(R-1)

{
cmn h

(1)
n (2ω) + γmn jn(2ω) = f

(1)
nm,

dmn Hn(2ω) + ηmn Jn(2ω) = 2f
(2)
nm.

Since Ẽρ = (F−1
ρ )∗Eρ, the transmission condition on the electric field in

(3.5) reads

ν × Ẽ+
ρ |Σ+ = ρ(ν × E+

ρ |Σ+
ρ

) = ν × Ẽ−ρ |Σ− .

By (3.12) and (3.13), we have

(R-2)

{
ρcmn h

(1)
n (ωρ) + ργmn jn(ωρ) = ε

−1/2
0 αmn jn(kω),

dmn Hn(ωρ) + ηmn Jn(ωρ) = ε
−1/2
0 βmn Jn(kω).

Similarly, the transmission condition on the magnetic field implies

(R-3)

{
kcmn Hn(ωρ) + kγmn Jn(ωρ) = µ

−1/2
0 αmn Jn(kω),

ρdmn h
(1)
n (ωρ) + ρηmn jn(ωρ) = µ

−1/2
0 kβmn jn(kω).

By (R-2) and (R-3), we have

cmn = t1γ
m
n , αmn = t2γ

m
n , dmn = t3η

m
n , βmn = t4η

m
n , (3.15)
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where as ρ→ 0+,

t1 :=
ε
−1/2
0 kJn(ωρ)jn(kω)− µ−1/2

0 ρjn(ωρ)Jn(kω)

µ
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− ε−1/2

0 kHn(ωρ)jn(kω)
= O(ρ2n+1),

t2 :=
kρJn(ωρ)h

(1)
n (ωρ)− kρjn(ωρ)Hn(ωρ)

µ
−1/2
0 ρJn(kω)h

(1)
n (ωρ)− ε−1/2

0 kjn(kω)Hn(ωρ)
= O(ρn+1),

t3 :=
µ
−1/2
0 kJn(ωρ)jn(kω)− ε−1/2

0 ρjn(ωρ)Jn(kω)

ε
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− µ−1/2

0 kHn(ωρ)jn(kω)
= O(ρ2n+1),

t4 :=
ρJn(ωρ)h

(1)
n (ωρ)− ρjn(ωρ)Hn(ωρ)

ε
−1/2
0 ρJn(kω)h

(1)
n (ωρ)− µ−1/2

0 kjn(kω)Hn(ωρ)
= O(ρn+1)

(3.16)

By (R-1), we have

γmn =
f

(1)
nm

t1h
(1)
n (2ω) + jn(2ω)

= O(1), ηmn =
2f

(2)
nm

t3Hn(2ω) + Jn(2ω)
= O(1).

(3.17)
By (3.15), these further imply

αmn = O(ρn+1), βmn = O(ρn+1), cmn = O(ρ2n+1), dmn = O(ρ2n+1).

�

We are in a position to evaluate the approximate EM cloaking. Our
observations are summarized in the following.

Proposition 3.2. For the approximate EM cloaking, if ω is not an eigen-
value of (3.5), we have

‖Λωε̃ρ,µ̃ρ − Λω0 ‖ = O(ρ3) as ρ→ 0+, (3.18)

where ‖ · ‖ denotes the operator norm of the impedance map.

Proof. We write the EM fields (E,H) propagating in the free space as
E =

∞∑
n=1

n∑
m=−n

amnM
m
n,ω + bmn ∇×Mm

n,ω,

H =
1

iω

∞∑
n=1

n∑
m=−n

ω2bmnM
m
n,ω + amn ∇×Mm

n,ω.

(3.19)

Consider the boundary condition ν×E|∂B2 = f satisfied by the (E,H) fields
with f given by (3.14). By straightforward calculations, we have

amn =
f

(1)
nm

jn(2ω)
, bmn =

2f
(2)
nm

Jn(2ω)
.

Hence, the tangential magnetic field on the boundary is given by

ν×H|∂B2 =
1

iω

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
bmn ω

2jn(2ω)Umn +
1

iω
amn

1

2
Jn(2ω)V m

n

)
.

(3.20)
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Compared to ν×H+
ρ |∂B2 from (3.13), one observes that cmn , dmn , γmn −amn and

ηmn − bmn approach zero of order O(ρ2n+1), which in turn implies (3.18). �

Proposition 3.2 shows that the approximate cloaking scheme constructed
in Section 3.1 actually gives the near-invisibility cloaking effect. Next, we
consider the limiting state of the approximate cloaking, showing that it
converges to the singular ideal cloaking.

Proposition 3.3. For the approximate EM cloaking, if ω is not an eigen-
value of (3.5), we have

Ẽρ → Ẽ and H̃ρ → H̃ as ρ→ 0+. (3.21)

Proof. We first show

(E+
ρ , H

+
ρ ) = (F (1)

ρ )∗(Ẽ+
ρ , H̃

+
ρ )→ (E,H) as ρ→ 0+. (3.22)

It is easily verified that on any compact subset of B2 away from the origin,
one has that (E+

ρ , H
+
ρ ) converges to (E,H) at the rate O(ρ3). Indeed, we

shall show

‖E+
ρ − E‖L2(B2\Bρ) + ‖H+

ρ −H‖L2(B2\Bρ) = O(ρ3/2),

which implies (3.22). To that end, we note the following identities



Mm
n,ω(x) = −

√
n(n+ 1)jn(ω|x|)V m

n (x̂),

Nm
n,ω(x) = −

√
n(n+ 1)hmn (ω|x|)V m

n (x̂),

∇×Mm
n,ω(x) =

√
n(n+ 1)

|x|
Jn(ω|x|)Umn (x̂) +

n(n+ 1)

|x|
jn(ω|x|)Y m

n (x̂)x̂,

∇×Nm
n,ω(x) =

√
n(n+ 1)

|x|
Hn(ω|x|)Umn (x̂) +

n(n+ 1)

|x|
h(1)
n (ω|x|)Y m

n (x̂)x̂.

(3.23)
By (3.9) and (3.19), we have

E+
ρ − E =

∞∑
n=1

n∑
m=−n

−
√
n(n+ 1)[(γmn − amn )jn(ω|x|) + cmn h

(1)
n (ω|x|)]V m

n (x̂)

+

√
n(n+ 1)

|x|
[(ηmn − bmn )Jn(ω|x|) + dmn Hn(ω|x|)]Umn (x̂)

+
n(n+ 1)

|x|
[(ηmn − bmn )jn(ω|x|) + dmn h

(1)
n (ω|x|)]Y m

n (x̂)x̂.
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This implies as ρ→ 0+∫
B2\Bρ

|E+
ρ − E|2dx

=

∞∑
n=1

n∑
m=−n

∫ 2

ρ
n(n+ 1)|(γmn − amn )jn(ωr) + cmn h

(1)
n (ωr)|2r2dr

+

∫ 2

ρ
n(n+ 1)|(ηmn − bmn )Jn(ωr) + dmn Hn(ωr)|2dr

+

∫ 2

ρ
n2(n+ 1)2|(ηmn − bmn )jn(ωr) + dmn h

(1)
n (ωr)|2dr

=

∞∑
n=1

n∑
m=−n

O(ρ2n+1) = O(ρ3)

by the convergence orders of the coefficients. Similarly, we have∫
B2\Bρ

|H+
ρ −H|2dx = O(ρ3).

On the other hand, it is observed from (3.12) that

ν × Ẽ−ρ |Σ− = ε
−1/2
0

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
αmn jn(kω)Umn

+βmn Jn(kω)V m
n

)
,

ν × H̃−ρ |Σ− =
1

ikω
µ
−1/2
0

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
βmn k

2ω2jn(kω)Umn

+αmn Jn(kω)V m
n

)
(3.24)

are both of O(ρ2) as ρ → 0+. Therefore the homogeneous PEC and PMC
conditions naturally appears on the interior cloaking interface Σ−. This
is consistent with the interior ‘hidden’ boundary conditions discovered in
[5] for singular ideal cloaking (see also (2.25)), which together with (3.22)
implies (3.21). �

3.3. Cloak-busting inclusions and frequency dependence. In our ear-
lier discussion, we achieved near-invisibility under the condition that there
are no resonances occurring. That is, ω is not an eigenvalue to (3.3), or
equivalently, to (3.4). In fact, if ω is an eigenvalue to (3.4), the small in-
clusion (ερ, µρ) in the free space could have a large effect on the boundary
measurement. In this resonance case, one may not even has a well-defined
boundary operator Λωερ,µρ . The failure of the near-invisible cloaking due to
such “cloak-busting” inclusion is also observed in the study of approximate
acoustic cloaking in [9]. In the following, we shall show a similar result that
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for a fixed approximate EM cloaking scheme, there always exists certain in-
terior content (ε0, µ0) such that resonance occurs at certain frequency ω. We
shall be looking for such triples (ω, ε0, µ0), or equivalently (ω, k, µ0), depen-
dent on ρ, such that (3.5) is ill-posed. It corresponds to choices of (ω, k, µ0)
such that the coefficient matrices of systems (R-1), (R-2) and (R-3) are
singular.

We consider two decoupled systems (R-1-1)–(R-2-1)–(R-3-1) and (R-1-2)–
(R-2-2)–(R-3-2) corresponding respectively, to the variables {cmn , αmn , γmn }
and {dmn , βmn , ηmn }. The coefficient matrices are denoted as An and Bn in
the following. By elementary linear algebra manipulations, the augmented
matrix for An for the first system reduces to

h
(1)
n (2ω) 0 jn(2ω) f

(1)
nm

0 −ε−1/2
0 jn(kω) ρjn(ωρ)− ρjn(2ω)h

(1)
n (ωρ)

h
(1)
n (2ω)

−f
(1)
nmρh

(1)
n (ωρ)

h
(1)
n (2ω)

0 0 Ãn(3, 3) Ãn(3, 4)


where

Ãn(3, 3) =
ε

1/2
0

h
(1)
n (2ω)jn(kω)

{
µ

1/2
0 jn(kω)[Jn(ωρ)h(1)

n (2ω)−Hn(ωρ)jn(2ω)]

−ρµ−1/2
0 Jn(kω)[jn(ωρ)h(1)

n (2ω)− h(1)
n (ωρ)jn(2ω)]

}
,

and

Ãn(3, 4) =
ε

1/2
0 f

(1)
nm

h
(1)
n (2ω)jn(kω)

{
ρµ
−1/2
0 h(1)

n (ωρ)Jn(kω)− µ1/2
0 Hn(ωρ)jn(kω)

}
.

For det(An) = 0, one can choose (ω, k, µ0) satisfying

µ0
jn(kω)

Jn(kω)
= ρ

jn(ωρ)h
(1)
n (2ω)− h(1)

n (ωρ)jn(2ω)

Jn(ωρ)h
(1)
n (2ω)−Hn(ωρ)jn(2ω)

, (3.25)

It is easily verified that with this choice, if f
(1)
nm 6= 0, then Ãn(3, 4) 6= 0,

there exists no solution of (cmn , α
m
n , γ

m
n ). The boundary value problem is

ill-posed and one does not have a well-defined boundary impedance map. In
like manner, one can find (ω, k, ε0) such that det(Bn) = 0.

Next we consider the performances of the approximate cloaking scheme
in extreme frequency regimes. That is, we let ρ and (ε0, µ0) be fixed, and
evaluate the approximate cloaking effects as ω approaches zero or infinity,
corresponding the low and high frequency regimes. First, we see that

ν ×H+
ρ |∂B2 − ν ×H|∂B2 =

∞∑
n=1

n∑
m=−n

g(1)
nmU

m
n + g(2)

nmV
m
n ,
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where

g(1)
nm :=

ω

i

√
n(n+ 1)

(
bmn jn(2ω)− ηmn jn(2ω)− dmn h(1)

n (2ω)
)

=
−2i

√
n(n+ 1)ω2t3b

m
nWn(2ω)

t3Hn(2ω) + Jn(2ω)
,

=
−2i

√
n(n+ 1)ω2bmn [ε0Jn(ωρ)jn(kω)− ρjn(ωρ)Jn(kω)]Wn(2ω)

ε
1/2
0 det(Bn)

,

g(2)
nm :=

1

2iω

√
n(n+ 1) (amn Jn(2ω)− γmn Jn(2ω)− cmn Hn(2ω))

=
i
√
n(n+ 1)t1a

m
nWn(2ω)

t1h
(1)
n (2ω) + jn(2ω)

=
i
√
n(n+ 1)amn [µ0Jn(ωρ)jn(kω)− ρjn(ωρ)Jn(kω)]Wn(2ω)

µ
1/2
0 det(An)

(3.26)

with Wn(t) := jn(t)h
(1)
n

′
(t)− h(1)

n (t)j′n(t).
We shall address the frequency dependence issue by assuming that the

inputs are given by the EM plane waves of the form (6.1). The corresponding

coefficients f
(1)
nm and f

(2)
nm are given by (6.2), while amn and bmn are given by

(6.3). It is readily seen

amn = O(1), bmn = O(ω−1).

For the low frequency regime with ω � 1, by (3.26), it is straightforward to
show

g(1)
nm ∼ ωnρ2n+1, g(2)

nm ∼ ωn−1ρ2n+1,

which implies a satisfactory approximate cloaking. Whereas for the high
frequency regime with ω � 1, we exclude the influence of resonances from
our study by considering the case that |det(An)| and |det(Bn)| are bounded
from below by a positive function Cnm(ω, ρ), where the transmission problem
(3.5) is well-posed. Then we consider two separate cases:

• When 1 ≤ ω � ρ−1, i.e., ωρ � 1, since jn(t), h
(1)
n (t) oscillate be-

tween −t−1 and t−1, Jn(t),Hn(t) oscillate between −1 and 1, and
Wn(t) ∼ t−2 as t increases, we have

|g(1)
nm| .

(ωρ)nω−2

Cnm(ω, ρ)
, |g(2)

nm| .
(ωρ)nω−3

Cnm(ω, ρ)
, (3.27)

where one can show that Cnm(ω, ρ) . ω−n−3ρ−n−1. Here and in the
following, for two expressions R1 and R2, by “R1 . R2” we mean
“R1 ≤ cR2” with a constant c.
• For even higher frequency ω � 1 such that ωρ & 1, we calculate

|g(1)
nm| .

ω−2

Cnm(ω, ρ)
, |g(2)

nm| .
ω−3

Cnm(ω, ρ)
(3.28)
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where Cnm . ω−2.

By (3.27) and (3.28), we cannot conclude whether or not one can achieve
the near-invisibility. However, we conducted extensive numerical experi-
ments to see that one has the near-invisibility in these two cases. These
suggest that for the cloaking of passive media, excluding the resonance fre-
quencies, one could achieve the near-invisibility for the approximate cloaking
scheme of every frequency. This is sharply different from the case of cloaking
active/radiating objects which we shall consider in the next section.

So far, we have been concerned with the cloaking device where the cloaked
region is B1 and the cloaking medium occupies B2\B̄1, which we obtain by
using the transformation (3.1)–(3.2). It is remarked here that for arbitrary
0 < R1 < R2 <∞, one can construct an approximate cloaking device whose
cloaked region is BR1 and the cloaking layer is BR2\B̄1 by implementing the
following transformation

x := Gρ(y) =

{
G

(1)
ρ (y) = (a+ b|y|) y

|y| ρ < |y| < R2,

G
(2)
ρ (y) = y

ρ |y| ≤ ρ,

where

a =
R1 − ρ
R2 − ρ

R2, b =
R2 −R1

R2 − ρ
.

It is readily seen that all our earlier results hold for such construction. The
remark applies equally to all our subsequent study.

4. Approximate cloaking with an internal electric current at
origin

In this section, we consider the approximate EM cloaking scheme con-
structed in Section 3.1 in the case that we have an internal electric current
present in the cloaked region supported at the origin. The corresponding
EM fields verify{

∇× Ẽρ = iωµ̃ρH̃ρ, ∇× H̃ρ = −iωε̃ρẼρ + J̃ , in B2

ν × Ẽρ|∂B2 = f,
(4.1)

where J̃ has the form

J̃ =
∑
|α|<K

(∂αx δ0(x))vα, (4.2)

with δ0 denoting the Dirac delta function at origin and vα ∈ C3. The
pull-back EM fields satisfy{

∇× Eρ = iωµρHρ, ∇×Hρ = −iωερEρ + J, in B2,
ν × Eρ|∂B2 = f,

(4.3)

where J = (F 2
ρ )∗J̃ .
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The point electric current J̃ would give rise to a radiating field

EJ̃ =
K∑
n=1

n∑
m=−n

pmn N
m
n,kω + qmn ∇×Nm

n,kω. (4.4)

Hence for x ∈ B1

Ẽ−ρ = ε
−1/2
0

∞∑
n=1

n∑
m=−n

αmnM
m
n,kω + βmn ∇×Mm

n,kω + pmn N
m
n,kω + qmn ∇×Nm

n,kω,

(4.5)
where pmn and qmn equal zero when n > K. Whereas E+

ρ and H+
ρ are as in

(3.9).

Lemma 4.1. Assume ω is not an eigenvalue to (4.1). Let (Ẽρ, H̃ρ) be the

EM fields to (4.1) with J̃ given by (4.2), and (Eρ, Hρ) = ((Fρ)
∗Ẽρ, (Fρ)

∗H̃ρ)

be the EM fields to (4.3). Given Ẽ−ρ as in (4.5) and E+
ρ as in (3.9), we have

as ρ→ 0+,

γmn = O(1), ηmn = O(1); cmn = O(ρn+1), dmn = O(ρn+1), (4.6)

and
αmn = O(1), βmn = O(1). (4.7)

Proof. The boundary condition on ∂B2 implies (R-1). From the standard
transmission conditions, we have

(R-2’)

{
ρcmn h

(1)
n (ωρ) + ργmn jn(ωρ) = ε

−1/2
0 (αmn jn(kω) + pmn h

(1)
n (kω)),

dmn Hn(ωρ) + ηmn Jn(ωρ) = ε
−1/2
0 (βmn Jn(kω) + qmn Hn(kω)),

and

(R-3’)

{
kcmn Hn(ωρ) + kγmn Jn(ωρ) = µ

−1/2
0 (αmn Jn(kω) + pmn Hn(kω)),

ρdmn h
(1)
n (ωρ) + ρηmn jn(ωρ) = µ

−1/2
0 (kβmn jn(kω) + kqmn h

(1)
n (kω)).

Solving (R-2’) and (R-3’), we obtain

cmn = t1γ
m
n + t′1p

m
n , αmn = t2γ

m
n + t′2p

m
n ,

dmn = t3η
m
n + t′3q

m
n , βmn = t4η

m
n + t′4q

m
n ,

(4.8)

where ti (i = 1, 2, 3, 4) are given by (3.16) and t′i (i = 1, 2, 3, 4) are given by

t′1 =
h

(1)
n (kω)Jn(kω)−Hn(kω)jn(kω)

µ
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− ε−1/2

0 kHn(ωρ)jn(kω)
= O(ρn+1),

t′2 =
ε
−1/2
0 kh

(1)
n (kω)Hn(ωρ)− µ−1/2

0 ρHn(kω)h
(1)
n (ωρ)

µ
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− ε−1/2

0 kHn(ωρ)jn(kω)
= O(1),

t′3 :=
Jn(kω)h

(1)
n (kω)−Hn(kω)jn(kω)

ε
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− µ−1/2

0 kHn(ωρ)jn(kω)
= O(ρn+1),

t′4 :=
µ
−1/2
0 kh

(1)
n (kω)Hn(ωρ)− ε−1/2

0 ρHn(kω)h
(1)
n (ωρ)

ε
−1/2
0 ρh

(1)
n (ωρ)Jn(kω)− µ−1/2

0 kHn(ωρ)jn(kω)
= O(1).

(4.9)
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Plugging into (R-1), we obtain

γmn =
f

(1)
nm − pmn t′1h

(1)
n (2ω)

t1h
(1)
n (2ω) + jn(2ω)

= O(1), ηmn =
2f

(2)
nm − t′3qmn Hn(2ω)

t3Hn(2ω) + Jn(2ω)
= O(1),

(4.10)
which together with (4.8) imply (4.6) and (4.7). �

Next, we evaluate the performances of the approximate EM cloaking.

Proposition 4.2. For the approximate EM cloaking with an internal point
current (4.2) present in the cloaked region, if ω is not an eigenvalue to (4.1),
we have

‖Λω
ε̃ρ,µ̃ρ,J̃

− Λω0 ‖ = O(ρ2) as ρ→ 0+, (4.11)

where ‖ · ‖ denotes the operator norm of the impedance map.

Proof. On the boundary ∂B2, using the expression (3.13) for ν × H+
ρ |∂B2

and (3.20) for ν × H|∂B2 , together with the asymptotic estimates of the
corresponding coefficients in Lemma 4.1, we have (4.11) by straightforward
comparisons, since the coefficients cmn , dmn , γmn − amn and ηmn − bmn converge
to zero of order O(ρn+1). �

By Proposition 4.2, we see that one still achieves near-invisibility cloaking
even though there is a source/sink present in the cloaked region. That is,
the approximate cloaking makes both the passive medium and the active
point source/sink nearly-invisible. However, we have one order reduction of
the convergence rate. This is due to the extra terms

−pmn t′1h
(1)
n (2ω)

t1h
(1)
n (2ω)− jn(2ω)

,
−qmn t′3Hn(2ω)

t3Hn(2ω)− Jn(2ω)
, t′1p

m
n , t′3q

m
n ∼ ρn+1

in γmn −amn , ηmn − bmn , cmn and dmn respectively, compared to the case without
the source/sink.

Next, we consider the limiting status of the approximate cloaking in this
case when a point source/sink is present. We have

Proposition 4.3. Assume ω is not an eigenvalue to (4.1). Let (Ẽρ, H̃ρ) be

the EM fields satisfying (4.1) and (Eρ, Hρ) = ((Fρ)
∗Ẽρ, (Fρ)

∗H̃ρ) be the EM
fields satisfying (4.3). Then we have as ρ→ 0+,

(E+
ρ , H

+
ρ )→ (E,H) (4.12)

with (E,H) being the EM fields on B2 in the free space. Also

(Ẽ−ρ , H̃
−
ρ )→ (Ê−, Ĥ−), (4.13)

where (Ê−, Ĥ−) satisfy the Maxwell equations

∇× Ê− = iωµ0Ĥ
−, ∇× Ĥ− = −iωε0Ê

− + J̃ in B1 (4.14)

with
ν × Ê−|Σ− 6= 0 and ν × Ĥ−|Σ− 6= 0. (4.15)
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Proof. By a similar argument to the first part of the proof of Proposition
3.3, one can show that on any compact subset of B2 away from the origin,
(E+

ρ , H
+
ρ )→ (E,H) at the rate O(ρ2), and on B2\Bρ,

‖E+
ρ − E‖L2(B2\Bρ) + ‖H+

ρ −H‖L2(B2\Bρ) = O(ρ1/2) as ρ→ 0+.

This proves (4.12). Next, we shall show (4.15) which in turn implies (4.13)–
(4.14). On the interior cloaking interface Σ−, the Cauchy data are given
by

ν × Ẽ−ρ |Σ− = ε
−1/2
0

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
(αmn jn(kω) + pmn h

(1)
n (kω))Umn

+(βmn Jn(kω) + qmn Hn(kω))V m
n

)
,

ν × H̃−ρ |Σ− =
µ
−1/2
0

ikω

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
(αmn Jn(kω) + pmn Hn(kω))V m

n

+k2ω2(βmn jn(kω) + qmn h
(1)
n (kω))Umn

)
.

(4.16)
We observe that as ρ→ 0+

αmn jn(kω) + pmn h
(1)
n (kω) = t2γ

m
n jn(kω) + (t′2jn(kω) + h(1)

n (kω))pmn = O(ρ),

βmn Jn(kω) + qmn Hn(kω) = t4η
m
n Jn(kω) + (t′4Jn(kω) +Hn(kω))qmn = O(1),

(4.17)

where

t′2jn(kω) + h(1)
n (kω) ∼ ρh

(1)
n (ωρ)[jn(kω)Hn(kω)− h(1)

n (kω)Jn(kω)]

µ0Hn(ωρ)jn(kω)
= O(ρ),

t′4Jn(kω) +Hn(kω) ∼ jn(kω)Hn(kω)− Jn(kω)h
(1)
n (kω)

jn(kω)
= O(1).

Similarly, we have

βmn jn(kω) + qmn h
(1)
n (kω) = O(ρ),

αmn Jn(kω) + pmn Hn(kω) = O(1). (4.18)

Plugging (4.17) and (4.18) into (4.16), we have (4.15). The proof is com-
pleted. �

By Proposition 4.3, we see that as ρ → 0+, the near-cloak converges to
the ideal-cloak. Moreover, in the limiting case, the EM fields in the cloaked
region are trapped inside and the cloaked region is completely isolated.

Finally, we consider the frequency dependence for the approximate cloak-
ing of active/radiating objects. Again, we address our study by considering
the inputs being EM plane waves as in Section 3.3. By straightforward cal-
culations, the coefficients that characterize the difference of the boundary
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measurements, i.e. ν × H+
ρ |∂B2 − ν × H|∂B2 , associated to terms Umn and

V m
n , verify

g̃(1)
nm :=

ω

i

√
n(n+ 1)(bmn jn(2ω)− ηmn jn(2ω)− dmn h(1)

n (2ω))

=
−2i

√
n(n+ 1)ω2Wn(2ω)

ε
1/2
0 det(Bn)

[
bmn (ε0Jn(ωρ)jn(kω)− ρjn(ωρ)Jn(kω))

− ε1/2
0 qmn kωWn(kω)

]
,

g̃(2)
nm :=

1

2iω

√
n(n+ 1)(amn Jn(2ω)− γmn Jn(2ω)− cmn Hn(2ω))

=
i
√
n(n+ 1)Wn(2ω)

µ
1/2
0 det(An)

[
amn (µ0Jn(ωρ)jn(kω)− ρjn(ωρ)Jn(kω))

− µ1/2
0 pmn kωWn(kω)

]
.

(4.19)

In the low frequency regime with ω � 1, by (4.19) we have

g̃(1)
nm ∼ ω−nρn+1, g̃(2)

nm ∼ ω−n−2ρn+1,

which implies that one cannot achieve near-invisibility when ω . ρ2/3. In
the high frequency regime with ω � 1, by excluding the resonances and
using similar arguments to that in Section 3.3, one can show

|g̃(1)
nm| .

ω−1

Cnm(ω, ρ)
, |g̃(2)

nm| .
ω−3

Cnm(ω, ρ)
, (4.20)

where

Cnm(ω, ρ) .

{
ω−n−3ρ−n−1 ωρ� 1, ω & 1,
ω−2 ωρ & 1.

By (4.20), one cannot conclude whether or not the near-invisibility is achieved.
However, in our numerical experiment given in Section 6.3, we have observed
the failure of the approximate cloaking in the high frequency regime. There-
fore, it can be concluded that for a fixed approximate cloaking scheme with
a point source/sink (4.2) present in the cloaked region, in addition to reso-
nances, the near-invisibility cannot be achieved uniformly in frequency.

5. Approximate cloaking with a lossy layer

In our earlier discussion of lossless approximate cloakings, we have seen
the failure of the near-invisibility due to resonant inclusions. Following the
spirit in [9] by introducing a damping mechanism to overcome resonances in
approximate acoustic cloaking, we surround the cloaked region first by an
isotropic conducting layer, then another anisotropic nonconducting layer as
described as earlier. To be more specific, given a damping parameter τ > 0,
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our new regularized parameter in B2 is given by

(µ̃ρ(x), ε̃ρ(x)) =


((F2ρ)∗I, (F2ρ)∗I) 1 < |x| < 2,
(µτ , ετ ) := ((F2ρ)∗I, (F2ρ)∗(1 + iτ)) 1

2 < |x| < 1,
(µ0, ε0) |x| < 1

2 ,
(5.1)

which is the push-forward of

(µρ(y), ερ(y)) =


(I, I) 2ρ < |y| < 2,
(I, 1 + iτ) ρ < |y| < 2ρ,
((F−1

2ρ )∗µ0, (F
−1
2ρ )∗ε0) |y| < ρ.

(5.2)

by the transformation

x := F2ρ(y) =

{
(1−2ρ

1−ρ + 1
2(1−ρ) |y|)

y
|y| 2ρ < |y| < 2,

y
2ρ |y| ≤ 2ρ.

To assess the approximate cloaking in this setting, we consider the trans-
mission problem

∇× E1 = iωH1, ∇×H1 = −iωE1, in 2ρ < |y| < 2,

∇× Ẽ2 = iωµτ H̃2, ∇× H̃2 = −iωετ Ẽ2, in 1
2 < |x| < 1,

∇× Ẽ3 = iωµ0H̃3, ∇× H̃3 = −iωε0Ẽ3 + J̃ , in |x| < 1
2 ,

ν × E1|∂B2 = f ;

ν × Ẽ2|∂B−
1

= 2ρ(ν × E1)|∂B+
2ρ
, ν × H̃2|∂B−

1
= 2ρ(ν ×H1)|∂B+

2ρ
;

ν × Ẽ3|∂B−
1/2

= ν × Ẽ2|∂B+
1/2
, ν × H̃3|∂B−

1/2
= ν × H̃2|∂B+

1/2
.

(5.3)
The problem is well-posed on B2 since ετ is complex. Actually, we have

(µτ , ετ ) = (2ρ, 2ρ(1 + iτ)).

Set

kτ := (µτετ )1/2 = O(ρ) as ρ→ 0+.

We can write the spherical wave expansions of the electric fields as follows

E1 =
∞∑
n=1

n∑
m=−n

γmn M
m
n,ω + ηmn ∇×Mm

n,ω + cmn N
m
n,ω + dmn ∇×Nm

n,ω,

Ẽ2 = ε−1/2
τ

∞∑
n=1

n∑
m=−n

γ̃mn M
m
n,kτω + η̃mn ∇×Mm

n,kτω + c̃mn N
m
n,kτω + d̃mn ∇×Nm

n,kτω,

Ẽ3 = ε
−1/2
0

∞∑
n=1

n∑
m=−n

αmnM
m
n,kω + βmn ∇×Mm

n,kω + pmn N
m
n,kω + qmn ∇×Nm

n,kω.

(5.4)
Then we have

Proposition 5.1. For any ω ∈ R+, assume the EM field (Ẽρ, H̃ρ) satisfies{
∇× Ẽρ = iωµ̃ρH̃ρ, ∇× H̃ρ = −iωε̃ρẼρ + J̃ , in B2

ν × Ẽρ|∂B2 = f,
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where (µ̃ρ, ε̃ρ) is the lossy medium given by (5.1). Then the pull-back field
(Eρ, Hρ) satisfies{

∇× Eρ = iωµρHρ, ∇×Hρ = −iωερEρ + J, in B2,
ν × Eρ|∂B2 = f

with (µρ, ερ) given by (5.2). Therefore, the fields

(E1, H1) = (Eρ|B2\B2ρ
, Hρ|B2\B2ρ

),

(Ẽ2, H̃2) = (Ẽρ|B1\B1/2
, H̃ρ|B1\B1/2

),

(Ẽ3, H̃3) = (Ẽρ|B1/2
, H̃ρ|B1/2

)

satisfy the transmission problem (5.3). Moreover,

(i) If J̃ = 0, then (E1, Ẽ2, Ẽ3) is given by (5.4) with pmn = qmn = 0 for all
n and m, and
γmn = O(1), ηmn = O(1), cmn = O(ρ2n+1), dmn = O(ρ2n+1);

c̃mn = O(ρ2n+5/2), d̃mn = O(ρ2n+5/2), γ̃mn = O(ρ3/2), η̃mn = O(ρ3/2);
αmn = O(ρn+1), βmn = O(ρn+1).

(5.5)

(ii) If J̃ 6= 0 is given by (4.2), then (E1, Ẽ2, Ẽ3) is given by (5.4) with
pmn , q

m
n 6= 0 for some n and m, and

γmn = O(1), ηmn = O(1), cmn = O(ρn+1), dmn = O(ρn+1);

c̃mn = O(ρn+3/2), d̃mn = O(ρn+3/2), γ̃mn = O(ρ−n+1/2) η̃mn = O(ρ−n+1/2);
αmn = O(1), βmn = O(1).

(5.6)

Proof. In the case that no source/sink is present (J̃ = 0), the boundary
condition and transmission conditions in (5.3) imply (R-1) and the following
equations.

(R-4)

 ε−1/2
τ

(
γ̃mn jn(kτω) + c̃mn h

(1)
n (kτω)

)
= 2ρ

(
γmn jn(2ωρ) + cmn h

(1)
n (2ωρ)

)
,

ε
−1/2
τ

(
η̃mn Jn(kτω) + d̃mn Hn(kτω)

)
= ηmn Jn(2ωρ) + dmn Hn(2ωρ).

(R-5)

{
µ
−1/2
τ (c̃mn Hn(kτω) + γ̃mn Jn(kτω)) = kτ (cmn Hn(2ωρ) + γmn Jn(2ωρ)) ,

µ
−1/2
τ kτ

(
d̃mn h

(1)
n (kτω) + η̃mn jn(kτω)

)
= 2ρ

(
dmn h

(1)
n (2ωρ) + ηmn jn(2ωρ)

)
.

(R-6)

 ε
−1/2
0 αmn jn(kω2 ) = ε

−1/2
τ

(
γ̃mn jn(kτω2 ) + c̃mn h

(1)
n (kτω2 )

)
,

ε
−1/2
0 βmn Jn(kω2 ) = ε

−1/2
τ

(
η̃mn Jn(kτω2 ) + d̃mn Hn(kτω2 )

)
.

(R-7)

{
µ
−1/2
0 kτα

m
n Jn(kω2 ) = µ

−1/2
τ k

(
c̃mn Hn(kτω2 ) + γ̃mn Jn(kτω2 )

)
,

µ
−1/2
0 kβmn jn(kω2 ) = kτµ

−1/2
τ

(
d̃mn h

(1)
n (kτω2 ) + η̃mn jn(kτω2 )

)
.

Solving (R-6-1) and (R-7-1), we obtain

c̃mn = l1α
m
n , γ̃mn = l2α

m
n ,
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where as ρ→ 0+

l1 =
ε

1/2
τ ε

−1/2
0

(
jn(kω2 )Jn(kτω2 )− µτµ−1

0 Jn(kω2 )jn(kτω2 )
)

h
(1)
n (kτω2 )Jn(kτω2 )−Hn(kτω2 )jn(kτω2 )

= O(ρn+3/2),

l2 =
ε

1/2
τ ε

−1/2
0

(
µτµ

−1
0 Jn(kω2 )h

(1)
n (kτω2 )− jn(kω2 )Hn(kτω2 )

)
h

(1)
n (kτω2 )Jn(kτω2 )−Hn(kτω2 )jn(kτω2 )

= O(ρ−n+1/2).

Plugging the above quantities into (R-4-1) and (R-5-1), we further have

(R-4-1) − r1α
m
n + 2ρε1/2

τ h(1)
n (2ωρ)cmn = −2ρε1/2

τ jn(2ωρ)γmn ,

(R-5-1) − r2α
m
n + µ1/2

τ kτHn(2ωρ)cmn = −µ1/2
τ kτJn(2ωρ)γmn ,

where

r1 = l1h
(1)
n (kτω) + l2jn(kτω) = O(ρ1/2),

r2 = l1Hn(kτω) + l2Jn(kτω) = O(ρ1/2).

Then

cmn = s1γ
m
n , αmn = s2γ

m
n

where

s1 =
µτJn(2ωρ)r1 − 2ρjn(2ωρ)r2

2ρh
(1)
n (2ωρ)r2 − µτHn(2ωρ)r1

= O(ρ2n+1),

s2 =
2ρµτε

1/2
τ

(
−jn(2ωρ)Hn(2ωρ) + Jn(2ωρ)h

(1)
n (2ωρ)

)
2ρh

(1)
n (2ωρ)r2 − µτHn(2ωρ)r1

= O(ρn+1).

By (R-1) as ρ→ 0+, we have

γmn =
f

(1)
nm

s1h
(1)
n (2ω) + jn(2ω)

= O(1), (5.7)

which in turn implies

cmn = O(ρ2n+1), αmn = O(ρn+1),

c̃mn = O(ρ2n+5/2), γ̃mn = O(ρ3/2).

Similar calculations suggests the other estimates in (5.5).

Statement (ii) is derived from solving (R-1), (R-4), (R-5) and

(R-6’)

 ε
−1/2
0

(
jn(kω2 )αmn + h

(1)
n (kω2 )pmn

)
= ε
−1/2
τ

(
γ̃mn jn(kτω2 ) + c̃mn h

(1)
n (kτω2 )

)
,

ε
−1/2
0

(
Jn(kω2 )βmn +Hn(kω2 )qmn

)
= ε
−1/2
τ

(
η̃mn Jn(kτω2 ) + d̃mn Hn(kτω2 )

)
,

(R-7’)

{
µ
−1/2
0 kτ

(
αmn Jn(kω2 ) + pmn Hn

(
kω
2

))
= µ

−1/2
τ k

(
c̃mn Hn(kτω2 ) + γ̃mn Jn(kτω2 )

)
,

µ
−1/2
0 k

(
βmn jn(kω2 ) + qmn h

(1)
n

(
kω
2

))
= kτµ

−1/2
τ

(
d̃mn h

(1)
n (kτω2 ) + η̃mn jn(kτω2 )

)
.

�
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Using Proposition 5.1, all our results in Sections 3 and 4 for the loss-
less approximate EM cloaking can be shown to hold equally for the lossy
approximate cloaking scheme (5.1). We remark briefly on this here.

Remark 5.2. The estimates in (i) of Proposition 5.1 imply that, without

an internal source/sink, the EM fields (Ẽ3, H̃3) in the cloaked region B1/2

degenerates in order O(ρ2). Whereas for the EM fields (Ẽ2, H̃2) in the lossy
layer B1\B1/2, it is easily seen

Mm
n,kτω,∇×M

m
n,kτω = O(ρn), Nm

n,kτω,∇×N
m
n,kτω = O(ρ−n−1).

Then (5.5) and (5.4) imply that (Ẽ2, H̃2) degenerate in order O(ρ2) as ρ
decays. It follows that the vanishing Cauchy data appears on the inner
surface ∂B−1 . Moreover, the boundary operator on ∂B2 of the approximate
cloaking converges to that of the ideal cloaking in order O(ρ3).

Remark 5.3. With an internal point source/sink of the form (4.2) present
in the cloaked region, the asymptotic estimates of the coefficients for the
corresponding EM fields are given in (ii). By straightforward verification,
one can show near-invisibility for the lossy approximate cloaking similar to
Proposition 4.2 in the lossless case. On the other hand, one can also show
that both the EM fields (Ẽ2, H̃2) and (Ẽ3, H̃3) are O(1), and hence they
do not degenerate. Moreover, the Cauchy data on the inner surface ∂B−1
does not vanish since by (R-4) and (R-5), the terms associated to V m

n of

ν× Ẽ2 and ν× H̃2 are O(1). These observations suggest that in the limiting
case, the lossy approximate cloaking converges to the ideal cloaking, and
the cloaked region is completed isolated with the EM fields trapped inside
(see Proposition 4.3 for similar observations in the lossless case).

For the frequency dependence of the performances of the lossy approx-
imate cloakings, we also have completely similar results to those in the
lossless case, which we would not repeat here ( see our discussion at the end
of Sections 3 and 4).

We conclude this section with two more interesting observations. In [9],
for the approximate acoustic cloaking by employing a lossy layer, one needs
to require that the damping parameter τ ∼ ρ−2, which is not necessary for
our present approximate EM cloaking. On the other hand, it is shown in [16]
that if τ is allowed to be ρ-dependent, one could achieve near-invisibility uni-
formly in frequency. However, such result does not hold for the approximate
EM cloaking.

6. Numerical experiments

In this section, we carry out some numerical experiments based on the
discussions and calculations in Sections 3, 4 and 5. First we introduce an
electric plane wave of the form

E = e−iωx·dP (6.1)
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with d = (1, θd, φd) ∈ S2, P ∈ C3 and d · P = 0. In the free space, the EM
fields (E,H) := (e−iωx·dP,−e−iωx·dd× P ) satisfy Maxwell’s equations

∇× E = iωH ∇×H = −iωE.
The spherical wave functions expansions of the EM-fields (E,H) are given
by 

E =
∞∑
n=1

n∑
m=−n

amnM
m
n,ω(x) + bmn ∇×Mm

n,ω(x),

H =
1

iω

∞∑
n=1

n∑
m=−n

ω2bmnM
m
n,ω(x) + amn ∇×Mm

n,ω(x),

where

amn =
f

(1)
nm

jn(2ω)
, bmn =

2f
(2)
nm

Jn(2ω)
,

and

f
(1)
nm := f

(1)
nm(d, P ) =

4π

n(n+ 1)in
Mm
n,ω(2d) · P,

f
(2)
nm := f

(2)
nm(d, P ) =

4π

n(n+ 1)ωin−1
∇×Mm

n,ω(2d) · P.
(6.2)

By (3.23), we have

amn = − 4π√
n(n+ 1)in

V m
n (d) · P, bmn =

4π√
n(n+ 1)ωin−1

Umn (d) · P. (6.3)

On the boundary ∂B2, one has(
x̂× e−iωx·dP

) ∣∣
∂B2

=

∞∑
n=1

n∑
m=−n

√
n(n+ 1)

(
f (1)
nmU

m
n (x̂) + f (2)

nmV
m
n (x̂)

)
.

(6.4)
Figure 1 demonstrates an electric field by taking the first 15 modes in

the above expansion; that is, n is up to N = 15. Throughout all our
computations, we shall make use of such truncation when a spherical wave
function expansion is considered.

6.1. Lossless approximate cloaking of passive media. Recall in Sec-
tion 3 that the EM material parameters of our lossless cloaking device are

(ε̃ρ(x), µ̃ρ(x)) =

{
((F

(1)
ρ )∗I, (F

(1)
ρ )∗I) 1 < |x| < 2,

(ε0, µ0) – arbitrary constant |x| < 1.

Based on the calculations in Lemma 3.1, we depict the EM fields (Ẽρ, H̃ρ)
propagating in {B2; ε̃ρ, µ̃ρ} in Figure 2 with the following boundary condi-
tion

x̂× Ẽρ|∂B2 = x̂× E, (6.5)

where E is the one demonstrated in Fig 1. It is remarked that the boundary
input (6.5) will also be implemented in our subsequent numerical exper-
iments, when a boundary condition is concerned. Next, we consider the
convergence of the near-cloak to the ideal-cloak. To that end, for the EM
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Figure 1. Real part of E1, namely the first component of
E (sliced at x = 0, 1, 2), with the first 15 modes and ω = 5,
d = (1, π/2, π/2) ∈ S2, P = (1, 0, 0)T .

Figure 2. Real part of (Ẽρ)1 (sliced at x = 0, 1, 2), with
ω = 5, ε0 = µ0 = 2, ρ = 1/6.

fields (Ẽρ, H̃ρ), we compute the deviations of the boundary operators via
the formula

Er(ρ) := ‖x̂× H̃ρ − x̂×H‖
H− 1

2 (Div;∂B2)
.

In our calculations, we shall make use of the following identity from [14],

‖λ‖2
H− 1

2 (Div;∂B2)
=
∞∑
n=1

n∑
m=−n

√
n(n+ 1)|g(1)

n,m|2 +
1√

n(n+ 1)
|g(2)
n,m|2,
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given the vector spherical harmonic expansion of λ

λ =

∞∑
n=1

n∑
m=−n

g(1)
n,mU

m
n + g(2)

n,mV
m
n .

The convergence rate as ρ→ 0+ is calculated as following

r(ρ) := ln
Er(ρ1)

Er(ρ2)

/
ln
ρ1

ρ2
, ρ1, ρ2 → 0+.

In Table 1, we list the computational results, which verify Proposition 3.2,
i.e., the convergence order is 3.

ρ 0.1 0.05 0.01 0.005 0.002 0.001
Er(ρ) 0.1810 0.0139 8.42e− 05 1.02e− 06 6.42e− 07 7.97e− 08
r(ρ) 3.703 3.173 3.044 3.020 3.009

Table 1. Convergence rate of boundary operator for the
lossless approximate cloaking with ω = 5, ε0 = µ0 = 2.

6.2. Lossless cloaking of active/radiating objects. In this numerical
experiment, we study the performance of our lossless approximate cloaking
device when an internal point source/sink is present at origin, elaborating to

the discussion in Section 4. We apply a delta source J̃ =
∑
|α|<K(∂αx δ0(x))vα

by introducing a radiating field

EJ̃ =

K∑
n=1

n∑
m=−n

pmn N
m
n,kω + qmn ∇×Nm

n,kω,

with known pmn and qmn , into the electric field E−ρ inside the virtue inclusion

Bρ. In Figure 3 and Table 2, we choose p−1
1 = p0

1 = p1
1 = 5, q−1

1 = q0
1 = q1

1 =
2 and qmn = pmn = 0 otherwise. From Figure 3, we see that one could still
achieve near-invisibility, and the EM fields in the cloaked region is almost
trapped inside. Table 2 verifies that the convergence order of the near-cloak
is 2, which is consistent with Proposition 4.2.

ρ 0.1 0.05 0.01 0.005 0.002 0.001
Er(ρ) 1.9787 0.3509 0.0114 0.0028 4.41e− 04 1.10e− 04
r(ρ) 2.495 2.129 2.031 2.013 2.006

Table 2. Convergence rate of boundary operator for the
lossless approximate cloaking with a delta source, ω = 5,
ε0 = µ0 = 2.
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Figure 3. Real part of (Ẽρ)1 for the cloaking problem
(sliced at x = 0, 1, 2) with a delta source at the origin, ω = 5,
ε0 = µ0 = 2, ρ = 1/12.

6.3. Cloak-busting inclusions and frequency dependence. In Section
3.3, we have shown the failure of lossless cloaking due to resonances. In
Figures 4, for a fixed ρ, the first mode (n = 1) of boundary errors Er(ρ)
are plotted vs frequency ω, for both passive and active cloaking. We ob-
serve blowups of the errors at resonant frequencies, where the determinants
det(An) and det(Bn) (n = 1) vanish (see Figure 5 for those resonance fre-
quencies). In fact, we have numerically shown that for every frequency ω
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Figure 4. Boundary error for mode n = 1. Left: lossless
cloaking (no source). Right: lossless cloaking (with a source).
ρ = 0.01, ω ∈ [1, 3].

and ρ, there is a choice of ‘cloaking-busting’ inclusion in B1, e.g., a pair of
parameters (ε0, µ0) satisfying (3.25), such that the lossless construction is
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Figure 5. Frequency dependence of determinants of coef-
ficients system (R-1), (R-2) and (R-3). ρ = 0.01, ω ∈ [1, 3].

resonant. In Figure 6, an example of such resonant inclusion at mode n = 1
is plotted against ρ for a fixed frequency. One can see that as ρ → 0+,
the EM parameters of the inclusion become singular, namely, ε0 → ∞ and
µ0 → 0. As discussed in Section 3.3 and Section 5, Figure 7 demonstrates
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Cloak−busting inclusion at ω=14, n=1, k=1
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Figure 6. EM parameters (µ0, ε0) for a cloak-busting in-
clusion at n = 1 ω = 14 with k = 1.

that both the lossless (excluding the resonant frequencies) and lossy cloak-
ing schemes work well in the low frequency regime, namely when ω � 1,
without any source/sink present in the cloaked region. In Sections 4 and
5, when a point source/sink is present at the origin, we see that both the

lossless and lossy cloaking schemes fail when ω . ρ2/3, as shown in Figure
8. For higher frequencies, the behaviors of the cloaking schemes are not
deterministic. Nonetheless, we show in Figure 9 that the lossless cloaking
of active/radiating objects (excluding resonant frequencies) generates rela-
tively large boundary error Er(ρ) when ω � 1.
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Figure 7. Approximate cloaking performance in low fre-
quency regime ω ∈ [0, 1]. Left: boundary error (n = 1) for
lossless cloaking (no source). Right: boundary error (n = 1)
for lossy cloaking (no source). ρ = 0.01.
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Figure 8. Boundary error (n = 1) for cloaking with a
source. Approximate cloaking compromises in low frequency
regime. ρ = 0.01.

6.4. Lossy approximate cloaking. According to our discussion in Section
5, we employ a lossy layer right between the cloaking layer and the cloaked
region. In Figure 10, we show how the EM-fields propagate in such a lossy
construction of approximate cloaking. One can see that near-invisibility is
achieved. In Table 3, the convergence order of the lossy near-cloak of passive
media as ρ→ 0+ is shown to be 3, which is consistent with Remark 5.2. It
is recalled that for the lossy approximate cloaking, the EM parameters in
B2 are given by

(µ̃ρ(x), ε̃ρ(x)) =


((F2ρ)∗I, (F2ρ)∗I) 1 < |x| < 2,
(µτ , ετ ) := ((F2ρ)∗I, (F2ρ)∗(1 + iτ)I) 1

2 < |x| < 1,
(µ0, ε0) |x| < 1

2 .
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Figure 9. Approximate cloaking (with a source) perfor-
mance in high frequency regime . Boundary error (n = 1)
Er(ρ) > 2 for ω ∈ [1000, 1005]. ρ = 0.01.

At last, we demonstrate the frequency dependence of our lossy approximate

Figure 10. Real part of (Ẽρ)1 for the lossy approximate
cloaking problem (sliced at x = 0, 1, 2), with ω = 5, ε0 =
µ0 = 2, ρ = 1/6.

ρ 0.1 0.05 0.01 0.005 0.002 0.001
Er(ρ) 0.2733 0.0455 3.75e− 04 4.69e− 05 3.00e− 06 3.75e− 07
r(ρ) 2.5867 2.9818 2.9998 2.9998 2.9998

Table 3. Convergence rate of boundary operator for lossy
approximate cloaking of passive medium, with frequency ω =
5, ε0 = µ0 = 2, damping parameter τ = 3.
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cloaking scheme in Figure 11 without a source/sink. Observe that the reso-
nant frequencies disappear. However, we observe some frequencies at which
the boundary error Er(ρ) is relatively large. We believe such frequencies
are those very close to the poles or transmission eigenvalues in the complex
plane of the boundary value problem. It is remarked that such phenome-
non could also be observed in the lossless approximate cloaking. If there is
a point source present at the origin, we would have the similar numerical
result as the case considered in Figure 9 for the lossless cloaking.
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Figure 11. Boundary error (n = 1) of lossy approximate
cloaking (no source). ρ = 0.01.
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