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In memory of Carlo Cercignani (1939-2010)

Relating the kinetic theory of gases to their descriptionth®/equations of continuum mechanics is a question that
finds its origins in the work of Maxwell [30]. It was subseqtigriormulated by Hilbert as a mathematical problem
— specifically, as an example of his 6th problem on the axigration of physics [21]. In Hilbert's own words
“Boltzmann’s work on the principles of mechanics suggesésgroblem of developing mathematically the limiting
processes which lead from the atomistic view to the laws dfonmf continua”. Hilbert himself studied this problem
in [22] as an application of his theory of integral equaticFise present paper reviews recent progress on this problem
in the past 10 years as a consequence of the DiPerna-Liohalggistence and stability theory [12] for solutions
of the Boltzmann equation. This Harold Grad lecture is datghid to the memory of Carlo Cercignani, who gave the
first Harold Grad lecture in the 17th Rarefied Gas Dynamics @gium, in Aachen (1990), in recognition of his
outstanding influence on the mathematical analysis of thHzBann equation in the past 40 years.

THE BOLTZMANN EQUATION: FORMAL STRUCTURE
In kinetic theory, the state of a monatomic gas at ttraaed positiorx is described by its velocity distribution function
F =F(t,x,v) > 0. It satisfies the Boltzmann equation
OF +v-OF =% (F),
where@ (F)(t,x,v) := € (F(t,x,-))(v) is the Boltzmann collision integral defined for each contins, rapidly decay-
ing functionf = f(v) by

EN0) = ([, OV =10 (v=v.)- ol dv.do,
assuming that gas molecules behave as perfectly elastishheres of diametel In this formula, we have denoted
V=V(VV,,w):=V—(V-V,) 0w, V. =V.(V,Vi, @) = Vit (V= V) - O, lw| =1. (1)

Molecular interactions more general than hard spheresiamtis can be considered by replac%zg(v—v*) - | with

appropriate collision kernels of the forbf|v — v, |, |x:—x:‘ -wl). In this paper, we restrict our attention to the case of

hard sphere collisions to avoid dealing with more techrgoalditions on the collision kernel.
Properties of the collision integral

While the collision integral is a fairly intricate matherita expression, the formulas (1) entail remarkable symme-
try properties. As a result, the collision integral satisffer each continuous, rapidly decayifg: f(v), the identities

/‘f(f)dv:o, /?f(f)vkdv:o, k=123 and /%(f)|v|2dv:0. )
R3 R3 R3
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The first relation expresses the conservation of mass (avaqutly, of the number of particles) by the collision
process, while the second and the third express the cotiggred momentum and energy respectively.

Perhaps the most important result on the collision integfbltzmann’s H Theorendor each continuous, rapidly
decayingf = f(v) > 0 such that Irf has polynomial growth al| — +co,

/3‘5(f)|nfdv§ 0, and /ag(f)mfdv:o@%(f) — 0« fis aMaxwellian, 3)
R R

i.e. there exist®, 8 > 0 andu € R3 such that

_l2
f(V) = //(p,u,g)(V) = WGXP<_ |V29U| ) . (4)

Dimensionless variables

Fluid dynamic limits are obtained as properties of solwtiofithe Boltzmann equation under appropriate scaling as-
sumptions. We therefore recast the Boltzmann equatiomiedsionless variables, so as to identify the dimensionless
parameters that control the scalings of the time and spa@@bles, following [4, 36].

First we choose a macroscopic length sd¢a(éor instance the size of the container where the gas is sed|@r of
an object immersed in the fluid, or the typical length scalevbich the variation of macroscopic fluid quantities is
observed), as well as a macroscopic observation time 3gdlee. the time scale on which the evolution of the fluid
guantities is observed.)

We next define reference scales of denpignd temperatur@ by setting

/ Fdxdv=pL3, //dexdv:O, //:—2L|V|2F dxdv=3p6.

The collision time scal@. is defined in turn by
2 [[[ p
¢ / / / M08 (V)05 ()| (V= v.) - @l dve. deo = £

while the acoustic time scale is defined By= L/V/8. The dimensionless variables dre-t/To, X = x/L, and

¥=v/v/8, while the dimensionless distribution functiorfis= 53/2F/ﬁ.
Introducing two dimensionless parameters, the Strouhaibran Sh= T,/T, and the Knudsen number ka

c—1 /]|v—v*|e*(“"2+“’*\2)/2dvdv*,

a

we see that the Boltzmann equation in dimensionless vasahkes the form

ShoF + - OgF = ifé(ﬁ), (5)
Kn
where the dimensionless collision integral is
CEER) = [ FERNFERT) -FERDFER)|0-0) - 0ld. do. ©®)
R°x

Obviously, the dimensionless collision integﬁ(lf) satisfies exactly the same properties as the original esipres
¢ (F), i.e. the conservation laws of mass, momentum and ener@nBoltzmann’s H Theorem (3).

Henceforth, we always consider the Boltzmann equation fSJlimensionless variables, dropping all hats for
notational simplicity. Thus, the conservation propertiethe collision operator (2) imply that rapidly decaying ¢)



solutions of the dimensionless Boltzmann equation (538athe following local conservation laws:

Sha /3 Fdv+ diVx/3VF dv=0 (conservation of mass),
R R

Sha /SVF dv + divy /3v® vFdv=0 (conservation of momentum), @)
JR R

Shé /3 3|VI?F dv+ divx/av%|v|2F dv=0 (conservation of energy).
R R

Likewise, Boltzmann’s H Theorem implies that solutidhs- O of the Boltzmann equation that are rapidly decaying
while InF has polynomial growth als| — 4o satisfy the differential inequality

Shd[/ FIanv+divx/ vFIanv:i/ #(f)infdv<0. (8)
R3 JR3 Kn Jr3

THE COMPRESSIBLE EULER LIMIT AND HILBERT'S EXPANSION

Whenever a gas evolves in a fluid dynamic regime (at the leag#itel), the average time between successive
collisions involving a typical gas molecule is much smatlesin the time necessary for an acoustic wave to travel
a distancd.. In other words, fluid dynamic regimes are characterizedbycbnditionT; < T,, or equivalently by he
condition Kn« 1.

In [22], Hilbert studied the Boltzmann equation (5) in thgraptotic regime defined by K& € < 1 and Sh= 1.
His idea was to seek the solutiép of

1
ng +V' Dng = E%(Fg) (9)
as a formal power series nwith smooth coefficients — known a&silbert’'s expansion

Fe(t,x,v) = Z)e”fn(t,x,v), with f, smooth int,x,v, for eachn> 0. (10)
n>

He found that the leading order term in that expansion is @féihm

fo(t,X,v) = 2 u0)tx) (V)

where(p,u, 8) is a solution of the compressible Euler system
dp -+ div(pu) =0,
p(du+u-Oxu) + Ox(pB) =0, (12)
6.6 +u-0x6 + 3 6divy,u = 0.

Caflisch [10] succeeded in turning Hilbert's formal resuitoi a rigorous statement bearing on solutions of the
Boltzmann equation, by using a truncated variant of theettlbxpansion above. Specifically, given a smooth solution
(p,u,8) of the compressible Euler system on some finite time inté@yal), he constructs a family of solutions of the
Boltzmann equation that converges#j,, , g uniformly int € [0,T) ase — 0. Before Caflisch’s result, Nishida [31]
had proposed another proof of the compressible Euler liftfi@Boltzmann equation under more stringent regularity
assumptions, viz. analyticity, using some abstract vaoathe Cauchy-Kowalewski theorem.

One striking advantage of the Hilbert expansion is its w#itya abundantly illustrated by the great diversity
of physically meaningful applications to be found in the wof Sone [36, 37]. However, there are some serious
difficulties with the Hilbert expansion, some of which cartkeated with adequate mathematical techniques. First, the
radius of convergence of the Hilbert power series is 0 in gaEnso that essentially all mathematical arguments based
on Hilbert’s expansion use a truncated variant thereof.dnegal, truncated Hilbert expansions are not everywhere
nonnegative, and are not exact solutions of the Boltzmamatémn. One obtains exact solutions of the Boltzmann
equation by adding to the truncated Hilbert expansion soppecgriate remainder term, satisfying a variant of the



Boltzmann equation that becomes weakly nonlinear for seraughe (see for instance [10, 11, 2].) The truncated
Hilbert expansion with the remainder term so constructedrigorous, pointwise asymptotic expansion (meaning that
e MFe—(fo+efi+...+&"fn)| — O pointwise in(t,x,v)) of the solutionF; of (9) ase — 0. Another difficulty in
working with Hilbert's expansion, even truncated at somésfiorder, is thatf, = O(|0f fo|) for eachn > 0. Since
generic solutions of the compressible Euler system loselaety in finite time [33], truncated Hilbert expansions
make sense on finite time intervals only. For instance, iflatem (p, u, 6) of the compressible Euler system involves
a shock wave, only the O-th order term in the associated Hitbeansion, i.efo(t,X,V) = .#(p y0)tx (V) is well
defined. In general, if the geometric structure and the jpositf the singularities in the solution of the hydrodynamic
equations are known precisely, one can bypass this diffibtyiadding to the truncated Hilbert expansion appropriate
boundary layer terms. If the structure of these singu&gits unknown, or one does not even know whether the
hydrodynamic solution is smooth, one cannot use the Hiksgransion.

GLOBAL EXISTENCE THEORY FOR THE BOLTZMANN EQUATION

To avoid the various shortcomings of the Hilbert expansiathad, one needs a theory of global solutions for the

Boltzmann equation based on the only estimates that areramii Kn as Kn— 0. These estimates are those deduced

from the conservation laws (2) and Boltzmann’s H TheoremdBjrom their differential formulations (7)-(8).
Henceforth, we are concerned with solutions of the Boltzmeguation for a gas filling the Euclidian spag&and

at equilibrium at infinity. By Galilean invariance and wittcanvenient choice of units, we can assume without loss

of generality, that this equilibrium state at infinity is theaxwellian.#(; o 1), denoted byM in the sequel. In other

words, we seek the solution of

1
ShGF +v-OkF = .~ ¢(F), (V)€ R3xR3,t>0,

F(t,xVv) > M as|x| — +, (12)

Flo= Fin,

A convenient quantity measuring the distance between tsildiition functions in the context of the Boltzmann
equation is theelative entropyfor F = F(x,v) > 0 andG = G(x,v) > 0 a.e. in(x,v) € R® x R3,

H(F|G) = //R3XR3(FIn(F/G)—F+G)(x,v)dxdv. (13)

Notice thataln(a/b) —a+b > 0 for eacha > 0 andb > 0, with equality if and only ifa= b. Hence the integrand is a
nonnegative measurable function aa¢F|G) = 0 if and only ifF = G a.e. onR3 x R3.

Since I'M = —3 3In(2m) — |v|2, a formal argument based on the local conservation lawsr(@)tlze differential
inequality (8) shows that any classical solutierof (12) with appropriate decay &g — + satisfies

Sha, /a(F In(F /M) — F + M) dv+ divx/sv(F In(F /M) — F + M)dv < 0.
R R
Integrating inx both sides of this inequality and assuming that> M fast enough ak| — +, we conclude that

SUpH (F (. M) <HFE"M),  and ///Rngg F)InF dsdxdv < ShH(F™|M). (14)

Observe that the collision integra@l(F) acts as a nonlocal integral operator analogous to a corwolirt thev
variable and as a pointwise product in theariable. The fact tha#’(F ) is quadratic irF while H(F|M) is “essentially
homogeneous of degree 1Rss> 1” suggests tha#’(F) may not be defined for all nonnegative measurable functions
F satisfying the entropy bound (14) above. Yet, for each medéeF > 0 onR3 x R?, one has

// dxdv < c// F)INF + (14 [v/)F) dxdv
x\+\v\<r x| <r



so that?'(F)/vI+F € LL (Ry x R®x R3), i.e. is locally integrable irft, x, v). This suggests dividing both sides of
the Boltzmann equation byl +F, thereby leading to the notion eénormalized solution

Definition. (DiPerna-Lions [12]) A renormalized solution relativeNb of the Boltzmann equation is a nonnegative
functionF € C(R,, L% (R3 x R?)) satisfyingH (F (t)|M) < +o for eacht > 0 and

loc
M(Shé +v- O)r (F /M) = %%(F)F’(F/M)

in the sense of distributions &, x R3 x R3, for eachl” € C1(R; ) satisfyingl''(Z) < C/v/1+Z.

With this notion of solution, one can prove the global exise and weak stability of solutions of the Cauchy
problem for the Boltzmann equation, with initial data theg aot necessarily small perturbations of either the vacuum
state or of a Maxwellian equilibrium.

Theorem. (DiPerna-Lions-Masmoudi [12, 27, 29]) For each measur&tile> 0 a.e. onR3 x R3 satisfying the
conditionH(F"|M) < +oo, there exists a renormalized solution of the Boltzmann goog12) with initial data
F'". This solutionF satisfies

Sha / de+divx/ VEdv=0,
JR3 JR3

(15)
Shat/ VFdv+ divx/ Vo VFdv+ divym=0,
R3 R3
wherem=m" > 0 is a matrix-valued Radon measure, and the entropy indguali
ShH(F(t,-,-)|M) +Sh/ Tr(m ///3 _(F)InF(s.xv)dsdxdv < STH(E"|M), t>0.  (16)
R°xR

A classical solution of the Boltzmann equation with apprajgrdecay al/| — +o would satisfy all these properties
with m = 0O; besides the entropy inequality is a weakened variant dzBann’s H Theorem — which would imply
that this inequality is in fact an equality.

The main advantage of the notion of renormalized solutisrtbat a) such solutions always exist for each initial
data with finite relative entropy with respect kb, and b) such solutions are weakly stable, in the sense tlat if
sequencéFy)n>o of renormalized solutions of the Boltzmann equation cogesitoF in the sense of distributions
and satisfiesl (Fn\t:0|M) < Cfor alln> 0, whereC is some positive constant, thénis also a renormalized solution
of the Boltzmann equation, satisfying (15) and (16). Unfodtely, there is no uniqueness theorem for this notion of
solution, so that a renormalized solution of the Boltzmaguation is not completely determined by its initial data.
But if the Cauchy problem for the Boltzmann equation has asital solutiorF, each renormalized solution of the
Boltzmann equation with the same initial dataFasoincides withF a.e. in(t, x,v) (see [26].)

FLUID DYNAMIC LIMITS OF THE BOLTZMANN EQUATION

As explained above, all fluid dynamic limits of the Boltzmaegquation are characterized by the scaling condition
Kn <« 1: hence we set Ke- € throughout the present section.

Besides, all the fluid dynamic limits considered in this pap&respond with weakly nonlinear regimes at the
kinetic level — which does not imply that the nonlinearite® weak at the macroscopic level. Such regimes have
been systematically explored by Sone at the formal level [36] and the references therein), by using the Hilbert
expansion method. In other words, the distribution funtdié considered are small perturbations of the Maxwellian
stateM at infinity. Henceforth, we denote By < 1 the order of magnitude of the differenée- M. A typical example
of such a distribution function B (t, X, v) = .#(1 s,utt x),1)(V), SINCEA (1 5,u(tx),1) (V) = M(V) (14 deU(t,X) - v+ 0(82)).

In this example, the distribution functidhdefines a velocity fieldr and a temperature fielg: by the formulas

/ vFdv / |V — UF|?F dv
= d:U and 6 = =1.

/ Fdv 3/ F dv

Introducing the speed of sourd := /56 /3, we see that the Mach number Maug /cr = U, so that the scaling
parameted; can be thought of as the (order of magnitude of the) Mach numbe



The acoustic limit

The acoustic limit is the linearized variant of the compitssEuler limit considered by Hilbert himself.
Theorem. (Golse, Jiang, Levermore, Masmoudi [14, 23]) Let ¥kre, Ma= J; = O(v/€) and Sh= 1. For each

p".u", 8" € L?(R?), letF¢ be a family of renormalized solutions of the Boltzmann eiqurag12) with initial data
Fe' = (1. 5,p1 5,00 1+5,6M) -
Then, in the limitag — O,

1

5 ./gs(Ff“vX’V) ~M(V)(L,v. V2 - 1)dv— (p,u,0)(t,x)

in LL.(R% x R%), where(p,u, 8) is the solution of the acoustic system

&p +divu=0, Pl_o=0",
du+Ox(p+8)=0, u\t:O:u"f,
36 + 4divu=0, 6,_,=06".

While the result in [14] holds for the most general class ofeunolar interactions satisfying some angular cutoff
assumption in the sense of Grad [20] (in fact, a much weakesiore of Grad’'s assumption [23, 25]), an earlier
contribution of the same authors with Bardos [5] introduadaby new idea in the derivation of hydrodynamic limits
of renormalized solutions of the Boltzmann equation andté® the case of bounded collision kernels (e.g. cutoff
Maxwell molecules).

The incompressible Euler limit

It is a well-known fact that, in the low Mach number limit, tflew of an inviscid fluid can be approximately
decomposed into its acoustic and vortical modes, whosgaictien vanishes with the Mach number. The result below
explores the counterpart for vortical modes of the acolistit of the Boltzmann equation. Because of the low Mach
number scaling, vortical modes evolve on a longer time dte@le acoustic modes, consistently with the fact that the
conditionsx(p + 8) = 0 and diywu = 0 characterize the equilibrium points of the acoustic syste

Theorem. (Saint-Raymond [32]) Let Kr= ¢, and Sh= Ma = & = €% with 0 < a < 1. Letu™ € H3(R®)! satisfy
divu" = 0, and letu € C([0, T]; H3(R®)) be a solution of the incompressible Euler equations

gu+u-Ou+0Oxp=0, divyu=0,
uj,_q=u".

Let F¢ be a family of renormalized solutions of the Boltzmann egueaf12) with initial data
F;n = %(1,6guin,l) .
Then, in the limit ag — 0, one has

1/ VRt x,V)dv— u(t,x) in L®([0,T];LE(R3)).
O Jr3

The proof of this result is based on the relative entropy wettklescribed in the next section. Actually, there had
been precursors of this theorem due to the author [9] andaes=-Masmoudi [29], where the relative entropy method
was introduced for this type of problem. Unfortunately, statements in [9, 29] rested on extra assumptions on the
family of solutions of the Boltzmann equation that remaimenified. These assumptions were removed by some clever
argument in [32], which therefore contains the first compfgbof of the theorem above.

1 The notationH™(R") designates the Sobolev space of square integrable fusaiioR" whose partial derivatives of ordet min the sense of
distributions are square integrable functionsRSh A vector field is said to belong td™(R") if all its components belong td™(R").



The Stokes limit

We continue our exploration of vortical modes with the S®kmit of the Boltzmann equation. The scaling is
weakly nonlinear at the macroscopic level of descriptiom the time scale is chosen so as to keep track of entropy
production in the fluid dynamic limit. o
Theorem. (Golse, Levermore, Masmoudi [14, 25]) Let knSh= ¢, and Ma= & = o(¢g). For each(u",8")

L? x L*(R®) such that diyu"™ = 0 and eacle € (0, ||u"||.~), let Fe be a family of renormalized solutions of the
Boltzmann equation (12) with initial data

R = ///(175gein,5guiﬂ,1+5gein> .
Then, in the limit ag — 0, one has

1

E/Rs(Fg(t,x,v) —M(V))(v, 3|v|2 = 1)dv— (u,0)(t,x) in L} (R x R®x R?),

loc

where(u, ) is a solution of the Stokes-Fourier system

Au+Oxp=vAu, divyu=0, u\t:O:u"_‘,
&6 = ZK0x0, 8|_,= 0"

The viscosity and heat conductivity in this theorem are givg the formulas (equivalent to the usual ones in [36]):
v=37'(vev—3vi),  k=52'G(M*-5)V). (17)

whereZ* denotes the Legendre dual of the Dirichlet fo#rof the collision operator linearized abddt i.e.
P(®) =1 /// D+ D, — & — & [2/(V—V,) - MM, dvav, de.
J J JR3xR3x 2

The fluid dynamic model obtained in the statement above iSthkes-Fourier system; notice that the motion and
temperature equations are decoupled in the absence of emaixtorce field deriving from a potential. Previously
Lions and Masmoudi [29] arrived at the particular case ofdtatement above corresponding to an initial data for
which 8" = 0, leading to the motion equation only, i.e. the evolutiookBs equation. For want of a better control
of the high speed tails of the distribution function, theig@ment cannot be generalized to obtain the Stokes-Fourier
system presented above. The proof in [14] uses a differeatadiginating from [5].

The incompressible Navier-Stokes limit

Finally, we remove the weakly nonlinear scaling assumpditctthe macroscopic level of description, while keeping
entropy production effects at leading order, and obtainrtbempressible Navier-Stokes equations as a fluid dynamic
limit of the Boltzmann equation.

Theorem. (Golse, Saint-Raymond [18, 19]) Let kaSh= Ma = & = . For eachu™, ") € L2 x L*(R?) such that
diveu™ = 0, letF; be a family of renormalized solutions of the Boltzmann eume¢12) with initial data

Fe' = A1 g gun 14 c00)
for eache € (0, ||u™||.~). There exists at least one subsequesce: 0 such that

1

~ S(an(t,x,v)—M(v))(v, 2Iv|2—1) dv— (u,8)(t,x) in weakdjp(Ry x R®x R3),
n JR

where(u, 0) is a “Leray solution” of the Navier-Stokes-Fourier systeithwiscosityv and heat conductivity given
by formula (17):

du+divx(u®u) + Oxp = VAU, divyu=0, uf,_o=u",

66 + div(uB) = ZkA,0, 6],_,=06".



TABLE 1. Fluid dynamic limits of the Boltzmann equation, dependimg o
the dimensionless parameters Kn, Ma and Sh.

| Boltzmann equationKn = ¢ <« 1

|
| Ma | Ssh | Fluid dynamic limit |
| O < VE | 1 | Acoustic system |
| O < € | ¢ | Stokes-Fourier system |
| e =¢%,0<a<l| & | Incompressible Euler equations |
| € | & | Incompressible Navier-Stokes equatiohs

Let us briefly recall the notion dferay solutionof the Navier-Stokes-Fourier system. In [24] (arguably ohthe
most important papers in the modern theory of partial déffeial equations), Leray defined a convenient notion of
weak solution of the Navier-Stokes equations, and provat] th space dimension 3, any initial velocity field with
finite kinetic energy launches at least one such solutiomeddffor all times. Leray solutions are not known to be
uniquely defined by their initial data; however, if an initékata launches a smooth solution, all Leray solutions with
the same initial data must coincide with that smooth sotutést the time of this writing, it is yet unknown (and a
major open problem in the analysis of partial different@liations) whether Leray solutions launched by any smooth
initial data remain smooth for all times. Thus, we do not knalether different subsequencgs— 0 in the theorem
above lead to the same Leray solutien8) of the Navier-Stokes-Fourier system in general.

A Leray solution of the Navier-Stokes-Fourier system abigve pair(u, 8) consisting of a velocity field: and
a temperature fiel®, both continuous o ; with values inL?(R®) equipped with its weak topology, that solves
the Navier-Stokes-Fourier system in the sense of distdbaf satisfies the initial condition, and verifies theray
inequality

3 ot 3 .
% /R3(|U|2+ g|6|2)(t,x) dx+/o /Rs(V|DXu|2+ K|0x0)?)(s,x) dxds < %/R3(|uln|2+ gle'”|2)(t,x) dx. (18)

The Leray inequality is an equality for classical solutiofithe Navier-Stokes equations, exactly as the DiPernad.io

entropy inequality (16) is an equality for classical saus of the Boltzmann equation. This indicates that the Leray

existence theory for the Navier-Stokes equations and tRefa-Lions existence theory for the Boltzmann equation

are parallel theories. The theorem above explains how theseies are related in the hydrodynamic limit.

Partial results on this theorem have been obtained by Lidasmoudi [28]. While the reference [18] treated the
case of bounded collision kernels, the theorem above waséatended to all hard cutoff potentials in the sense of
Grad — which includes the case of hard spheres considerdisipaper — in [19]. The arguments in [18, 19] have
been recently refined by Levermore and Masmoudi [25] to emas® both soft as well as hard potentials, under a
cutoff assumption more general than that proposed by GrggDin

While these results bear on the most general case of renaadablutions without restrictions on the size of initial
data in space dimension 3, the Navier-Stokes limit of theZBahnn equation had previously been obtained in the case
of global smooth solutions for small initial data by BardesldJkai [7]. The Navier-Stokes limit of the Boltzmann
equation had also been established on finite time interyedglapting the Caflisch method based on Hilbert truncated
expansions, by DeMasi, Esposito and Lebowitz [11].

The fluid dynamic limits discussed in this section can themeebe summarized as in table 1. Notice that these limits
have been established for molecular interactions morergktien hard sphere collisions; see the references listed i
the statements of the various theorems above for the conditin the collision kerndd(v — v,, w). All these results
assume some angular cutoff on the collision kernel as pexpbyg Grad [20] — or slightly more general, as in [25].

More importantly, some of the conditions bearing on the peeters Kn, Ma and Sh may be not optimal. Formal
arguments suggest that the acoustic limit should hold wienrde < 1 instead o, < /€, while the incompressible
Euler limit should hold under the weaker conditidn> € instead 0fd, = €9 with0O < a < 1.

Let us conclude this section with an important remark on thgsjzal meaning of the “incompressible” fluid
dynamic limits of the Boltzmann equation. What is provedhe tast three theorems is that, to leading order, the
velocity field u satisfies the same equations as the velocity field of an inoessjble fluid with constant density. This
does not mean that the gas is incompressible in that regifee, iy the case of an incompressible fluid with the same
heat capacity and heat conductivity as the gas, the diffiugion in the equation for the temperature field would be



multiplied by 5/3. This difference comes from the work of the pressure: seeligcussion in footnotes 6 on p. 93 in
[36] and 43 on p. 107 of [37], together with section 3.7.2 if][3

Likewise, the inequality (18) was written by Leray in [24]tlvi0 = 0. For an incompressible fluid with constant
densityp, the quantity% [ P|u(t,x)|?dxis the kinetic energy of the fluid at timeand the Leray inequality is interpreted
as a statement on the dissipation of energy in the fluid. Thening of (18) with6 # 0 is obviously different, since
the quantity} [(|u(t,x)|2+ 36(t,x)?) dxis not the total energy of the gas at tite

MATHEMATICAL TOOLS FOR THE HYDRODYNAMIC LIMIT

The linearized collision integral

In all the fluid dynamic limits considered in the previoustsat, the solutionF; of the Boltzmann equation (12)
is a small perturbation of the uniform Maxwellian equililom stateM. Therefore, the linearization abolt of the
Boltzmann collision integral plays an important role ingbdimits. Thus, we consider this linearized collision grad
intertwined with the multiplication by, and set% @ = —M D% (M) - (M), or equivalently

oo = [ [ (@0 +0v.) = @V) = p())|(v=v.) - wlM(v.) . do. (19

Hilbert [22] proved that%y is an unbounded, Fredholm, self-adjoint nonnegative dpecn L?(R3;M dv)?, with
domainL?(R?; (1 +|v|?)Mdv) and nullspace Keiyy = Spar{1,vi,V2,vs,|v|?}. Hilbert's argument, written for the
hard sphere case, was later extended by Grad [20], who desfimeel appropriate class of collision kernglg— v,., w)

for which the linearized collision integral satisfies thednolm alternative. Grad’s idea was that grazing collision
between neutral gas molecules are rare events that can lsheameglected, at variance with the case of plasmas or
ionized gases. Henceforth, we denote

(@)= [ @(vM(v)dv  foreachpe L'(R*Mdv).
R

With this notation, the Fredholm alternative for the intgequation%y f = S with unknown f and source term
Se L?2(R%Madv) can be stated as follows:

a) either(S) = (Sv) = (Sw) = (Sw) = (Sv|?) = 0, in which case the integral equation has a unique solution
satisfying

f e L2(R% (14 |v[H)Mdv) and (f) = (fvi) = (fvo) = (fvz) = (f|v|?) =0,

henceforth denotetl = .#,, 1S, or

b) there existsp € Ker%y such that{Sg) # 0, in which case the integral equatidg f = S does not have any
solution inL2(R3; (1+ [v[?)Mdv).

The moment method for the Navier-Stokes limit: formal argument

Defineg, by the formulaF; = M(1+ 3:Q¢). If F¢ satisfies (12) with Kn= Sh= J; = ¢, the relative fluctuation of
distribution functiong, satisfies

1
£0t0¢ + V- OxQe + ngga = IM(Qe,Qe), (20)

where 2y is the symmetric bilinear operator defined By (@, ¢) = M~1€(Mg). Multiplying each side of (20) by
and lettinge — 0 shows that, i), — g for some subsequeneg— 0, the limiting fluctuatiorg is a “local Maxwellian
state”, i.e. is of the form

g(t,x,v) = p(t,X) +u(t,x) - v+ 6(t,x) 3(|v|2 - 3). (21)

2 The notationLP(RN; f dv) (wherep > 1 andf > 0 is a measurable function defined a.e.®@ndesignates the set of measurable functipns
defined a.e. oRN that satisfy

/ |@(V)|Pf(v)dv < +oo.
Q



Multiplying each side of (20) by andvM, and integrating itv € R® shows that
€0 (9e) +divk(vge) =0, €6, (VGe) +divx (v vge) =0
in view of (2). Passing to the limit a& — 0, and taking into account the local Maxwellian form (21pgdéads to
divxu = divk(vg) =0, Ox(p + 6) = divg(vvg) = 0. (22)

The first equality is the solenoidal condition for the vetpdield u, while the second implies that+ 68 = 0, assuming
thatp, 8 — 0 as|x| — +oo.
Next we multiply each side of (20) b&vM and integrate iv € R® to obtain

1 7 1/|v]?
A (VQe) +d'ng<Age> = _DXE<TQS> ;

whereA(v) := v@ v — 3|v|2l. One hasAy) = (Aqvi) = (AuVz) = (Avs) = (Aq|v[?) = O for eachk,| = 1,2,3, so
thatAy := %, Aq € L2(R3; (1+ |V[2)Mdv) is well-defined. SinceZy is self-adjoint orL?(R3;M dv), one has

Age) = H(Zuh)gs) = (AL15: ) — (A(Du(e.ge) ~ (Aledrgs-+v- D) )
— (A(2m(9,9)) — (Av-Txkg).
By (21) and the solenoidal condition in (22), the second tikes the form
(Av- Oxg) = (A@ V@ V) : Oxu = v(Oxu+ (Oeu)T). (24)

Indeed(AjjAu) = v(8kdj + &1 Sik — 88 ), which can be recast as= (A : A) sinceA(Rv) = RAV)R for each
v e R® and eaclR € Oz(R). This formula forv is equivalent to the first relation in (17).

As for the first term, sincg € Ker.%y according to (21), one ha@y (g,9) = 3.%u(¢?) (see [3], fla. (60) on p. 338.)
Hence

(A(2u(9,9)) = 3(A%(d) = 3(AAF) = 3(AF) = 3(A@VEV) luRU=Uuu—3|ufl, (25)
in view of the elementary identityAij Ax) = (8 Sj + & Ojk — %dj ).
Let & = &(x) € CT(R®) be a divergence-free test vector field. Substituting (24)(@5) in (23) shows that

O:d/f-(vgﬁdx—/ﬂf:%(Agﬁdx

—>0t/f~udx—/DE (U u—gluffl)dx+ V/DE (Oxu+ () ™) dx.

Sinceé is divergence-free
/DE LuPrdx = %/|u|2divxfdx:0,

while

/DE  (Oyu)T dx = — /D(divf) -udx=0.

Therefore i _ i
dt/f-udx—/DE Ju@udx—+ v/DE : Oxudx=0 (26)

for each divergence-free test vector fidld= & (x) € C2(R3). Now, if T € 2/(R3) is a vector-valued distribution
satisfying(T, &) = 0 for each divergence-free test vector fiéld= & (x) € CZ(R®), there exists a scalar distribution
e 2'(R%) such thafl = 0. In other words, (26) means precisely thds a weak solution of the motion equation
in the Navier-Stokes system.



Compactness tools

An important ingredient in the proof of all fluid dynamic liteiof the Boltzmann equation considered above is the
fact that the relative fluctuation of distribution functign:= (F: — M)/d:M converges in some sense, possibly after
extracting some subsequergge— 0. The key argument is the following inequality resultingrfr (16):

/R3<h(5e9e)>(t)dxz H(Fe(t,-,-)|M) <H(F"[M) =O(8?)  foreacht >0,

for the initial data considered in the four theorems statethé previous section, wheh¢z) := (1+2)In(1+2) —z
Sinceh(z) ~ 22/2 asz — 0, this control is as good as a boundLifi(R;L?(R® x R3;Mdxdv)) for the values of
ge not exceeding(1/d:). Thus(1+ |v|?)g; is relatively compact in weak?([0, T] x [-R,R]® x R3; M dt dxdv) for
eachR, T > 0, and all its limit points ag — 0 belong toL® (R ;L?(R3 x R%;Mdxdv)). In the case of the acoustic
or Stokes-Fourier limit, the uniqueness of the solutionhaf limiting fluid equations implies that the whole family
(14 |v|?)ge converges weakly.

Since the leading order term in (20) %S%Mgg and.%y is a linear operator, the weak compactness of the family
(14 |v|?)ge is enough to conclude that any limit poigbf that family ass — 0 must satisfy%g = 0, and therefore
is an infinitesimal Maxwellian, i.e. is of the form (21).

In addition, for the Navier-Stokes-Fourier limit, the coagtness of the familgg in Llloc for the strong topology
(implying the a.e. pointwise convergence of a subsequesaegeded to pass to the limit in nonlinear terms. We
use repeatedly some compactness results for moments ofthbution function in the velocity variable based on
bounds on the streaming operator — see [16, 15]. These cangsaaesults are referred to as compactnesslogity
averaging A typical example of a velocity averaging theorem used i Havier-Stokes limit of the Boltzmann
equation is as follows. We state it in the steady case fordke of simplicity.

Theorem. (Golse, Saint-Raymond [17]) Lef, = fn(x,v) be a bounded sequence lIA(RY x RY) such that the
sequence - Oy f, is bounded i }(RY x RY), while f, itself is bounded i} (RY; LP(RN)) for somep > 1. Then

a) fn is weakly relatively compact ibt (RY x R}); and

b) for eachg € C.(RN), the sequence of velocity averages
/ . fa(X,v)@(v) dv
JRN

is strongly relatively compact ib} (RN).

The conservation laws
The formal argument presented above in the case of the N&tades limit shows the importance of the local con-
servation laws of mass, momentum and energy in the derivafifiuid dynamic models from the Boltzmann equation.

Unfortunately, renormalized solutions of the Boltzmanoagipn are not known to satisfy the local conservation laws
of momentum and energy in (7). They satisfy instead the aqymiate conservation laws

: Fe Y o Fe VRV I —e v
Shat'/Rar<M) ( e >Mdv+d|vX/RaF (M) ( e >Mdv_ 8'/R3r <M><5(F£)( e ) dv(.
27

Therefore, one must show that the conservation defects

1 , [ Fe Y,
e L <m>‘f<&>( e ) dv 0

inLL (R4 x R%) ase — 0, and identify the limits as — 0 of the terms

5%./%3 (r (%) _r(1)) ( %|‘\’/|2 )Mdv and ﬁ' F;s (r (%) —F(l)) ( Vi;z__%gfl ) Mdv.



This raises an important question regarding the tail of tis&ribution functionsFe as|v| — +. That the family
(1+ |v|?)ge is relatively compact in weak([0,T] x [-R,R]® x R%;Mdtdxdv) for eachR, T > 0 is in general not
enough — for instance, in the acoustic limit, SH and one needs to identify the limit of the energy flux

(e () v

which is a 3rd order moment nof 6—18(I'(1+ 0:9s) — (1)) ~ ' (1)ge. Controlling the high speed tail of (fluctuations
of) the distribution function is an essential step in theivdgion of fluid dynamic limits of the Boltzmann equation,
and involves rather technical estimates based on the gnairughentropy production estimates (16) together with the
dispersion effects of the streaming operatogShv - [y (see [4, 18, 19]).

The relative entropy method

In inviscid hydrodynamic limits, i.e. the compressible mcompressible Euler limits, entropy production does not
balance streaming. Therefore the velocity averaging naefhits for such limits. The idea is to use the regularity
of the solution of the target equations, together with rafepn towards local equilibrium in order to obtain some
compactness on fluctuations of the distribution function.

Pick for instanceu, a smooth solution of the target equations — e.g. the incesgiole Euler equations — and

study the evolution of the quantity
1
Ze(t) = s H(Fel 1 6000,
&

whereF; is a renormalized solution of (12) with ShMa = §; = €% and O< a < 1. This is the leading order
of the relative entropy of the Boltzmann solution with resp® the local Maxwellian state defined ly in the
incompressible Euler scaling. At the formal level, it is fiolthat

ng - 1 N . N 22 1 N N
TO="% Ranu./RS(V—égu) ngvdx+gg/Ranp-/Rs(v—égu)ngvdx.

The second term in the r.h.s. of the equality above vanislitbsevgince

%/3vFg(t,x,v) dv — divergence-free vector field.
e JR

The key idea is to estimate the first term in the r.h.s. asvidlo
i// | Ot (v— 8eu)¥?Fe| dvdx < CZe(t) + 0(1)
02 J Jr3xr3

whereC = O(||Oxul|L=). Then, one concludes with Gronwall’s inequality.

The relative entropy method stems from an idea of H.T. Yau@mzburg-Landau lattice models, see [39]); it was
later adapted to the Boltzmann equation by the author [9)Ldmus-Masmoudi [29]. It is especially designed to handle
sequences offeak solutions of the Boltzmann equateamverging to a&lassical solution of the fluid equation

CONCLUSIONS

The DiPerna-Lions theory of renormalized solutions of tlwtBnann equation allows one to obtain derivations of
fluid dynamic regimes from the kinetic theory of gases withaphysical assumptions on the size or regularity of the
data. Following the program outlined in [4], these derivasi are based on
a) relative entropy and entropy production estimates,ttmgeavith
b) functional analytic methods in Lebesgulé) spaces.

At present, the program in [4] leaves aside the compresEiliker limit of the Boltzmann equation, or the asymptotic
regime leading to the compressible Navier-Stokes equatidttle progress has been made on these issues since the
work of Nishida [31] and Caflisch [10].



The problem of deriving fluid dynamic limits from the Boltzmaequation in theteadyregime is also of consid-
erable importance for practical applications. Formal itssare of course well understood with the classical Hilbert
or Chapman-Enskog expansion techniques — see the book &f [36h Unfortunately, the theory of the steady
Boltzmann equation with large data is not as mature as itateppart for the Cauchy problem, in spite of interesting
contributions by Arkeryd and Nouri [1], and there is no awgaie of the DiPerna-Lions theory for the steady case yet.

But even for evolution problems in regimes that are weakiylinear at the kinetic level, the relative entropy is not
the solution to all difficulties. In several asymptotic negis of the Boltzmann equation, the leading order and next to
leading order fluctuations of the distribution function miateract to produce highly nontrivial macroscopic effants
the fluid dynamic limit. Examples of such asymptotic regirass
a) ghost effects, introduced by Sone, Aoki, Takata, Suginaotd Bobylev in [34], reported in Sone’s Harold Grad
Lecture [35] and [36, 37], and systematically studied bye&Sa@xoki and the Kyoto school,

b) Navier-Stokes limits recovering viscous heating terche& to Bobylev [8] and Bardos-Levermore-Ukai-Yang [6]
— see also the discussion in [38], and
¢) hydrodynamic limits for thin layers of fluid — see [13].

Acknowledgements.The author thanks Profs. Aoki, Levermore and Sone for theiregous scientific advice during
the preparation of this paper.
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