A LOCALIZATION IN MV-ALGEBRAS

COLIN G. BAILEY

Abstract. In this document we consider a way of localizing an MValgebra. Given any prime filter *F* we find a local MV-algebra which has the same poset of prime filters as the poset of prime filters comparable to F .

1. INTRODUCTION

A local MV-algebra is one with a single maximal implication filter. Such algebras are of interest in the representation theory of MV-algebras (see [\[7\]](#page-5-0) for example).

The set of prime implication filters of an MV-algebra forms a spectral root system, ordered by set-inclusion. The existence of a unique maximal filter is equivalent to the stem of this root system being nonempty. (The stem is the set Stem = $\{P \mid P \text{ is a prime filter comparable to every other prime filter}\}\)$.
Whenever the stem is non-empty it has a least element, the Conrad filter (de Whenever the stem is non-empty it has a least element, the Conrad filter (defined below). This filter can be characterized in several ways, as we show in section 2 below. This work is heavily based on work of Conrad on latticeordered groups (see [\[5\]](#page-5-1)), recasting his material in terms of implication filters in MV-algebras.

In the last section we consider how to invert this characterization to get a prime filter into the stem of an MV-algebra. This localization takes a prime implication filter *P* and finds a quotient in which the maximal filter over *P* is the unique maximal filter, and the prime filter structure of the quotient is isomorphic to the set of prime filters comparable to *P*.

In most of what follows the filters are taken to be implication filters rather than lattice filters. We recall that an implication filter is a lattice filter closed under powers.

Date: September 24, 2010.

Given an MV-algebra \mathcal{L} , there are several sets of filters that we are interested in:

PSpec = $\{P \mid P \text{ is a prime implication filter of } \mathcal{L}\}\$

= the prime spectrum;

PSpec(*F*) = {*P* | *P* is a prime implication filter of $\mathcal L$ comparable to *F* };

 $\mu S = \{ P \mid P \text{ is a minimal prime filter of } \mathcal{L} \}$

= the minimal spectrum;

 $\mu S(F) = \{P \mid P \text{ is a minimal prime filter of } \mathcal{L} \text{ comparable to } F\}.$

Our notation usually follows that of [\[3\]](#page-5-2) with the exception that we use \otimes instead of ⊙.

2. COUNTS

Definition 2.1. $u \in \mathcal{L}$ *is a* counit *iff* $u < 1$ *and there exists some* $v < 1$ *with* $u \vee v = 1$.

Definition 2.2. *The* Conrad filter *of an MV-algebra is the implication filter generated by the counits.*

We usually denote it by $\mathcal{N}(\mathcal{L})$ *or N.*

If $N = \mathcal{N}(\mathcal{L})$ then *N* is prime as $a \vee b = 1$, $a, b < 1$ implies *a* and *b* are counits and so in *N*.

All implication filters that contain *N* form a chain. The following lemma provides an alternative characterization of the prime filters in this chain.

Lemma 2.3. *Let P be a prime implication filter. Then P contains all counits iff for all* $x \notin P$ *and all* $p \in P$ $p \geq x$.

Proof. Suppose that $x \notin P$ and $y \in P$ with $x \nleq y$. We know that $(x \rightarrow$ $y) \vee (y \rightarrow x) = 1.$

As $x \nleq y$ we have $x \to y < 1$, and $y \nleq x$ implies $y \to x < 1$ and so $y \to x$ is a co-unit.

If it is in *P* then so is $x \wedge y = (y \rightarrow x) \otimes y$, contradicting $x \notin P$. Thus *P* cannot contain all co-units.

Conversely if *a* is a co-unit and $a \vee b = 1$ for some $b > 0$. One of *a* or *b* is in *P* (as *P* is prime). If *a* ∉ *P* then $a \leq b$ which is impossible, so $a \in P$. □

A slight variation of this proof lets us see that filters are incomparable because of counits.

Lemma 2.4. *Let P and Q be incomparable implication filters. Then there is a counit in* $Q \setminus P$.

Proof. Suppose not, ie every counit in *Q* is also in *P*. As *P* and *Q* are incomparable we can find $x \in Q \setminus P$ and $y \in P \setminus Q$. Thus $x \nleq y$ and $y \nleq x$ and so $x \to y < 1$ and $y \to x < 1$ and $(x \to y) \lor (y \to x) = 1$. So $y \to x$ is a counit in *Q* and (by assumption) must be in *P*. As $y \in P$ we now have $x \wedge y = y \otimes (y \rightarrow x) \in P$ contradicting $x \notin P$.

The next two results show that N is actually the minimum prime filter comparable to all prime filters.

Proposition 2.5. *Let P be any prime implication filter that does not contain all counits. Then there is a prime implication filter incomparable to P.*

Proof. As P does not contain all counits we know that there is some $g \notin P$ that is not below *P*, ie there is some $p \in P$ with $p \not\geq g$. Of course $g \not\geq p$. Thus $g \to p < 1$ and $p \to g < 1$ and $(g \to p) \lor (p \to g) = 1$.

As $(p \rightarrow g) \otimes (p \vee g) = g$ we must have $p \rightarrow g \notin P$.

Let *Q* be maximal avoiding $g \to p$. Then *Q* is prime and as $(g \to p)$ \vee $(p \rightarrow g) = 1 \in Q$ we have $p \rightarrow g \in Q \setminus P$. By construction $g \rightarrow p \in P \setminus Q$ and so these two ideals are incomparable.

Proposition 2.6. *If P is a prime implication filter then either* $N \subseteq P$ *or P* ⊆ *N*.

Proof. If *P* is not a subset of *N* then we can find $p \in P \setminus N$. $p \notin N$ implies *p* is below *N* and so $N \subseteq [p, 1] \subseteq P$. $□$

Thus *N* is the minimum prime implication filter comparable to all others. The existence of such a filter implies that *N* is a proper filter, as if we have a minimal prime implication filter *F* comparable to all others then it must contain all counits – by proposition [2.5](#page-2-0) and so *N* exists and so *F* equals *N*.

Since any desired root system is the root system of an MV-algebra ([\[4\]](#page-5-3)), we see that it is possible to have non-trivial *N*.

Proposition 2.7. *N* is a minimal prime implication filter iff $N = \{1\}$.

Proof. The right to left implication is immediate.

If *N* is minimal then it is the unique minimal implication filter and so must equal $\{1\}$ – as we know the intersection of all minimal implication filters is $\{1\}$.

Or just notice that $\mathcal L$ embeds into $\prod_{m \in \mu S} \mathcal L/m = \mathcal L/N$ is linearly ordered, and so $\mathcal L$ is linearly ordered which implies $N = \{1\}$.

We also note that if *N* is proper then there is a unique maximal implication filter – the one that contains *N*. We also have the converse.

Proposition 2.8. *If there is exactly one maximal proper implication filter then it contains all counits.*

4 COLIN G. BAILEY

Proof. Let *M* be the maximum implication filter. Let $a, b < 1$ with $a \vee b = 1$. Let $F_b = \{x \mid x \lor b = 1\}$. Then $0 \notin F_b$, $a \in F_b$ and it is easy to see that F_b is a lattice filter. Also, $x \in F_b$ implies $x^n \vee b \ge x^n \vee b^n = (x \vee b)^n = 1$ and so *F*_{*b*} is an implication filter. Hence $a \in F_b \subseteq M$.

Thus, if there is a maximum implication filter *M* then $N \subseteq M$ and N is proper.

3. Localization

Let *P* be a prime implication filter. We seek a quotient of $\mathcal L$ in which *P* contains the Conrad filter. The construction we give below also preserves the structure of PSpec(*P*).

Definition 3.1. *Let P be a prime implication filter. Then*

$$
\ell(P) = [[\{x \to p \mid p \in P \text{ and } x \notin P\}]].
$$

Because of lemma [2.4](#page-1-0) we need to quotient out by at least $\ell(P)$ in order to make *P* contain all counits in a quotient.

It is clear that $\ell(P) \subseteq P$ as $x \to p \geq p$ for any $p \in P$. In general this inclusion is strict, with the only exception being minimal prime filters.

Lemma 3.2. *P* is minimal prime iff $\ell(P) = P$.

Proof. If *P* is minimal prime and $p \in P$ then there is some $t \notin P$ with $t \lor p = 1$. Therefore $t \to p = 1 \to p = p \in \ell(P)$.

If $\ell(P) = P$ and $p \in P$ then $p \ge x \to p'$ for some $x \notin P$ and $p' \in P$. Now $p' \to x \notin P$ else we would have $p' \otimes (p' \to x) = p' \land x \in P$ and so $x \in P$. Also $p \vee (p' \rightarrow x) \ge (x \rightarrow p') \vee (p' \rightarrow x) = 1$. Thus *P* must be minimal.

The next few lemmas show the relationship of $\ell(P)$ to the minimal filters below *P*.

Lemma 3.3. *If* $m \subseteq P$ *is minimal prime then* $\ell(P) \subseteq m$.

Proof. Let $x \notin P$ and $p \in P$. Then $p \otimes (p \rightarrow x) = p \land x$ implies $p \rightarrow x \notin P$ and so is not in *m*. But $(x \to p) \lor (p \to x) = 1 \in m$ and *m* is prime, so $x \to p \in m$.

Lemma 3.4. *Let* $p \in P \setminus \ell(P)$ *. Then there is some minimal prime filter m* ⊆ *P* with $p \notin m$.

Proof. Look in $\mathcal{L}/\ell(P)$. Then $[p] \neq 1$ and is in $P/\ell(P)$. We also know that the Conrad filter of $\mathcal{L}/\ell(P)$ is contained in $P/\ell(P)$ – since $x \notin P$ and $p \in P$ implies $x \to p \in \ell(P)$ and so $x \leq p \mod \ell(P)$. All minimal filters must be subsets of the Conrad filter and so take *M* to be a minimal prime filter

of $\mathcal{L}/\ell(P)$ that avoids $[p] < [1]$. Then $M \subseteq P/\ell(P)$ and so the preimage M' gives a prime subfilter of *P* that avoids *p*.

Any minimal filter of $\mathcal L$ contained in M' works.

Theorem 3.5.

$$
\ell(P) = \bigcap \{m \mid m \in \mu S \text{ and } m \subseteq P\}.
$$

Proof. By lemma [3.3](#page-3-0) we know that LHS⊆RHS.

From lemma [3.4](#page-3-1) we know that $p \notin LHS$ implies $p \notin RHS$, i.e. RHS $\subseteq LHS$.

We can now define the localization of an MV-algebra at a prime implication filter.

Definition 3.6. *Let P be a prime implication filter of an MV-algebra* L*. Then the* localization of $\mathcal L$ at *P* is the *MV-algebra* $\mathcal L/\ell(P)$ *.*

If $Q \subseteq P$ are two prime implication filters then we have $\{m \mid m \in \mu S \text{ and } m \subseteq Q\} \subseteq$ ${m \mid m \in \mu S \text{ and } m \subseteq P}$ and so $\ell(P) \subseteq \ell(Q)$ (from the theorem). Hence there is a natural MV-morphism $\mathcal{L}/\ell(P) \to \mathcal{L}/\ell(Q)$.

And finally a universal property of this localization.

We recall that if $f: \mathcal{L} \to \mathcal{M}$ is an MV-morphism then the *shell* of f is

$$
sh(f) = f^{-1}[1] = \{x \mid f(x) = 1\}
$$

is an implication filter in \mathcal{L} .

Theorem 3.7. *Let P be any filter and* $f: \mathcal{L} \rightarrow \mathcal{M}$ *such that sh(f)* \subseteq *P and* $\mathcal{N}(\mathcal{M}) \subseteq f[P]$ \uparrow .

Then $\ell(P) \subseteq sh(f)$ *.*

Proof. Let $x \notin P$ and $p \in P$. If $f(x) \notin f[P]$ then $f(x) \leq f(p)$ and so $f(x \rightarrow p) = 1$, i.e. $x \rightarrow p \in \text{sh}(f)$.

If $f(x) \in f[P]$ then for some $p \in P$ we have $x \to p$ and $p \to x$ both in the shell of *f* and hence in *P*. But then $x \wedge p = p \otimes (p \rightarrow x) \in P$ contradiction.

From the theorem we see that if *f* takes *P* to a filter containing all counits then *f* factorizes through $\mathcal{L}/\ell(P)$, and so, in some sense, $\mathcal{L}/\ell(P)$ is the largest quotient in which *P* contains all counits (or dominates its complement).

The assumption that sh(f) \subseteq *P* is essential, else the theorem yields only that the smaller set $\ell(P \vee \text{sh}(f)) \subseteq \text{sh}(f)$. Indeed if *P*, *Q* are incomparable prime filters then $\mathcal{N}(\mathcal{L}/Q) = \{1\} \subseteq P/Q$ but if $q \in Q \setminus P$ and $p \in P \setminus Q$ then *q* → *p* ∈ $\ell(P) \setminus Q$ – else *p* \land *q* = *q* ⊗ (*q* → *p*) ∈ *Q*, contradicting *p* ∉ *Q*.

Lemma 3.8. *Let F be a prime filter. Then* $\ell(P) \subseteq F$ *iff F is comparable to P.*

 \Box

6 COLIN G. BAILEY

Proof. If $P \subseteq F$ then $\ell(P) \subseteq P \subseteq F$. If $F \subseteq P$ then $\ell(P) \subseteq \ell(F) \subseteq F$.

Conversely, if $\ell(P) \subseteq F$ then $F/\ell(P)$ is prime in $\mathcal{L}/\ell(P)$ and so comparable to $P/\ell(P)$. Hence $F = \eta^{-1}[F/\ell(P)]$ is comparable to $\eta^{-1}[P/\ell(P)] =$ *P*. □ □

Theorem 3.9. *PSpec(P) is order-isomorphic to* $PSpec(\mathcal{L}/\ell(P))$ *.*

Proof. We know that $PSpec(\mathcal{L}/\ell(P))$ is order-isomorphic to ${F \mid F \text{ is a prime filter with } \ell(P) \subseteq F}$ and from the lemma the latter set is $PSnec(P)$ $\text{PSpec}(P)$.

REFERENCES

- [1] C. G. Bailey, *The Prime Filters of an MV-Algebra*, in preparation, available at [arXiv:0907.3328v1\[math.RA\]](arXiv:0907.3328v1 [math.RA]).
- [2] Dumitru Busneag and Dana Piciu, *Localization of MV -algebras and lu-groups*, Algebra Universalis **50** (2003), 359–380.
- [3] R. Cignoli, I. M. D'Ottaviano, and D. Mundici, *Algebraic Foundations of Many-valued Reasoning*, Kluwer, 2000.
- [4] R. Cignoli and A. Torrens, *The Poset of Prime* ℓ*-ideals of an Abelian* ℓ*-group with a Strong Unit*, Journal of Algebra **184** (1996), 604–612.
- [5] Paul Conrad, *The lattice of all convex* ℓ *-subgroups of a lattice-ordered group*, Czechoslovak Mathematical Journal **15** (1965), 101–123.
- [6] , *Some Structure Theorems for Lattice-Ordered Groups*, Transactions of the American Mathematical Society **99** (1961), 212–240.
- [7] A. Di Nola, I. Esposito, and B. Gerla, *Local algebras in the representation of MValgebras*, Algebra Universalis **56** (2007), 133–164.

SCHOOL OF MATHEMATICS, STATISTICS & OPERATIONS RESEARCH, VICTORIA UNIVERSITY OF Wellington, Wellington, New Zealand,

E-mail address: Colin.Bailey@vuw.ac.nz