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A LOCALIZATION IN MV-ALGEBRAS
COLIN G. BAILEY

AsstracT. In this document we consider a way of localizing an MV-
algebra. Given any prime filté¢ we find a local MV-algebra which has
the same poset of prime filters as the poset of prime filterspeoable
toF.

1. INTRODUCTION

A local MV-algebra is one with a single maximal implicatiohdr. Such
algebras are of interest in the representation theory ofdigiébras (seé [7]
for example).

The set of prime implication filters of an MV-algebra forms @estral
root system, ordered by set-inclusion. The existence ofiguenmaximal
filter is equivalent to the stem of this root system being mopiy. (The stem
is the set Sters {P| P is a prime filter comparable to every other prime filter
Whenever the stem is non-empty it has a least element, the@&her (de-
fined below). This filter can be characterized in several waysve show in
section 2 below. This work is heavily based on work of Conradattice-
ordered groups (se€ [5]), recasting his material in ternmaplication filters
in MV-algebras.

In the last section we consider how to invert this charazagion to get a
prime filter into the stem of an MV-algebra. This localizatitakes a prime
implication filter P and finds a quotient in which the maximal filter owr
is the unique maximal filter, and the prime filter structurera quotient is
isomorphic to the set of prime filters comparabldto

In most of what follows the filters are taken to be implicatiitters rather
than lattice filters. We recall that an implication filter ikagtice filter closed
under powers.
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Given an MV-algebral, there are several sets of filters that we are inter-
ested in:

PSpec= {P| P is a prime implication filter of£}
= the prime spectrum;
PSpeck) = {P| P is a prime implication filter of£ comparable td-} ;
1S = {P| Pis a minimal prime filter of£}
= the minimal spectrum;
#S(F) = {P| Pis a minimal prime filter of£ comparable td=} .

Our notation usually follows that of [3] with the exceptidrat we use
instead ofo.

2. Counirs

Definition 2.1. u € L is acounitiff u < 1 and there exists some<v1 with
uvv=1

Definition 2.2. TheConrad filterof an MV-algebra is the implication filter
generated by the counits.
We usually denote it by (£) or N.

If N =_4(L)thenNisprimeasavb=1,ab< 1impliesaandb are
counits and so iMN.

All implication filters that contairN form a chain. The following lemma
provides an alternative characterization of the primerélie this chain.

Lemma 2.3. Let P be a prime implication filter. Then P contains all cognit
iffforall x ¢ Pandall pe P p> x.

Proof. Suppose thak ¢ P andy € P with x £ y. We know that ¥ —
V)V(y—Xx) =1

As x £ ywe havex —» y < 1, andy £ ximpliesy —» x < 1 and soy — X
IS a co-unit.

Ifitisin PthensoisxAy = (y — X)®Yy, contradictingx ¢ P. ThusP
cannot contain all co-units.

Conversely ifais a co-unitané Vv b = 1 for someb > 0. One ofaorbis
in P (asP is prime). Ifa ¢ P thena < bwhich is impossible, sae P. O

A slight variation of this proof lets us see that filters areamparable
because of counits.

Lemma 2.4. Let P and Q be incomparable implication filters. Then there
is acounitin Q\ P.
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Proof. Suppose not, ie every counit @ is also inP. As P andQ are
incomparable we can finde Q\ Pandy € P\ Q. Thusx £ y andy £ x
andsox - y<landy - x<landk—y)Vv(yy— X =1 Soy— x
is a counit inQ and (by assumption) must be fh Asy € P we now have
XAYy=y®(y — X) € Pcontradictingx ¢ P. O

The next two results show that is actually the minimum prime filter
comparable to all prime filters.

Proposition 2.5. Let P be any prime implication filter that does not contain
all counits. Then there is a prime implication filter inconnable to P.

Proof. As P does not contain all counits we know that there is sgrgeP
that is not belowP, ie there is som@ € P with p # g. Of courseg # p.
Thusg— p<landp—og<landfg—-p Vv(p—g9) =1

As(p— g ®(pVg) =gwemusthave — g ¢ P.

Let Q be maximal avoidingy — p. ThenQ is prime and asg — p) V
(p—9g) =1 Qwehavep —» ge Q\ P. By constructiory » pe P\ Q
and so these two ideals are incomparable. |

Proposition 2.6. If P is a prime implication filter then either N P or
P c N.

Proof. If P is not a subset dil then we can fingp € P\ N. p ¢ N implies
p is belowN and soN C [p, 1] € P. O

ThusN is the minimum prime implication filter comparable to all etb.
The existence of such a filter implies thdtis a proper filter, as if we have
a minimal prime implication filtefF comparable to all others then it must
contain all counits — by propositidn 2.5 andN@xists and s& equalsN.

Since any desired root system is the root system of an M\baigg4]),
we see that it is possible to have non-trivial

Proposition 2.7. N is a minimal prime implication filtegf N = {1}.

Proof. The right to left implication is immediate.

If N is minimal then it is the unique minimal implication filter Guso
must equall} — as we know the intersection of all minimal implication
filters is{1}.

Or just notice that embeds intd [,,s £/m= L/Nis linearly ordered,
and so/ is linearly ordered which implieNl = {1}. O

We also note that iN is proper then there is a unique maximal implica-
tion filter — the one that contail$. We also have the converse.

Proposition 2.8. If there is exactly one maximal proper implication filter
then it contains all counits.
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Proof. Let M be the maximum implication filter. Let b < 1 withavb = 1.
LetF, = {x| xVv b=1}. Then 0¢ Fy,, a € Fy and it is easy to see thht, is
a lattice filter. Alsox € Fp impliesx"v b > x"v b"=(xVv b)" =1 and so
Fy is an implication filter. Henca € F, € M. O

Thus, if there is a maximum implication filtéd thenN € M andN is
proper.

3. LocALizaTioN

Let P be a prime implication filter. We seek a quotient©fin which P
contains the Conrad filter. The construction we give belaso @reserves
the structure of PSpeke].

Definition 3.1. Let P be a prime implication filter. Then
{(P)=[{x— plpePandx¢P}].

Because of lemnia 2.4 we need to quotient out by at K&3tin order to
makeP contain all counits in a quotient.

It is clear that/(P) € Pasx — p > pfor anyp € P. In general this
inclusion is strict, with the only exception being minimairpe filters.

Lemma 3.2. P is minimal primeff ¢(P) = P.

Proof. If P is minimal prime andp € P then there is some ¢ P with
tvp=1. Thereford - p=1— p=pe{(P).

If £/(P) = Pandp € Pthenp > x —» p’ for somex ¢ Pandp’ € P.
Now p’ — x ¢ P else we would havey @ (p’ — X) = p’ A x € P and so
XeP. AlsopVv(p = X)>(X— p)V(p — X = 1. ThusP must be
minimal. O

The next few lemmas show the relationshif (®) to the minimal filters
belowP.

Lemma 3.3. If m C P is minimal prime thed(P) € m.

Proof. Letx ¢ Pandp € P. Thenp® (p — X) = pA xXimpliesp —» x¢ P
and so is notifm. But (x — p) V(p — X) = 1 € mandmis prime, so
X—=>pem O

Lemma 3.4. Let p e P\ ¢(P). Then there is some minimal prime filter
mcC P with pg m.

Proof. Look in £L/¢(P). Then [p] # 1 and is inP/£(P). We also know that
the Conrad filter of£/¢(P) is contained irP/¢(P) — sincex ¢ P andp € P

impliesx — p € ¢(P) and sox < p mod¢(P). All minimal filters must
be subsets of the Conrad filter and so t&dke¢o be a minimal prime filter
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of L/¢(P) that avoids p] < [1]. ThenM ¢ P/¢(P) and so the preimagel’
gives a prime subfilter d? that avoidsp.
Any minimal filter of £ contained inM” works. |

Theorem 3.5.
o(P) = ﬂ{m| me 1S and nc P}.

Proof. By lemmd3.8 we know that LHSRHS.
From lemma&a3} we know th@t¢LHS impliesp ¢RHS, i.e. RHELHS.
u

We can now define the localization of an MV-algebra at a primglica-
tion filter.

Definition 3.6. Let P be a prime implication filter of an MV-algebté.
Then thdocalization of £ at P is the MV-algebral/¢(P).

If Q c Pare two prime implication filters then we hajra| me uS andmc Q} C
{m|me uS andmc P} and sof(P) C ¢(Q) (from the theorem). Hence
there is a natural MV-morphismi/¢(P) — L/£(Q).

And finally a universal property of this localization.

We recall that iff : £ — M is an MV-morphism then thehellof f is

sh(f) = 1] = (x| f() = 1)
is an implication filter inZL.

Theorem 3.7.Let P be any filter and f £ — M such that sff) € P and
N (M) C f[P] 1.
Thené(P) C sh(f).

Proof. Let x ¢ Pandp € P. If f(x) ¢ f[P] then f(x) < f(p) and so
f(x— p)=1,ie.x— pesh(f).

If f(x) € f[P] then for somep € P we havex — p andp — X both
in the shell off and hence irP. But thenx A p = p®(p - X) € P -
contradiction. O

From the theorem we see thaffitakesP to a filter containing all counits
then f factorizes throughZ/¢(P), and so, in some sens&,/{(P) is the
largest quotient in whicli® contains all counits (or dominates its comple-
ment).

The assumption that shf C P is essential, else the theorem yields only
that the smaller set(P v sh(f)) c sh(f). Indeed ifP, Q are incomparable
prime filters then/ ' (£L/Q) = {1} € P/Qbutifge Q\ P andp € P\ Q then
g—opet(P)\Q—elsepArg=9g®(q— p) € Q, contradictingp ¢ Q.

Lemma 3.8. Let F be a prime filter. Thef(P) C F iff F is comparable to
P.
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Proof. If PC F thené(P) c PC F. If F € Pthené(P) C ¢(F) c F.
Conversely, ift¢(P) C F thenF/¢(P) is prime in£L/¢(P) and so compa-

rable toP/¢(P). HenceF = n![F/¢(P) is comparable ta; [P/((P)] =

P. O

Theorem 3.9. PSpe¢P) is order-isomorphic to PSpé€/¢(P)).

Proof. We know that PSped{/¢(P)) is order-isomorphic to
{F | F is a prime filter with/(P) ¢ F} and from the lemma the latter set is
PSpecP). O
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