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0 A LOCALIZATION IN MV-ALGEBRAS

COLIN G. BAILEY

Abstract. In this document we consider a way of localizing an MV-
algebra. Given any prime filterF we find a local MV-algebra which has
the same poset of prime filters as the poset of prime filters comparable
to F.

1. Introduction

A local MV-algebra is one with a single maximal implication filter. Such
algebras are of interest in the representation theory of MV-algebras (see [7]
for example).

The set of prime implication filters of an MV-algebra forms a spectral
root system, ordered by set-inclusion. The existence of a unique maximal
filter is equivalent to the stem of this root system being nonempty. (The stem
is the set Stem=

{

P
∣

∣

∣ P is a prime filter comparable to every other prime filter
}

.)
Whenever the stem is non-empty it has a least element, the Conrad filter (de-
fined below). This filter can be characterized in several ways, as we show in
section 2 below. This work is heavily based on work of Conrad on lattice-
ordered groups (see [5]), recasting his material in terms ofimplication filters
in MV-algebras.

In the last section we consider how to invert this characterization to get a
prime filter into the stem of an MV-algebra. This localization takes a prime
implication filterP and finds a quotient in which the maximal filter overP
is the unique maximal filter, and the prime filter structure ofthe quotient is
isomorphic to the set of prime filters comparable toP.

In most of what follows the filters are taken to be implicationfilters rather
than lattice filters. We recall that an implication filter is alattice filter closed
under powers.
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Given an MV-algebraL, there are several sets of filters that we are inter-
ested in:

PSpec=
{

P
∣

∣

∣ P is a prime implication filter ofL
}

= the prime spectrum;

PSpec(F) =
{

P
∣

∣

∣ P is a prime implication filter ofL comparable toF
}

;

µS=
{

P
∣

∣

∣ P is a minimal prime filter ofL
}

= the minimal spectrum;

µS(F) =
{

P
∣

∣

∣ P is a minimal prime filter ofL comparable toF
}

.

Our notation usually follows that of [3] with the exception that we use⊗
instead of⊙.

2. Counits

Definition 2.1. u ∈ L is a counit iff u < 1 and there exists some v< 1 with
u∨ v = 1.

Definition 2.2. TheConrad filterof an MV-algebra is the implication filter
generated by the counits.

We usually denote it byN (L) or N.

If N = N (L) thenN is prime asa∨ b = 1, a, b < 1 impliesa andb are
counits and so inN.

All implication filters that containN form a chain. The following lemma
provides an alternative characterization of the prime filters in this chain.

Lemma 2.3.Let P be a prime implication filter. Then P contains all counits
iff for all x < P and all p∈ P p≥ x.

Proof. Suppose thatx < P andy ∈ P with x 6≤ y. We know that (x →
y) ∨ (y→ x) = 1.

As x 6≤ y we havex→ y < 1, andy 6≤ x impliesy→ x < 1 and soy→ x
is a co-unit.

If it is in P then so isx∧ y = (y→ x) ⊗ y, contradictingx < P. ThusP
cannot contain all co-units.

Conversely ifa is a co-unit anda∨b = 1 for someb > 0. One ofa or b is
in P (asP is prime). Ifa < P thena ≤ b which is impossible, soa ∈ P. �

A slight variation of this proof lets us see that filters are incomparable
because of counits.

Lemma 2.4. Let P and Q be incomparable implication filters. Then there
is a counit in Q\ P.
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Proof. Suppose not, ie every counit inQ is also inP. As P and Q are
incomparable we can findx ∈ Q \ P andy ∈ P \ Q. Thusx 6≤ y andy 6≤ x
and sox → y < 1 andy → x < 1 and (x → y) ∨ (y → x) = 1. Soy → x
is a counit inQ and (by assumption) must be inP. As y ∈ P we now have
x∧ y = y⊗ (y→ x) ∈ P contradictingx < P. �

The next two results show thatN is actually the minimum prime filter
comparable to all prime filters.

Proposition 2.5. Let P be any prime implication filter that does not contain
all counits. Then there is a prime implication filter incomparable to P.

Proof. As P does not contain all counits we know that there is someg < P
that is not belowP, ie there is somep ∈ P with p � g. Of courseg � p.
Thusg→ p < 1 andp→ g < 1 and (g→ p) ∨ (p→ g) = 1.

As (p→ g) ⊗ (p∨ g) = g we must havep→ g < P.
Let Q be maximal avoidingg → p. ThenQ is prime and as (g → p) ∨

(p→ g) = 1 ∈ Q we havep→ g ∈ Q \ P. By constructiong→ p ∈ P \ Q
and so these two ideals are incomparable. �

Proposition 2.6. If P is a prime implication filter then either N⊆ P or
P ⊆ N.

Proof. If P is not a subset ofN then we can findp ∈ P \ N. p < N implies
p is belowN and soN ⊆ [p, 1] ⊆ P. �

ThusN is the minimum prime implication filter comparable to all others.
The existence of such a filter implies thatN is a proper filter, as if we have
a minimal prime implication filterF comparable to all others then it must
contain all counits – by proposition 2.5 and soN exists and soF equalsN.

Since any desired root system is the root system of an MV-algebra ([4]),
we see that it is possible to have non-trivialN.

Proposition 2.7. N is a minimal prime implication filter iff N = {1}.

Proof. The right to left implication is immediate.
If N is minimal then it is the unique minimal implication filter and so

must equal{1} – as we know the intersection of all minimal implication
filters is{1}.

Or just notice thatL embeds into
∏

m∈µSL/m= L/N is linearly ordered,
and soL is linearly ordered which impliesN = {1}. �

We also note that ifN is proper then there is a unique maximal implica-
tion filter – the one that containsN. We also have the converse.

Proposition 2.8. If there is exactly one maximal proper implication filter
then it contains all counits.
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Proof. Let M be the maximum implication filter. Leta, b < 1 witha∨b = 1.
Let Fb = {x | x∨ b = 1}. Then 0< Fb, a ∈ Fb and it is easy to see thatFb is
a lattice filter. Also,x ∈ Fb impliesxn ∨ b ≥ xn ∨ bn

= (x∨ b)n
= 1 and so

Fb is an implication filter. Hencea ∈ Fb ⊆ M. �

Thus, if there is a maximum implication filterM thenN ⊆ M andN is
proper.

3. Localization

Let P be a prime implication filter. We seek a quotient ofL in which P
contains the Conrad filter. The construction we give below also preserves
the structure of PSpec(P).

Definition 3.1. Let P be a prime implication filter. Then

ℓ(P) = [[ {x→ p | p ∈ P and x< P} ]] .

Because of lemma 2.4 we need to quotient out by at leastℓ(P) in order to
makeP contain all counits in a quotient.

It is clear thatℓ(P) ⊆ P as x → p ≥ p for any p ∈ P. In general this
inclusion is strict, with the only exception being minimal prime filters.

Lemma 3.2. P is minimal prime iff ℓ(P) = P.

Proof. If P is minimal prime andp ∈ P then there is somet < P with
t ∨ p = 1. Thereforet → p = 1→ p = p ∈ ℓ(P).

If ℓ(P) = P and p ∈ P then p ≥ x → p′ for somex < P and p′ ∈ P.
Now p′ → x < P else we would havep′ ⊗ (p′ → x) = p′ ∧ x ∈ P and so
x ∈ P. Also p ∨ (p′ → x) ≥ (x → p′) ∨ (p′ → x) = 1. ThusP must be
minimal. �

The next few lemmas show the relationship ofℓ(P) to the minimal filters
belowP.

Lemma 3.3. If m ⊆ P is minimal prime thenℓ(P) ⊆ m.

Proof. Let x < P andp ∈ P. Thenp⊗ (p→ x) = p∧ x implies p→ x < P
and so is not inm. But (x → p) ∨ (p → x) = 1 ∈ m andm is prime, so
x→ p ∈ m. �

Lemma 3.4. Let p ∈ P \ ℓ(P). Then there is some minimal prime filter
m⊆ P with p< m.

Proof. Look inL/ℓ(P). Then [p] , 1 and is inP/ℓ(P). We also know that
the Conrad filter ofL/ℓ(P) is contained inP/ℓ(P) – sincex < P andp ∈ P
implies x → p ∈ ℓ(P) and sox ≤ p mod ℓ(P). All minimal filters must
be subsets of the Conrad filter and so takeM to be a minimal prime filter
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of L/ℓ(P) that avoids [p] < [1]. ThenM ⊆ P/ℓ(P) and so the preimageM′

gives a prime subfilter ofP that avoidsp.
Any minimal filter ofL contained inM′ works. �

Theorem 3.5.
ℓ(P) =

⋂

{m | m ∈ µS and m⊆ P} .

Proof. By lemma 3.3 we know that LHS⊆RHS.
From lemma 3.4 we know thatp <LHS impliesp <RHS, i.e. RHS⊆LHS.

�

We can now define the localization of an MV-algebra at a prime implica-
tion filter.

Definition 3.6. Let P be a prime implication filter of an MV-algebraL.
Then thelocalization ofL at P is the MV-algebraL/ℓ(P).

If Q ⊆ Pare two prime implication filters then we have{m | m∈ µS andm⊆ Q} ⊆
{m | m ∈ µS andm⊆ P} and soℓ(P) ⊆ ℓ(Q) (from the theorem). Hence
there is a natural MV-morphismL/ℓ(P)→ L/ℓ(Q).

And finally a universal property of this localization.
We recall that iff : L →M is an MV-morphism then theshellof f is

sh(f ) = f −1[1] = {x | f (x) = 1}

is an implication filter inL.

Theorem 3.7.Let P be any filter and f: L → M such that sh( f ) ⊆ P and
N (M) ⊆ f [P] ↑.

Thenℓ(P) ⊆ sh( f ).

Proof. Let x < P and p ∈ P. If f (x) < f [P] then f (x) ≤ f (p) and so
f (x→ p) = 1, i.e. x→ p ∈ sh(f ).

If f (x) ∈ f [P] then for somep ∈ P we havex → p and p → x both
in the shell of f and hence inP. But thenx ∧ p = p ⊗ (p → x) ∈ P –
contradiction. �

From the theorem we see that iff takesP to a filter containing all counits
then f factorizes throughL/ℓ(P), and so, in some sense,L/ℓ(P) is the
largest quotient in whichP contains all counits (or dominates its comple-
ment).

The assumption that sh(f ) ⊆ P is essential, else the theorem yields only
that the smaller setℓ(P ∨ sh(f )) ⊆ sh(f ). Indeed ifP,Q are incomparable
prime filters thenN (L/Q) = {1} ⊆ P/Q but if q ∈ Q\P andp ∈ P\Q then
q→ p ∈ ℓ(P) \ Q – elsep∧ q = q⊗ (q→ p) ∈ Q, contradictingp < Q.

Lemma 3.8. Let F be a prime filter. Thenℓ(P) ⊆ F iff F is comparable to
P.
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Proof. If P ⊆ F thenℓ(P) ⊆ P ⊆ F. If F ⊆ P thenℓ(P) ⊆ ℓ(F) ⊆ F.
Conversely, ifℓ(P) ⊆ F thenF/ℓ(P) is prime inL/ℓ(P) and so compa-

rable toP/ℓ(P). HenceF = η−1[F/ℓ(P) is comparable toη−1[P/ℓ(P)] =
P. �

Theorem 3.9.PSpec(P) is order-isomorphic to PSpec(L/ℓ(P)).

Proof. We know that PSpec(L/ℓ(P)) is order-isomorphic to
{

F
∣

∣

∣ F is a prime filter withℓ(P) ⊆ F
}

and from the lemma the latter set is
PSpec(P). �
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