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Abstract. We obtain the generating functions for partial matchings avoiding neighbor
alignments and for partial matchings avoiding neighbor alignments and left nestings. We
show that there is a bijection between partial matchings avoiding three neighbor patterns
(neighbor alignments, left nestings and right nestings) and set partitions avoiding right
nestings via an intermediate structure of integer compositions. Such integer compositions
are known to be in one-to-one correspondence with self-modified ascent sequences or 31524-
avoiding permutations, as shown by Bousquet-Mélou, Claesson, Dukes and Kitaev.
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1 Introduction

This paper is concerned with the enumeration of partial matchings and set partitions that

avoid certain neighbor patterns. Recall that a partition 7 of [n] = {1,2,...,n} can be repre-
sented as a diagram with vertices drawn on a horizontal line in increasing order. For a block
B of m, we write the elements of B in increasing order. Suppose that B = {iy,d9,...,0x}.

Then we draw an arc from 7; to 75, an arc from iy to i3, and so on. Such a diagram is called
the linear representation of . If (7,7) is an arc in the diagram of m, we call i a left-hand
endpoint, and call j a right-hand endpoint.

A partial matching is a partition for which each block contains at most two elements.
A partial matching is also called a poor partition by Klazar [10], see also [2], and it can
be viewed as an involution on a set. A partition for which each block contains exactly two
elements is called a perfect matching.

Perfect matchings avoiding certain patterns have been studied in [3, 4, [5, [7, 8, @, [11]
12, [16]. Bousquet-Mélou, Claesson, Dukes and Kitaev [I] investigated perfect matchings
avoiding left nestings and right nestings, and found bijections with other combinatorial
objects such as (2 + 2)-free posets. Claesson and Linusson [5] established a correspondence
between permutations and perfect matchings avoiding left nestings.

A nesting of a partition 7 is formed by two arcs (i1, j1) and (i, j2) in the linear rep-
resentation such that i; < iy < jo < j;. If we further require that i; + 1 = iy, then this
nesting is called a left nesting. Similarly, one can define right nestings, as well as left cross-
ings and right crossings. We say that k arcs (i1, j1), (42, J2), - - -, (ig, J) form a k-crossing if
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1 <dg < - <1l <Jp <Jo<---<Jrp An alignment of a partition 7 is formed by two arcs
(’il,jl) and (ig,jg) such that 7; < ,jl < < jg.

In this paper, we define a neighbor alignment as an alignment consisting of two arcs (i1, j1)
and (ig, j2) such that j; + 1 = iy. The aforementioned patterns with neighbor constraints
are called neighbor patterns. Left nestings and right nestings were introduced by Stoimenow
[15] in the study of regular linearized chord diagrams, and were further explored in [, 5] [6].
An illustration of neighbor patterns is given in Figure [

ZH‘l Ji1 jz ZH—l J1 j2 i2 JJ+121 iz JJ+111 Jl]l+1jz

Figure 1: Left crossing, left nesting, right crossing, right nesting and neighbor alignment.

Our main results are the generating functions for three classes of partial matchings avoid-
ing neighbor patterns, which are denoted by P(n), Q(n), R(n), respectively. Denote the set
of partial matchings of [n| by M(n). The set of partial matchings in M (n) with no neigh-
bor alignments is denoted by P(n), and the set of partial matchings in P(n) with k arcs is
denoted by P(n, k). The set of partial matchings in P(n) with no left nestings is denoted by
Q(n), and the set of partial matchings in Q(n) with k arcs is denoted by Q(n, k). Moreover,
the set of partial matchings in Q(n) with no right nestings is denoted by R(n), and the set
of partial matchings in R(n) with k arcs is denoted by R(n, k). For 0 < k < [n/2], we set

P(n, k) =P, k)|, Qn, k) =[Q(n, k)|,  R(n, k) = [R(n, k).

Denote the set of partitions of [n] by S(n) and denote the set of partitions in S(n) with k
blocks by S(n, k). The set of partitions in S(n) with no right nestings is denoted by 7T (n),
and the set of partitions in 7 (n) with k& arcs is denoted by T (n,k). For 0 < k <mn—1, we
set T'(n, k) = |T (n, k)|

We obtain the following generating function formulas for the numbers P(n, k) and Q(n, k).

Theorem 1.1. L
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Theorem 1.2.
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It is clear that when y = 1, the right-hand side of ([I) reduces to
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which is the generating function of the sequence A124380 in OEIS [13], whose first few entries
are
1,2,4,9,22, 57, 157,453, 1368, 4290, . . ..

It seems that no combinatorial interpretations of this sequence are known. Thus Theorem
[Tl can be considered as a combinatorial interpretation of the above generating function.

Meanwhile, when y = 1 the right-hand side of (2]) reduces to

xn

; HZ:l(l — ka?)

which is the generating function of the sequence A024428 in OEIS [13], whose first few entries
are

1,1,2,4,8,18,42, 102, 260, 684, 1860, . . ..

This sequence can be expressed in terms of Stirling numbers of the second kind. So Theo-
rem can be considered as another combinatorial interpretation of the above generating
function.

We derive the generating function for the numbers R(n, k) by establishing a connection
with compositions of the integer n — k into (k;rl) components. Moreover, we show that there
is a correspondence between the set R(n, k) and the set T(n —k+ 1, k). Hence by Theorem
we obtain the generating function for T'(n, k) as stated in Theorem [[.4l Furthermore, it
turns out that this generating function coincides with the generating function for the number
of self-modified ascent sequences of length n with largest element k — 1 or 31524-avoiding

permutations having k right-to-left minima, as derived by Bousquet-Mélou, Claesson, Dukes
and Kitaev [1].

Theorem 1.3.
n—1 l’n
R(n+k—1,k)x"ykzzﬁ. (3)
n>1 k=0 ne1 (I —ay)\ 2
Theorem 1.4.
n—1 Z’n
T(n, k)a"y* = ——— (4)
n>1 k=0 no1 (1 — 37?/)( :')

This paper is structured as follows. In Section 2, we give a proof of Theorem 1.1 by
deriving a recurrence relation of P(n, k). Section 3 gives a proof of Theorem 1.2 by estab-
lishing a correspondence between S(n — k,n — 2k) and Q(n — 1,k). In Section 4, we give
a bijection between R(2n — k — 1,n — k) and the set of compositions of n — k into (k;rl)
components, which leads to the generating function in Theorem 1.3. In Section 5 we present

a proof of Theorem 1.4 by constructing a correspondence between the set R(n, k) and the
set T(n—k+1,k).



2 Neighbor alignments

In this section, we give a proof of the generating function formula for the number of partial
matchings avoiding neighbor alignments. Recall that a singleton of a partial matching or
a set partition is the only element in a block, which corresponds to an isolated vertex in
its diagram representation. For a block with at least two elements, the minimum element
is called an origin, and the maximum element is called a destination, and an element in
between, if any, is called a transient. An origin and a destination are also called an opener
and a closer respectively by some authors. We first give a recurrence relation of P(n, k).

Theorem 2.1. Forn >3, and 1 < k < n/2, we have
P(n,k)=Pn—1,k)+ (n—k)P(n—2k—1), (5)

with initial values P(1,0) =1, P(2,0) =1, P(2,1) = 1.

Proof. 1t is clear that the number of partial matchings in P(n, k) such that the element 1 is
a singleton equals P(n—1, k). So it suffices to show that the number of partial matchings in
which 1 is not a singleton equals (n — k) P(n — 2,k —1). For a partial matching M € P(n, k)
in which 1 is not a singleton, after deleting the arc with left-hand endpoint 1, we are led to
a partial matching in P(n — 2,k — 1).

Conversely, given a partial matching M € P(n — 2,k — 1) with n — 2 vertices, in order
to get a partial matching with & arcs, we can add an arc into M by placing the left-hand
endpoint before the first vertex of M and inserting right-hand endpoint at some position of
M. Clearly, there are n — 1 possible positions to insert the right-hand endpoint of the new
arc. By abuse of language, if no confusion arises we do not distinguish a partial matching
M from its diagram representation. To ensure that the insertion will not cause any neighbor
alignments, we should not allow the right-hand endpoint of the inserted arc to be placed
before any origin of M. Since there are k — 1 arcs in M, thus there are k — 1 positions that
are forbidden. That is to say, we have exactly (n — 1) — (k — 1) = n — k choices for the
position of the right-hand endpoint of the inserted arc. After relabeling, we get a partial
matching in P(n, k). This completes the proof. |

As an example, let us consider a partial matching M = {{1,4},{2},{3,5},{6}} € P(6,2).
The possible positions for inserting an arc are marked by the symbol * in Figure 2l Note that
the positions before the vertices 1 and 3 are forbidden. The right-hand endpoint of the
inserted arc is between the vertices 5 and 6.

123 45 6 123 45 6 78

Figure 2: Possible positions for inserting an arc.



Proof of Theorem 1.1. Let f(n,k) denote the coefficient of 2*y* in the expansion of

n—k

H(l +izy).

i=1
It is easily verified that

with initial values

fLO) =1, f2,00=1 f(2,1)=1
Consequently, P(n,k) and f(n, k) have the same recurrence relation and the same initial
values, so they are equal. This completes the proof. |

To conclude this section, we give a recurrence relation of the generating function of
P(n,k). Let

Corollary 2.2. Forn > 3, we have
Fa(y) = Fac1(y) + (0 = D)y faa(y) — v f12(y). (6)

3 Neighbor alignments and left nestings

This section is concerned with the generating function for partial matchings avoiding neigh-
bor alignments and left nestings. More precisely, we establish a bijection between set par-
titions and partial matchings avoiding neighbor alignments and left nestings. As a conse-
quence, we obtain the generating function in Theorem

Theorem 3.1. There exists a bijection between the set S(n—k,n—2k) and the set Q(n—1,k).
Moreover, this bijection transforms the number of transients of a partition to the number of
left crossings of a partial matching.

Proof. Let m € S(n — k,n — 2k) be a partition of [n — k] with & arcs, we wish to add
k — 1 vertices to 7 in order to form a partial matching a(7) in Q(n — 1, k), that is, a partial
matching on [n — 1] avoiding neighbor alignments and left nestings. First, we add a vertex
before each origin, except for the first origin, and relabel the vertices in the natural order.
Let the resulting partition be denoted by o.

To construct a partial matching in Q(n — 1, k) from the partition o, we shall use the
operation of changing a 2-path to a left crossing, see Figure [l for an illustration. To be more
specific, a 2-path means two arcs (4, j) and (j, k) with i < j < k.

It should be emphasized that at each step we have a unique choice of a 2-path to imple-
ment the switching operation. More precisely, we always try to find a 2-path consisting of

bt
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Figure 3: Change a 2-path into a left crossing.

(,7) and (7, k) such that j is minimal. We add a vertex ¢ 4+ 1 immediately after the vertex i,
transform this 2-path into a left crossing (i, j+1), (i+1, k+1) and relabel those vertices that
are greater than ¢ (except for j, k) so that the relabeled vertex set becomes a set of the first
consecutive natural numbers. In other words, a vertex is relabeled if it is increased by one.
Using this operation to a path corresponding to a block B with r + 1 elements in a partition
m, we get a left r-crossing, which is an r-crossing with consecutive left-hand endpoints. Let
a(m) denote the resulting partial matching.

We claim that there are no left nestings and neighbor alignments in «(7). Recall that after
the first step, a possible left nesting in o consisting of arcs (i, 71) and (i + 1, jo) with j; > jo
can occur only when 7 + 1 is a transient. Clearly, 7 is either a transient or an origin. After
changing the 2-path for which 7 is a transient into a left crossing and the 2-path for which
i+1 is a transient into a left crossing, we see that the left nesting (i, j;), (i+1, jo) disappears.
This operation is illustrated in Figure @l A possible neighbor alignment consisting of arcs
(1,7) and (j + 1, k) in o can occur only when j + 1 is a transient. After changing the 2-path
for which j + 1 is a transient into a left crossing, the arc (j + 1, k) becomes (j', k 4+ 1) with
j' < 7, thus the neighbor alignment disappears. Hence the claim is proved.

It remains to show that there are n — 1 vertices in «(m). Adding a vertex immediately
before an origin or transforming a 2-path into a left crossing will result in an increase of the
number of vertices by one. Since the left-hand endpoint of an arc is either an origin or a
transient, for a partition with k& arcs, after these two operations there are a total number of
k — 1 vertices added. This implies that a(7) € Q(n — 1, k).

PP+l g J1 i+1i+2 jo+1 j1+1

STON N T KON N
i i+1 o J1 i+1i+2 jo+1 j1+1

Figure 4: The two cases for the vertex i.

Conversely, given a partial matching in Q(n — 1,k), in order to obtain a partition in
S(n — k,n — 2k), we must delete k — 1 vertices. First, we change left crossings to 2-paths
from right to left until there are no more left crossings. More precisely, suppose that the two
arcs (i,71) and (i + 1, jo) form a left crossing which is the rightmost one in the sense that i
is the largest among all the first origins of left crossings. For such a left crossing, delete the
vertex i + 1, and change the two arcs (4, j1) and (i + 1,72) to (4,71 — 1) and (j; — 1,72 — 1).
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Then, relabel the vertices, that is, reduce the labels of vertices larger than i (except j, k) by
1. After we have eliminated all the left crossings, we further delete the singleton immediately
before each origin, if there is any, except for the singleton immediately before the first origin.
Finally, we relabel the vertices by the natural order.

Since there are neither neighbor alignments nor left nestings in a partial matching in
Q(n—1, k) with k arcs, for any arc (7, j), we have only two possibilities: (1) The vertex i — 1
is a singleton. (2) There exists a vertex k such that (¢ — 1, k) and (4, j) form a left crossing.
Transforming a left crossing into a 2-path or deleting a vertex immediately before an origin
will result in a decrease of the number of vertices by one. Thus after these two operations
there are a total number of k£ — 1 vertices deleted, and so we are led to a partition of [n — k]
with k arcs. It is easily seen that the number of transients of M equals the number of left
crossings of a(M). This completes the proof. |

For example, let 7 = {{1,5},{2,3,4,7},{6,8}} € §(8,3). There are 5 arcs in m, so we
must add 4 vertices in order to get a partial matching in Q(12,5). We first add a singleton
before the arc (2, 3) and a singleton before the arc (6,8). Then change the two 2-paths into
left crossings from left to right. An illustration of the above procedure is shown in Figure Bl

SO = KRN

1 23 45 6 7 8 123 45 6 7 8 910

— RN

123456 78 9 1011

LSRR

123 45 6 7 8 9101112

Figure 5: The bijection a.

Let g,(y) be the generating function for the numbers Q(n — 1, k). From Theorem B1] we
see that
125+]
an(y) = Z S(n —k,n — 2k)y*
k=0
where S(n, k) are the Stirling numbers of the second kind. It is worth mentioning that the
generating function for the numbers g, (1) has been given in OEIS [13], that is,

Zgn(l Z [T (1 - k932)

n>1 n>1




From the generating function of Stirling numbers of the second kind, it is straightforward to

deduce that
gn 517 =
Z Z Hk 1 (1 — kazy)

n>1 n>1

Below is the recurrence relation of g,(y) which follows from the recurrence of S(n, k).

Corollary 3.2. Forn > 3, g,(y) has the following recurrence relation

9n(¥) = gn1(y) + (0 = 2)y - gna(y) — 207 - g}, _5 ().

4 Neighbor alignments and left, right nestings

In this section, we obtain the bivariate generating function for the number of partial match-
ings of [n+k — 1] with k arcs that avoid neighbor alignments, left nestings and right nestings.
This generating function turns out to be identical to the generating function for the number
of self-modified ascent sequences of length n with largest element k& — 1 or 31524-avoiding
permutations of [n] that have k right-to-left minima due to Bousquet-Mélou, Claesson, Dukes
and Kitaev [1].

Recall that R(n, k) denotes the set of partial matchings of [n] with &k arcs that avoid
neighbor alignments and both left and right nestings. We shall give a bijection between
R(2n —k —1,n— k) and the set of compositions of n — k into (k;rl) components, from which
we can deduce the generating function for the numbers R(n + k — 1, k). Denote the set of

compositions of n into k& components (possibly empty) by C(n, k).

Theorem 4.1. There is a bijection between the set R(2n — k — 1,n — k) and the set C(n —
b (40).

Proof. Let M € R(2n — k — 1,n — k) be a partial matching with 2n — k — 1 vertices and
n — k arcs containing no left nestings, no right nestings and no neighbor alignments. We
aim to construct a composition S(M) in C(n — k, (k;rl)) Clearly, there are k — 1 singletons
in M. These k — 1 singletons separate the vertices into k intervals, the first interval is the
interval before the first singleton and the (i + 1)-st interval is the interval between the i-th

and (7 + 1)-st singletons, the k-th interval is the interval after the last singleton.

By the following procedure, we can associate the i-th (1 < i < k) interval with an integer
composition, that is, a sequence s of nonnegative integers of length k — i + 1. For the
origins in the ¢-th interval, their corresponding destinations have k — ¢ + 1 choices to be in
the i-th, (i 4+ 1)-st,..., and the k-th interval. If there are r (r > 0) destinations in the j-th
(i < j < k) interval, then the (j — i + 1)-st entry of the sequence s is set to be r. Since
there are n — k destinations in M, thus putting all these k£ sequences together, we get a

composition s = (s, s . sF))of n —kintok+ (k—1)+---+1= (kgl) components.

Conversely, given a composmon of n — k with (Hl) components, we may break it into
sequences of length £k, k — , 1 respectively, and we denote the i-th sequence by

0 = (o9, o0, f0)

Y

8



where 1 < i < k. Denote the sum of the elements of s by |s(i)\. We now proceed to
construct the diagram, or the linear representation of a partial matching, based on the
sequences s\, s . s First, we draw k — 1 singletons on a line to form k intervals such
that the first interval is the one before the first singleton, the (i-+1)-st interval is that between
the i-th and (i+1)-st singleton, and the k-th interval is the one after the last singleton Then
we need to determine the orlgms and the destinations in each interval. We put || origins
and s; W S( AR s ) destinations in the i-th interval, where all the destinations are
located after all the origins. So there are (k— 1) +2(n — k) = 2n — k — 1 vertices. Next, we
label the vertices from left to right by using the numbers 1,2,...,2n — k — 1.

Finally, we should match the n — k origins and the n — k destinations to form n — k
arcs. For i from 1 to k, the right-hand endpoints of the arcs with origins in the ¢-th interval
are determined as follows. As the initial step, for each j (i < j < k), we choose the first

sy) available destinations (i.e., the destinations that have not been processed) in the j-th

interval. It is easy to check that there are s\ + 52(21 4o+ 5 = |50 destinations that
have been chosen so far. Then we match these |s¥| destinations with the |s(| origins in the
i-th interval to form an |s®|-crossing. This construction ensures that there are neither left
nestings nor right nestings. Furthermore, the positions of singletons guarantee that there
are no neighbor alignments. Therefore we get a partial matching in R(2n — k — 1,n — k).
This implies that the above mapping S is a bijection, and hence the proof is complete. |

For example, let

M = {{1,6},{2,7}, {3}, {4, 8}, {5, 14}, {0}, {10, 11}, {12}, {13,15}}

which belongs to R(15,6). The three singletons 3,9, 12 separate the vertices into 4 intervals,
namely, {1,2}, {4,5,6,7,8}, {10,11}, {13, 14, 15}. For the origins {1, 2} in the first interval,
their destinations are both in the second interval, so s = (0,2,0,0). Similarly, we have
s? = (1,0,1), s = (1,0),s™ = (1). So the corresponding composition of 6 into 4 + 3 +
24+ 1 =10 components is (0,2,0,0,1,0,1,1,0,1).

Conversely, given the composition (0,2,0,0,1,0,1,1,0,1), we split it into 4 sequences,
S = (s, o 0 0) —(0,2,0,0),52) = (52,5, 5) = (1,0,1),59 = (s, 5% —
(1,0),s% = (s 514)) = (1). The construction of the corresponding partial matching is illus-
trated in Figure [Gl

Proof of Theorem[1.3 Note that the coefficient of 2™ in

equals

(]
N
~—~
N
3\/
o+
3
S
—_
N———
Negd
3
E

which equals the number of compositions of n — k into (kgl) components. Thus the result
follows from Theorem [Tl |
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Figure 6: The bijection .

5 Partitions with no right nestings

The objective of this section is to construct a bijection between the set T(n — k + 1,k)
of partitions of [n — k + 1] with k arcs but with no right nestings and the set R(n, k) of
partial matchings of [n] with k& arcs but with no left nestings, right nestings and neighbor
alignments. In fact, we only need to establish a correspondence between a sequence of
n — 2k + 1 compositions and the set 7 (n — k+ 1, k). Combining the bijection /3 in Section 4
from compositions to partial matchings without left, right nestings and neighbor alignments,
we obtain the desired bijection between the set R(n, k) and the set T(n — k + 1, k). Since
in the previous section we have computed the generating function for the numbers R(n, k),
we are led to the generating function for T'(n, k) as stated in Theorem [[.4]

Theorem 5.1. There exists a bijection between the set R(n, k) and the set T (n —k+1,k).
Moreover, this bijection transforms the number of left crossings of a partial matching into
the number of transients of a partition.

Proof. Let M € R(n,k), that is, M is a partial matching of [n| with k& arcs but with
no left nestings, right nestings and neighbor alignments. We wish to construct a partition
v(M) € T(n—k+1,k). The construction consists of two steps. The first step is to associate
the partial matching M € R(n, k) with a sequence of n — 2k 4+ 1 compositions. The second
step is to obtain the desired partition v(M) € T (n — k + 1, k) from those compositions.

Given a partial matching M € R(n, k), intuitively the n — 2k singletons of M break
the vertices of M into n — 2k 4 1 intervals since the vertices are assumed to be arranged in
increasing order on the horizontal line. As in the construction of the bijection § between
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compositions and partial matchings, we associate the i-th interval with a composition s() =
(SZ(-Z), e SS)_%H), where Sg-l) (1 <j<n-—2k+1)is the number of arcs with origins in the

t-interval and destinations in the j-th interval.

The procedure to generate the partition (M) can be described as follows. We start with
n — 2k + 1 empty intervals by putting down n — 2k singletons on a line. Then we determine
the left-hand and right-hand endpoints of every interval so that all the arcs are consequently
determined by the endpoints.

To reach this goal, we define a k-path to be a sequence of k arcs of the form (i1, 12), (72, i3),
ooy (i, igy1), where 4y < iy < -+ < igyy. Forid from 1 ton—2k+1, we construct an |s®|-path
(41,72), (i2,13), - - -, (i50)) I50|41) Via the following steps.

Step 1. We put the origin ; of this path immediately before the leftmost right-hand endpoint
that has been constructed in the i-th interval. If there are no right-hand endpoints in the
i-th interval, just put i; before the i-th singleton.

Step 2. According to the composition s*), we determine the positions of the right-hand
endpoints i, ..., %41 of this path. More precisely, we assign sy)(i <j<n-2k+1)
right-hand endpoints to the j-th (i < j <n — 2k + 1) interval.

The |5 |-path is constructed by inserting the arcs (i1, i2), (42, i3), . . . , (415 st 1) One by
one. Precisely, by inserting an arc to an interval we mean inserting the right-hand endpoint of
this arc to this interval. We claim that the positions of the right-hand endpoints i, . . ., 411
of the |s|-path in each interval are uniquely determined subject to the constraint that
no right nestings are allowed. To prove this claim, we show that for each arc (is,is41)
(1 < s < |s®]), there is one and only one position to insert the right-hand endpoint 4.

Suppose that we wish to insert the arc e = (is,4541) to the j-th interval, where the left-
hand endpoint i, of e is determined already. We proceed to determine the position of 74y ;.
If there are no right-hand endpoints to the right of ¢5 in this interval, then we insert i,
immediately before the j-th singleton. Otherwise, we assume that there are ¢ right-hand
endpoints 7,79, ...,7:_1,7; to the right of 7, in the j-th interval. As will be seen, there is a
unique position to insert e to the j-th interval such that no right nestings will be formed.

The strategy of inserting e can be easily described as follows. We begin with the position
immediately to the left of r;. If i5,; can be placed in this position without causing any right
nestings, then this is the position we are looking for. Otherwise, we consider the position
immediately before ry as the second candidate.

Like the case for rq, if putting i ; immediately before ro does not cause any right nestings,
then it is the desired choice. Otherwise, we consider the position immediately before r3 as
the third candidate. Then we continue this process until we find a position such that after
inserting e creates no right nestings.

To see that the above process will terminate at some point, we assume that i5,; cannot be
inserted immediately before r;, and we assume that inserting 7., immediately after r; also
yields a right nesting. Then this right nesting caused by the insertion of i,; immediately
after r; must be formed by the arc e and the arc whose right-hand endpoint is immediately
after r;. This means that there is a right-hand endpoint after r;. Since the number of right-

11



hand endpoints in every interval is finite, we conclude that there always exits a position such
that inserting i,,, does not cause any right nestings.

It is still necessary to show that there is a unique choice for the position of i,,;. Assume
that we have found a position immediately before the vertex r;, such that the insertion of e
does not cause any right nestings. It can be shown that all the positions to the right of r;,
cannot be chosen for the insertion of e. Otherwise, suppose that the position immediately
after the vertex r;, is a feasible choice, where r;, < 1,.

We now proceed to find a right nesting that implies a contradiction. If i,.; can be
inserted immediately before r;,, then the arc e and the arc e; = (I3, r;,) form a crossing,
that is, 75 < [;; On the other hand, if ¢,,; can be inserted immediately after r;,, then e and
ey = (la,r;,) form a crossing as well, that is, Iy < i5. This implies that I; > l. So the arcs
e; and ey form a nesting.

In order to find a right nesting, we consider the distance between 7;, and r;,. If r;, +1 =
iy, then the two arcs e; and ey form a right nesting. If r;, +2 = r;,, namely, there is a
vertex r;,+1 between r;, and 7;,, then the arc with right-hand endpoint 7;, 11 forms a right
nesting with the arc e; or e;. We now consider the case that there are more than one
vertices between r;, and 7;,. Since in every step of the inserting process no right nestings
are formed, the left-hand endpoint I3 of the arc e3 = (l3,7;,41) must be to the right of i,
and the position of the left-hand endpoint Iy of the arc ey = (l4,r;,—1) must be to the left
of [;. Thus we deduce that ez and e4 form a nesting as well, and the distance between the
right-hand endpoints of e3 and e4 has decreased by two compared with the distance between
the right-hand endpoints of e; and e;. See Figure [1 for an illustration.

ly lo Iy I3 Tir  Ti4l Tio—1 Tiy

Figure 7: The uniqueness of inserting an arc.

Iterating the above process by checking the distance between the point 7;,1; and the
point 7;,_1, we can always find a right nesting. This is a contradiction, which means that
there is a unique choice for the insertion of e without causing right nestings.

By the above uniqueness property, we can insert the arcs (i1, 42), (42, 43), - - -, (i[5, I|s(0| 1)
one by one to construct a unique |s|-path. After n — 2k + 1 steps, we get a partition with
no right nestings. Finally, delete every singleton that is immediately to the left of an origin,
except for the first origin. Examining the number of points as in the construction of the
bijection « in Section 3, we are led to a partition y(M) on [n—k + 1] without right nestings.

Conversely, given a partition 7 € T (n + 1 — k, k) with k arcs that has no right nestings,
we wish to construct a partial matching in R(n, k). Clearly, we should add k& — 1 vertices
into 7. First of all, we add a vertex before each origin except the first origin. At this point,
the number of added vertices is the number of non-singleton blocks of 7 minus one. Assume
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that the new partition 7’ has m singletons which split the vertex set into m + 1 intervals.

In each interval, there is at most one origin. Assume that the origin in the ¢-th interval
is the ori%in of an r-path, then we associate the i-th interval with a composition t@) =
(7.t ) of the integer r, where ty)(i < j < m+1) is the number of right-hand
endpoints of this r-path in the j-th interval. From these m + 1 compositions, using the
map [ in Section 4 from compositions to partial matchings without left, right nestings and
neighbor alignments, we obtain a partial matching of R(n, k) with k arcs. It is easily seen
that the number of left crossings of M equals the number of transients of ~v(M). This

completes the proof. |

Figure B gives an example of a partial matching M without left, right nestings and
neighbor alignments. It also illustrates the process to construct a partition (M) without
right nestings. There are two singletons in M which create three intervals. The first interval
is associated with the composition s = (0,2, 1), which is transformed into a 3-path of (M).
The second interval is associated with the composition s = (2,2), which is transformed
into a 4-path of 7(M). The third interval is associated with the composition s&) = (1),
which is transformed into a 1-path of v(M).
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Figure 8: The bijection 7.

To conclude, we remark that in general the number of partitions of [n| avoiding right
crossings is not equal to the number of partitions of [n] avoiding right nestings. It would be
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interesting to find the generating function for the number of partitions of [n| without right
crossings.
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