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Abstract

We study the existence and nonexistence of singular solutions to the equation u; — Au —
Zou+ |z|%uuP™t = 0, p > 1, in RY x [0,00), N > 3, with a singularity at the point

||
(0,0), that is, nonnegative solutions satisfying u(x,0) = 0 for z # 0, assuming that o > —2
N-2

and kK < (T)2 The problem is transferred to the one for a weighted Laplace-Beltrami

operator with a non-linear absorbtion, absorbing the Hardy potential in the weight. A
classification of a singular solution to the weighted problem either as a source solution with
a multiple of the Dirac mass as initial datum, or as a unique very singular solution, leads
to a complete classification of singular solutions to the original problem, which exist if and

. 2(24a)
only if p <1+ SRRy P

1 Introduction and main results

In this paper we study nontrivial nonnegative solutions in RV x [0, c0) to the equation
K « —1

(1.1) ug — Au — —u +rululP7" =0,
r

vanishing on RY x {0} \ {(0,0)} that is, (non-trivial) nonnegative solutions to (II)) satisfying
(1.2) u(z,0) =0, that is, PI% u(z,t) =0 for = # 0.
—

Here and below r = |z|, and we always assume that with N > 3, k < (%)2 and oo > —2.
The behaviour of u(x,t) as (z,t) — (0,0) is not prescribed, so we study solutions with possible
singularity at (0,0).

We remark here for further reference that there is no ambiguity in the last definition since
for a solution u of (L)), u(x,t)dz — 0 as ¢ — 0 in the sense of weak-* convergence of measures

on RV \ {0} if and only if u(z,t) — 0 as t — 0 locally uniformly in = € R \ {0}, by the same
argument as in [5, Proof of Theorem 2, steps 2,3].
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The nonlinear heat equation with absorption
(1.3) up — Au+ uulP~t =0,

i.e. (LI)) with k = o = 0, with bounded measures as initial data was first studied by Brezis and
Friedman in the seminal work [5], where it was proved that the solution to (L3]) with u(x,0) =
»#9p(x), a multiple of the Dirac mass at 0, exists and is unique if and only if 0 < p < 1 + %
The solution obtained has roughly speaking the same behaviour as ¢ — 0 as the fundamental
solution to the linear heat equation. Such solutions are referred to as source type solutions (SS).

In [6] for 1 < p < 1+ % a new nonlinear phenomenon was discovered, namely, a new
solution to (L3)) satisfying (I.2]) was found. This solution is more singular at ¢ — 0 than the

fundamental solution, it is self-similar of the form ¢ f(|z|/+/t), where f is a unique solution
to a certain ordinary differential equation. This solution in [6], called very singular solution,
was constructed by the shooting method. Later in [12] the existence of very singular solutions
was proved by the variational approach. In [I6] the very singular solution was shown to be a
monotone limit of source type solutions. A classification of all positive singular solutions to
(L3) was given in [26]. The cited papers state that for p € (1,1+ %) every singular solution to
(LI) satisfying (L2) is either source type solution, satisfying u(z,t)dz — 3299 as t — 0 in the
sense of weak convergence of measures, with » = %g% . lf }u(m, t)dx, or u is the unique very
z|<1
singular solution (VSS), the only one satisfying %Lné{ J } u(x,t)dr = co. For p>1+ % there
|z| <1

are no non-trivial positive solutions to (3] satisfying (L.2)). Recently the problem of singular
solutions to (LI)) in the case kK = 0, @ > —2 was treated by Shishkov and Veron [27]. They
showed that the qualitative picture is the same as for (L3]), but the critical exponent changes
from 1+ £ for equation (L) to 1+ 22 for the equation uy — Au + r®u|ulP~! = 0. In all the
above result a crucial role is played by the following a priori estimates of Keller-Osserman type
for a singular solution to (II]) (with x = 0), which is a generalization of the classical one due
to Brezis and Friedman [5] in the case a = 0:

__24o
(1.4) u(z,t) < c(|z® +¢) 200 .

The critical exponent 1 4+ 22 which reflects the nonexistence of singular solutions, can be
seen as a result of comparing the behaviour at (0,0) of the fundamental solution to the linear
problem with estimate (IL4]). This plausible argument can no longer be applied to (L] since
the fundamental solution to the equation u; — Au — 5u = 0 does not exist at x = 0 (except for
the case k = 0) for the reasons explained below.

During the last decades there is growing interest to the elliptic and parabolic problems
involving the inverse-square potential (Hardy potential), stemming from its criticality. Many
qualitative properties of solutions are affected by the presence of the Hardy potential, which
leads to occurrence of a number of interesting unusual phenomena [11 3, 24 29]. This is mainly
due to the properties of the corresponding linear equation u; — Au — 5u = 0, which are
significantly different from the properties of the heat equation. In particular, the linear equation
does not have the fundamental solution at zero, i.e. the Cauchy problem with dy(x) as the initial
datum has no solution, which can be seen from by now well known two-sided estimates for the
corresponding heat kernel p(¢, z, y)[21], 23] 25]:
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where here and below A = —¥ + (%)2 — K is the bigger root of the quadratic equation

A2 4+ AN —2)+ k= 0 and ¢y, co, c3, ¢4 are some positive constants. Moreover, for £ > 0 and
N > 3 the Cauchy problem is not well posed in LP(RY), p € [1, NLH) [22]. The semilinear
equations with Hardy potentials and nonlinear excitation were recently studied in [24] and some
interesting nonuniqueness phenomena were discovered, but to our knowledge the corresponding
equation with nonlinear absorption, equation (I.I]), has not been yet studied. This is exactly the
aim the present paper. In the course of this study we will reveal several interesting phenomena
peculiar to equation ([LI]). In order to overcome the difficulties described above and to classify
solutions to (LI]) satisfying (L.2]) we will use the technique of transference to the weighted
space, which is by now standard in the linear theory and is called the ground state transform
(cf. [211, 24] 23] 25]). We will outline it here.

Below and further on we use the following notation for the weighted Lebesgue and Sobolev
spaces. For a weight ¢ we denote

LE®RY) = {f BN 5 R; /R 1f Pz < oo},
HY®Y)i= {7 BY >R [ (V7P +17P)pds < o).

Let h € Hlloc satisfy Ah + 5h = 0, that is, h = A, with A > —% as above. The change of
variables @ := u/h is a unitary operator L? := L?*(RY dz) — L%, := L?*(R" h?dx). Moreover,
the quadratic form &£(u) = [|Vu|’dz — [ %u?dz on L? is isomorphic to a quadratic form
En(a) = [ |Vial*h2dz on LiQ, which is precisely stated in the next proposition

Proposition 1.1. Let k < M. Let & be the closed quadratic form in L? defined by
E(u) :/]Vu\de—/%\ude, ueHl(RN)
T

and H be the associated self-adjoint operator, H = —A — %5 (form-sum). Let h € HE (RN) be
a positive weak solution to the equation Hh = 0.

Then the unitary map U : L?> — L?

+2, Uu = 3, maps H to the operator —A2 associated
with the form

En(u) = HVUH%QQ, u € HL(RY).
h
Proof. First observe that h € C®(RM \ {0}) and that A > 0. Hence h*'C®(RY \ {0}) =
C°(RN\ {0}). Note that C°(RY \ {0}) is a core of the form €. The image of £ on L2, is given
by En(¢) = E(hyp). For ¢ € C°(RN \ {0}) one has
IV(he)|> = h2|V¢|* + 2h¢VdVh + ¢?| VA2 = h2|V¢|* + V(he?)Vh.
Taking into account that h is a weak solution to the equation Au + -Fu = 0, we obtain

£ho) = [ (I9o)P — 5126%) do = [ 12(T0Pdo+ (V) - Th— S5 (h*)h) do = 0,

Since C2°(RY \ {0}) is invariant under multiplication by h*!, it is also a core for &,. The
assertion follows. O



As a result, the operator —A — % on L? is isomorphic to the weighted Laplacian —A2 :=
(s

—h—12V -h?V on L?;. Recall that h = r*. So equation (L) takes the form
(1.5) @ — AV (P va) + rPajapt = o,

with 8 :=a+ A(p —1).
This motivates the following problem about singular solutions with the weighted Laplacian

which is of independent interest.

Assume that u is a weak solution to the equation

(1.6) o — 1AV - (1Y) + P |uP~lu = 0,

satisfying

(1.7) / u(t)0 h®dx — 0 ast— 0, for all § € C,(RM \ {0}).
RN

We say that u € L%OC<(O, o0); HE (RN, h2dx)> ﬂLfotl <RN x (0, 00), T’ﬁth.%'dt) is a weak solution

to (6] if it satisfies the integral identity

t1 t1
u(t1)¢(t1)h*dx + (Vu - V{)h*dx dt + rPlulP uCh?dx dt
fuxiane | f Il

t1
(1.8) = [ u(to)C(to)hdx + udC h2dx dt
/ /]

for all ¢ € C1((0,00); C.(RN)) N LE.((0,00); H}z) and 0 <ty < t1 < oc.
The main results concerning the solutions to (LL6]) satisfying (L)) are collected in the fol-

lowing theorem.

Theorem 1.2. Let p > 1. Let A\, 8 be any real numbers such that A > —%, 8 > —2. Denote

p*=1+ J\gig Then

(a) for any weak solution u to (LO) satisfying (7)) the following Keller-Osserman type esti-
mate holds: there exists ¢ > 0 such that for all x € RY andt >0
) _ 248
lu(z,t)| < c(|z]?+t) 2D

(b) for every singular solution to (LB]) there exists 3 € [0,00] such that u(t)h*dz — 33y as
t — 0 in the weak-+ topology of Radon measures;

(c) for p > p*, the only solution to (LB) satisfying (L) is zero;

(d) for p < p* and » € (0,00] there exists a unique singular solution wu,, to (L) satisfying
w, ()h2dx — 360 as t — 0 in the weak-+ topology of Radon measures;

(e) for p < p* and s € (0,00), u,, satisfies u,(-,t) — %th(t,-,O) — 0 n Lt (RN,TQAdm) as
t — 0, where ph2 is the heat kernel for the weighted Laplacian N2 = r=V . 1?2V ;
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(f) for p < p*, uso is self-similar, that is use(x,t) =t 2e=Dv(z/V/1), with v(z) < Ce~l=*/8
for some C > 0.

The proof of Theorem is given in Sections 2-5. In fact, the results for the case of the
initial data sd are obtained as a special case of Radon measures as initial data, as it is done in
[5]. We extend the results of Brezis and Friedman [5] and Véron [30, Chapter 6, Theorem 6.12]
to the case of equations with the generator of a symmetric ultracontractive Feller semigroup in
place of the Laplacian. This allows for a much wider range of applications such as the fractional
Laplacian, symmetric subelliptic operators and many more (for further examples see, e.g. [13]).

The solution to the original problem (LII), (I2]) is contained in the next corollary, which is
a pull back of Theorem

Corollary 1.3. Let p > 1, v < (%)2, A= —% + (%)2—/@ a > —2. Denote
P =1+ ]%Lf;\ Then

a) for p > p**, there are no singular solutions to (ILIl). More precisely, the only solution to

(CI) satisfying ([L2) is zero;

(b) for p < p** and s € (0,00], there exists a unique singular solution u, to (LI) satisfying
}LI% [ w.(z,t)|z|Mx = 3 for all p > 0. The map » — u,, is a bijection between (0, o]
{lzl<p}
and the set of nontrivial singular solutions to (IL1));

__24a
(¢) for p < p**, the very singular solution s, is self-similar, uso(v,t) =t 20=Dv(x/\/t) with
v(z) < ClzPe #*/8 for some C > 0.

Remark 1.4. The above corollary shows that the Lebesgue measure does not allow for a clas-
sification of singular solutions to (L1)). To demonstrate this let o, k, A and p*™* be as in the
preceding corollary.

1. For k <0 (hence A > 0) and p € (1,p**) every non-trivial positive singular solution u to
(LI satisfies u(z,t) = O(|z|*) as & — 0 for allt >0, and [ u(x,t)dz — oo ast — 0

{lzl<p}
for all p > 0.
2. for K >0 (hence A < 0) and p € (1,p**), given » € (0,00), one has [ wu,(x,t)dr — 0
{lzl<p}
ast — 0 for all p > 0. Moreover, [ uc(x,t)dz — 0 ast — 0 for all p > 0 if

{l=l<p}
pe(1+ 2+To‘,p**). So in this case we have the initial datum zero with nonzero solution,
and we encounter the non-uniqueness phenomenon.

3. For k>0 (hence A <0) one has [ uso(x,t)dz — oo for all p >0 if p € (1,1 + Z£2).
{lz|<p}

4. For k>0 (hence A <0) and p >0 one has [ uso(x,t)dz — ¢ < oo forp =1+ 22,
{lzl<p}
The limit c is independent of p. So this is the only case with the initial datum cdg.

Further on we use the following notation. For p € (1,00), p is the conjugate exponent, that
is p’ = ;5. 1x stands for the characteristic function of the set X, Br := {z € RN : x| < R},

Dp = {(z,t) € RN x (0,00) : R? < |z|? +t < 4RZ}.



t+9 8
For § > 0, let Ty denote the Steklov average, Tsu(t) = % [ u 2 [ u(s+t)d
t—0 -4

We finish this section with the proposition classifying singular solutions to (L) i.e, the
solutions satisfying (L7)). This is an analogue of [I7, Lemma 1.1].

Proposition 1.5. Let u € L} ((O,oo) H}

loc

(RN ,h2dm)) N Lg’;1<RN X (O,oo),rﬁthwdt> be a
non-trivial positive solution to (LO) satisfying (LT). Then, for any p > 0, there exists the limit

loc

lim/u(x,t)]x\mdm =: 2 < +00.
t—0

By
The limit is independent of p > 0.
For the proof we need the following lemma which will also be used further on.

Lemma 1.6. Let u € Lloc<(0,oo) H} (RN,thx)> NPt (RN (O,OO),T6h2d$dt> be a so-

loc loc

lution (sub-solution) to (L6l satisfying (LT). Let u denote the continuation of w into the
semi-space RN x (—00,0) by zero. Then, for every domain Q such that Q@ € RN \ {0}, the

function @ is a solution (sub-solution) to (L) in QxR and, moreover, u € LS, <RN x (0,00) ).

In particular, if u is a solution to (L8) then @ € C*1(Q x R) and u(z,t) — 0 ast — 0
uniformly in x € Q.

Proof. Given Q such that Q@ € RN \ {0}, observe that h,7? € C*(Q) and there exists a
constant ¢ > 1 such that % < h2, 78 < ¢ on Q. Hence the first assertion follows from [5, Proof
of Theorem 2, steps 2,3].

To prove the second assertion, consider a cylinder Br x (tg,t1), R > 0, 0 < tg < t;. Then
there exists T € (0, 3t9) such that u(7) € H}»(Bag). Moreover, u is bounded on dBsp x (7, 2t1),
by the first assertion. Let the function w be the solution to the problem

oyw — h=2V - (h2Vw) =0 in Byg X (T, 2t1),
w(x,t) = u(z,t), (x,t) € Bap X {7} U9Bag x (T,2t1).

Then w is bounded on Bg X (tg,t1) [15] and, by the maximum principle, |u| < |w|. O

Proof of Proposition First we show that if the limit exists, then it is independent of p.
Indeed, for R > p,

lim wh?dx =0
t—0
Br\B,
since u(x,t) — 0 as t — 0 uniformly in x € Bg \ B,, by Lemma [l
Now we show the existence of the limit. Note that v = (u — 1)T + u A 1. Given p > 0,
Lemma[L.6 implies that there exists T, > 0 such that u(z,t) < 1 for all x € B,\ B,/s, t € [0,T}].
Hence u; := (u—1)T1p, € Lloc((O,Tp); Hig(]RN)).

Next we integrate (LG over the set {u; > 0}. To do this, consider the sequence (&,)n,
&t RT — RY)&,(s) :== (ns)T A1, Then (&), is a sequence of bounded non—decreasing
Lipschitz functions approximating 1(g ), so that &n(u1) can be used as a test function for
(T8). For 0 < s <t < oo we have

t t
/ &n(u)Opu hdx dt = —/ Vén(ur) - Vuh dmdt—/ gul)uprﬁthx dt.
s JB), s JB),

6



Since V&, (u1) - Vu > 0, it follows that f; pr &, (uy)Opur dx dt < 0. Note that &, (u1)ou =
9 Zn(u1), where 2,(s) = [ &u(T)dm — s as n — oco. Then

/Bp En(ul)(t)r”‘dxg/ En(ul)(s)r”‘daﬂ.

By

Passing to the limit as n — co we obtain that

/ (u — 1)*(t)h%dx < / (u —1)"(s)h%dz.
BP

B,

Due to this monotonicity,

/ (u—1)T(t)h?dx — 3 < 400 as t — 0.
By

Finally, [ B, U A 1h%dxz — 0 by the Lebesgue dominated convergence theorem. O

Remark 1.7. If pr u(t)rPdz — 3 < o0 as t — 0 then u(t)h?dr — 5y as t — 0 in the

weak-* topology of Radon measures. Indeed, for any 0 € C.(RN) there exists R > 0 such that
suppf C Bg, and, for any € > 0 there exists p > 0 such that |0(x) — 0(0)| < € for all x € B,,.
Then

(1.9) /RN Qu(t)h*dx = 9(0)/B

Now fBR\Bp (0—6(0))u(t)h*dz — 0 ast — 0 since u(z,t) — 0 as t — 0 uniformly in x € Br\ B,
and

u(t)h?dx + /

(0 —0(0))u(t)h*dx + / (0 —0(0))u(t)h?dz.
BRr\B,

R Bp

lim sup
t—0

< ex.

/ (0 — 0(0))ult)h2dz
By

Therefore it follows from ([L9) that, for any e > 0,

lim sup
t—0

Ou(t)h*dx — 0(0)%' < €.
RN

Proposition gives rise to the following definition giving classification to singular solutions
to (LO).

Definition 1.8. A non-trivial positive solution u to (6] satisfying (L7]) is called a source-type
solution (SS) if pr u(t)r®*dr — 3 with some finite > > 0. The solution u is called a very

singular solution (VSS) if pr u(t)rPdz — oco.

The rest of the paper is organized as follows. In Section 2] we prove a-priory estimates of
Keller-Osserman type and show that in the critical and supercritical range of values of p the
only solution to equation (LG) satisfying (7)) is zero. In Section 3 we study general linear
inhomogeneous evolution equations with a generator of a Feller semigroup and with Radon
measures in the right hand side and as initial data. These results are applied in Section 4,
where the general semilinear equations with Radon measures as initial data are studied. The
results are then applied to equation (LG)). Very singular solutions to equation (L6 are discussed
in Section 5. Finally, in Appendix we give a version of the Hardy inequality and provide an
auxiliary compactness result.



2 A-priori estimates and nonexistence result

We start with a-priori estimates for sub-solutions to (6] similar to that obtained in [5]. We
use the notation
Dpr = {(z,t) e RY xRy : p> < |z* +t < R*}.

Proposition 2.1. Let 0 < Ry < iRl and u be a sub-solution to (L6l in the paraboloid layer
DrRy,r, such that u(x,t) = ug as t — 0 in L3, (Bg, \ Br,). Then, for all Ry < p < TR < IR,

248
(2.1) / [\Vu!Q + rPuP T B2dzdt < ¢ (pNﬂL2A 251 4 RN 20 + HuoHLz ) .
D2p,R
_ 2B
Moreover, for ug = 0 one has, u(x,t) < c(|z|> +t) 20D for 4R3 < |z|*> +t < R3.

Proof. In the proof we use some of ideas from [B]. Let ¢ € CHR), 1go0) < ¢ < 1(1,00),
|¢'| < co®, with a < 1 to be chosen later. Let

2 2
e=o () m=o (5 ) mac—en

Then
1p,,, <(<1p

p,2R?
C C
(2.2) |0:C| < Flengan + ﬁlDR,zanav
C C
IVCI < S0, €+ i ban

We set u(w,t) := ug(x) for t <0, z € Bg, and choose T5(¢?(Tsu)) as a test function in (I6) on
D, 2r. Note that it is a legitimate test function, by Lemma [L.6l Further on we denote w = Tsu.
Then we obtain

/ \Vw(]2h2dxdt+//r5T5(\u]p1u)§w§h2dxdt

g//MQC@C thxdt+//w2|VC|2h2dxdt+ / w?(0)¢%(0)h?dz.

Bar\B)

Passing to the limit as 6 — 0 in the last inequality, we may replace w with u. Now we estimate
the first two integrals in the right hand side using (22). By the Young inequality, for all € > 0
there exists ¢, > 0 such that

u*¢l0y¢| <u*¢ [ 51D,,,6" 1+ o5 2 1D32R577 }
<e (r_ u?¢? —i—rﬁ\u]p“CQ) —i—cgrm_z_z = <p - alpp2p + R T 1p, QR) )
u?| V¢l qu[ 510,580 + 75510720 ]
<e (r*2u2g‘2 —i—rﬁ\u]p“g“z) + 057“%7272 o= <p = alpp 2 TR a]lDR QR) .
Note that, by Hardy inequality (A.1l), for all ¢ > 0,

/ 20 () (t)hdr < 5 / \VuC|?(t)h3da.

(N



Choose now « € (z%’ 1) such that

2 2
—2—2ﬂ+2A+N>0.
11—« p—1

Then by a direct calculation
/ / R TarTa 22 2t < RN T2
Dr2r
which implies that
_92+6 _92+8
/ / \Vul [2h2dedt+ / / PP lufP Chtdedt < cp™ TP RN e / u?(0)¢2(0)h3da,
Bar\B)

which completes the proof of the first assertion.

To prove the second assertion, note that by the mean value inequality for sub-solutions (see
Theorem [3.8 below) we have that

sup |u| <C ]9[ w?h2dadt
D5/2p,7/2p D2p,4p

Using the Hardy inequality and (21)) with R = 4p, we have

2.3 u?h?dxdt < ul|*h2dzdt < p? ul 2 r2h2dxdt
p
D2p,4p
(2.4) < ¢p? / / IV (uC)2h2dadt < cpN A2

o,

Corollary 2.2. Let p < 1+ ]\?ig and let u be a solution to (LO) such that u(t) — 35y as
t — 0 in weak-x topology of Radon measures. Then u € L? ((O,T); HiQ) for all T > 0 and

loc
w(z,t) < 3p (2,0) for a.a. (z,t) € RN x (0,00), where p"* is the fundamental solution of the
linear equation (0; — Ap2)w = 0. In particular, u € LP+1 (RN x (0,T),rPh%da dt) for all T > 0.

1
2

Hence

1
2 2t

uthdxdt> <cp »1.

@

2p,4p

O

Proof. The first assertion follows from (Z1]), setting R — oo and choosing p arbitrary small.
The proof of the second assertion literally follows the argument [I8].Namely, let u(t) — 3<dp
as t — 0 in weak-* topology of Radon measures. Let u(”) be the solution to the initial value

problem
{ (Bt — Ah2)’u,(T) =

0, t>r,
u (1) = u(r).

Then, by the maximum principle, u(7)(z,t) > u(z,t) for a.a. (z,t) € RV x (1,00). So, for
0 < 7/ < 7 one has u(™) (1) > u(r) = w7 (7). Hence, by the maximum principle, u(")(z,t) >
u™(z,t) ae. on RY x (1,00). So u™ 1 u® as 7 | 0 and u®(z,t) = »p!”(x,0) since
u) (1) = u(T) = 8y as t — 0. O



The next lemma reduces the proof of the second assertion of Theorem to the critical
case p = p*.

Lemma 2.3. Let u be a sub-solution to (L) satisfying (LT). Then, for1 < q < p, the function

1
—1\pr1 p—1
(=)

is a sub-solution to the equation dyw — h=2V - (h2Vw) + rPwlw|?~1 = 0.
Proof. Denote 3 = Z%l > 1, Ts the Steklov average and ug := Tsu. For ¢ > 0 and ( €
c! <RN x (0, oo)), ¢ > 0, choose the following test function for (LG):

Ts (Cu(;(ug + 6)%772) .

Note that this is a legitimate test function since u is locally bounded. Then the following
inequality holds:

// OpusCus(u? + 8)%7_2h2d.%'dt + // VusV (Cugs(uf + a)hT_Q)thmdt
(2.5) .
<-— / Cus(u? + &) 7 rPTs(|ufP~ u)h2dxdt.
Denote V. (u) := %((u2 +¢e)% — 5%). Then

7

OrusCus(ul + ) T = OV (uy)

and

»x—=2

VsV (Cus(uf +) ) = VVa(us) V¢ + ¢ (3¢ — D + ) (63 +2) T |V .
Hence it follows from (2.5]) that

_//Vg(ué)atCthxdt +/ VV.(us)V¢h dadt < —/ Cus(u? +5)%T_27«5T5(’u‘p—1u)h2dmdt.

Passing to the limit as ¢ — 0 and then as § — 0 we obtain

—// |u|”8t§h2dxdt+//V|u|”vgh2dxdt+%/ ClulPP I h2dadt < 0.

Hence the assertion follows. O

Remark 2.4. Lemma[2.3 is a parabolic version of [19, Proposition 1.1].

The following theorem establishes the removability of singularity at (0,0) for the critical
case.

Theorem 2.5. Letp=1+ ]\?Ig)\ Let 0 < u e LSS (RY x R\ (0,0)) be such that

(2.6) // <r5upC —uly — uAhQC) hldxdt <0, (e C>L.
RN xRL
Then u = 0.
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Proof. Let £ € C*(RL) be such that

" 1
(27) 1[2700) < g < ]I»[l,oo)a ‘5,‘7 ’5 ‘ < C§"-
Let 0 < p < R < 0o and define
t+ |z]? t 4 |zf?
©3) o) =€ (“57) e =1 ¢ ().

We take ¢ = £,nr as a test function in (Z6]). It is easy to see that
supp ¢ = {(z,t) : p* <t+|z]* <2R?}.
Using (2.7) one verifies directly that

1

1 2 1 1
0]+ [Ap2C] < cﬁSé’an{p2gt+\x\2g2r2} + e &R (Re <o <2R2)

Thus we have

1::// rPuPChde dt < // u(|0:C| + | Ap2C|)h2da dt
RN xRL RN xRL

1
<cp 2 // u€ynrlys 2 2oy h2da dt
(2.9) RN xR} P {p?<t+|z]2<2p%}

1
+eR™ //N 1 ugpnlzj?l{RQSt—l—\x\?ggRqh2dx dt
RN xRL

=11 + I.
By the Young inequality

1 1 _2 _ B8
Ilf;cP?J(/ W(ENR) P g2ty ofe<apeyhdn dt < 1+ ep™ T
RN xRL - 4
Similarly,
—2 1 1 N42—22_ 4oy B
I, <cR u(gan)P 1{R2<t+\x\2<2R2}dx dt < =-I+cR p—1 p=1,
RN xRL B B 4
Hence for every p > 0 and R > 2p we obtain

_2p __B _ 2 __B_ 2
I< c(pN+2 P + RN+2 ST H2A 1)=c¢ as N+2— _“p 42N — L —0.
p—1 p—1
Passing to the limits p — 0 and R — oo we conclude that

(2.10) // rPuPChde dt < co.
RN xRL

Now we return to (Z9). Estimating [; and I by means of the Young inequality and using

(ZI0) we have

1
I < cp_2 // u§51{p2§t+|m|2§2p2}h2dxdt
RN xRL

p
(2.11) < ¢ // 1{p2<t+‘x‘2<2p2}rﬁupgthdx dt] —0 asp—0.
RN xRL - -
Similarly we see that Iy — 0 as R — oo. Hence we conclude from (2.9]) that I = 0 which implies
that u = 0. O

Now assertion (c¢) of Theorem [[.2] follows from Theorem 2.5 Lemma[2.3] and the correspond-
ing parabolic version of the Kato inequality (see, e.g. [30, Chap. 6]).
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3 Linear equation with a generator of an ultra-contractive Feller
semigroup

In this section we study an abstract inhomogeneous evolution equation with measures as initial
data.

In this section Q C RY is a domain and 7 is a positive Radon measure on £ and we denote
LP .= LP(Q,dvy). Let T > 0 and Q = Q x [0,7]. We also denote LP(Q) = LP(Q,dydt) and
naturally identify LP(Q) = LP([0,T7]; LP).

In the sequel we also use the notation Cy(12),Cy(§2) for the spaces of continuous function
vanishing at infinity and at the boundary of 2 and bounded continuous function, respectively.
M(Q) stands for finite signed Radon measures on .

Let (£,F) be a closed symmetric Dirichlet form on L?, —L the associated self-adjoint
operator in L% and S = (S(t))i>0 the associated symmetric Markov semigroup on L?, i.e.
1S flloo < || flloe for any t > 0), S(t) = e*t. The domain F of the form & is a real Hilbert
space with the norm ||f||lr = (£(f))2. We refer the reader to [10] [13] for the definition and
properties.

The action of the semigroup S on the measure p is defined in a standard way by the following
identity

(3.1) /Q (S(t)1) by = /Q (S(0)d)du, & € Co(€).

We start with the following simple statement.

Proposition 3.1. Let ¢ : (0,00) — (0,00) be a non-increasing function. Assume that

(3.2) SO 1 e < (t), £>0
and
(3.3) S(t)Co(2) C Cp(Q) and S(t)1 € Cp(Q).

Then S(t), t > 0, is a bounded operator S(t) : M(Q) — Co(Q) N L' NF and
1
(34) ISl m—re <9 (#), 1 <g< o0

Moreover, for every t > 0, S(t) is an integral operator with a positive bounded symmetric
kernel pi(x,y) which is continuous in each of the variables x,y,t and

(3.5) pilay) < 6(0) and [ pile,w)r(dy) <1
Q

For every t > 0, the operator S(t) maps weak-x-convergent sequences in M() into strongly
convergent sequences in Cy(Q)N LN F.

Proof. By the Riesz-Thorin interpolation theorem it follows from (B.2) that ||S(¢)||rr—re <
¢%_é(t), 1 <p<gq< oo Since Cy(Q2) N LP is dense in LP, by B3), S(t) : LP — Cp(Q).
Hence, ||S(t)||lrr—c, < 1#%(25), t > 0. By duality S(t) : Cp(Q)* — L9, 1 < g < co. In particular,
S(t) : M(Q) — L% and [|S(t)|[|m—re < 1/1?1’(t), 1 < g < co. By the simple factorization
S(t) = S(t/2)S(t/2) : M(Q) = LT — Cy(Q), and [|S(£)[m—c, < (t), £ > 0.

12



Similarly, S(t) = S(t/2)S(t/2) : M(Q) — L? — F.

The second assertion follows from the first one taking p(z,y) = (S(¢)dy)(x).

To prove the last assertion we first show that S is a strong Feller semigroup, that is, for ¢t > 0,
S(t) maps bounded Borel measurable functions into continuous ones. To this end it suffices to
verify that @ + py(z,-) is a continuous function from Q to L' for all £ > 0. If v(Q2) < oo this
immediately follows from the fact that ps(x,y) is continuous in x for all ¢ > 0 and y € € and the
bound 0 < p(x,y) < (t). In case v(2) = oo to verify the assumptions of the Vitali theorem it

suffices to show that, for every x, — x in ) as n — oo and every ¢ > 0, there exists a compact
K. C Q and N € N such that

/ pe(zn, y)y(dy) < € for all n > N..
OVK.

Given x, — z in Q asn — oo and € > 0, let K. C 2 be such that

™

/ pi(,y)y(dy) < 5.

O\K-

Note that 1. € L' so Silg. € Cyp(Q). Since Si1 € Cy(2), we conclude that Stlok. =
Sil — Silk. € Cp(2). In particular,

/ pe(zn, y)y(dy) — / pe(z,y)y(dy)| — 0 as n — oo.

\Ke ON\K.

Now choose N such that the above variable is less then § for n > N.. Thus S is strongly Feller.

Now let p, — @ as n — oo in the sense of weak-* convergence in M(2). Then, for every
Borel measurable F,

/(S(t),un)dfy /(S 1 Eg)duy, —>/ t)1g)du = /(S(t),u)d’y as n — 0o,
E E

since S(t)1g € Cy(2). Hence S(t)pn — S(t)p as n — oo weakly in L'. Since (S(t)un)(z) =
[ pt(z,y)pn(dy) and p; is bounded and continuous in y, we conclude that S(¢)u, — S(t)u
as n — oo, pointwise in Q. Hence S(t)u, — S(t)u as n — oo strongly in L'. The strong
convergence in F and in Cy(Q2) follows from the factorization argument. O

Let us introduce the convolution operator 7 on LP(Q) by (T f)(z,t) fo (t—38)f) (z,s)ds.
In the next two propositions we collect the required properties of 7.

Proposition 3.2. Let condition [B.2) hold. The following assertions hold

1) T is a completely continuous operator on L'(Q);
2) T is a bounded operator L*(Q) — L% ((0,T); F) and L*(Q) — L? ((0,T); D(L)).

Proof. Note that T is an integral operator on L!(Q) and

(THt) = [ [ batige) o ty)
Q

13



with k(z, ¢y, s) = 1(0,00)(t = 8)pt—s(x, y). Since

// E(x,t;y, s)y(dz)dt = /Tl(o,oo)(t— s)/pt_s(m,y)’y(daﬂ) dt < /Tdt <T
Q 0 s

Q

for a.a. (y,s) € Q, it follows by the Dunford-Pettis lemma (see e.g. |11, Lemma III.11]) that
T is completely continuous on L!(Q).

To prove the next assertion, observe that

ITHWIr<e [ —=lflids and [ETNO: < e [ S Iflas)ds

1
0 Vi—s
Since the integral operators with the kernels Ko(t, s) = —2— and Ki(t,s) = ;& are bounded

\/tT t
on L2(0,T), the second assertion follows. O

Proposition 3.3. Let the conditions of Proposition [31] be fulfilled. In addition assume that
(3.6) St)p(x) — ¢(x) ast — 0 for all x € Q, ¢ € Cy(Q).

Then T can be uniquely extended to a bounded operator from M(Q) to L™ ((O,T); Ll). More-
over, TLY(Q) c C ([0,T]; L').

Proof. First, observe that, S(t)u is strongly continuous in L' ¢ M(Q) for all ¢ > 0, for every
uw € M(Q). Moreover, it follows from (B.6]) that S(¢)u is w-+ continuous continuous at ¢ = 0.

Now let m € M(Q) and m = pu; ® v be its disintegration into v € M([0,T]) and a function
t— pp € M(Q) such that t — p;(F') is v-measurable for all Borel sets F' (see [2, Theorem 2.28]).
So t — p; is a weakly v-measurable function from [0,7] to M(€2). Hence the function s —
S(t—s)ps is also a weakly v-measurable function from [0,¢] to M(£2). Since S(s)M(Q) C L! for
s > 0, we conclude that s — S(t — s)us is separably valued, hence it is (strongly) v-measurable
by the Pettis measurability theorem (see [11, Theorem 2.2]). So we define the extension of T

on M(Q) b
(3.7) (Tm)(0):= [ St = (),
[0,¢]

where the right hand side is a Bochner integral.
Moreover, T : M(Q) — L*>((0,T); M(2)) is bounded. Indeed,

T Olaey < [ 156 = sler 110) < [ il 1(65) = Il

Hence the extension is unique.
Now, let v = v, + > ¢;d, be the decomposition of v into the continuous and the atomic
parts. Then fg S(t — s)psve(ds) € L' since S(t — s)us € L! for all s € [0,t), and

/Ot St — s)us Z 0, (ds) = Z ek S(t — ti) e, -

<t

The latter belongs to L' for all t # ¢, k =1,2,.... So Tm(t) € L' for a.a t € [0,T].
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Finally, we show that if v = v, then Tm € C ([0, T; Ll), which will prove the last assertion.
Indeed,

t+0 t
Tm(t + h) — Tm(t) = / S(t+6 — 8\ +/ (t+05) = S(t — )| patds).
t 0
Then
t+6 t+0

H / S(t+ 06— s)u(ds)|| < / sl oy |1 (ds) = [m](Q x (t,¢ +8)) = 0 as & — 0.

Further,
H[S(t—i—é—s) — S(t — 5)] s

— 0 as d — 0 for all s €[0,¢).
I

Moreover,

[S(t+d6—s)—S(t—s)]

s|| 11 < 2”#3”/\4(9)- Thus

H/ [S(t+6—5)=5(t—9)|uvias)|  —~0ass—0.
0

Remark 3.4. For further use we observe that, for n € C([0,T]; L' N Cy),

T
t) = /S(s —t)n(s)ds

where the right hand side is a Bochner integral. Note that T* is a bounded operator on
C([O,T]; L'n Cb), by the argument similar to the one in the proof of the preceding proposi-
tion.

Definition 3.5. Let m € M(Q) and p € M(Q2). We say that u € Lloc((O,oo); .7:) NLYQ) is

a solution (sub-solution) to the problem
(3.8) (O —L)u=m, u(0)=p

if the following integral identity (inequality) holds

/u(tl)C(tl)*y(dx) — /tl/uatg“’y(dx) dt—i—/tlé’(u(t) C(t))dt
to Q to

Q
(3.9) — (<) / / Cm(dudt) + / u(to)C(to) (da)
to Q Q
and
(3.10) st sup) / w(t)C () (dr) = (<) / ¢(0)dp
Q

for all t; > tg > 0 and ( € W, { > 0, where

W= {¢ € Co(Q) N L ((0.00): F) W ((0,00): L) }.
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The next lemma provides the representation of the solution to (B.8]).

Lemma 3.6. Let u be a solution (sub-solution) to (B.8)). Then u= Su+Tm (u<Su+Tm).

Proof. We prove the assertion for solutions, the proof for sub-solutions being completely the
same. Let n € C([O,T]; L'n Cb), A > 0. Denote

ma(t) == (L= XL)"In(t),t € [0,T] and ¢y == T*ny.

Then 1y, € C([0,T]; L' N Cy). Since Ly (t) = $n(t) — $ma(t) for all t € [0,T], we conclude
that Lna(-), L) € C([0,T); L N Cy). Hence 8;¢(y = —L{\ — . In particular, ¢, € W.
Testing (B3] by ¢ and noticing that &,(T') = 0 we obtain

T T T
_/to /Qu(%CAd%bH— \ 5(u,CA)dt:/tO /QQ\dm—k/Qu(to)Q\(to)d,y

E(u, ) = /Q WLirdy = /Q (@G + ).

Hence, passing to the limit as t5 — 0 we obtain that

Note that

T

O/T!umdvdt/OT/QC,\dm%—/QCA(O)du//Tm )\d’Ydt-i'/ /S,u ady dt,

0

where the last equality follows from (B.J]) and the definition of 7. Finally, observe that ny — n
as A — 0 pointwise, so passing to the limit in A\, we have

T

T
//undfydt://Tm—l—S,u )n drydt.
0 Q

0

Hence the assertion follows. O

The next proposition gives a version of a maximum principle. It is an extension of [5,
Lemma 3].

Proposition 3.7. Let f € L'(Q), u € M(Q), and u be a solution to (38). Then, fort € (0,T),

t
[urar< [ [ psgids+ [aet,
Q 0 Q

Q

[ iy < j [ rsentrds + [ dul.
Q 0 Q Q

Proof. Note that u = Su + T f, by Lemma It suffices to prove the inequalities for f €
LYQ)NL*(Q) since T is a bounded operator on L*(Q). By PropositionB.2u € L7 ((0, T); ]:),

Owu, Lu € Lloc<(O,T); L2) and

(3.11) @ — Lyu = f.
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Now we prove the first estimate. Denote vy(s) := (ks)* A1, k =1,2,... Then vy is Lipschiz,
non-decreasing, vx(0) = 0 and v, — 150y as k — oo. Hence vy (u) € L%OC<(O,T); ]:> (cf. [13,
Theorem 1.4.1]).

We claim that &€ (vg(u),u) > 0 . Indeed, recall that, for all u,v € F one has E(u,v) =
/\lim EMu,v), where
—00

EMuyv) = € (u, A — £)" 1)

is the approximation of £. By [13| (1.4.8)], there exist positive measures py € M() and
ox € M(Q x ) such that

M) = /Q w2 pux(d) + / /Q (o)~ uly) (. dy).

Then it is straightforward that £*(p(u),u) > 0 for all A > 0 and all Lipschiz monotone p such
that p(0) = 0. Hence passing to the limit as A — oo, we conclude that &(vg(u),u) > 0.

Now multiply BII) by vg(u) in L? to obtain that
[ota)au)dy < [ o dr
Q Q

Integrating the latter in s over the interval (7,¢) we obtain
t
/Vk (u(t))ch < / /vk(u)f dyds + /Vk (U(T))d’)/,
Q T Q Q

where Vi (s) is the primitive of vg(s), Vi(s) 1 sT as k 1 oo. So, for 0 < 7 < ¢, it follows that

t

/u*(t)dfyg //fl{u>0}d'yds+/u+(7')dfy.
0 Q 0

T

It remains to pass to the limit 7 — 0. By Lemma using positivity of S and 7T, we have that
ut (1) = (S(M)p+ (TH)" < S(T)u™ + (Tf7)(r) and

/(Tf+)(7')d’)’://S(T—S)f+(8)d’yd8S/Hf(s)Hyds—)Oasr%O.
0O 0

Q

So, as 7 — 0 we arrive at the first assertion.

To prove the second assertion, note that v = (—u) is the solution to the problem (9, — L)v =
—f, v(0) = —u. Hence

t

[y <= [ [ f1pcqinds+ [
Q Q

0 Q

O

We conclude this section by recalling two results on the parabolic equation with a weighted
Laplacian.
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Linear equation for a weighted Laplacian. Here we consider a special of the measure
dy = h2dx and the operator Lu = —h~2div(h*Vu), where as before h(z) = |z|* with A > 25X,
Namely, we state the Mean-value inequality and the heat kernel estimates for the linear equation

(3.12) dyu — h™2div(h*Vu) = 0.

Theorem 3.8 (Mean-value inequality). There ezists a constant C > 0 such that, for all (z,t) €

RNFL >0, ¢ > 0 and a weak positive (sub-)solution u to [BI2) in the cylinder Q(m =
Ban(x) x (t — 4r%,t + 412), the following inequality holds: for Q~ := B, jo(w) x (t - 2r2 t) and

QT := B.(x) x (t+3r% t + 4r?),
1
q
sgl_pu <C <]§[Q+uq> ,

where the average integral in the right hand side is by measure h*>dxdt.

Theorem 3.9. Let k be the fundamental solution k to the equation [BI2)). Then for all § > 0
there exists cs > 0 such that for all z,y € RY and t > 0 the following estimate holds:

(3.13) k(t, 2, y) < cot~ 52 ¢ a0 (‘\[’ > (‘\yfu > )

The detailed exposition of these and related results can be found in [15] 25].

4 Source solutions

Here we use the same notation as in the previous section. In this section we construct solutions
to an abstract semilinear equation with measures as initial data. We closely follow ideas from
[30, Chapter 6].

Consider the solution of the non-linear equation
(4.1) (0y — L)u(z,t) + g (x,u(z,t)) =0, u(0)=pne M(Q),

where L is as in the previous section and g : £ Xx R — R is measurable in = for all » € R,
continuous in r for a.a. z € Q (the Caratheodory conditions), non-decreasing in  and vanishing
at r = 0 for a.ax € Q. We denote G : u — g (z,u(x)) the correspondent monotone homogeneous
Nemytskii operator. So a weak solution to the problem [Il), e.g. (0; — L+ G)u = 0, u(0) = u,
is w e LYQ) N L2 .((0,T); F) such that Gu € L'(Q) and (8, — L)u = —Gu, u(0) = p in the

sense of Definition 3.5l In particular,
(4.2) u =Sp—TGu.

Proposition 4.1. Let puy,ps € M(Q), p1 < po, gi(x,r) > ga(x,r) for all v € R and a.a. x,
G1,G2 be the corresponding Nemytskii operators and u; € LY(Q) be solutions to the problems
(O — L+ Gj)u; =0, uj(0) = pj, j =1,2. Then uy < ug pointwise for a.a. (x,t) € Q.

Proof. Let w = u; —ug. Then w satisfies (0 — L)w = —(G1u; — Gaug), w(0) = —(ue — puq) < 0.
By Proposition B.7], for ¢ > 0,
t

/ (t)h%dx < — // (Grur — Gaug) 1y, ~qydy ds.

Q 0

However, w > 0 implies u; > us and hence Giu; > Gius > Gous. So the above yields wt = 0
and u1 < usg. O

18



The next corollary is a straightforward consequence of Proposition 4.1l

Corollary 4.2. Let p € M(Q), G be a monotone homogeneous Nemytskii operator. There
exists at most one solution to the problem (0; — L + G)u = 0, u(0) = p. The solution satisfies
the estimates

—Sp~ <u< Sut

and

T 2 1 2
(4.3) / lu(s)lF ds < 5¥(T)llelme@)-

Proof. The first assertion is clear from Proposition Il The second assertion follows from the
comparison of the solution to the problem (9, — £ + G)u = 0, u(0) = p, with the solutions
to the problems (0; — £ + GT)vT = 0, v*(0) = +u*, where GF is the Nemytskii operator
corresponding to the function 11,>¢g(z,7). Note that vt = +£SuT and that 1_,>q9(z,7) <
g(w,7) < 1,>q9(z,7). Hence the pointwise estimate follows.

Now we prove 3). For A > 0 let (\(t) := S(A)u(t), ¢t € [0,T]. Since v € C([0,T]; L*) N
L? ((O,T); ]:), one has ¢, € C’([O,T]; L'n C’b) NL? ((O,T); ]:). Moreover, differentiating the

loc loc

equation ()(t) = S(A+t)u — S(A)(T Gu)(t), we obtain
(0:\) (t) = LS(N)u(t) — S(N)(Gu) (t), t € (0,T).

Hence () € I/Vli’cl((O,T); L*>). Since |u(t)] < S(t)|u|, t € (0,T], we conclude that u €
L ((0,T); L*). Hence ([39) holds with ¢ = (). For 7 € (0,T) we have

loc

T T
o @Ie + [ @@+ [ [acudrd =360
T T Q

Passing to the limit as A — 0, we arrive at

T T
%Mﬁﬂé+/dﬂMﬁ+//m%mﬁ:;WﬂmT
T T Q

Finally, observe that u Gu > 0 a.e. and that Hu(T)Hi2 < HS(T)WH’%Q < ¢(7’)||,u||3w(m O

Proposition 4.3. Let g,(x,r) — g(z,7) for a.a. x and locally uniformly inr € R, as n — oo.
Let G, G be the corresponding monotone homogeneous Nemytskii operators. Let i, p € M()
be such that p, — u in the weak-x topology of M(). In addition assume that

(4.4) w = sup [GnSpy = Gu(=Spy)] € LY(Q).

Let uy,, be the solutions to the problems
(4.5) (O — L+ G)up, =0, uy(0) =p,, neN.

Then u, — u in LY(Q) as n — oo, and u is the solution to the problem (0; — L + G)u = 0,
u(0) = p.
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Proof. First note that the sequence (i), is bounded in M(Q2) since it is weak-* convergent.
Let M = sup ||pn|| pm() < 0o. Now we have to pass to the limit in (Z.3]).
n

Since |Gpun,| < w € L'(Q) and by Proposition B.7,
||GnunHL1(Q) < M,

the sequence (Gyuy, )y is a pre-compact set in the weak topology in L!(Q). By Proposition 3.2
T is a completely continuous operator on L'(Q). Moreover, Su, — Su by Proposition Bl
Therefore the sequence (7 Guy,)n, and hence the sequence (uy), are compact in L'(Q). More-
over, due to ([&3), (un)n is weakly compact in L2 _((0,T); F). Let (un,) be a sub-sequence of
(un)n convergent, in L'(Q) strongly, in L2 ((0,T); F) weakly and a.e. on @ to a limit u. Note

loc

that |up, (£)] < S(t)|pn,| < M1(t) a.e. by Corollary and ([B3.4). Since for all ¢ > 0 and a.a.
x € Q one has g,(x,r) = g(x,r) as n — oo uniformly in r € [—M(t), M(t)], we conclude that
G un, = Gu as | — oo a.e. on Q. So Gy, u,, — Gu in L'(Q), by the Lebesgue dominated con-
vergence theorem. Hence we can pass to the limit in the equality w,, = Spn, =T Gp,un, asl — 0o
and obtain that u = Sy — T Gu. Moreover, since u,, — u as | — oo weakly in L? ((O,T); ]:),

loc

it follows that u satisfies (8.9) with f = —Gu for all { € W. Hence (0 — L+ G)u = 0 and
u(0) = pu. By Corollary [4.2] the solution to the latter equation is unique so (uy,), has a unique

limit point u. Hence u, — u in L'(Q) strongly and in LIOC<(O7 T); .7-") weakly. O
The following is a straightforward consequence of Proposition 4.3l

Corollary 4.4. Let G be a monotone homogeneous Nemytskii operator, p, — i in weak-*
topology of M(Q), pn > 0, supp(pn) C By and ||| pm) < e Let uy, be the solution to (BL5).

Set sc(x,t) := ¢ sup pi(z,y). Assume that
yEBy

(4.6) Gs. € L'(Q).

Then w, — u in L*(Q) as n — oo, and u is the solution to the problem (0y — L + G)u =
u(0) = pu.

The next theorem is the main result of this section.

Theorem 4.5. Let (3.2) and B3) hold. Let u € M(Q) satisfy the condition

(4.7 / [GSpt — G(—=Sp™)] dydt < oo.
Then there exists a unique solution u = u, to the Cauchy problem

48) {@—E+®uz&

u(0) = p.
Moreover, [u,(t) — S(t)u] — 0 in L' ast — 0.

Proof. First we consider g such that g € L! with g(z) := sup lg(x,7)|, z € Q. Denote H(x,r) :=

fo x,s)ds. Then H is a convex positive sub-linear functlon in r for a.a. x € (). Consider the
functional

J(u) /qu ~v(dz), u e F.
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Then 6J = —L+ G. By [28, Theorem I11.4.1, Proposition I111.4.2], for j = 1,2, 3,... there exists
a unique solution u; € L? <(O, T); ]:> to the Cauchy problem

(19) (0~ £+ Glus =0,
u;j(0) = pj € L' N L.
Moreover, u; € L ((0,T),F) N W12 <(O,T); LQ).

If i — pas j — oo in the sense of weak-* convergence of measures, then, by Proposition 4.3]
u; — u as j — oo in L(Q), and u is the unique solution to ([@8). Indeed, we have to verify
condition (4.4]). However,

sup [GnSul — Gu(—Sp,)] < ge L

Hence the assertion follows.

For a general g, let Ex, C Q be an increasing sequence of subsets of finite measure such
that Q = UEy. For k =1,2,3,..., let gi(x,r) := 1g,sgn(g(z,7)) (|g(z,7)| A k), let Gy be the
corresponding Nemytskii operator and let uy be the solution to the equation (0; — L+ Gy )uy = 0,
u(0) = p constructed above. Then, by Corollary B2 —Su~ < uy, < Sp™, and hence

GSN+5 Uk > 0’

<GSut —G(-Sp).
—G(=Spu7), wp <0, 8 (=547)

(4.10) |Grug| < |Gug| < {

Since GSu™ — G(—=Su~) € LY(Q), Proposition 3] implies that ux — u as k — oo in L1(Q),
and w is the solution to (4.8]).

To prove the last assertion, note that Sy —u = TGu. So, by (EI0),

/ lu(t) — Sp(t)|dy < // [GSpt — G(—=Sp™)] dydr — 0 as t — 0.
Q 0 Q

O

The next corollary together with the last assertion of the previous theorem provide the proof
of assertions (d) and (e) of Theorem [L.2] for » < co.

Corollary 4.6. Let 0 <p <1+ ]\?Ig)\ Then the problem
Ou — h=2div(h*Vu) + rPlulP~lu  in RV,
u(O) = %50

has a unique solution u,, for every s > 0. Conversely, for 1 <p <1+ J\gig and » € (0,00),

if u is a solution to (LO) satisfying u(t) — »0¢ ast — 0 in the sense of weak-x convergence of
measures, then u = u,,.

Proof. In this case £(u) = ||[Vull3, is the bilinear quadratic form in L7, with CHRN) as
h2

its core. (It follows from Lemma [A]] that (5 ,CHRN )) is closable in L?,.) Let S denote the
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corresponding semigroup and k its integral kernel. By Theorem B.9] k obeys the estimate (3.13]).
Now we verify the assumption of Theorem

T T
/ / 1S (t)s¢00|PR2dadt = 5P / / |2[P 2 k(t, 2, 0)[Pdadt
0 RN 0 RN
T
|z)2 —pA
S/ / B e A (’%H) dadt
0 RN
T
B=(p=1)(N+2)) gyon — 2l .
scMa/t 2 df/W£| e A (|| +1) 7P de.
0 RN

The integral in ¢ converges since 6+2)‘7(p;1)N72p)‘ > —1, that is, p < 1+ ]\?Ig)\ The integral in

¢ converges since B +2A+ N = (f+2)+ 2\ + N —2) > 0.
The second assertion follows from Corollaries and O

5 Very singular solutions

In this section we construct a very singular solution to (L)) and prove its uniqueness. Through-
out the section we assume that

245

l<p<p =1 .
p=p TNt

We start this section by showing that every very singular solution (VSS) if it exists, dom-
inates pointwise every source type solution (SS). The next proposition is an analogue of [17,
Lemma 1.3].

Proposition 5.1. Let v be a VSS and u be a SS to (LL6), respectively. Then u < v pointwise
for a.a. (x,t) € RN x (0,T).

Proof. Let [p u(t)h?*dz — 5 < oo as t — 0. Let 79 > 0 be such that [ v(t)h*dx > s for
all 0 <t < 7. Then, for 7 € (0,79) there exists ¢, € L}, such that 0 < ¢, < v(7)1p, and
lorlls, =

Let u(™ be the solution to the problem
(0 — Ap2)u+ rPuP =0, u(0) = o,.
Thanks to Proposition 2] it is easy to check that
ve LNRY x (r,t), h2dadt) 0 LP(RY x (1,t), 7P h2dxdt).
Then by Proposition E.T]
(5.1) u(t) <wv(t+71), t>0.

Since Hu(T)(O)HLl2 = » and suppu(™(0) C suppwv(7), it follows that u(™)(0)h>dx — »dy in
h

weak-* topology of M(Q). Hence u(”) — u,, in L} :(Q) by Corollary 4] where (BI3) is used
to verify (£6]). Then (5] implies that u,, < v. O
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The above leads to an immediate construction of the minimal VSS.

Corollary 5.2. uy := lim wu,, is the minimal VSS, where u,, is the solution from Corollary[{.0,
H—>00

Proof. Using Proposition 2.1l one can easily verify that the above limit exists and is a solution

to (LG), (7). O

In the next proposition we follow the construction from [I8, Theorem 4.1].

Proposition 5.3. Ux(x,t) := sup{u(x,t) : u is a positive singular solution} is the maximal

VSS.

Proof. Let u be a solution for (L)), (I7). It follows from Lemma [[.6l and Proposition 2.1] that,
for all R > 0 one has u € C>'(RN \ Bg x [0,T)) and u(x,t) — 0 as |z| — oo uniformly in ¢.
Moreover, by Proposition 2.1

__2+pB
(5.2) u(z,t) < c(|zf> +1) D, (x,t) € RN x (0,00),

with a constant ¢ > 0 independent of u. Let v be the solution of the linear inhomogeneous
problem

(O — Ap2)v =0 in RV \ Bg x (0,00),

v(z,0) =0, r € RN\ Bp,

_248
v(xz,t) =cR -1, x € dBg,t>0.

Then, by the maximum principle, © < v. Note that v enjoys the estimate

(53 0@t <Ce [ [ i wwdys
0 [R<|z|<2R]
where Cr > 0 is a constant and p?Q(-, -) is the fundamental solution to the linear equation
(0r — Ap2)u = 0. Hence all u and Uy satisfy (5.3) with v replaced by u and Uy, respectively.
Note also that Uy satisfies the estimate (5.2)) with u replaced by Us. In particular, Usx(7) € L}ll2
and Uy, € LY(RYN x (,T), h2dxdt) N LP(RN x (1,T), r®h%dadt) for all 7 > 0.
By Theorem for ¢t > 7 the problem
{ (0 — Ap2)u+rBuP =0, t>,
u(T) = Uso(T)

has a unique solution (7).

For every singular solution u we have that u(")(7) > w(7). Therefore by Proposition A1l
uM)(t) > u(t) , and hence u(™) (t) > Uy (t) for all t > 7. Moreover, for 7/ < 7 one has

u(7) > U (1) = w7 (7).
Using Proposition B.1] again we obtain that

W) > D), <<t
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By Proposition 211 it follows that, for all {5 > 0 and 7 < %’, with p:=/tg — 17 > @/%’

N \_2t8

// |VU(T)|2h2dxdt S c / U'OO(:E,7_)2],1/2(132_{_p]\/<i’2)\72i+f1 S Ct02 p—l.

t>t0 $|>p

So (Vu!™); is bounded in L? (RN x (0,00), h2dz dt) uniformly in 7. Hence u, T u as 7 | 0.

loc
Now passing to the limit in 7 it is easy to see that

(0 — Ap2)u + rPuP = 0.

Furthermore, by (5.3)) for = # 0 we have that u(z,t) — 0 as t — 0. Thus w is a singular solution,
and hence u < Uy,. Since u > u, > Uy, we conclude that u = Uy. O

Lemma 5.4. The minimal VSS us and and the mazimal VSS Uy to ([LO) are self-similar.

More precisely,
Uso(x,t) = t_”voo(i), Uso(z,t) =t Vo

Vit

where v and Vi are positive solutions to the problem

)

<

(5.4) {—K—lv(va) —ov +rfufpP~l =0,

r2°v =0 asr — oo,

2

with o = 25;21) and K = r?e't.

‘E

+2 2
u(pz, p°t),

Proof. Let u be a singular solution to (L6]). Then T,u defined by Tyu(x,t) := pr

B+2 N
is another singular solution to (LG). Moreover, Tju. = u., with ¢, = cpr-1 N=22 " Hence by
definition T,Us = Uy and Ty = Uso. Now the assertion follows with p = 2. O

Proposition 5.5. A VSS to (LO) is unique, i.e. Usx = Uo.

Proof. 1t suffices to show that Vo < vy . Let w := Vo — vs. Note that w is a sub-solution to

the equation
~K'V(KVw) — ow + rPo? 7w = 0.

Since —K ~'V(K Vus) — 0vs + P08 = 0, it follows from [10, Theorem 4.1] that
/ IVO|*K dz +/ (r%ggl - 0> 02K dz > 0 for all § € COH(RV).

Since r?°V,, — 0 as r — oo it follows that, for a sufficiently large R, one has w(x) < R™% for
all z, |z| > R. By the weak maximum principle, we infer that w(x) < R72° for all z, |z| < R.
Hence w < 0. |

As the positive solution to (5.4)) produces a VSS, it is clear that (5.4]) has a unique positive
solution. To find it one can use a variational approach almost identical to that in [12]. Namely,
one considers the nonlinear functional .J on the Banach space X := Hp(RM)NLPHYRYN P Kdz),

1

1 %
: 0) = = 02K d¢é + —— 9P+15Kd——/ 012K de.
65) IO [ oK — [ orriirac =4 [ oK

To show that J is bounded below we need the following auxiliary result.
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Lemma 5.6. For any € > 0 there exists Cc > 0 such that

16]13. <e <||v9\|§2 + ot ) +C., feX.
K K rBK
Proof. For € > 0, choose R, > r. > 0 such that
16 4r? €
— < .
R2  (N—-242))?2 2

Then, by Lemma [AT] we have
2 € 2
[ PR < GvolE,.
B, URN\Bpg,

Now, by the Young inequality,

/ |9|2degg / 0P K da + Cy e / K dz.
BRE\BTE BRE\BTE BRE\BTE

O

Now we are ready to show the existence of a non-trivial minimizer of the functional J. This
follows immediately from the next proposition.

Proposition 5.7. The functional J defined in (B.5) is bounded below and lower semi-continuous
with respect to the weak topology. Moreover, J(0) — oo as ||6]|x — oo.

compact

Proof. Let 6,, — 6 weakly in X. Then 6,, — 0 strongly in L% since Hj L%, by

Corollary [A.2l So lim inf HHTLHH}( > ||9HH}(, and due to the lower semi-continuity of the LP-

norm w.r.t. the weak convergence (see, e.g. [20]) iminf [0 o1 > [|0]| p+1 and lim [|¢n[[f2 =
rBK rBK

o]l r2.- The last two assertions follow directly from Lemma O
Next we show that the minimizer is nontrivial and can be chosen non-negative.

Proposition 5.8. Let p > % Then there exists a non-trivial minimizer of J which can be
chosen nonnegative.

2
Proof. Note that J(0) =0. Let 7 > 0. Set ¢ = 7e” 7. Then

N + 2
2

E(1¢) = ( ,u)TQ/qbQK dx + TpH/gprrlrﬁK dzx.

Now it clear that there exists 7 > 0 such that J(7¢) < 0, hence zero is not a minimizer. The
last assertion follows from the fact that J(0) = J(|6]). O

The minimizer is exponentially decaying at infinity, which is shown in the next proposition.
Proposition 5.9. Let v € HL(RY) N LPYYRYN P Kdx) be a solution to
(5.6) — K7 'V(KVv) — pv + rPoluP~t = 0.
There exists C' > 0 such that

7‘2
lv| < Ce™ &, on RV \ By.
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Proof. We follow [12] simplifying the arguments. Let w := vel®l’/8. Then w satisfies the equation
1
(5.7) - ﬁv(hQVw) +Vw=0

(p=1)r?

with V= 22—y % +e 5 rPlwP™L. One can choose R > 0 such that V(z) > 0 on
|z| > R. It is easily seen that solutions to (0.7)) are locally bounded outside the point = 0. Let

M := sup w(x). Looking at (5.7) on |z| > 1 and taking ¢ := (w — M)" as a test function
1<|z|<R

we obtain that ¢ = 0. Changing w by —w in (B.7) we see that |w(z)| < M, which proves the

assertion. O

A Appendix: Hardy-type inequality and compact embedding

Lemma A.1. For A\> 28 >0, K = rear® g e C°(RN), there holds

2
(A1) / \VO|*Kdx > / <a2r2 + (N +2)) + (W) %) 02K da.
RN RN 2 T

a2

Proof. First, notice that div(z|z|?) = (N + ¢)|z|? for all ¢ > —N. Now let v = r*e2" . Then
ve HY(RY) and

Vo = resltl’ve +x <a + %) V.
r

Hence we have

2
/ V02K dx = / \Vo|2da —i—/ <a2r2 + 20 + )\—2> v2dr — / (Vo?) -z <a + %) dx
RN RN RN r RN r
2+ (N -2
= / (Vo2 +/ <a27“2 + (N +2X) + M) v2de.
RN RN

r2
Now the assertion follows from the standard Hardy inequality. O

Corollary A.2. Let A > —%, a >0, K = e 12X Then HY (RN, Kdx) is compactly
embedded into L*(RN, Kdx).

Proof. It suffices to prove that, given v, — 0 weakly in H'(RY, Kdz), the sequence (v,)y
converges to 0 strongly in L2(RN, Kdz).

Let m := sup ||v, || 1. We use the following decomposition: for 0 < rg < Ry,
n

(A.2) / v’ Kdr = / v Kdx + / v’ Kdx + / v’ Kdz.
RN r<ro ro<r<Rg r>Ro

Fix € > 0 and choose rg and R such that

o2 (V242N om
0 2 a2R3 ’

Then by Lemma [AT]
2 1
/ ’UQKdCC—{—/ v’ Kdx < 7“3/ %de—i— —2/ r2v? K dx
r<ro r>Rg RN T R() RN
N-2+2\\"? 16
2
§<T0<f> —|—R—%>m<e.
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Finally, the sequence (v,) is bounded in H'(Bg, \ By,, Kdz) = H'(Bgr, \ Br,,dz). So v, — 0
weakly in H(Bg, \ Br,,dx), hence v, — 0 strongly in L?(Bg, \ By,,dz) = L?>(Bgr, \ By, Kdz).
Thus, for all e > 0

limsup/ v2Kdr < €.
RN

n—oo

The same argument implies the second assertion. O
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