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Abstract

We study the existence and nonexistence of singular solutions to the equation ut−∆u−
κ

|x|2u + |x|αu|u|p−1 = 0, p > 1, in R
N × [0,∞), N ≥ 3, with a singularity at the point

(0, 0), that is, nonnegative solutions satisfying u(x, 0) = 0 for x 6= 0, assuming that α > −2

and κ <
(

N−2
2

)2
. The problem is transferred to the one for a weighted Laplace-Beltrami

operator with a non-linear absorbtion, absorbing the Hardy potential in the weight. A
classification of a singular solution to the weighted problem either as a source solution with
a multiple of the Dirac mass as initial datum, or as a unique very singular solution, leads
to a complete classification of singular solutions to the original problem, which exist if and

only if p < 1 + 2(2+α)

N+2+
√

(N−2)2−4κ
.

1 Introduction and main results

In this paper we study nontrivial nonnegative solutions in R
N × [0,∞) to the equation

(1.1) ut −∆u− κ

r2
u+ rαu|u|p−1 = 0,

vanishing on R
N × {0} \ {(0, 0)} that is, (non-trivial) nonnegative solutions to (1.1) satisfying

(1.2) u(x, 0) = 0, that is, lim
t→0

u(x, t) = 0 for x 6= 0.

Here and below r = |x|, and we always assume that with N ≥ 3, κ <
(

N−2
2

)2
and α > −2.

The behaviour of u(x, t) as (x, t) → (0, 0) is not prescribed, so we study solutions with possible
singularity at (0, 0).

We remark here for further reference that there is no ambiguity in the last definition since
for a solution u of (1.1), u(x, t)dx→ 0 as t→ 0 in the sense of weak-∗ convergence of measures
on R

N \ {0} if and only if u(x, t) → 0 as t → 0 locally uniformly in x ∈ R
N \ {0}, by the same

argument as in [5, Proof of Theorem 2, steps 2,3].
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The nonlinear heat equation with absorption

(1.3) ut −∆u+ u|u|p−1 = 0,

i.e. (1.1) with κ = α = 0, with bounded measures as initial data was first studied by Brezis and
Friedman in the seminal work [5], where it was proved that the solution to (1.3) with u(x, 0) =
κδ0(x), a multiple of the Dirac mass at 0, exists and is unique if and only if 0 < p < 1 + 2

N .
The solution obtained has roughly speaking the same behaviour as t → 0 as the fundamental
solution to the linear heat equation. Such solutions are referred to as source type solutions (SS).

In [6] for 1 < p < 1 + 2
N a new nonlinear phenomenon was discovered, namely, a new

solution to (1.3) satisfying (1.2) was found. This solution is more singular at t → 0 than the

fundamental solution, it is self-similar of the form t−
1

p−1 f(|x|/
√
t), where f is a unique solution

to a certain ordinary differential equation. This solution in [6], called very singular solution,
was constructed by the shooting method. Later in [12] the existence of very singular solutions
was proved by the variational approach. In [16] the very singular solution was shown to be a
monotone limit of source type solutions. A classification of all positive singular solutions to
(1.3) was given in [26]. The cited papers state that for p ∈

(

1, 1+ 2
N

)

every singular solution to
(1.1) satisfying (1.2) is either source type solution, satisfying u(x, t)dx → κδ0 as t → 0 in the
sense of weak convergence of measures, with κ = lim

t→0

∫

{|x|<1}
u(x, t)dx, or u is the unique very

singular solution (VSS), the only one satisfying lim
t→0

∫

{|x|<1}
u(x, t)dx = ∞. For p ≥ 1 + 2

N there

are no non-trivial positive solutions to (1.3) satisfying (1.2). Recently the problem of singular
solutions to (1.1) in the case κ = 0, α > −2 was treated by Shishkov and Veron [27]. They
showed that the qualitative picture is the same as for (1.3), but the critical exponent changes
from 1 + 2

N for equation (1.1) to 1 + 2+α
N for the equation ut −∆u+ rαu|u|p−1 = 0. In all the

above result a crucial role is played by the following a priori estimates of Keller-Osserman type
for a singular solution to (1.1) (with κ = 0), which is a generalization of the classical one due
to Brezis and Friedman [5] in the case α = 0:

(1.4) u(x, t) ≤ c
(

|x|2 + t
)− 2+α

2(p−1) .

The critical exponent 1 + 2+α
N , which reflects the nonexistence of singular solutions, can be

seen as a result of comparing the behaviour at (0, 0) of the fundamental solution to the linear
problem with estimate (1.4). This plausible argument can no longer be applied to (1.1) since
the fundamental solution to the equation ut −∆u− κ

r2
u = 0 does not exist at x = 0 (except for

the case κ = 0) for the reasons explained below.

During the last decades there is growing interest to the elliptic and parabolic problems
involving the inverse-square potential (Hardy potential), stemming from its criticality. Many
qualitative properties of solutions are affected by the presence of the Hardy potential, which
leads to occurrence of a number of interesting unusual phenomena [1, 3, 24, 29]. This is mainly
due to the properties of the corresponding linear equation ut − ∆u − κ

r2
u = 0, which are

significantly different from the properties of the heat equation. In particular, the linear equation
does not have the fundamental solution at zero, i.e. the Cauchy problem with δ0(x) as the initial
datum has no solution, which can be seen from by now well known two-sided estimates for the
corresponding heat kernel p(t, x, y)[21, 23, 25]:

c1

t
N
2

( |x|
|x|+

√
t

)λ( |x|
|x|+

√
t

)λ

e
− |x−y|2

c2t ≤ p(t, x, y) ≤ c3

t
N
2

( |x|
|x|+

√
t

)λ( |y|
|y|+

√
t

)λ

e
− |x−y|2

c4t ,
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where here and below λ = −N−2
2 +

√

(

N−2
2

)2 − κ is the bigger root of the quadratic equation

λ2 + λ(N − 2) + κ = 0 and c1, c2, c3, c4 are some positive constants. Moreover, for κ > 0 and
N ≥ 3 the Cauchy problem is not well posed in Lp(RN ), p ∈

[

1, N
N+λ

)

[22]. The semilinear
equations with Hardy potentials and nonlinear excitation were recently studied in [24] and some
interesting nonuniqueness phenomena were discovered, but to our knowledge the corresponding
equation with nonlinear absorption, equation (1.1), has not been yet studied. This is exactly the
aim the present paper. In the course of this study we will reveal several interesting phenomena
peculiar to equation (1.1). In order to overcome the difficulties described above and to classify
solutions to (1.1) satisfying (1.2) we will use the technique of transference to the weighted
space, which is by now standard in the linear theory and is called the ground state transform
(cf. [21, 24, 23, 25]). We will outline it here.

Below and further on we use the following notation for the weighted Lebesgue and Sobolev
spaces. For a weight ϕ we denote

Lp
ϕ(R

N ) := {f : RN → R;

∫

RN

|f |pϕdx <∞},

H1
ϕ(R

N ) := {f : RN → R;

∫

RN

(|∇f |2 + |f |2)ϕdx <∞}.

Let h ∈ H1
loc satisfy ∆h + κ

r2
h = 0, that is, h = rλ, with λ > −N−2

2 as above. The change of
variables ũ := u/h is a unitary operator L2 := L2(RN , dx) → L2

h2 := L2(RN , h2dx). Moreover,
the quadratic form E(u) =

∫

|∇u|2dx −
∫

κ
r2u

2dx on L2 is isomorphic to a quadratic form
Eh(ũ) =

∫

|∇ũ|2h2dx on L2
h2 , which is precisely stated in the next proposition

Proposition 1.1. Let κ < (N−2)2

4 . Let E be the closed quadratic form in L2 defined by

E(u) =
∫

|∇u|2dx−
∫

κ

r2
|u|2dx, u ∈ H1(RN )

and H be the associated self-adjoint operator, H = −∆− κ
r2

(form-sum). Let h ∈ H1
loc(R

N ) be
a positive weak solution to the equation Hh = 0.

Then the unitary map U : L2 → L2
h2 , Uu = u

h , maps H to the operator −∆h2 associated
with the form

Eh(u) = ‖∇u‖2L2
h2
, u ∈ H1

h2(R
N ).

Proof. First observe that h ∈ C∞(RN \ {0}) and that h > 0. Hence h±1C∞
c (RN \ {0}) =

C∞
c (RN \{0}). Note that C∞

c (RN \{0}) is a core of the form E . The image of E on L2
h2 is given

by Eh(ϕ) = E(hϕ). For φ ∈ C∞
c (RN \ {0}) one has

|∇(hφ)|2 = h2|∇φ|2 + 2hφ∇φ∇h + φ2|∇h|2 = h2|∇φ|2 +∇(hφ2)∇h.
Taking into account that h is a weak solution to the equation ∆u+ κ

r2
u = 0, we obtain

E(hφ) =
∫

(

|∇(hφ)|2 − κ

r2
h2φ2

)

dx =

∫

h2|∇φ|2dx+
(

∇(hφ2) · ∇h− κ

r2
(hφ2)h

)

dx = ‖φ‖2L2
h2
.

Since C∞
c (RN \ {0}) is invariant under multiplication by h±1, it is also a core for Eh. The

assertion follows.
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As a result, the operator −∆− κ
r2

on L2 is isomorphic to the weighted Laplacian −∆h2 :=
− 1

h2∇ · h2∇ on L2
h2 . Recall that h = rλ. So equation (1.1) takes the form

(1.5) ũt − r−2λ∇(r2λ∇ũ) + rβũ|ũ|p−1 = 0,

with β := α+ λ(p − 1).

This motivates the following problem about singular solutions with the weighted Laplacian
which is of independent interest.

Assume that u is a weak solution to the equation

(1.6) ∂tu− r−2λ∇ · (r2λ∇u) + rβ|u|p−1u = 0,

satisfying

(1.7)

∫

RN

u(t)θ h2dx→ 0 as t→ 0, for all θ ∈ Cc(R
N \ {0}).

We say that u ∈ L2
loc

(

(0,∞); H1
loc(R

N , h2dx)
)

∩Lp+1
loc

(

R
N×(0,∞), rβh2dxdt

)

is a weak solution

to (1.6) if it satisfies the integral identity

∫

u(t1)ζ(t1)h
2dx+

t1
∫

t0

∫

(∇u · ∇ζ)h2dx dt+
t1
∫

t0

∫

rβ|u|p−1uζh2dx dt

=

∫

u(t0)ζ(t0)h
2dx+

t1
∫

t0

∫

u∂tζ h
2dx dt(1.8)

for all ζ ∈ C1
(

(0,∞); Cc(R
N )
)

∩ L2
loc

(

(0,∞); H1
h2

)

and 0 < t0 < t1 <∞.

The main results concerning the solutions to (1.6) satisfying (1.7) are collected in the fol-
lowing theorem.

Theorem 1.2. Let p > 1. Let λ, β be any real numbers such that λ > −N−2
2 , β > −2. Denote

p∗ = 1 + 2+β
N+2λ . Then

(a) for any weak solution u to (1.6) satisfying (1.7) the following Keller-Osserman type esti-
mate holds: there exists c > 0 such that for all x ∈ R

N and t > 0

|u(x, t)| ≤ c
(

|x|2 + t
)− 2+β

2(p−1) ;

(b) for every singular solution to (1.6) there exists κ ∈ [0,∞] such that u(t)h2dx → κδ0 as
t→ 0 in the weak-∗ topology of Radon measures;

(c) for p ≥ p∗, the only solution to (1.6) satisfying (1.7) is zero;

(d) for p < p∗ and κ ∈ (0,∞] there exists a unique singular solution uκ to (1.6) satisfying
uκ(t)h

2dx→ κδ0 as t→ 0 in the weak-∗ topology of Radon measures;

(e) for p < p∗ and κ ∈ (0,∞), uκ satisfies uκ(·, t) − κph
2
(t, ·, 0) → 0 in L1

(

R
N , r2λdx

)

as

t→ 0, where ph
2
is the heat kernel for the weighted Laplacian ∆h2 := r−2λ∇ · r2λ∇;
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(f) for p < p∗, u∞ is self-similar, that is u∞(x, t) = t
− 2+β

2(p−1) v(x/
√
t), with v(x) ≤ Ce−|x|2/8

for some C > 0.

The proof of Theorem 1.2 is given in Sections 2–5. In fact, the results for the case of the
initial data κδ are obtained as a special case of Radon measures as initial data, as it is done in
[5]. We extend the results of Brezis and Friedman [5] and Véron [30, Chapter 6, Theorem 6.12]
to the case of equations with the generator of a symmetric ultracontractive Feller semigroup in
place of the Laplacian. This allows for a much wider range of applications such as the fractional
Laplacian, symmetric subelliptic operators and many more (for further examples see, e.g. [13]).

The solution to the original problem (1.1), (1.2) is contained in the next corollary, which is
a pull back of Theorem 1.2.

Corollary 1.3. Let p > 1, κ <
(

N−2
2

)2
, λ = −N−2

2 +

√

(

N−2
2

)2 − κ, α > −2. Denote

p∗∗ = 1 + 2+α
N+λ . Then

a) for p ≥ p∗∗, there are no singular solutions to (1.1). More precisely, the only solution to
(1.1) satisfying (1.2) is zero;

(b) for p < p∗∗ and κ ∈ (0,∞], there exists a unique singular solution uκ to (1.1) satisfying
lim
t→0

∫

{|x|<ρ}
uκ(x, t)|x|λdx = κ for all ρ > 0. The map κ → uκ is a bijection between (0,∞]

and the set of nontrivial singular solutions to (1.1);

(c) for p < p∗∗, the very singular solution u∞ is self-similar, u∞(x, t) = t
− 2+α

2(p−1) v(x/
√
t) with

v(x) ≤ C|x|λe−|x|2/8 for some C > 0.

Remark 1.4. The above corollary shows that the Lebesgue measure does not allow for a clas-
sification of singular solutions to (1.1). To demonstrate this let α, κ, λ and p∗∗ be as in the
preceding corollary.

1. For κ < 0 (hence λ > 0) and p ∈ (1, p∗∗) every non-trivial positive singular solution u to
(1.1) satisfies u(x, t) = O(|x|λ) as x→ 0 for all t > 0, and

∫

{|x|<ρ}
u(x, t)dx→ ∞ as t→ 0

for all ρ > 0.

2. for κ > 0 (hence λ < 0) and p ∈ (1, p∗∗), given κ ∈ (0,∞), one has
∫

{|x|<ρ}
uκ(x, t)dx→ 0

as t → 0 for all ρ > 0. Moreover,
∫

{|x|<ρ}
u∞(x, t)dx → 0 as t → 0 for all ρ > 0 if

p ∈ (1 + 2+α
N , p∗∗). So in this case we have the initial datum zero with nonzero solution,

and we encounter the non-uniqueness phenomenon.

3. For κ > 0 (hence λ < 0) one has
∫

{|x|<ρ}
u∞(x, t)dx→ ∞ for all ρ > 0 if p ∈ (1, 1 + 2+α

N ).

4. For κ > 0 (hence λ < 0) and ρ > 0 one has
∫

{|x|<ρ}
u∞(x, t)dx → c < ∞ for p = 1 + 2+α

N .

The limit c is independent of ρ. So this is the only case with the initial datum cδ0.

Further on we use the following notation. For p ∈ (1,∞), p′ is the conjugate exponent, that
is p′ = p

p−1 . 11X stands for the characteristic function of the set X, BR := {x ∈ R
N : |x| ≤ R},

DR := {(x, t) ∈ R
N × (0,∞) : R2 ≤ |x|2 + t ≤ 4R2

0}.

5



For δ > 0, let Tδ denote the Steklov average, Tδu(t) =
1
2δ

t+δ
∫

t−δ

u(s)ds = 1
2δ

δ
∫

−δ

u(s+ t)ds.

We finish this section with the proposition classifying singular solutions to (1.6) i.e, the
solutions satisfying (1.7). This is an analogue of [17, Lemma 1.1].

Proposition 1.5. Let u ∈ L2
loc

(

(0,∞); H1
loc(R

N , h2dx)
)

∩ Lp+1
loc

(

R
N × (0,∞), rβh2dxdt

)

be a

non-trivial positive solution to (1.6) satisfying (1.7). Then, for any ρ > 0, there exists the limit

lim
t→0

∫

Bρ

u(x, t)|x|2λdx =: κ ≤ +∞.

The limit is independent of ρ > 0.

For the proof we need the following lemma which will also be used further on.

Lemma 1.6. Let u ∈ L2
loc

(

(0,∞); H1
loc(R

N , h2dx)
)

∩ Lp+1
loc

(

R
N × (0,∞), rβh2dxdt

)

be a so-

lution (sub-solution) to (1.6) satisfying (1.7). Let ũ denote the continuation of u into the
semi-space R

N × (−∞, 0) by zero. Then, for every domain Ω such that Ω ⋐ R
N \ {0}, the

function ũ is a solution (sub-solution) to (1.6) in Ω×R and, moreover, u ∈ L∞
loc

(

R
N × (0,∞)

)

.

In particular, if u is a solution to (1.6) then ũ ∈ C2,1(Ω × R) and u(x, t) → 0 as t → 0
uniformly in x ∈ Ω.

Proof. Given Ω such that Ω ⋐ R
N \ {0}, observe that h, rβ ∈ C∞(Ω) and there exists a

constant c > 1 such that 1
c < h2, rβ < c on Ω. Hence the first assertion follows from [5, Proof

of Theorem 2, steps 2,3].

To prove the second assertion, consider a cylinder BR × (t0, t1), R > 0, 0 < t0 < t1. Then
there exists τ ∈ (0, 12t0) such that u(τ) ∈ H1

h2(B2R). Moreover, u is bounded on ∂B2R× (τ, 2t1),
by the first assertion. Let the function w be the solution to the problem

{

∂tw − h−2∇ · (h2∇w) = 0 in B2R × (τ, 2t1),

w(x, t) = u(x, t), (x, t) ∈ B2R × {τ} ∪ ∂B2R × (τ, 2t1).

Then w is bounded on BR × (t0, t1) [15] and, by the maximum principle, |u| ≤ |w|.

Proof of Proposition 1.5. First we show that if the limit exists, then it is independent of ρ.
Indeed, for R > ρ,

lim
t→0

∫

BR\Bρ

uh2dx = 0

since u(x, t) → 0 as t → 0 uniformly in x ∈ BR \Bρ, by Lemma 1.6.

Now we show the existence of the limit. Note that u = (u − 1)+ + u ∧ 1. Given ρ > 0,
Lemma 1.6 implies that there exists Tρ > 0 such that u(x, t) < 1 for all x ∈ Bρ\Bρ/2, t ∈ [0, Tρ].

Hence u1 := (u− 1)+11Bρ ∈ L2
loc

(

(0, Tρ); H
1
h2(R

N )
)

.

Next we integrate (1.6) over the set {u1 > 0}. To do this, consider the sequence (ξn)n,
ξn : R

+ → R
+, ξn(s) := (ns)+ ∧ 1. Then (ξn)n is a sequence of bounded non–decreasing

Lipschitz functions approximating 11(0,∞), so that ξn(u1) can be used as a test function for
(1.6). For 0 < s < t <∞ we have

∫ t

s

∫

Bρ

ξn(u1)∂tuh
2dx dt = −

∫ t

s

∫

Bρ

∇ξn(u1) · ∇uh2dx dt−
∫ t

s

∫

Bρ

ξ(u1)u
prβh2dx dt.

6



Since ∇ξn(u1) · ∇u ≥ 0, it follows that
∫ t
s

∫

Bρ
ξn(u1)∂tur

2λdx dt ≤ 0. Note that ξn(u1)∂tu =

∂tΞn(u1), where Ξn(s) =
∫ s
0 ξn(τ)dτ → s+ as n→ ∞. Then

∫

Bρ

Ξn(u1)(t)r
2λdx ≤

∫

Bρ

Ξn(u1)(s)r
2λdx.

Passing to the limit as n→ ∞ we obtain that
∫

Bρ

(u− 1)+(t)h2dx ≤
∫

Bρ

(u− 1)+(s)h2dx.

Due to this monotonicity,
∫

Bρ

(u− 1)+(t)h2dx→ κ ≤ +∞ as t → 0.

Finally,
∫

Bρ
u ∧ 1h2dx→ 0 by the Lebesgue dominated convergence theorem.

Remark 1.7. If
∫

Bρ
u(t)r2λdx → κ < ∞ as t → 0 then u(t)h2dx → κδ0 as t → 0 in the

weak-∗ topology of Radon measures. Indeed, for any θ ∈ Cc(R
N ) there exists R > 0 such that

supp θ ⊂ BR, and, for any ǫ > 0 there exists ρ > 0 such that |θ(x) − θ(0)| < ǫ for all x ∈ Bρ.
Then

(1.9)

∫

RN

θu(t)h2dx = θ(0)

∫

BR

u(t)h2dx+

∫

BR\Bρ

(θ− θ(0))u(t)h2dx+
∫

Bρ

(θ− θ(0))u(t)h2dx.

Now
∫

BR\Bρ
(θ−θ(0))u(t)h2dx→ 0 as t→ 0 since u(x, t) → 0 as t→ 0 uniformly in x ∈ BR\Bρ

and

lim sup
t→0

∣

∣

∣

∣

∣

∫

Bρ

(θ − θ(0))u(t)h2dx

∣

∣

∣

∣

∣

≤ ǫκ.

Therefore it follows from (1.9) that, for any ǫ > 0,

lim sup
t→0

∣

∣

∣

∣

∫

RN

θu(t)h2dx− θ(0)κ

∣

∣

∣

∣

< ǫκ.

Proposition 1.5 gives rise to the following definition giving classification to singular solutions
to (1.6).

Definition 1.8. A non-trivial positive solution u to (1.6) satisfying (1.7) is called a source-type
solution (SS) if

∫

Bρ
u(t)r2λdx → κ with some finite κ > 0. The solution u is called a very

singular solution (VSS) if
∫

Bρ
u(t)r2λdx→ ∞.

The rest of the paper is organized as follows. In Section 2 we prove a-priory estimates of
Keller-Osserman type and show that in the critical and supercritical range of values of p the
only solution to equation (1.6) satisfying (1.7) is zero. In Section 3 we study general linear
inhomogeneous evolution equations with a generator of a Feller semigroup and with Radon
measures in the right hand side and as initial data. These results are applied in Section 4,
where the general semilinear equations with Radon measures as initial data are studied. The
results are then applied to equation (1.6). Very singular solutions to equation (1.6) are discussed
in Section 5. Finally, in Appendix we give a version of the Hardy inequality and provide an
auxiliary compactness result.
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2 A-priori estimates and nonexistence result

We start with a-priori estimates for sub-solutions to (1.6) similar to that obtained in [5]. We
use the notation

Dρ,R := {(x, t) ∈ R
N ×R+ : ρ2 < |x|2 + t < R2}.

Proposition 2.1. Let 0 < R0 <
1
4R1 and u be a sub-solution to (1.6) in the paraboloid layer

DR0,R1 such that u(x, t) → u0 as t→ 0 in L2
h2

(

BR1 \BR0

)

. Then, for all R0 < ρ < 1
2R < 1

2R1,

(2.1)

∫∫

D2ρ,R

[

|∇u|2 + rβup+1
]

h2dx dt ≤ c
(

ρN+2λ−2 2+β
p−1 +RN+2λ−2 2+β

p−1 + ‖u0‖2L2
h2

)

.

Moreover, for u0 = 0 one has, u(x, t) ≤ c(|x|2 + t)
− 2+β

2(p−1) for 4R2
0 < |x|2 + t < R2

1.

Proof. In the proof we use some of ideas from [8]. Let φ ∈ C1(R), 11(4,∞) ≤ φ ≤ 11(1,∞),
|φ′| ≤ cφα, with α < 1 to be chosen later. Let

ξ = φ

( |x|2 + t

ρ2

)

, η = φ

(

5− |x|2 + t

R2

)

and ζ = ξη.

Then

11D2ρ,R
≤ ζ ≤ 11Dρ,2R

,

|∂tζ| ≤
c

ρ2
11Dρ,2ρξ

αη +
c

R2
11DR,2R

ξηα,

|∇ζ| ≤ c

ρ
11Dρ,2ρξ

αη +
c

R
11DR,2R

ξηα.

(2.2)

We set u(x, t) := u0(x) for t ≤ 0, x ∈ BR1 and choose Tδ(ζ
2(Tδu)) as a test function in (1.6) on

Dρ,2R. Note that it is a legitimate test function, by Lemma 1.6. Further on we denote w = Tδu.
Then we obtain

∫∫

|∇wζ|2h2dxdt+
∫∫

rβTδ(|u|p−1u)ζwζh2dxdt

≤
∫∫

w2ζ∂tζ h
2dxdt+

∫∫

w2|∇ζ|2 h2dxdt+
∫

B2R\Bρ

w2(0)ζ2(0)h2dx.

Passing to the limit as δ → 0 in the last inequality, we may replace w with u. Now we estimate
the first two integrals in the right hand side using (2.2). By the Young inequality, for all ε > 0
there exists cε > 0 such that

u2ζ|∂tζ| ≤u2ζ
[

c

ρ2
11Dρ,2ρξ

αη +
c

R2
11DR,2R

ξηα
]

≤ε
(

r−2u2ζ2 + rβ|u|p+1ζ2
)

+ cεr
2

1−α
−2−2 2+β

p−1

(

ρ−
2

1−α 11Dρ,2ρ +R− 2
1−α 11DR,2R

)

,

u2|∇ζ|2 ≤u2
[

c

ρ2
11Dρ,2ρξ

2αη2 +
c

R2
11DR,2R

ξ2η2α
]

≤ε
(

r−2u2ζ2 + rβ|u|p+1ζ2
)

+ cεr
2

1−α
−2−2 2+β

p−1

(

ρ−
2

1−α 11Dρ,2ρ +R− 2
1−α 11DR,2R

)

.

Note that, by Hardy inequality (A.1), for all t > 0,
∫

r−2u2(t)ζ2(t)h2dx ≤ 4

(N + 2λ− 2)2

∫

|∇uζ|2(t)h2dx.
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Choose now α ∈ ( 2
p+1 , 1) such that

2

1− α
− 2− 2

2 + β

p− 1
+ 2λ+N > 0.

Then by a direct calculation

∫∫

DR,2R

R− 2
1−α r

2
1−α

−2−2 2+β
p−1h2dxdt ≤ RN+2λ−2 2+β

p−1

which implies that
∫∫

|∇uζ|2h2dxdt+
∫∫

rβ|u|p+1ζ2h2dxdt ≤ cρ
N+2λ−2 2+β

p−1+cR
N+2λ−2 2+β

p−1+c

∫

B2R\Bρ

u2(0)ζ2(0)h2dx,

which completes the proof of the first assertion.

To prove the second assertion, note that by the mean value inequality for sub-solutions (see
Theorem 3.8 below) we have that

sup
D5/2ρ,7/2ρ

|u| ≤ C

(

−
∫∫

−
D2ρ,4ρ

u2h2dxdt

) 1
2

.

Using the Hardy inequality and (2.1) with R = 4ρ, we have

∫∫

D2ρ,4ρ

u2h2dxdt ≤
∫∫

|uζ|2h2dxdt ≤ ρ2
∫∫

|uζ|2r−2h2dxdt(2.3)

≤ cρ2
∫∫

|∇(uζ)|2h2dxdt ≤ cρN+2λ+2−2 2+β
p−1 .(2.4)

Hence
(

−
∫∫

−
D2ρ,4ρ

u2h2dxdt

)
1
2

≤ cρ−
2+β
p−1 .

Corollary 2.2. Let p < 1 + 2+β
N+2λ and let u be a solution to (1.6) such that u(t) → κδ0 as

t → 0 in weak-∗ topology of Radon measures. Then u ∈ L2
loc

(

(0, T ); H1
h2

)

for all T > 0 and

u(x, t) ≤ κph
2

t (x, 0) for a.a. (x, t) ∈ R
N × (0,∞), where ph

2
is the fundamental solution of the

linear equation (∂t −∆h2)w = 0. In particular, u ∈ Lp+1
(

R
N × (0, T ), rβh2dx dt

)

for all T > 0.

Proof. The first assertion follows from (2.1), setting R → ∞ and choosing ρ arbitrary small.
The proof of the second assertion literally follows the argument [18].Namely, let u(t) → κδ0
as t → 0 in weak-∗ topology of Radon measures. Let u(τ) be the solution to the initial value
problem

{

(∂t −∆h2)u(τ) = 0, t > τ,

u(τ)(τ) = u(τ).

Then, by the maximum principle, u(τ)(x, t) ≥ u(x, t) for a.a. (x, t) ∈ R
N × (τ,∞). So, for

0 < τ ′ < τ one has u(τ
′)(τ) ≥ u(τ) = u(τ)(τ). Hence, by the maximum principle, u(τ

′)(x, t) ≥
u(τ)(x, t) a.e. on R

N × (τ,∞). So u(τ) ↑ u(0) as τ ↓ 0 and u(0)(x, t) = κph
2

t (x, 0) since
u(τ)(τ) = u(τ) → κδ0 as t→ 0.
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The next lemma reduces the proof of the second assertion of Theorem 1.2 to the critical
case p = p∗.

Lemma 2.3. Let u be a sub-solution to (1.6) satisfying (1.7). Then, for 1 < q ≤ p, the function

(

p− 1

q − 1

)
1

p−1

|u|
p−1
q−1

is a sub-solution to the equation ∂tw − h−2∇ · (h2∇w) + rβw|w|q−1 = 0.

Proof. Denote κ = p−1
q−1 ≥ 1, Tδ the Steklov average and uδ := Tδu. For ε > 0 and ζ ∈

C2,1
c

(

R
N × (0,∞)

)

, ζ ≥ 0, choose the following test function for (1.6):

Tδ

(

ζuδ(u
2
δ + ε)

κ−2
2

)

.

Note that this is a legitimate test function since u is locally bounded. Then the following
inequality holds:

∫∫

∂tuδζuδ(u
2
δ + ε)

κ−2
2 h2dxdt+

∫∫

∇uδ∇(ζuδ(u
2
δ + ε)

κ−2
2 )h2dxdt

≤−
∫∫

ζuδ(u
2
δ + ε)

κ−2
2 rβTδ(|u|p−1u)h2dxdt.

(2.5)

Denote Vε(u) :=
1
κ

(

(u2 + ε)
κ

2 − ε
κ

2

)

. Then

∂tuδζuδ(u
2
δ + ε)

κ−2
2 = ζ∂tVε(uδ)

and
∇uδ∇(ζuδ(u

2
δ + ε)

κ−2
2 ) = ∇Vε(uδ)∇ζ + ζ

(

(κ − 1)u2δ + ε
)

(u2δ + ε)
κ−4
2 |∇uδ|2.

Hence it follows from (2.5) that

−
∫∫

Vε(uδ)∂tζh
2dxdt+

∫∫

∇Vε(uδ)∇ζh2dxdt ≤ −
∫∫

ζuδ(u
2
δ + ε)

κ−2
2 rβTδ(|u|p−1u)h2dxdt.

Passing to the limit as ε→ 0 and then as δ → 0 we obtain

−
∫∫

|u|κ∂tζh2dxdt+
∫∫

∇|u|κ∇ζh2dxdt+ κ

∫∫

ζ|u|p+κ−1h2dxdt ≤ 0.

Hence the assertion follows.

Remark 2.4. Lemma 2.3 is a parabolic version of [19, Proposition 1.1].

The following theorem establishes the removability of singularity at (0, 0) for the critical
case.

Theorem 2.5. Let p = 1 + 2+β
N+2λ . Let 0 ≤ u ∈ L∞

loc(R
N × R

1
+ \ (0, 0)) be such that

(2.6)

∫∫

RN×R1
+

(

rβupζ − uζt − u∆h2ζ
)

h2dx dt ≤ 0, ζ ∈ C2,1
c .

Then u = 0.
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Proof. Let ξ ∈ C1(R1
+) be such that

(2.7) 11[2,∞) ≤ ξ ≤ 11[1,∞), |ξ′|, |ξ′′ | ≤ cξ
1
p .

Let 0 < ρ≪ R <∞ and define

(2.8) ξρ(x, t) = ξ

(

t+ |x|2
ρ2

)

, ηR(x, t) = 1− ξ

(

t+ |x|2
R2

)

.

We take ζ = ξρηR as a test function in (2.6). It is easy to see that

supp ζ = {(x, t) : ρ2 ≤ t+ |x|2 ≤ 2R2}.
Using (2.7) one verifies directly that

|∂tζ|+ |∆h2ζ| ≤ c
1

ρ2
ξ

1
p
ρ ηR11{ρ2≤t+|x|2≤2r2} + c

1

R2
ξρη

1
p

R11{R2≤t+|x|2≤2R2}.

Thus we have

I :=

∫∫

RN×R1
+

rβupζh2dx dt ≤
∫∫

RN×R1
+

u(|∂tζ|+ |∆h2ζ|)h2dx dt

≤cρ−2

∫∫

RN×R1
+

uξ
1
p
ρ ηR11{ρ2≤t+|x|2≤2ρ2}h

2dx dt

+ cR−2

∫∫

RN×R1
+

uξρη
1
p

R11{R2≤t+|x|2≤2R2}h
2dx dt

:= I1 + I2.

(2.9)

By the Young inequality

I1 ≤ cρ−2

∫∫

RN×R1
+

u(ξρηR)
1
p 11{ρ2≤t+|x|2≤2ρ2}h

2dx dt ≤ 1

4
I + cρN+2− 2p

p−1
+2λ− β

p−1 .

Similarly,

I2 ≤ cR−2

∫∫

RN×R1
+

u(ξρηR)
1
p 11{R2≤t+|x|2≤2R2}dx dt ≤

1

4
I + cRN+2− 2p

p−1
+2λ− β

p−1 .

Hence for every ρ > 0 and R > 2ρ we obtain

I ≤ c(ρ
N+2− 2p

p−1
+2λ− β

p−1 +R
N+2− 2p

p−1
+2λ− β

p−1 ) = c as N + 2− 2p

p− 1
+ 2λ− β

p− 1
= 0.

Passing to the limits ρ→ 0 and R→ ∞ we conclude that

(2.10)

∫∫

RN×R1
+

rβupζh2dx dt <∞.

Now we return to (2.9). Estimating I1 and I2 by means of the Young inequality and using
(2.10) we have

I1 ≤ cρ−2

∫∫

RN×R1
+

uξ
1
p
ρ 11{ρ2≤t+|x|2≤2ρ2}h

2dx dt

≤ c

(

∫∫

RN×R1
+

11{ρ2≤t+|x|2≤2ρ2}r
βupζhh2dx dt

)
1
p

→ 0 as ρ→ 0.(2.11)

Similarly we see that I2 → 0 as R→ ∞. Hence we conclude from (2.9) that I = 0 which implies
that u = 0.

Now assertion (c) of Theorem 1.2 follows from Theorem 2.5, Lemma 2.3 and the correspond-
ing parabolic version of the Kato inequality (see, e.g. [30, Chap. 6]).
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3 Linear equation with a generator of an ultra-contractive Feller

semigroup

In this section we study an abstract inhomogeneous evolution equation with measures as initial
data.

In this section Ω ⊂ R
N is a domain and γ is a positive Radon measure on Ω and we denote

Lp := Lp(Ω, dγ). Let T > 0 and Q = Ω × [0, T ]. We also denote Lp(Q) = Lp(Q, dγ dt) and
naturally identify Lp(Q) = Lp([0, T ]; Lp).

In the sequel we also use the notation C0(Ω), Cb(Ω) for the spaces of continuous function
vanishing at infinity and at the boundary of Ω and bounded continuous function, respectively.
M(Ω) stands for finite signed Radon measures on Ω.

Let (E ,F) be a closed symmetric Dirichlet form on L2, −L the associated self-adjoint
operator in L2, and S = (S(t))t≥0 the associated symmetric Markov semigroup on L2, i.e.
‖S(t)f‖∞ ≤ ‖f‖∞ for any t ≥ 0), S(t) = eLt. The domain F of the form E is a real Hilbert

space with the norm ‖f‖F = (E(f))
1
2 . We refer the reader to [10, 13] for the definition and

properties.

The action of the semigroup S on the measure µ is defined in a standard way by the following
identity

(3.1)

∫

Ω
(S(t)µ)φdγ =

∫

Ω
(S(t)φ)dµ, φ ∈ C0(Ω).

We start with the following simple statement.

Proposition 3.1. Let ψ : (0,∞) → (0,∞) be a non-increasing function. Assume that

(3.2) ‖S(t)‖L1→L∞ ≤ ψ(t), t > 0

and

(3.3) S(t)C0(Ω) ⊂ Cb(Ω) and S(t)11 ∈ Cb(Ω).

Then S(t), t > 0, is a bounded operator S(t) : M(Ω) → Cb(Ω) ∩ L1 ∩ F and

(3.4) ‖S(t)‖M→Lq ≤ ψ
1
q′ (t), 1 ≤ q ≤ ∞.

Moreover, for every t > 0, S(t) is an integral operator with a positive bounded symmetric
kernel pt(x, y) which is continuous in each of the variables x, y, t and

(3.5) pt(x, y) ≤ ψ(t) and

∫

Ω

pt(x, y)γ(dy) ≤ 1.

For every t > 0, the operator S(t) maps weak-∗-convergent sequences in M(Ω) into strongly
convergent sequences in Cb(Ω) ∩ L1 ∩ F .

Proof. By the Riesz-Thorin interpolation theorem it follows from (3.2) that ‖S(t)‖Lp→Lq ≤
ψ

1
p
− 1

q (t), 1 ≤ p ≤ q ≤ ∞. Since C0(Ω) ∩ Lp is dense in Lp, by (3.3), S(t) : Lp → Cb(Ω).

Hence, ‖S(t)‖Lp→Cb
≤ ψ

1
p (t), t > 0. By duality S(t) : Cb(Ω)

∗ → Lq, 1 ≤ q ≤ ∞. In particular,

S(t) : M(Ω) → Lq and ‖S(t)‖M→Lq ≤ ψ
1
q′ (t), 1 ≤ q ≤ ∞. By the simple factorization

S(t) = S(t/2)S(t/2) : M(Ω) → Lq → Cb(Ω), and ‖S(t)‖M→Cb
≤ ψ(t), t > 0.
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Similarly, S(t) = S(t/2)S(t/2) : M(Ω) → L2 → F .

The second assertion follows from the first one taking pt(x, y) = (S(t)δy)(x).

To prove the last assertion we first show that S is a strong Feller semigroup, that is, for t > 0,
S(t) maps bounded Borel measurable functions into continuous ones. To this end it suffices to
verify that x 7→ pt(x, ·) is a continuous function from Ω to L1 for all t > 0. If γ(Ω) < ∞ this
immediately follows from the fact that pt(x, y) is continuous in x for all t > 0 and y ∈ Ω and the
bound 0 ≤ pt(x, y) ≤ ψ(t). In case γ(Ω) = ∞ to verify the assumptions of the Vitali theorem it
suffices to show that, for every xn → x in Ω as n→ ∞ and every ε > 0, there exists a compact
Kε ⊂ Ω and Nε ∈ N such that

∫

Ω\Kε

pt(xn, y)γ(dy) < ε for all n > Nε.

Given xn → x in Ω as n→ ∞ and ε > 0, let Kε ⊂ Ω be such that

∫

Ω\Kε

pt(x, y)γ(dy) <
ε

2
.

Note that 11Kε ∈ L1 so St11Kε ∈ Cb(Ω). Since St11 ∈ Cb(Ω), we conclude that St11Ω\Kε
=

St11− St11Kε ∈ Cb(Ω). In particular,

∣

∣

∣

∣

∣

∣

∣

∫

Ω\Kε

pt(xn, y)γ(dy) −
∫

Ω\Kε

pt(x, y)γ(dy)

∣

∣

∣

∣

∣

∣

∣

→ 0 as n→ ∞.

Now choose Nε such that the above variable is less then ε
2 for n > Nε. Thus S is strongly Feller.

Now let µn → µ as n → ∞ in the sense of weak-∗ convergence in M(Ω). Then, for every
Borel measurable E,

∫

E

(

S(t)µn
)

dγ =

∫

Ω

(S(t)11E)dµn →
∫

Ω

(S(t)11E)dµ =

∫

E

(

S(t)µ
)

dγ as n→ ∞,

since S(t)11E ∈ Cb(Ω). Hence S(t)µn → S(t)µ as n → ∞ weakly in L1. Since
(

S(t)µn
)

(x) =
∫

pt(x, y)µn(dy) and pt is bounded and continuous in y, we conclude that S(t)µn → S(t)µ
as n → ∞, pointwise in Ω. Hence S(t)µn → S(t)µ as n → ∞ strongly in L1. The strong
convergence in F and in Cb(Ω) follows from the factorization argument.

Let us introduce the convolution operator T on Lp(Q) by (T f)(x, t) =
∫ t
0 (S(t− s)f) (x, s)ds.

In the next two propositions we collect the required properties of T .

Proposition 3.2. Let condition (3.2) hold. The following assertions hold

1) T is a completely continuous operator on L1(Q);

2) T is a bounded operator L2(Q) → L2 ((0, T ); F) and L2(Q) → L2 ((0, T ); D(L)).

Proof. Note that T is an integral operator on L1(Q) and

(T f)(x, t) =
∫∫

Q

k(x, t; y, s)f(y, s)γ(dy) ds
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with k(x, t; y, s) = 11(0,∞)(t− s)pt−s(x, y). Since

∫∫

Q

k(x, t; y, s)γ(dx) dt =

T
∫

0

11(0,∞)(t− s)

∫

Ω

pt−s(x, y)γ(dx) dt ≤
T
∫

s

dt ≤ T

for a.a. (y, s) ∈ Q, it follows by the Dunford–Pettis lemma (see e.g. [11, Lemma III.11]) that
T is completely continuous on L1(Q).

To prove the next assertion, observe that

‖(T f)(t)‖F ≤ c

∫ t

0

1√
t− s

‖f‖L2(s)ds and ‖(LT f)(t)‖L2 ≤ c

∫ t

0

1

t− s
‖f‖L2(s)ds.

Since the integral operators with the kernels K0(t, s) =
1√
t−s

and K1(t, s) =
1

t−s are bounded

on L2(0, T ), the second assertion follows.

Proposition 3.3. Let the conditions of Proposition 3.1 be fulfilled. In addition assume that

(3.6) S(t)φ(x) → φ(x) as t → 0 for all x ∈ Ω, φ ∈ C0(Ω).

Then T can be uniquely extended to a bounded operator from M(Q) to L∞ ((0, T ); L1
)

. More-
over, T L1(Q) ⊂ C

(

[0, T ]; L1
)

.

Proof. First, observe that, S(t)µ is strongly continuous in L1 ⊂ M(Ω) for all t > 0, for every
µ ∈ M(Ω). Moreover, it follows from (3.6) that S(t)µ is w-∗ continuous continuous at t = 0.

Now let m ∈ M(Q) and m = µt ⊗ ν be its disintegration into ν ∈ M([0, T ]) and a function
t 7→ µt ∈ M(Ω) such that t 7→ µt(F ) is ν-measurable for all Borel sets F (see [2, Theorem 2.28]).
So t 7→ µt is a weakly ν-measurable function from [0, T ] to M(Ω). Hence the function s 7→
S(t−s)µs is also a weakly ν-measurable function from [0, t] to M(Ω). Since S(s)M(Ω) ⊂ L1 for
s > 0, we conclude that s 7→ S(t− s)µs is separably valued, hence it is (strongly) ν-measurable
by the Pettis measurability theorem (see [11, Theorem 2.2]). So we define the extension of T
on M(Q) by

(3.7) (Tm)(t) :=

∫

[0,t]

S(t− s)µsν(ds),

where the right hand side is a Bochner integral.

Moreover, T : M(Q) → L∞((0, T ); M(Ω)) is bounded. Indeed,

‖(Tm)(t)‖M(Ω) ≤
∫ t

0
‖S(t− s)µs‖M(Ω) |ν|(ds) ≤

∫ t

0
‖µs‖M(Ω) |ν|(ds) = ‖m‖M(Q).

Hence the extension is unique.

Now, let ν = νc +
∑

ckδtk be the decomposition of ν into the continuous and the atomic

parts. Then
∫ t
0 S(t− s)µsνc(ds) ∈ L1 since S(t− s)µs ∈ L1 for all s ∈ [0, t), and

∫ t

0
S(t− s)µs

∑

ckδtk(ds) =
∑

tk≤t

ckS(t− tk)µtk .

The latter belongs to L1 for all t 6= tk, k = 1, 2, . . .. So Tm(t) ∈ L1 for a.a t ∈ [0, T ].
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Finally, we show that if ν = νc then Tm ∈ C
(

[0, T ]; L1
)

, which will prove the last assertion.
Indeed,

Tm(t+ h)− Tm(t) =

t+δ
∫

t

S(t+ δ − s)µsν(ds) +

t
∫

0

[

S(t+ δ − s)− S(t− s)
]

µsν(ds).

Then

∥

∥

∥

t+δ
∫

t

S(t+ δ − s)µsν(ds)
∥

∥

∥

L1
≤

t+δ
∫

t

‖µs‖M(Ω)|ν|(ds) = |m|
(

Ω× (t, t+ δ)
)

→ 0 as δ → 0.

Further,
∥

∥

∥

[

S(t+ δ − s)− S(t− s)
]

µs

∥

∥

∥

L1
→ 0 as δ → 0 for all s ∈ [0, t).

Moreover,
∥

∥

∥

[

S(t+ δ − s)− S(t− s)
]

µs

∥

∥

∥

L1
≤ 2‖µs‖M(Ω). Thus

∥

∥

∥

t
∫

0

[

S(t+ δ − s)− S(t− s)
]

µsν(ds)
∥

∥

∥

L1
→ 0 as δ → 0.

Remark 3.4. For further use we observe that, for η ∈ C
(

[0, T ]; L1 ∩ Cb

)

,

(T ∗η)(t) =

T
∫

t

S(s− t)η(s)ds,

where the right hand side is a Bochner integral. Note that T ∗ is a bounded operator on
C
(

[0, T ]; L1 ∩ Cb

)

, by the argument similar to the one in the proof of the preceding proposi-
tion.

Definition 3.5. Let m ∈ M(Q) and µ ∈ M(Ω). We say that u ∈ L2
loc

(

(0,∞); F
)

∩ L1(Q) is

a solution (sub-solution) to the problem

(3.8) (∂t − L)u = m, u(0) = µ

if the following integral identity (inequality) holds

∫

Ω

u(t1)ζ(t1)γ(dx)−
t1
∫

t0

∫

Ω

u∂tζ γ(dx) dt +

t1
∫

t0

E
(

u(t), ζ(t)
)

dt

= (≤)

t1
∫

t0

∫

Ω

ζ m(dxdt) +

∫

Ω

u(t0)ζ(t0)γ(dx)(3.9)

and

(3.10) lim
t→0

(lim sup
t→0

)

∫

Ω

u(t)ζ(t)γ(dx) = (≤)

∫

Ω

ζ(0)dµ

for all t1 > t0 > 0 and ζ ∈W , ζ ≥ 0, where

W :=
{

ζ ∈ Cb(Q) ∩ L2
loc

(

(0,∞); F
)

∩W 1,∞
loc

(

(0,∞); L∞
)}

.
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The next lemma provides the representation of the solution to (3.8).

Lemma 3.6. Let u be a solution (sub-solution) to (3.8). Then u = Sµ+ Tm (u ≤ Sµ+ Tm).

Proof. We prove the assertion for solutions, the proof for sub-solutions being completely the
same. Let η ∈ C

(

[0, T ]; L1 ∩ Cb

)

, λ > 0. Denote

ηλ(t) := (I− λL)−1η(t), t ∈ [0, T ] and ζλ := T ∗ηλ.

Then ηλ, ζλ ∈ C
(

[0, T ]; L1 ∩ Cb

)

. Since Lηλ(t) = 1
λη(t) − 1

ληλ(t) for all t ∈ [0, T ], we conclude
that Lηλ(·), Lζλ(·) ∈ C

(

[0, T ]; L1 ∩ Cb

)

. Hence ∂tζλ = −Lζλ − ηλ. In particular, ζλ ∈W .

Testing (3.9) by ζλ and noticing that ξλ(T ) = 0 we obtain

−
∫ T

t0

∫

Ω
u∂tζλdγ dt+

∫ T

t0

E(u, ζλ)dt =
∫ T

t0

∫

Ω
ζλdm+

∫

Ω
u(t0)ζλ(t0)dγ.

Note that

E(u, ζλ) = −
∫

Ω
uLζλdγ =

∫

Ω
u(∂tζλ + ηλ)dγ.

Hence, passing to the limit as t0 → 0 we obtain that

T
∫

0

∫

Ω

uηλdγ dt =

∫ T

0

∫

Ω
ζλdm+

∫

Ω
ζλ(0)dµ =

T
∫

0

∫

Ω

(Tm)ηλdγ dt+

∫ T

0

∫

Ω

(Sµ)ηλdγ dt,

where the last equality follows from (3.1) and the definition of T . Finally, observe that ηλ → η
as λ→ 0 pointwise, so passing to the limit in λ, we have

T
∫

0

∫

Ω

uη dγ dt =

T
∫

0

∫

Ω

(Tm+ Sµ)η dγdt.

Hence the assertion follows.

The next proposition gives a version of a maximum principle. It is an extension of [5,
Lemma 3].

Proposition 3.7. Let f ∈ L1(Q), µ ∈ M(Ω), and u be a solution to (3.8). Then, for t ∈ (0, T ),

∫

Ω

u+(t)dγ ≤
t
∫

0

∫

Ω

f11{u>0}dγds +
∫

Ω

dµ+,

∫

Ω

|u(t)|dγ ≤
t
∫

0

∫

Ω

f sgn(u)dγds +

∫

Ω

d|µ|.

Proof. Note that u = Sµ + T f , by Lemma 3.6. It suffices to prove the inequalities for f ∈
L1(Q)∩L2(Q) since T is a bounded operator on L1(Q). By Proposition 3.2 u ∈ L2

loc

(

(0, T ); F
)

,

∂tu, Lu ∈ L2
loc

(

(0, T ); L2
)

and

(3.11) (∂t − L)u = f.
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Now we prove the first estimate. Denote vk(s) := (ks)+∧1, k = 1, 2, . . . Then vk is Lipschiz,

non-decreasing, vk(0) = 0 and vk → 11{s>0} as k → ∞. Hence vk(u) ∈ L2
loc

(

(0, T ); F
)

(cf. [13,

Theorem 1.4.1]).

We claim that E (vk(u), u) ≥ 0 . Indeed, recall that, for all u, v ∈ F one has E(u, v) =
lim
λ→∞

Eλ(u, v), where

Eλ(u, v) = E
(

u, λ(λ− L)−1v
)

is the approximation of E . By [13, (1.4.8)], there exist positive measures µλ ∈ M(Ω) and
σλ ∈ M(Ω × Ω) such that

Eλ(u) =

∫

Ω
u2µλ(dx) +

∫∫

Ω×Ω
(u(x)− u(y))2 σλ(dx, dy).

Then it is straightforward that Eλ(ρ(u), u) ≥ 0 for all λ > 0 and all Lipschiz monotone ρ such
that ρ(0) = 0. Hence passing to the limit as λ→ ∞, we conclude that E(vk(u), u) ≥ 0.

Now multiply (3.11) by vk(u) in L
2 to obtain that

∫

Ω

vk(u(s))∂tu(s) dγ ≤
∫

Ω

vk(u)f dγ.

Integrating the latter in s over the interval (τ, t) we obtain

∫

Ω

Vk
(

u(t)
)

dγ ≤
∫ t

τ

∫

Ω

vk(u)f dγds+

∫

Ω

Vk
(

u(τ)
)

dγ,

where Vk(s) is the primitive of vk(s), Vk(s) ↑ s+ as k ↑ ∞. So, for 0 < τ < t, it follows that

∫

Ω

u+(t)dγ ≤
t
∫

τ

∫

Ω

f11{u>0}dγds +
∫

Ω

u+(τ)dγ.

It remains to pass to the limit τ → 0. By Lemma 3.6 using positivity of S and T , we have that
u+(τ) = (S(τ)µ + (T f)(τ))+ ≤ S(τ)µ+ + (T f+)(τ) and

∫

Ω

(T f+)(τ)dγ =

τ
∫

0

∫

Ω

S(τ − s)f+(s)dγds ≤
τ
∫

0

‖f(s)‖L1ds → 0 as τ → 0.

So, as τ → 0 we arrive at the first assertion.

To prove the second assertion, note that v = (−u) is the solution to the problem (∂t−L)v =
−f , v(0) = −µ. Hence

∫

Ω

u−(t)dγ ≤ −
t
∫

0

∫

Ω

f11{u<0}dγds +
∫

Ω

dµ−.

We conclude this section by recalling two results on the parabolic equation with a weighted
Laplacian.

17



Linear equation for a weighted Laplacian. Here we consider a special of the measure
dγ = h2dx and the operator Lu = −h−2div(h2∇u), where as before h(x) = |x|λ with λ > 2−N

2 .
Namely, we state the Mean-value inequality and the heat kernel estimates for the linear equation

(3.12) ∂tu− h−2div(h2∇u) = 0.

Theorem 3.8 (Mean-value inequality). There exists a constant C > 0 such that, for all (x, t) ∈
R
N+1, r > 0, q > 0 and a weak positive (sub-)solution u to (3.12) in the cylinder Q

(x,t)
2r :=

B2r(x) × (t− 4r2, t + 4r2), the following inequality holds: for Q− := Br/2(x) × (t− 2r2, t) and
Q+ := Br(x)× (t+ 3r2, t+ 4r2),

sup
Q−

u ≤ C

(

−
∫∫

−
Q+u

q

)
1
q

,

where the average integral in the right hand side is by measure h2dxdt.

Theorem 3.9. Let k be the fundamental solution k to the equation (3.12). Then for all δ > 0
there exists cδ > 0 such that for all x, y ∈ R

N and t > 0 the following estimate holds:

(3.13) k(t, x, y) ≤ cδt
−N+2λ

2 e
− |x−y|2

4(1+δ)t

( |x|√
t
+ 1

)−λ( |y|√
t
+ 1

)−λ

.

The detailed exposition of these and related results can be found in [15, 25].

4 Source solutions

Here we use the same notation as in the previous section. In this section we construct solutions
to an abstract semilinear equation with measures as initial data. We closely follow ideas from
[30, Chapter 6].

Consider the solution of the non-linear equation

(4.1) (∂t − L)u(x, t) + g (x, u(x, t)) = 0, u(0) = µ ∈ M(Ω),

where L is as in the previous section and g : Ω × R → R is measurable in x for all r ∈ R,
continuous in r for a.a. x ∈ Ω (the Caratheodory conditions), non-decreasing in r and vanishing
at r = 0 for a.a x ∈ Ω. We denote G : u 7→ g (x, u(x)) the correspondent monotone homogeneous
Nemytskii operator. So a weak solution to the problem (4.1), e.g. (∂t −L+G)u = 0, u(0) = µ,
is u ∈ L1(Q) ∩ L2

loc((0, T ); F) such that Gu ∈ L1(Q) and (∂t − L)u = −Gu, u(0) = µ in the
sense of Definition 3.5. In particular,

(4.2) u = Sµ− T Gu.
Proposition 4.1. Let µ1, µ2 ∈ M(Ω), µ1 ≤ µ2, g1(x, r) ≥ g2(x, r) for all r ∈ R and a.a. x,
G1, G2 be the corresponding Nemytskii operators and uj ∈ L1(Q) be solutions to the problems
(∂t − L+Gj)uj = 0, uj(0) = µj, j = 1, 2. Then u1 ≤ u2 pointwise for a.a. (x, t) ∈ Q.

Proof. Let w = u1−u2. Then w satisfies (∂t−L)w = −(G1u1−G2u2), w(0) = −(µ2−µ1) ≤ 0.
By Proposition 3.7, for t > 0,

∫

Ω

w+(t)h2dx ≤ −
t
∫

0

∫

Ω

(G1u1 −G2u2)11{w>0}dγ ds.

However, w > 0 implies u1 > u2 and hence G1u1 ≥ G1u2 ≥ G2u2. So the above yields w+ = 0
and u1 ≤ u2.
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The next corollary is a straightforward consequence of Proposition 4.1.

Corollary 4.2. Let µ ∈ M(Ω), G be a monotone homogeneous Nemytskii operator. There
exists at most one solution to the problem (∂t − L+G)u = 0, u(0) = µ. The solution satisfies
the estimates

−Sµ− ≤ u ≤ Sµ+

and

(4.3)

∫ T

τ
‖u(s)‖2F ds ≤

1

2
ψ(τ)‖µ‖2M(Ω).

Proof. The first assertion is clear from Proposition 4.1. The second assertion follows from the
comparison of the solution to the problem (∂t − L + G)u = 0, u(0) = µ, with the solutions
to the problems (∂t − L + G∓)v± = 0, v±(0) = ±µ±, where G∓ is the Nemytskii operator
corresponding to the function 11[∓r≥0]g(x, r). Note that v± = ±Sµ± and that 11[−r≥0]g(x, r) ≤
g(x, r) ≤ 11[r≥0]g(x, r). Hence the pointwise estimate follows.

Now we prove (4.3). For λ > 0 let ζλ(t) := S(λ)u(t), t ∈ [0, T ]. Since u ∈ C
(

[0, T ]; L1
)

∩
L2
loc

(

(0, T ); F
)

, one has ζλ ∈ C
(

[0, T ]; L1 ∩Cb

)

∩L2
loc

(

(0, T ); F
)

. Moreover, differentiating the
equation ζλ(t) = S(λ+ t)µ− S(λ)(T Gu)(t), we obtain

(

∂tζλ
)

(t) = LS(λ)u(t)− S(λ)
(

Gu
)

(t), t ∈ (0, T ).

Hence ζλ ∈ W 1,1
loc

(

(0, T ); L∞). Since |u(t)| ≤ S(t)|µ|, t ∈ (0, T ], we conclude that u ∈
L∞
loc

(

(0, T ); L∞). Hence (3.9) holds with ζ = ζλ. For τ ∈ (0, T ) we have

1

2

∥

∥ζλ/2(T )
∥

∥

2

L2 +

T
∫

τ

E
(

ζλ/2(t)
)

dt+

T
∫

τ

∫

Ω

ζλGudγdt =
1

2

∥

∥ζλ/2(τ)
∥

∥

2

L2 .

Passing to the limit as λ→ 0, we arrive at

1

2

∥

∥u(T )
∥

∥

2

L2 +

T
∫

τ

E
(

u(t)
)

dt+

T
∫

τ

∫

Ω

uGudγdt =
1

2

∥

∥u(τ)
∥

∥

2

L2 .

Finally, observe that uGu ≥ 0 a.e. and that
∥

∥u(τ)
∥

∥

2

L2 ≤
∥

∥S(τ)|µ|
∥

∥

2

L2 ≤ ψ(τ)‖µ‖2M(Ω).

Proposition 4.3. Let gn(x, r) → g(x, r) for a.a. x and locally uniformly in r ∈ R, as n→ ∞.
Let Gn, G be the corresponding monotone homogeneous Nemytskii operators. Let µn, µ ∈ M(Ω)
be such that µn → µ in the weak-∗ topology of M(Ω). In addition assume that

(4.4) w := sup
n

[

GnSµ
+
n −Gn(−Sµ−n )

]

∈ L1(Q).

Let un be the solutions to the problems

(4.5) (∂t − L+G)un = 0, un(0) = µn, n ∈ N.

Then un → u in L1(Q) as n → ∞, and u is the solution to the problem (∂t − L + G)u = 0,
u(0) = µ.
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Proof. First note that the sequence (µn)n is bounded in M(Ω) since it is weak-∗ convergent.
Let M = sup

n
‖µn‖M(Ω) <∞. Now we have to pass to the limit in (4.5).

Since |Gnun| ≤ w ∈ L1(Q) and by Proposition 3.7,

‖Gnun‖L1(Q) ≤M,

the sequence (Gnun)n is a pre-compact set in the weak topology in L1(Q). By Proposition 3.2,
T is a completely continuous operator on L1(Q). Moreover, Sµn → Sµ by Proposition 3.1.
Therefore the sequence (T Gun)n, and hence the sequence (un)n are compact in L1(Q). More-
over, due to (4.3), (un)n is weakly compact in L2

loc

(

(0, T ); F
)

. Let (unl
) be a sub-sequence of

(un)n convergent, in L1(Q) strongly, in L2
loc

(

(0, T ); F
)

weakly and a.e. on Q to a limit u. Note
that |unl

(t)| ≤ S(t)|µnl
| ≤ Mψ(t) a.e. by Corollary 4.2 and (3.4). Since for all t > 0 and a.a.

x ∈ Ω one has gn(x, r) → g(x, r) as n→ ∞ uniformly in r ∈ [−Mψ(t),Mψ(t)], we conclude that
Gnl

unl
→ Gu as l → ∞ a.e. on Q. So Gnl

unl
→ Gu in L1(Q), by the Lebesgue dominated con-

vergence theorem. Hence we can pass to the limit in the equality unl
= Sµnl

−T Gnl
unl

as l → ∞
and obtain that u = Sµ− T Gu. Moreover, since unl

→ u as l → ∞ weakly in L2
loc

(

(0, T ); F
)

,
it follows that u satisfies (3.9) with f = −Gu for all ζ ∈ W . Hence (∂t − L + G)u = 0 and
u(0) = µ. By Corollary 4.2, the solution to the latter equation is unique so (un)n has a unique

limit point u. Hence un → u in L1(Q) strongly and in L2
loc

(

(0, T ); F
)

weakly.

The following is a straightforward consequence of Proposition 4.3.

Corollary 4.4. Let G be a monotone homogeneous Nemytskii operator, µn → µ in weak-∗
topology of M(Ω), µn ≥ 0, supp(µn) ⊂ Br and ‖µn‖M(Ω) ≤ c. Let un be the solution to (4.5).
Set sc(x, t) := c sup

y∈Br

pt(x, y). Assume that

(4.6) Gsc ∈ L1(Q).

Then un → u in L1(Q) as n → ∞, and u is the solution to the problem (∂t − L + G)u = 0,
u(0) = µ.

The next theorem is the main result of this section.

Theorem 4.5. Let (3.2) and (3.3) hold. Let µ ∈ M(Ω) satisfy the condition

(4.7)

∫∫

Q

[

GSµ+ −G(−Sµ−)
]

dγdt <∞.

Then there exists a unique solution u = uµ to the Cauchy problem

(4.8)

{

(∂t − L+G) u = 0,

u(0) = µ.

Moreover, [uµ(t)− S(t)µ] → 0 in L1 as t→ 0.

Proof. First we consider g such that ḡ ∈ L1 with ḡ(x) := sup
r

|g(x, r)|, x ∈ Ω. Denote H(x, r) :=
∫ r
0 g(x, s)ds. Then H is a convex positive sub-linear function in r for a.a. x ∈ Ω. Consider the
functional

J(u) :=
1

2
E(u) +

∫

Ω

H (x, u(x)) γ(dx), u ∈ F .
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Then δJ = −L+G. By [28, Theorem III.4.1, Proposition III.4.2], for j = 1, 2, 3, . . . there exists

a unique solution uj ∈ L2
(

(0, T ); F
)

to the Cauchy problem

(4.9)

{

(∂t − L+G)uj = 0,

uj(0) = µj ∈ L1 ∩ L∞.

Moreover, uj ∈ L∞ ((0, T ),F) ∩W 1,2
(

(0, T ); L2
)

.

If µj → µ as j → ∞ in the sense of weak-∗ convergence of measures, then, by Proposition 4.3,
uj → u as j → ∞ in L1(Q), and u is the unique solution to (4.8). Indeed, we have to verify
condition (4.4). However,

sup
n

[

GnSµ
+
n −Gn(−Sµ−n )

]

≤ ḡ ∈ L1.

Hence the assertion follows.

For a general g, let Ek ⊂ Ω be an increasing sequence of subsets of finite measure such
that Ω = ∪Ek. For k = 1, 2, 3, . . . , let gk(x, r) := 11Ek

sgn (g(x, r)) (|g(x, r)| ∧ k), let Gk be the
corresponding Nemytskii operator and let uk be the solution to the equation (∂t−L+Gk)uk = 0,
uk(0) = µ constructed above. Then, by Corollary 4.2, −Sµ− ≤ uk ≤ Sµ+, and hence

(4.10) |Gkuk| ≤ |Guk| ≤
{

GSµ+, uk ≥ 0,

−G(−Sµ−), uk < 0,
≤ GSµ+ −G(−Sµ−).

Since GSµ+ − G(−Sµ−) ∈ L1(Q), Proposition 4.3 implies that uk → u as k → ∞ in L1(Q),
and u is the solution to (4.8).

To prove the last assertion, note that Sµ− u = T Gu. So, by (4.10),

∫

Ω

|u(t)− Sµ(t)|dγ ≤
t
∫

0

∫

Ω

[

GSµ+ −G(−Sµ−)
]

dγdτ → 0 as t→ 0.

The next corollary together with the last assertion of the previous theorem provide the proof
of assertions (d) and (e) of Theorem 1.2 for κ <∞.

Corollary 4.6. Let 0 < p < 1 + 2+β
N+2λ . Then the problem

{

∂tu− h−2div
(

h2∇u) + rβ|u|p−1u in R
N ,

u(0) = κδ0

has a unique solution uκ for every κ > 0. Conversely, for 1 < p < 1 + 2+β
N+2λ and κ ∈ (0,∞),

if u is a solution to (1.6) satisfying u(t) → κδ0 as t → 0 in the sense of weak-∗ convergence of
measures, then u = uκ.

Proof. In this case E(u) = ‖∇u‖2
L2
h2

is the bilinear quadratic form in L2
h2 with C1

c (R
N ) as

its core. (It follows from Lemma A.1 that
(

E , C1
c (R

N )
)

is closable in L2
h2 .) Let S denote the
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corresponding semigroup and k its integral kernel. By Theorem 3.9, k obeys the estimate (3.13).
Now we verify the assumption of Theorem 4.5:

T
∫

0

∫

RN

rβ|S(t)κδ0|ph2dxdt = κ
p

T
∫

0

∫

RN

|x|β+2λ|k(t, x, 0)|pdxdt

≤
T
∫

0

∫

RN

|x|β+2λcδt
− p(N+2λ)

2 e
− p|x|2

4(1+δ)t

( |x|√
t
+ 1

)−pλ

dxdt

≤cδ,p
T
∫

0

t
β−(p−1)(N+2λ)

2 dt

∫

RN

|ξ|β+2λe
− p|ξ|2

4(1+δ) (|ξ|+ 1)−pλ dξ.

The integral in t converges since β+2λ−(p−1)N−2pλ
2 > −1, that is, p < 1 + 2+β

N+2λ . The integral in
ξ converges since β + 2λ+N = (β + 2) + (2λ+N − 2) > 0.

The second assertion follows from Corollaries 2.2 and 4.2

5 Very singular solutions

In this section we construct a very singular solution to (1.6) and prove its uniqueness. Through-
out the section we assume that

1 < p < p∗ = 1 +
2 + β

N + 2λ
.

We start this section by showing that every very singular solution (VSS) if it exists, dom-
inates pointwise every source type solution (SS). The next proposition is an analogue of [17,
Lemma 1.3].

Proposition 5.1. Let v be a VSS and u be a SS to (1.6), respectively. Then u ≤ v pointwise
for a.a. (x, t) ∈ R

N × (0, T ).

Proof. Let
∫

B1
u(t)h2dx → κ < ∞ as t → 0. Let τ0 > 0 be such that

∫

B1
v(t)h2dx > κ for

all 0 < t ≤ τ0. Then, for τ ∈ (0, τ0) there exists ϕτ ∈ L1
h2 such that 0 ≤ ϕτ ≤ v(τ)11B1 and

‖ϕτ‖L1
h2

= κ.

Let u(τ) be the solution to the problem

(∂t −∆h2)u+ rβup = 0, u(0) = ϕτ .

Thanks to Proposition 2.1 it is easy to check that

v ∈ L1(RN × (τ, t), h2dxdt) ∩ Lp(RN × (τ, t), rβh2dxdt).

Then by Proposition 4.1

(5.1) u(τ)(t) ≤ v(t+ τ), t > 0.

Since ‖u(τ)(0)‖L1
h2

= κ and suppu(τ)(0) ⊂ supp v(τ), it follows that u(τ)(0)h2dx → κδ0 in

weak-∗ topology of M(Ω). Hence u(τ) → uκ in L1
h2(Q) by Corollary 4.4, where (3.13) is used

to verify (4.6). Then (5.1) implies that uκ ≤ v.
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The above leads to an immediate construction of the minimal VSS.

Corollary 5.2. u∞ := lim
κ→∞

uκ is the minimal VSS, where uκ is the solution from Corollary 4.6.

Proof. Using Proposition 2.1 one can easily verify that the above limit exists and is a solution
to (1.6), (1.7).

In the next proposition we follow the construction from [18, Theorem 4.1].

Proposition 5.3. U∞(x, t) := sup{u(x, t) : u is a positive singular solution} is the maximal
VSS.

Proof. Let u be a solution for (1.6), (1.7). It follows from Lemma 1.6 and Proposition 2.1 that,
for all R > 0 one has u ∈ C2,1(RN \ BR × [0, T )) and u(x, t) → 0 as |x| → ∞ uniformly in t.
Moreover, by Proposition 2.1

(5.2) u(x, t) ≤ c(|x|2 + t)
− 2+β

2(p−1) , (x, t) ∈ R
N × (0,∞),

with a constant c > 0 independent of u. Let v be the solution of the linear inhomogeneous
problem











(∂t −∆h2)v = 0 in R
N \BR × (0,∞),

v(x, 0) = 0, x ∈ R
N \BR,

v(x, t) = cR
− 2+β

p−1 , x ∈ ∂BR, t > 0.

Then, by the maximum principle, u ≤ v. Note that v enjoys the estimate

(5.3) 0 ≤ v(x, t) ≤ CR

t
∫

0

∫

[R<|x|<2R]

ph
2

s (x, y)dy ds,

where CR > 0 is a constant and ph
2

t (·, ·) is the fundamental solution to the linear equation
(∂t −∆h2)u = 0. Hence all u and U∞ satisfy (5.3) with v replaced by u and U∞, respectively.
Note also that U∞ satisfies the estimate (5.2) with u replaced by U∞. In particular, U∞(τ) ∈ L1

h2

and U∞ ∈ L1(RN × (τ, T ), h2dxdt) ∩ Lp(RN × (τ, T ), rβh2dxdt) for all τ > 0.

By Theorem 4.5 for t > τ the problem

{

(∂t −∆h2)u+ rβup = 0, t > τ,
u(τ) = U∞(τ)

has a unique solution u(τ).

For every singular solution u we have that u(τ)(τ) ≥ u(τ). Therefore by Proposition 4.1
u(τ)(t) ≥ u(t) , and hence u(τ)(t) ≥ U∞(t) for all t ≥ τ . Moreover, for τ ′ ≤ τ one has

u(τ
′)(τ) ≥ U∞(τ) = u(τ)(τ).

Using Proposition 4.1 again we obtain that

u(τ
′)(t) ≥ u(τ)(t), τ ′ ≤ τ ≤ t.
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By Proposition 2.1 it follows that, for all t0 > 0 and τ < t0
2 , with ρ :=

√
t0 − τ ≥

√

t0
2

∫∫

t>t0

|∇u(τ)|2h2dx dt ≤ c







∫

|x|>ρ

U∞(x, τ)2h2dx+ ρ
N+2λ−2 2+β

p−1






≤ ct

N
2
+λ− 2+β

p−1

0 .

So (∇u(τ))τ is bounded in L2
loc(R

N × (0,∞), h2dx dt) uniformly in τ . Hence uτ ↑ u as τ ↓ 0.
Now passing to the limit in τ it is easy to see that

(∂t −∆h2)u+ rβup = 0.

Furthermore, by (5.3) for x 6= 0 we have that u(x, t) → 0 as t→ 0. Thus u is a singular solution,
and hence u ≤ U∞. Since u ≥ uτ ≥ U∞, we conclude that u = U∞.

Lemma 5.4. The minimal VSS u∞ and and the maximal VSS U∞ to (1.6) are self-similar.
More precisely,

u∞(x, t) = t−σv∞(
x√
t
), U∞(x, t) = t−σV∞(

x√
t
)

where v∞ and V∞ are positive solutions to the problem

(5.4)

{

−K−1∇(K∇v)− σv + rβv|v|p−1 = 0,

r2σv → 0 as r → ∞,

with σ = β+2
2(p−1) and K = r2λe

r2

4 .

Proof. Let u be a singular solution to (1.6). Then Tρu defined by Tρu(x, t) := ρ
β+2
p−1u(ρx, ρ2t),

is another singular solution to (1.6). Moreover, Tρuc = ucρ with cρ = cρ
β+2
p−1

−N−2λ. Hence by

definition TρU∞ = U∞ and Tρu∞ = u∞. Now the assertion follows with ρ = t−
1
2 .

Proposition 5.5. A VSS to (1.6) is unique, i.e. U∞ = u∞.

Proof. It suffices to show that V∞ ≤ v∞ . Let w := V∞ − v∞. Note that w is a sub-solution to
the equation

−K−1∇(K∇w)− σw + rβvp−1
∞ w = 0.

Since −K−1∇(K∇v∞)− σv∞ + rβvp∞ = 0, it follows from [10, Theorem 4.1] that
∫

|∇θ|2K dx+

∫

(

rβvp−1
∞ − σ

)

θ2K dx ≥ 0 for all θ ∈ C0,1
c (RN ).

Since r2σV∞ → 0 as r → ∞ it follows that, for a sufficiently large R, one has w(x) ≤ R−2σ for
all x, |x| > R. By the weak maximum principle, we infer that w(x) ≤ R−2σ for all x, |x| < R.
Hence w ≤ 0.

As the positive solution to (5.4) produces a VSS, it is clear that (5.4) has a unique positive
solution. To find it one can use a variational approach almost identical to that in [12]. Namely,
one considers the nonlinear functional J on the Banach spaceX := H1

K(RN )∩Lp+1(RN , rβKdx),

(5.5) J(θ) :=
1

2

∫

RN

|∇θ|2K dξ +
1

p+ 1

∫

RN

|θ|p+1rβK dξ − µ

2

∫

RN

|θ|2K dξ.

To show that J is bounded below we need the following auxiliary result.
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Lemma 5.6. For any ε > 0 there exists Cε > 0 such that

‖θ‖2L2
K
≤ ε

(

‖∇θ‖2L2
K
+ ‖θ‖p+1

L2
rβK

)

+ Cε, θ ∈ X.

Proof. For ε > 0, choose Rε > rε > 0 such that

16

R2
ε

+
4r2ε

(N − 2 + 2λ)2
<
ε

2
.

Then, by Lemma A.1, we have
∫

Brε∪RN\BRε

|θ|2K dx ≤ ε

2
‖∇θ‖2L2

K
.

Now, by the Young inequality,
∫

BRε\Brε

|θ|2K dx ≤ ε

2

∫

BRε\Brε

|θ|p+1K dx+ Cp,ε

∫

BRε\Brε

K dx.

Now we are ready to show the existence of a non-trivial minimizer of the functional J . This
follows immediately from the next proposition.

Proposition 5.7. The functional J defined in (5.5) is bounded below and lower semi-continuous
with respect to the weak topology. Moreover, J(θ) → ∞ as ‖θ‖X → ∞.

Proof. Let θn → θ weakly in X. Then θn → θ strongly in L2
K since H1

K

compact→֒ L2
K , by

Corollary A.2. So lim inf ‖θn‖H1
K

≥ ‖θ‖H1
K
, and due to the lower semi-continuity of the Lp-

norm w.r.t. the weak convergence (see, e.g. [20]) lim inf ‖θn‖Lp+1

rβK

≥ ‖θ‖Lp+1

rβK

and lim ‖φn‖L2
K
=

‖φ‖L2
K
. The last two assertions follow directly from Lemma 5.6.

Next we show that the minimizer is nontrivial and can be chosen non-negative.

Proposition 5.8. Let µ > N+2λ
2 . Then there exists a non-trivial minimizer of J which can be

chosen nonnegative.

Proof. Note that J(0) = 0. Let τ > 0. Set φ = τe−
r2

4 . Then

E(τφ) = (
N + 2λ

2
− µ)τ2

∫

φ2K dx+ τp+1

∫

φp+1rβK dx.

Now it clear that there exists τ > 0 such that J(τφ) < 0, hence zero is not a minimizer. The
last assertion follows from the fact that J(θ) = J(|θ|).

The minimizer is exponentially decaying at infinity, which is shown in the next proposition.

Proposition 5.9. Let v ∈ H1
K(RN ) ∩ Lp+1(RN , rβKdx) be a solution to

(5.6) −K−1∇(K∇v)− µv + rβv|v|p−1 = 0.

There exists C > 0 such that

|v| ≤ Ce−
r2

8 , on R
N \B1.
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Proof. We follow [12] simplifying the arguments. Let w := ve|x|
2/8. Then w satisfies the equation

(5.7) − 1

h2
∇(h2∇w) + V w = 0

with V := N+2λ
4 − µ + r2

16 + e−
(p−1)r2

8 rβ|w|p−1. One can choose R > 0 such that V (x) ≥ 0 on
|x| > R. It is easily seen that solutions to (5.7) are locally bounded outside the point x = 0. Let
M := sup

1<|x|<R
w(x). Looking at (5.7) on |x| > 1 and taking ϕ := (w −M)+ as a test function

we obtain that ϕ = 0. Changing w by −w in (5.7) we see that |w(x)| ≤ M , which proves the
assertion.

A Appendix: Hardy-type inequality and compact embedding

Lemma A.1. For λ > 2−N
2 , α ≥ 0, K = r2λeαr

2
, θ ∈ C∞

c (RN ), there holds

(A.1)

∫

RN

|∇θ|2Kdx ≥
∫

RN

(

α2r2 + α(N + 2λ) +

(

N − 2 + 2λ

2

)2 1

r2

)

|θ|2Kdx.

Proof. First, notice that div(x|x|q) = (N + q)|x|q for all q > −N . Now let v = rλe
α
2
r2θ. Then

v ∈ H1(RN ) and

∇v = rλe
α
2
|x|2∇θ + x

(

α+
λ

r2

)

v.

Hence we have
∫

RN

|∇θ|2Kdx =

∫

RN

|∇v|2dx+

∫

RN

(

α2r2 + 2αλ+
λ2

r2

)

v2dx−
∫

RN

(∇v2) · x
(

α+
λ

r2

)

dx

=

∫

RN

|∇v|2dx+

∫

RN

(

α2r2 + α(N + 2λ) +
λ2 + (N − 2)λ

r2

)

v2dx.

Now the assertion follows from the standard Hardy inequality.

Corollary A.2. Let λ > −N−2
2 , α > 0, K = eαr

2
r2λ. Then H1(RN ,Kdx) is compactly

embedded into L2(RN ,Kdx).

Proof. It suffices to prove that, given vn → 0 weakly in H1(RN ,Kdx), the sequence (vn)n
converges to 0 strongly in L2(RN ,Kdx).

Let m := sup
n

‖vn‖H1 . We use the following decomposition: for 0 < r0 < R0,

(A.2)

∫

RN

v2Kdx =

∫

r<r0

v2Kdx+

∫

r0<r<R0

v2Kdx+

∫

r>R0

v2Kdx.

Fix ε > 0 and choose r0 and R0 such that

2mr20

(

N − 2 + 2λ

2

)−2

< ε and
2m

α2R2
0

< ε.

Then by Lemma A.1
∫

r<r0

v2Kdx+

∫

r>R0

v2Kdx ≤ r20

∫

RN

v2

r2
Kdx+

1

R2
0

∫

RN

r2v2Kdx

≤
(

r20

(

N − 2 + 2λ

2

)−2

+
16

R2
0

)

m < ε.
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Finally, the sequence (vn) is bounded in H1(BR0 \ Br0 ,Kdx) = H1(BR0 \ Br0 , dx). So vn → 0
weakly in H1(BR0 \Br0 , dx), hence vn → 0 strongly in L2(BR0 \Br0 , dx) = L2(BR0 \Br0 ,Kdx).
Thus, for all ε > 0

lim sup
n→∞

∫

RN

v2nKdx < ε.

The same argument implies the second assertion.
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[30] L.Véron, Singularities of solutions of second order quasilinear equations. Pitman Research Notes
in Mathematics Series, 353. Longman, Harlow, 1996.

28


	1 Introduction and main results
	2 A-priori estimates and nonexistence result
	3 Linear equation with a generator of an ultra-contractive Feller semigroup
	4 Source solutions 
	5 Very singular solutions
	A Appendix: Hardy-type inequality and compact embedding

