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Abstract

We analyse the spatial diversity of a multipath fading process for a finite region or curve in
the plane. By means of the Karhunen-Loève (KL) expansion, this diversity can be character-
ised by the eigenvalue spectrum of the spatial autocorrelation kernel. This justifies to use the
term diversity spectrum for it. We show how the diversity spectrum can be calculated for any
such geometrical object and any fading statistics represented by the power azimuth spectrum
(PAS). We give rigorous estimates for the accuracy of the numerically calculated eigenvalues.
The numerically calculated diversity spectra provide useful hints for the optimisation of the
geometry of an antenna array. Furthermore, for a channel coded system, they allow to evaluate
the time interleaving depth that is necessary to exploit the diversity gain of the code.

1 Introduction

Multipath fading is a major source of degradations in wireless digital communication systems
[1, 2, 3]. Information bits that fall into deep fades may get lost if no measures are taken against
this. All methods to prevent this loss of information employ some kind of diversity, i.e. they
spread the information over a wider range of the channel so that enough reliable parts of it can
be exploited by the transmission system. In its simplest form, diversity is employed by multiple
reception of the same information bits at different frequencies, time slots, or antenna locations.
More efficient ways to employ diversity is channel coding in conjunction with an appropriate time
and frequency interleaving [1, 2, 3, 4] as applied in several systems. Multiple-input-multiple-output
(MIMO) systems with several transmit and receive antennas are an efficient method to increase the
channel capacity [5, 6, 7]. To achieve the maximal capacity, these antennas must be uncorrelated,
which requires a sufficient spatial distance between them.

In practice however, the information can only be spread over a finite region of the channel. There-
fore, there are channel correlations that diminish the possible gains of all of these methods. In
this paper we provide tools to quantify these degradations. We concentrate on space and time
diversity aspects of the multipath channel and leave aside frequency diversity as a topic of its own.
Space and time diversity, however, are closely related for the scenario of a receiver that is moving
through a spatial fading pattern: If the receive antenna moves along a straight line, the time fading
amplitude as a function of time is nothing but the fading amplitude as a function of the space
variable, scaled by the velocity of the vehicle. Thus, time correlations are nothing but scaled space
correlations. The diversity of such a given space or time interval can be quantified by evaluating
the equivalent uncorrelated diversity branches of the fading process. For a time interval [t1, t2],
these uncorrelated branches can be obtained by the Karhunen-Loève (KL) expansion [8, 9, 10] of
the fading process a (t) given by

a (t) =

∞
∑

n=1

cnϕn (t) , t ∈ [t1, t2] . (1)
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In that expansion, the basis functions ϕn (t) are orthogonal and of normalised energy, and the
coefficients cn obey the condition

E {cmc
∗
n} = λnδmn . (2)

This means that the process can be decomposed into a series of orthogonal and uncorrelated com-
ponents, each with energy λn. We may thus call them equivalent uncorrelated diversity branches.
Their respective strenghts are characterised by the values λn, which are the eigenvalues of an in-
tegral equation with kernel given by the autocorrelation function (ACF) of a (t) [8, 9, 10]. The
eigenvalue spectrum {λn}

∞
n=1 characterises the amount of diversity gain that can be achieved in

the time interval under consideration. We will thus call {λn}
∞
n=1 the diversity spectrum of the

stochastic process corresponding to that interval. Coding with interleaving is closely related to
diversity. The error event probabilities corresponding to the Hamming distance d of a convolu-
tional code with perfect interleaving in a Rayleigh fading channel are asymptotically proportional
to SNR−d, i.e. they behave like the error probabilities of d uncorrelated diversity branches [1, 2, 4].
For interleaving over a finite time interval, this error probability will decrease much slower if there
are less than d eigenvalues of significant size [11].

In that example where we consider time variance that is caused by vehicle motion, the diversity
spectrum can equivalently and uniquely assigned to a corresponding spatial interval (the segment
of a straigth line). On the other hand, a spatial interval by itself can be interpreted as the
geometrical base of a linear antenna array. In that case the term (antenna) aperture is usually
applied. With the continuous-limit idealisation that the straigth line is densely covered with
sensors, the eigenvalue spectrum may then be interpreted as the multipath richness of the fading
process (or the electromagnetic field) in that region. We may thus say that the eigenvalue analysis
of a time interval and densely covered uniform linear array (ULA) are equivalent.

Our goal is to calculate the diversity spectrum not only for a given spatial (or time) interval as
discussed above, but for quite general one- or two-dimensional apertures in the plane. The two-
dimensional aperture of a rectangle, e.g., arises naturally if a linear antenna array is mounted on
a vehicle, perpendicular to the direction of motion. One edge of the rectangle corresponds to the
length of the array and the perpendicular edge corresponds to the route covered by the vehicle
during a given time interleaving depth.

Rather than characterising the diversity of a given aperture by the complete diversity spectrum
{λn}

∞
n=1, it is desirable to have a single number that reflects the diversity degree and can be

interpreted in some way as the effective number of equivalent independent diversity branches. It
turns out that the diversity measure defined by

ω =
(
∑∞

i=1 λi)
2

∑∞
i=1 λ

2
i

(3)

is a useful quantity that allows such an interpretation. This definition is the dense-array limit of
the L-antenna diversity measure

ω =

(

∑L

i=1 λi

)2

∑L

i=1 λ
2
i

(4)

that has been discussed in-depth by [12] and [13]. For MIMO systems, one can calculate the
diversity measures ωTx and ωRx at the transmitter (Tx) and receiver (Rx) site, respectively. Under
the assumption that there are no correlations between both sites, the spectral efficiency slope Σ0

of the low power regime [14, 13] is given by

2

Σ0
=

1

ωRx

+
1

ωTx

(5)

Our method allows to calculate Σ0 for dense arrays.

The major part of our work is devoted to the solution of the eigenvalue problem in the Hilbert
space of square integrable functions over a given aperture. In [15], this problem has been solved for
the special case where the aperture is a disk of finite radius. The authors approximate the fading
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process by a truncated orthogonal series expansion based on Bessel functions, and they prove trun-
cation error bounds for the fading process. Based on that rigorous bounds, they heuristically argue
that a good approximation of the process itself leads to a good approximation of the eigenvalues
λn.

We adopt the method of [15] and put it into a more general Hilbert space framework. This allows
us to calculate diversity spectra not only for a disk, but for quite general curves or areas in the
two-dimensional plane. Furthermore, by utilising the theory of compact operators, we are able
to prove rigorous bounds of the approximation errors for the eigenvalues themselves. We give
several examples of numerically calculated eigenvalue spectra and diversity measure for scenarios
of several apertures and scattering environments with azimuth spectra (PAS) of different degrees
of anisotropy.

The rest of the paper is organised as follows. In Section 2, we introduce the channel model and
discuss its statistical properties. In Section 3, we introduce the Hilbert space of square integrable
functions on the aperture and define the the autocorrelation kernel as an operator acting on
that Hilbert space. Numerical examples of diversity spectra and diversity measures for different
scenarios are presented in Section 4. In Section 5, we summarise our results and draw some
conclusions. The necessary Hilbert space framework of our work as well as the proofs of the
theorems can be found in the Appendix.

2 The Statistical Model for Spatial Multipath Fading

2.1 Solutions of the Helmholtz Equation

We consider scalar spatial multipath interference (fading) patterns that are given as scalar solutions
φ of the two-dimensional (2D) Helmholtz equation

△ φ+ k2φ = 0 , (6)

where △= ∂2/∂x2+∂2/∂y2 is the 2D Laplacian operator and k is the wave number. The Helmholtz
equation (HE) is equivalent to the homogeneous wave equation for a fixed wavelength. Considering
only the homogeneous equation means that all scatterers are outside the region of interest. Since
we keep the wavelength fixed, we may set it equal to one which means that we measure the space
variable x ∈ R

2 in units of wavelengths. With that normalisation, the wave number is simply given
by k = 2π.

The prototype solution of the HE is given by

φ (x) = ejk·x , (7)

with |k| = k = 2π. The wave vector −k points into the direction of propagation, thus k points
into the direction of the incoming wave. We write k and x in polar coordinates as

k = 2π

(

cosα
sinα

)

and x = r

(

cosβ
sinβ

)

, (8)

note that
k · x = 2πr cos (α− β) (9)

and obtain
φ (x) = ej2πr cos(α−β) . (10)

The angle α is the angle of arrival (AoA).

A general solution a (x) of the HE can be obtained as a superposition of solutions of type (10)
with different angles of arrival α:

a (x) =

∫ π

−π

â (α) ej2πr cos(α−β)dα (11)
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In that equation, â (α) is a weighting factor, and â (α) dα has to be interpreted as the part of the
fading amplitude a (x) corresponding to AoAs corresponding to the directions inside the interval
[α, α+ dα]. We expand the weighting factor â (α) into a Fourier series

â (α) =

∞
∑

n=−∞

âne
jαn (12)

with coefficents

ân =

∫ π

−π

e−jαnâ (α)
dα

2π
. (13)

For convenience, we define

ãn = 2πân =

∫ π

−π

e−jαnâ (α) dα . (14)

Inserting the Fourier series (12) into Equation (11) we obtain:

a (x) =

∫ π

−π

â (α) ej2πr cos(α−β)dα

=

∞
∑

n=−∞

ân

∫ π

−π

ejαnej2πr cos(α−β)dα

=

∞
∑

n=−∞

ân

∫ π

−π

ej(α+β)nej2πr cos(α)dα

=

∞
∑

n=−∞

âne
jβn

∫ π

−π

ejαnej2πr cos(α)dα

The complex version of Bessel’s first integral ([16], p. 690),

Jn (x) =
1

2πjn

∫ π

−π

ejαnejx cos(α)dα , (15)

then leads to the series expansion

a (x) =
∞
∑

n=−∞

ãne
jβnjnJn (2πr) . (16)

2.2 Properties of the Fading Random Process

The fading amplitude a (x) is modeled as a zero-mean stochastic process. This means that â (α)
in Equation (11) is a family of random variables depending on the angle α. We impose the
uncorrelated scattering assumption (US) [17, 18] which means that waves impinging from different
directions can be regarded as uncorrelated:

E {â (α) â∗ (α′)} = S (α) δ (α− α′) (17)

The quantity S (α) is called the power azimuth spectrum (PAS), and S (α) dα has to be interpreted
as the amount of average power that is impinging from directions inside the interval [α, α+ dα].
The PAS must be positive and integrable. We normalize the PAS to the total power one:

∫ π

−π

S (ϕ) dϕ = 1 (18)

From Equation (11), together with the US assumption (17), we obtain the following expression for
the autocorrelation of the fading process:

E {a (x) a∗ (x′)} =

∫ π

−π

ej2πr cos(α−β)e−j2πr′ cos(α−β′)S (α) dα (19)
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Using Equation (8), we note that

r cos (α− β)− r′ cos (α− β′) = k · (x− x
′) .

Thus, E {a (x) a∗ (x′)} depends only on the difference variable, x− x
′, and we may write

E {a (x) a∗ (x′)} = ρ (x− x
′) (20)

with the spatial autocorrelation function ρ (x) given by

ρ (x) =

∫ π

−π

ej2πr cos(α−β)S (α) dα . (21)

From Equation (18) we obtain ρ (0) =
∫ π

−π
S (ϕ) dϕ = 1 . Thus, the autocorrelation function has

the property
|ρ (x)| ≤ 1 . (22)

The PAS has a Fourier expansion

S (α) =

∞
∑

n=−∞

ŝne
jαn (23)

with coefficients given by

ŝn =

∫ π

−π

e−jαnS (α)
dα

2π
. (24)

We assume that S (α) is a piecewise continuous, bounded function over the interval [−π, π]. Then
the Fourier series (23) for S (α) converges almost everywhere. For convenience, we define

s̃n = 2πŝn =

∫ π

−π

e−jαnS (α) dα . (25)

In the following, these coefficients are assumed to be known for the PAS under consideration.
Because S (α) must be real,

s̃n = s̃∗−n (26)

holds. Furthermore we have
|s̃n| ≤ s̃0 = 1 . (27)

A series expansion for ρ (x) can be obtained in a similar way as before for a (x): We insert the
Fourier expansion (23) into Equation (21) and use the integral representation (15). This yields

ρ (x) =

∞
∑

n=−∞

s̃ne
jβnjnJn (2πr) . (28)

The US property (17) has consequences also for the correlations between the (random) Fourier
coefficients ân of â (α). The autocorrelation matrix R̃ of the discrete random process of the
coefficients ãn = 2πân is defined by its elements

R̃mn = E {ãmã
∗
n} . (29)

We insert (25) into this equation, use the US assumption (17), compare with (25) to obtain the
following expression:

R̃mn = s̃m−n (30)

The (infinite) autocorrelation matrix R̃ can be written compactly by defining ã as a column vector
of infinite length build from the coefficients ãn. Then the autocorrelation matrix can be written as

R̃ = E
{

ãã
†
}

. (31)

The dagger † denotes the Hermitian conjucate, i.e. the complex conjugate transpose of the vector.
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2.3 Time Correlations and Doppler Spectrum

A single-antenna receiver mounted on a vehicle experiences time variant fading given by a (x (t)),
where x (t) is the antenna position at time t. The time autocorrelation of the fading is given by

E {a (x (t)) a∗ (x (t′))} = ρ (x (t)− x (t′)) . (32)

For for x (t) = vt, i.e. a vehicle moving with constant velocity vector v,

E {a (x (t)) a∗ (x (t′))} = ρtime (t− t′) (33)

holds with a time autocorrelation function defined by

ρtime (t) = ρ (vt) . (34)

Consider a motion with constant velocity νmax = |v| along the x-axis. According to Equation
(8), we have to replace r cos (α− β) = νmaxt cos (α) in Equation (21) which leads to the integral
expression

ρtime (t) =

∫ π

−π

ej2πνmaxt cos(α)S (α) dα . (35)

We split up this integral according to
∫ π

−π
dα =

∫ 0

−π
dα +

∫ π

0 dα, substitute α by the Doppler

frequency1

ν = νmax cos (α) , (36)

and obtain

ρtime (t) =

∫ νmax

−νmax

ej2πνtSDoppler (ν) dν (37)

with the Doppler spectrum

SDoppler (ν) =
S (α (ν)) + S (−α (ν))

√

ν2max − ν2
. (38)

Here we have defined

α (ν) = arccos

(

ν

νmax

)

. (39)

It is worth to note that Equation (38) reflects the mirror symmetry of the Doppler shift : Two
signals impinging from angles α and −α lead to the same value of ν. Measurements along a
straight line cannot distinguish between signals from left and right.

Setting x = (νmaxt, 0)
T

in Equation (28) yields the series expansion

ρtime (t) =
∞
∑

n=−∞

s̃nj
nJn (2πνmaxt) . (40)

The special case of isotropic scattering with PAS

S (α) =
1

2π
(41)

is a popular fading channel model. The corresponding so-called Jakes [19] Doppler spectrum can
be obtained from Equation (38) as

SDoppler (ν) =
1

π

1
√

ν2max − ν2
. (42)

The corresponding time autocorrelation function is given by

ρtime (t) = J0 (2πνmaxt) (43)

because in the case of the isotropic PAS the series (40) reduces to the term with n = 0. We
emphasize that our investigations are not restricted to the isotropic scattering case.

1Note that, because the wavelength is set equal to one, the maximal Doppler frequency and velocity have the
same value νmax = |v|.
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3 The Autocorrelation Operator and its Diversity Spectrum

The goal of this section is to calculate the diversity spectrum of the KL expansion, i.e. the
eigenvalues of the integral kernel given by the autocorrelation function of the stochastic process
under consideration.

Consider for example a stochastic process a (t) with time variable t restricted to a time interval
[t1, t2]. The kernel R (t, t′) = E {a (t) a∗ (t′)} defines a linear operator on the Hilbert space of square
integrable function over the interval [t1, t2]. The task is to calculate its diversity spectrum, which
depends on the interval and on the statistics of a (t). The KL theory for such a time interval can
be found in Sec. 6-4 and Appendix 2 of [9]. In the following, we shall need the KL theory for a
more general aperture given by a 1D curve or a 2D region in the plane. We shall define the Hilbert
space of square integrable functions over such a general aperture and show a method to calculate
the corresponding diversity spectrum.

3.1 Construction of the Hilbert Space

Consider the following geometrical configurations called apertures and denoted by A:

1. Continuous and piecewise smooth curves of finite length in the plane. Examples are the circle
A =

{

(x, y) ∈ R
2 : x2 + y2 = 1

}

and the interval A =
{

(x, y) ∈ R
2 : 0 ≤ x ≤ 1 and y = 0

}

.

2. Arbitrary finite and closed (topologically speaking: compact) two-dimensional regions in
the plane. Examples are the disk A =

{

(x, y) ∈ R
2 : x2 + y2 ≤ 1

}

and the square A =
{

(x, y) ∈ R
2 : x, y ≤ 1/2

}

.

Both cases can be be related to an idealised antenna array with infinitely dense antenna packing on
the curve or region, respectively. We shall analyse the multipath richness of the stochastic process
a (x) resticted to that aperture. This has to be done by solving the eigenvalue problem of the
autocorrelation integral kernel which is related to the KL expansion on that aperture. The first
task is to construct the Hilbert space H = L2 (A, dµ) of square-integrable functions φ, ψ, ... that
live on that aperture A:

∫

A

|φ|
2
dµ <∞ (44)

Here µ is the (normalised) Lebesgue measure on A. The scalar product of two vectors φ, ψ ∈ H is
given by

〈φ, ψ〉 =

∫

A

φ∗ψdµ (45)

and the norm of φ ∈ H is defined by

‖φ‖ =
√

〈φ, φ〉 . (46)

To obtain the Karhunen-Loève (KL) expansion, we need to define the autocorrelation operator R
on that Hilbert space. For convenience, we have normalised the measure to

µ (A) ,

∫

A

dµ = 1 . (47)

As we shall see, this has the consequence that the trace tr (R) (i.e. the sum of eigenvalues) of the
operator R is normalised to one.

Some facts about Hilbert space operators and definitions of their different norms are summarised
in Appendix A.
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3.1.1 The Hilbert Space for a One-Dimensional Curve

Consider a finite-length, continuous, and piecewise smooth curve A in the plane. For a given
parametrisation τ 7→ x (τ) the curve is defined by

A =
{

x (τ) ∈ R
2 : τ1 ≤ τ ≤ τ2

}

,

and A is just the image of an interval [τ1, τ2]. Thus, the Hilbert space of square integrable functions
over A is isomorphic to the Hilbert space of square integrable functions over that interval. In the
following, this Hilbert space will be constructed explicitely. The line integral of a scalar function
Υ over a curve A is defined as

∫

A

Υdℓ =

∫ τ2

τ1

Υ(x (τ)) |ẋ (τ)|dτ . (48)

In that equation, x (τ) is a piecewise differentiable paramatrisation of the curve A, and ẋ (τ) stands
for the derivative with respect to the parameter τ ∈ [τ1, τ2]. The integral (48) is independent of
the choice of the parametrization. The length of the curve can be expressed by the curve integral
over the scalar function Υ = 1 as

|A| =

∫

A

dℓ . (49)

A special and frequently preferred parameter is the (running) length λ of the curve. In that case
|ẋ (λ)| = 1 holds, and Equation (48) becomes

∫

A

Υdℓ =

∫ |A|

0

Υ(x (λ)) dλ (50)

For this paper, we will chose τ to be the normalised length

τ =
λ

|A|
. (51)

For this so-called priviledged parameter τ we obtain (by using a simple substitution)

1

|A|

∫

A

Υdℓ =

∫ 1

0

Υ(τ) dτ . (52)

In that equation, we have written Υ(τ) , Υ(x (τ)) , Υ(x (λ (τ))) to simplify the notation. We
shall use this loose notation whenever it does not give rise to any confusion. Equation (52) means
that we can express every average over the curve by an average over the unit interval.

Bei chosing the priveledged parameter, the Hilbert space becomes isomorhic to the Hilbert space
over the unit interval:

H = L2 (A, µ) ∼= L2 ([0, 1] , dτ) (53)

Here ∼= denotes isomorphism, the measure µ is given by

dµ =
dℓ

|A|
, (54)

and the scalar product (45) can be written in explicit form as

〈φ, ψ〉 =

∫ 1

0

φ∗ (τ)ψ (τ) dτ . (55)
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Example 1: The Hilbert space of functions on a circle We consider a circle of radius r
defined by

A =
{

x ∈ R
2 : |x| = r

}

. (56)

The priviledged parametrisation is given by

x (τ) = r (cos (2πτ) , sin (2πτ))
T
, (57)

and |A| = 2πr. The scalar product

〈φ, ψ〉 =
1

2πr

∫

A

φ∗ψdℓ =

∫ 1

0

φ∗ (τ)ψ (τ) dτ . (58)

is just the standard scalar product on the unit circle. We note that the natural orthonormal2 basis
on the unit circle is the Fourier basis {un}

∞
n=−∞ with

un (τ) = ej2πτn . (59)

Assuming that each realisation of the fading is an element of the Hilbert space, we can expand it
with respect to this basis

a (τ) =

∞
∑

n=−∞

anun (τ) (60)

with coefficients given by
an = 〈un, a〉 . (61)

This is the familiar formula for the Fourier coefficients:

an =

∫ 1

0

u∗n (τ) a (τ) dτ (62)

=

∫ 1

0

e−j2πτna (τ) dτ (63)

3.1.2 The Hilbert Space for a Two-Dimensional Region

We now consider consider a closed two-dimensional region A ⊂ R
2 of finite area |A|. The functions

φ (x) that satisfy the condition
∫

A

|φ (x)|
2
d2x =<∞

build the Hilbert space
H = L2 (A, µ) , (64)

with the measure µ given by

dµ =
d2x

|A|
. (65)

The scalar product of two vector φ , ψ ∈ H is defined by

〈φ, ψ〉 =

∫

A

φ∗ (x)ψ (x) dµ (x) (66)

=
1

|A|

∫

A

φ∗ (x)ψ (x) d2x . (67)

2The basis {un} is called orthonormal if 〈um, un〉 = δmn holds.
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Example 2: The Hilbert space of functions on a disk [15] We consider a close disk of
radius r1, i.e.

A =
{

x ∈ R
2 : |x| ≤ r1

}

. (68)

It has the area |A| = πr21 . The scalar product is defined by

〈φ, ψ〉 =
1

|A|

∫

C

φ (x)
∗
ψ (x) d2x . (69)

Introducing polar coordinates r and β according to Equation (8) yields

d2x

|A|
=

dβ rdr

πr21
.

A we shall see later, an orthonormal basis for this Hilbert space on a disk is given by

un (x) =
Jn (2π |x|)

√

∫ r1

0
2πrdr
|A| J2n (2πr)

ejβ(x)n .

3.2 The Autocorrelation Operator

We now define the autocorrelation operator R on the one- or two-dimensional aperture A.

One-dimensional aperture: We define the operator R acting on H ∼= L2 ([0, 1]) by its integral
kernel

R (τ, τ ′) = ρ (x (τ) − x (τ ′)) (70)

with ρ (x) according to Equations (20) and (21) and x (τ) being the priviledged parametrisation
of the curve. Using loose notation a (τ) , a (x (τ)) in Equation (20) we may write

R (τ, τ ′) = E {a (τ) a∗ (τ ′)} . (71)

The action of the autocorrelation operator R on a vector ψ ∈ H is given by

(Rψ) (τ) =

∫ 1

0

R (τ, τ ′)ψ (τ ′) dτ ′ . (72)

We note that the kernel is not a convolution kernel (i.e. a kernel that depends only on the difference
variable τ − τ ′) except for the special case where A is a straight line.

Two-dimensional aperture: We define the operator R acting on H = L2 (A, µ) by its integral
kernel

R (x,x′) = ρ (x− x
′) , (73)

defined for x, x′ ∈ A. Again, ρ (x) is given by Equations (20) and (21). The action of the
autocorrelation operator R on a vector ψ ∈ H is given by

(Rψ) (τ) =
1

|A|

∫

A

R (x,x′)ψ (x′) d2x . (74)

In the following treatment, we will no further distinguish between both cases. One can show by
direct calculation from Equation (72) or (74) that

〈φ,Rψ〉 = E {〈φ, a〉 〈a, ψ〉} . (75)

holds. The values of these so-called matrix elements 〈φ,Rψ〉 uniquely define the linear operator
R [20]. Thus, Equation (75) can be interpreted as an alternative definition of the operator that is
valid for both classes of apertures.

We list some properties of the autocorrelation operator R:
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Continuity, integrability, and compactness: From Lebesgue’s dominated convergence the-
orem and the absolute integrability of S (α) it follows that ρ (x) given by integral expression (21)
is a continuous function on A. Thus, the kernel R (τ, τ ′) (or R (x,x′), respectively) is a continuous
function in both variables. Because any continuous function on a closed, finite set is integrable
(and square-integrable, too) the kernel is in L2 (A, dµ) × L2 (A, dµ). This property ensures that
R is a Hilbert-Schmidt operator, which also guaranties that it is compact operator (see Theorems
VI 22 and VI 23 in [20]). Because |ρ (x)| ≤ 1 it can further be shown that the operator norm of R
is bounded by ‖R‖ ≤ 1.

Symmetry and positive semi-definiteness: Because the operator R is bounded, it is defined
on the whole Hilbert space. Because of Equation (71), the kernel is symmetric

R (τ, τ ′) = R∗ (τ ′, τ) , (76)

and the corresponding operator R is self-adjoint3:

R = R
† (77)

The same hold with R (τ, τ ′) replaced by R (x,x′). From Equation (75), we conclude that R is
positive semi-definite, i.e.

〈ψ,Rψ〉 ≥ 0

holds for every ψ ∈ H. We also say that the corresponding kernel R (·, ·) is positiv semidefinite.

Eigenvalues and eigenvectors of R: From the properties of R stated above, the following
properties of its eigenvalues can be infered ([20], Chap. VI): Since R is self-adjoint, there is a
complete set of eigenvectors of R, {ϕi}

∞
i=1, with

〈ϕi, ϕk〉 = δik (78)

that build a basis of H. Because R is compact, the corresponding eigenvalues eig (R) , {λi}
∞
i=1

are of finite multiplicity and have the property

lim
i→∞

λi = 0 .

Because the operator is positive semidefinite, we know that λi ≥ 0 for all i.

Mercer’s Theorem: Because the kernel R (τ, τ ′) is continuous, symmetric, and positive semi-
definite, according to Mercer’s Theorem ([21], §5.4; [22], § 98) the following series expansion for
the kernel holds:

R (τ, τ ′) =

∞
∑

i=1

λiϕi (τ)ϕ
∗
i (τ

′) (79)

The theorem states that the infinite series converges uniformly in τ and τ ′. For the kernel R (x,x′),
the analogous expansion hold with τ, τ ′ replaced by x, x′.

The trace of the operator: From Mercer’s theorem we conclude
∫ 1

0

R (τ, τ) dτ =

∞
∑

i=1

λi

∫ 1

0

ϕi (τ)ϕ
∗
i (τ) dτ

∫ 1

0

R (τ, τ) dτ =

∞
∑

i=1

λi (80)

Due to our normalisation ρ (0) = 1 we have R (τ, τ) = ρ (0) = 1 and, thus,

tr (R) =
∞
∑

i=1

λi = 1 . (81)

The same holds for τ replaced by x.

3See Appendix A for the definition of self-adjointness.
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Karhunen-Loève Theorem: Let {ϕn}
∞
n=1 be the basis of eigenvectors of R and eig (R) =

{λn}
∞
n=1 be the corresponding eigenvalues defined by

Rϕn = λnϕn . (82)

Define the (random) coefficients

cn = 〈ϕn, a〉 =

∫ 1

0

ϕ∗
n (τ) a (τ) dτ . (83)

One can readily concluse from Equation (82) that these coefficients must be uncorrelated:

E {cmc
∗
n} = δmnλn . (84)

Conversely, one can see that the basis of eigenvectors ϕn of R is the only one such that the
coefficients (83) fulfil the condition (84). The KL theorem states that the expansion

a (τ) =

∞
∑

n=1

cnϕn (τ) (85)

converges as a limit in mean (l.i.m.) and that the convergence is uniform in τ . The same holds for
the variable τ replaced by x. It is worth to note that the proof of convergence (see [8, 9]) is based
on Mercer’s theorem which requires the continuity of the kernel.

Diversity Measure: We refer to Appendix A for the definition of the norms
∥

∥A
∥

∥,
∥

∥A
∥

∥

1
, and

∥

∥A
∥

∥

2
of an operator A. By using these norms, the diversity measure given by Equation (3) can

be re-defined as

ω (R) =

∥

∥R
∥

∥

2

1
∥

∥R
∥

∥

2

2

, (86)

i. e. as the ratio between the trace norm

∥

∥R
∥

∥

1
=

∞
∑

n=1

λn (87)

and the Hilbert-Schmidt norm

∥

∥R
∥

∥

2
=

√

√

√

√

∞
∑

n=1

λ2n (88)

of the operator R. Because of hierarchy of norm given by Inequality (152), ω (R) ≥ 1 always holds.

Equation (86) is a suitable definition of the diversity measure for an integral kernel as studied in
this paper. The equivalent for a finite-dimensional L×L correlation matrix R it has been defined
in [12, 13]. In the next section we shall show numerically that for L antennas distributed uniformly
over a given aperture, the calculated diversity measure approaches that of a dense array in the
limit L→ ∞.

The value of the quantity ω can be understood by considering two extreme cases for a finite number
of antennas [12, 13]: Firstly, for L uncorrelated antennas, R is equal to the identity matrix I with
∥

∥I
∥

∥

2

1
= L2 and

∥

∥I
∥

∥

2

2
= L, which yields ω = L. Secondly, for L antennas with 100% correlation,

Rik = 1 holds for all elements Rik of R. This means that
∥

∥R
∥

∥

2

1
= L2 and

∥

∥R
∥

∥

2

2
= L2, which

yields ω = 1. Thus, the diversity measure ω (R) can be interpreted as the number of equivalent
uncorrelated antennas. Note, however, that ω (R) is typically not an integer number.

For the continuous case, due to the trace normalisation (81), we have simply

ω (R) =
1

∥

∥R
∥

∥

2

2

≥ 1 . (89)
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3.3 Discrete Representation of R

To calculate the diversity spectrum eig (R) = {λn}
∞
n=1, one must solve the eigenvalue problem

given by Equation (82). Expressing R by its integral kernel yields integral equation

∫ 1

0

R (τ, τ ′)ϕn (τ
′) dτ ′ = λnϕn (τ) (90)

(or the corresponding expression in the variable x). This may be solved by numerical quadrature
methods. However, this approach is numerically cumbersome, and the accuracy is difficult to
control. An alternative approach introduced by [15] is to switch from the continuous representation
given by the integral kernel R (·, ·) to a discrete representation corresponding to an orthonormal
basis {un} of H. Then the equivalent matrix4

R with matrix elements given by

Rmn = 〈um,Run〉 . (91)

in this new representation has the same eigenvalues. These initially unknown matrix elements have
to be obtained from the known matrix elements R̃mn defined by Equation (30). From Equation
(75) we find that

Rmn = E {ama
∗
n} (92)

holds, where
an = 〈un, a〉 (93)

is the coefficient of the expansion

a =
∑

n

anun (94)

of the fading process with respect to this basis. We define the column vector a of infinite length
that is build from the coefficients an. The autocorrelation matrix that has Rmn as its elements is
then given by

R = E
{

aa
†
}

. (95)

The eigenvalue problem can this way been reduced to a discrete (but infinite-dimensional) one.
Before soving it, the first task is to define the appropriate basis {un} and then relate the matrix
R to the matrix R̃ with elements given by Equation (30).

To do this, we expand the fading process a according to Equation (16) by

a =

∞
∑

n=−∞

ãnvn , (96)

where vn (x) is defined by
vn (x) = ejβ(x)njnJn (2π |x|) . (97)

The domain of the functions a (x) and vn (x) is the array A, which is either a two-dimensional
region or a one-dimensional curve. For a curve with priviledged parameter τ we may write

vn (τ) = ejβ(τ)njnJn (2πr (τ)) (98)

where β (τ) = β (x (τ)) and r (τ) = |x (τ)| are the polar coordinates of the parametrisation. In
general, the set {vn} is not orthogonal. For the special case where A is a interval on the x-
axis, the functions vn (x) = jnJn (2πx) do not even form a basis. This is because of the Bessel
function property Jn (2πx) = (−1)

n
J−n (2πx), they are not linearly independent. But in any case,

Equation (96) holds for every realisation of the fading process restricted on the array. Each vn can
be expanded into the orthonormal basis {un} by

vn =
∑

m

Tmnum (99)

4The slightly lose notation to use the same symbol for the operator and its equivalent matrix representation does
not cause problems, and it is quite usual e.g. in quantum mechanics.
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with coefficients5

Tmn = 〈um, vn〉 . (100)

Expanding

am = 〈um, a〉

=

〈

um,
∑

n

ãnvn

〉

yields

am =
∑

n

Tmnãn . (101)

Let T be the matrix with elements Tmn. Then the above equation can be written compactly as

a = Tã . (102)

We insert this into the autocorrelation matrix

R = E
{

aa
†
}

= E
{

Tã (Tã)†
}

= TE
{

ãã
†
}

T
†

and obtain
R = TR̃T

† . (103)

Making use of the property eig (AB) = eig (BA) (see [23], p. 53), we obtain

eig (R) = eig
(

TR̃T
†
)

= eig
(

T
†
TR̃

)

i.e.
eig (R) = eig

(

GR̃

)

(104)

with the Gram matrix G that is defined by

G = T
†
T . (105)

It has the matrix elements
Gmn = 〈vm, vn〉 . (106)

Since G and R̃ are known matrices, the eigenvalue problem for R can be solved by utilising
Equation (104). Before we show how this can be done with a controlled approximation, we discuss
the two examples from above for which the transform turns out to be quite simple.

Example 1 (ctd.): Consider the circle (56) of radius r with parametrisation given by (57).
According to Equation (16), the fading process a (τ) can be written as

a (τ) =
∞
∑

n=−∞

ãnj
nJn (2πr) e

j2πτn . (107)

5In case that {vn} is a basis, Equation (100) defines an basis transform operator T by

T : un 7→ vn = Tun .

It has matrix elements
Tmn = 〈um,Tum〉 = 〈um, vn〉 .
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This is an expansion

a (τ) =

∞
∑

n=−∞

ãnvn (τ) (108)

with respect to the basis
vn (τ) = jnJn (2πr) e

j2πτn . (109)

This basis is already orthogonal. Is can be normalised by dividing it by a normalisation factor ξn
that fullfills the requirement

|ξn| = ‖vn‖ .

We define
ξn = jnJn (2πr) . (110)

We have included the phase factor jn because the basis {un}
∞
n=−∞ with

vn (τ) = ξnun (τ) (111)

is now just the standard orthonormal Fourier basis un (τ) = ej2πτn.

Inserting into the expansion (108) and comparing with Equation (60), we find that the correspond-
ing coefficients are related by

an = ξnãn . (112)

Thus, for this simple example, the transformation matrix T is diagonal. The matrix elements
Rmn = E {ama

∗
n} and R̃mn = E {ãmã

∗
n} are related by

Rmn = ξmR̃mnξ
∗
n . (113)

Example 2 (ctd.) [15]: Consider the circle (68) of radius r1 . The fading process a (x) can
be written as

a (x) =
∞
∑

n=−∞

ãnj
nJn (2π |x|) e

jβ(x)n , (114)

where β (x) is the polar angle of the vector x. This is an expansion

a (x) =

∞
∑

n=−∞

ãnvn (x) (115)

with respect to the basis
vn (x) = jnJn (2π |x|) e

jβ(x)n . (116)

This basis is already orthogonal. Is can be normalised by dividing it by a normalisation factor ξn
that fullfills the requirement

|ξn|
2 = ‖vn‖

2 =

∫

A

d2x

|A|
J2n (2π |x|) =

∫ r1

0

2πrdr

|A|
J2n (2πr) .

We define

ξn = jn

√

∫ r1

0

2πrdr

|A|
J2n (2πr) . (117)

The basis {un}
∞
n=−∞ with

vn (x) = ξnun (x) (118)

is now given by

un (x) =
Jn (2π |x|)

√

∫ r1

0
2πrdr
|A| J2n (2πr)

ejβ(x)n . (119)

The coefficients are related by
an = ξnãn . (120)

Thus, for this example, the transformation matrix T is diagonal. The matrix elements Rmn =
E {ama

∗
n} and R̃mn = E {ãmã

∗
n} are related by

Rmn = ξmR̃mnξ
∗
n . (121)
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3.4 Solving the Eigenvalue Problem

The goal of this subsection is to approximate the eigenvalue problem for R by the eigenvalue
problem of a finite-dimensional matrix. We shall replace the operators R̃ and T in Equation (103)
by the corresponding truncated matrices and then use Equation (104) for these finite-dimensional
matrices to find the eigenvalues. We shall state rigorous upper bounds for the approximation error
of the corresponding eigenvalues.

We follow the path indicated in [15], where the disk aperture of Example 2 has been treated. As
shown above, the transformation matrix T is diagonal for that aperture. For the general case where
T is not diagonal, the truncation problem is more involved. Moreover, it remains to be clarified
how the truncation to finite-rank operators influences the diversity spectrum. In the following
treatment, we shall answer these question.

3.4.1 Truncating Errors of the Series

As shown in [15], the infinite series expansion of a (x) inside a disk is essentially finite-dimensional.
The authors prove that the (absolute as well as the means square) truncation error that occurs by
replacing the series (115) by the finite series

a (x;N) =

N
∑

n=−N

ãnvn (x) (122)

decays exponentially with N . These results are based on estimates on Bessel functions that are
studied in detail in Appendices I and II of [15]. The following theorem summarises the main results
of those appendices.

Theorem 1: Let r1 ≥ 0 and ND , ⌈eπr1⌉, where ⌈.⌉ denotes the ceiling function. Then, for
N ≥ ND , the following two bounds hold uniformly in r for 0 ≤ r ≤ r1:

∑

|n|>N

|Jn (2πr)| ≤ 0.2 exp [ND −N ] (123)

∑

|n|>N

J2n (2πr) ≤ 0.01 exp [2 (ND −N)] (124)

The first bound (123) controls the absolute truncation error when approximating a (x) by a (x;N).
Furthermore, it controls the error when ρ (x) given by the the series (28) is approximated by its
truncated version

ρN (x) =

N
∑

n=−N

s̃ne
jβnjnJn (2πr) (125)

This latter approximation is practically important because in general there is no closed analytical
expression for ρ (x) available. Since the coefficients s̃n are bounded by (27), the truncation error
for r ≤ r1 and N ≥ ND = ⌈eπr1⌉ can be estimated as follows:

|ρ (x)− ρN (x)| =

∣

∣

∣

∣

∣

∣

∑

|n|>N

s̃ne
jβnjnJn (2πr)

∣

∣

∣

∣

∣

∣

≤
∑

|n|>N

|Jn (2πr)|

≤ 0.2 eND−N (126)
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The second bound (124) controls the means square (MS) truncation error of the series expansions
for a (x). For Examples 1 and 2, the MS truncation error of the series (108) and (115) can be
estimated as follows:

E











∥

∥

∥

∥

∥

∥

∑

|n|>N

ãnvn

∥

∥

∥

∥

∥

∥

2










= E











∥

∥

∥

∥

∥

∥

∑

|n|>N

ãnξnun

∥

∥

∥

∥

∥

∥

2










=
∑

|n|>N

E
{

|ãn|
2
}

|ξn|
2

=
∑

|n|>N

|ξn|
2

(127)

Here we have used vn = ξnun, the orthonormality of the base un, and the property

E
{

|ãn|
2
}

= s̃0 = 1

that follows from Equation (30). In both examples, the coefficients ξn can be expressed by Bessel

functions, see Equation (110) for the circle and Equation (117) for the disk. For the circle, |ξn|
2 =

J2n (2πr) holds, and we obtain the truncation error

E











∥

∥

∥

∥

∥

∥

∑

|n|>N

ãnvn

∥

∥

∥

∥

∥

∥

2










≤
∑

|n|>N

J2n (2πr)

≤ 0.01 exp [2 (ND −N)]

with ND , ⌈eπr⌉ . For the disk, we insert the expression (117) for ξn and obtain

E











∥

∥

∥

∥

∥

∥

∑

|n|>N

ãnvn

∥

∥

∥

∥

∥

∥

2










=
∑

|n|>N

|ξn|
2

=

∫ r1

0

2π

|A|
rdr

∑

|n|>N

J2n (2πr)

≤ 0.01 exp [2 (ND −N)]

∫ r1

0

2π

|A|
rdr

with ND , ⌈eπr1⌉ . The integral equals one and we obtain the same bound as for the circle of the
same radius:

E











∥

∥

∥

∥

∥

∥

∑

|n|>N

ãnvn

∥

∥

∥

∥

∥

∥

2










≤ 0.01 exp [2 (ND −N)] (128)

This is just the statement of Theorem 2 in [15].

3.4.2 Approximations for Operators and Eigenvalues

For the general case where the transformation matrix T is not diagonal, the formalism is more
involved than in the two examples discussed above. Before going into details, we explain what
problem has to be solved.

Let RN be the truncated version of the inifinite autocorrelation matrix R in which all elements
Rmn with |m| > N and |n| > N are set to zero. Heuristically, it is evident that RN → R in some
sense as N → ∞. The appropriate type of convergence is specified and proven in Appendices A
and B. From RN → R we then obtain convergence of the corresponding eigenvalue spectra.
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We write λi (RN) and λi (R) for the eigenvalue number i of RN and R, respectively. Assume that
both eigenvalue spectra are numbered in descending order:

λ1 ≥ λ2 ≥ λ3 ≥ ... (129)

Recall that, since both operators are compact, they have discrete spectra. We shall have to prove
that λi (RN ) → λi (R) holds for N → ∞. Based on the estimates from [15] as stated in Theorem
1, we are able to prove the following

Theorem 2: Let A ⊂ D where D is a disk of radius r1. Assume that S (α) is a piecewise
continuous, bounded function over the interval [−π, π]. Then the inequality

|λi (R)− λi (RN )| ≤ 0.2ρmax exp (ND −N) (130)

holds for N ≥ ND and ND = ⌈eπr1⌉ and with a constant ρmax = maxα∈[−π,π] (2πS (α)).

The proof is given in Appendix B.

Now let TN and GN = T
†
NTN be the truncated versions of T and G, respectively. Then RN =

TNR̃T
†
N , and the approximate eigenvalues can be numerically calculated from

eig (RN) = eig
(

R̃GN

)

. (131)

Examples of such numerically calculated eigenvalue spectra will be shown in the next section.

According to Theorem 2, the eigenvalues of R can be approximated exponentially tight by the
eigenvalues of RN . One might expect that this has the consequence that the diversity measure
ω (R) given by Equation (89) can be approximated tightly by

ω (RN ) =
1

∥

∥RN

∥

∥

2

2

. (132)

In fact, as shown in Appendix 3, the following tight approximation holds:

Theorem 3: Let A ⊂ D where D is a disk of radius r1. Assume that S (α) is a piecewise
continuous, bounded function over the interval [−π, π]. Then the inequality

∣

∣

∣

∥

∥R
∥

∥

2

2
−
∥

∥RN

∥

∥

2

2

∣

∣

∣
≤ 0.4ρ2max exp (ND −N) (133)

holds for N ≥ ND and ND = ⌈eπr1⌉ and with a constant ρmax = maxα∈[−π,π] (2πS (α)).

The statement of the theorem means that the inverse diversity measure ω−1 (R) =
∥

∥R
∥

∥

2

2
can be

approximated exponentially tight by the corresponding truncated quantity ω−1 (RN ) =
∥

∥RN

∥

∥

2

2
.

These quantities are of primary relevance, because for the calculation of the slope Σ0 of a MIMO
system according to Equation (5), these inverse diversity measures for the transmit and receive
apertures have to be added. The approximation error of a numerically calculated diversity measure
ω (RN ) itself can be estimated from the geometric series argument

ω (R) = ω (RN )
1

1− ǫ
= ω (RN )

(

1 + ǫ+O
(

ǫ2
))

(134)

with an error ǫ = ω (RN)
(

∥

∥RN

∥

∥

2

2
−
∥

∥R
∥

∥

2

2

)

that can be controlled by Equation (133).
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∆y

∆x = v∆t

y1 : Antenna 1
y2 : Antenna 2
y3 : Antenna 3
y4 : Antenna 4

v

A

Figure 1: Four antennas mounted on a vehicle moving with velocity v.

3.5 A Generalisation: M parallel Lines

Let us consider M antennas mounted transverse across the roof of a vehicle that is moving into x-
direction, see Figure 1. Then the aperture A consists of M parallel horizontal lines. Time diversity
provided by time interleaving corresponds to the x-direction, antenna diversity to the y-direction.

Because this aperture is not a continuous curve, the results above can not applied directly. However,
there is a simple argument how they can be adopted to this important case.

The problem can be solved by constructing a Hilbert space H on that aperture that consists of M
straight lines. The construction is just a slightly modified direct sum [20] of the M Hilbert spaces
Hm, m = 1, ...,M corresponding to theseM straigth lines. Let φm, ψm ∈ Hm. Their scalar product
is denoted as 〈φ, ψ〉m. The vectors φ, ψ ∈ H are then defined as M -tuples φ = (φ1, ..., φM )

T
,

ψ = (ψ1, ..., ψM )
T

that, for convenience, may be written as columns. Their scalar product is
defined by

〈φ, ψ〉 =
1

M

M
∑

m=1

〈φm, ψm〉 . (135)

Let τ be the common priviledged parameter of all the lines. Then the scalar product can be written
as

〈φ, ψ〉 =
1

M

M
∑

m=1

∫ 1

0

φ∗m (τ)ψ (τ) dτ . (136)

The fading process itself is a column vector a = (a1, ..., aM )
T
. The corresponding autocorrelation

operator R will then be given according to the general definition (75) as

〈φ,Rψ〉 = E {〈φ, a〉 〈a, ψ〉} . (137)

The corresponding integral kernel now becomes a tensor Rmm′ (τ, τ ′), m,m′ ∈ {1, ...,M}. This
kernel is a continuous matrix-valued function in τ and τ ′. As a consequence of that continuity, all
the results above remain valid and our method can be applied to this case.

4 Numerically calculated diversity spectra

4.1 How to Calculate Diversity Spectra

The task now is to calculate the eigenvalue spectrum according to Equation (131). It depends on
the geometry of A and on the Fourier coefficients ŝn of the PAS S (α). The elements of GN are
given by Gmn = 〈vm, vn〉. This scalar product is an integral over A and has to be calculated by
numerical quadrature methods for all m, n with |m| , |n| ≤ N . The matrix elements of R̃ are given
by R̃mn = 2πŝm−n. The truncation number N governs the accuracy of the eigenvalues according to
Theorem 2. For the choise N = ND+10, e.g., the exponential is approximately 5 ·10−5, which can
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be regarded as sufficiently accurate. It is noteworthy that the constant 0.2 ·maxα∈[−π,π] (2πS (α))
in that theorem is typically in the order of one6. The number ND = ⌈eπr1⌉ grows with the size of
the aperture A. If, e.g., it is inside a disk with radius of one wavelength, ND = ⌈eπ⌉ = 9. Thus,
for typical aperture restricted to the size of a few wavelengths, the matrices do not exceed the size
of a few times ten.

4.2 The Power Azimuth Spectra

We consider two PAS prototypes that are quite popular in the literature: The uniform PAS and
the von-Mises PAS.

Uniform PAS: By this we mean a PAS that is constant over an opening angle ∆. The normalised
and centered uniform PAS of opening angle ∆ is given by

S (α; ∆) =
1

∆
rect

( α

∆

)

. (138)

The corresponding Fourier coefficients can be calculated as

ŝn =
1

2π
sinc

(

n
∆

2π

)

. (139)

von-Mises PAS: The von-Mises distribution is a circular distribution with a shape quite similar
to a wrapped normal distribution [24]. Its shape is controlled by a parameter κ ≥ 0, whose inverse
is approximately equal to the variance of the corresponding normal distribution. The centered
PAS is given by

S (α;κ) =
1

2πI0 (κ)
eκ cosα , (140)

where In (κ) denotes the modified Bessel function. The Fourier coefficients

ŝn =
In (κ)

2πI0 (κ)
(141)

can be obtain from Formula 9.6.34 in [25].

The formulas above apply to a PAS that is centered around α = 0. The versions centered around
α = α0 are obtained by the shift

S (α) 7→ S (α− α0) . (142)

The corresponding Fourier coefficients must then be modified according to

ŝn 7→ ŝne
−jα0n .

4.3 Uniform Circular Arrays

A uniform circular array (UCA) is a configuration where the antennas are mounted uniformly on
a circle. In the limit of a dense array, this is just the situation of Example 1 discussed above.
Figures 2 and 3 show the numerically calculated eigenvalue spectra for a ULA of radius r = 1 (i.
e. one wavelenght) for the uniform and the von-Mises PAS, respectively. The parameters ∆ and κ
are adjusted manually in such a way that the corresponding values for ω are nearly identical. The
eigenvalue spectra are very similar, but, however, they are not identical. Obviously, the multipath
richness decreases significantly for small opening angles of the PAS, i.e. for small values of ∆ and
for high values of κ.

Figures 4 and 5 show ω for small radii up to r = 0.5 for the same parameters of ∆ and κ. The
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Figure 2: Diversity spectra for a dense UCA of radius r = 1 for a uniform PAS with different
opening angles ∆.
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Figure 3: Diversity spectra for a dense UCA of radius r = 1 for a von-Mises PAS with different
parameters κ.
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Figure 4: The diversity measure ω as a function of the radius for a dense UCA and a uniform PAS
with different opening angles ∆.
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Figure 5: The diversity measure ω as a function of the radius for a dense UCA and a von-Mises
PAS with different parameters κ.
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Figure 6: The diversity measure ω as a function of the size ∆x for a dense ULA and a uniform
PAS with different opening angles ∆. The main direction of arrival is α0 = 0, i.e. parallel to the
array.

curves are nearly identical in both figures. The green curve of the isotropic PAS (∆ = 360◦ or
κ = 0) shows a noticable oscillatory behaviour, that can also be observed for other values that are
close to the isotropic case.

4.4 Uniform Linear Arrays

For a straigth line which corresponds to a uniform linear array (ULA), such an oscillatory behaviour
could not be observed. Figure 6 shows ω for ULA sizes up to one wavelenght and the uniform PAS.
The direction of the ULA is parallel to the mean angle of arrial (α0 = 0). This is the worst case,
and for small values of ∆ (blue and red curve), there is practically no diversity gain. Increasing
the size of the ULA up to several wavelengths does not really help because the steepness of the
curves is very poor. There is a strong dependency on the mean angle of arrival α0. Figure 7 shows
ω as a function of α0 for ∆x = 10. It can be seen from this figure that even for this large array, the
diversity measure falls down close to one for small opening angles (blue and red curve). This means
that for a narrowly focussed signal, even a huge antenna array parallel to the direction of arrival
can hardly provide any diversity gain. Such narrowly focussed signal may be not very likely at the
mobile station, but they will frequently occur at the base station site. Therefore it is important at
that site not to fix all antennas along one line, but to distribute them in two dimensions by using,
e.g., a circular array or any other two-dimensional configuration. Figure 8 shows ω as a function of
α0 for a configuration of four parallel ULAs of length ∆x = 1 and a separation of the outer ULAs
given by ∆y = 1. In that scenario, the diversity measure is very robust against rotations. As
discussed above (see Figure 1), by space-time scaling ∆x = v∆t, this situation can also be related

6For the isotropical PAS S (α) = (2π)−1, as an example, it has the value 0.2. For a uniform distribution
S (α) = ∆−1rect (α/∆) over an opening angle ∆, it has the value 0.2 · 2π/∆, which does not exceed the order of
one unless the opening angle is extremely narrow.
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Figure 7: The diversity measure ω as a function of the main direction of arrival α0 for a dense
ULA and a uniform PAS with different opening angles ∆. The size of the array is ∆x = 10.
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Figure 8: The diversity measure ω as a function of the main direction of arrival α0 for four parallel
and equidistant lines and a uniform PAS with different opening angles ∆. The length of the lines
is ∆x = 1 and the separation of the outer lines is ∆y = 1.
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Figure 9: The diversity measure ω as a function of the number of antennas for a UCA of radius
r = 1 and a uniform PAS with different opening angles ∆.

to the scenario of a vehicle moving in x-direction with velocity v and a 4-antenna communication
system with time interleaving over a interval ∆t.

4.5 Discrete Arrays

The focus of this paper is to analyse the diversity spectra of continuous (dense) arrays, i.e. of
contiuous regions in the plane. It is interesting to compare this with the discrete case where a
finite number L of antennas is mounted on a finite geometrical base, i.e. a circle for the UCA or
a line for the ULA. In [13], a detailed analysis has been presented how the diversity measure ω
depends on the array geometry. That analysis, however, is restricted to ideal case of an isotropic
PAS where the autocorrelation function is given by ρ0 (x) = J0 (2πr). In the general case, the
ACF is given by the expansion (28). According to Theorem 1, this can be approximated by the
truncated series

ρN (x) =

N
∑

n=−N

s̃ne
jβnjnJn (2πr) . (143)

The appropriate order N can be chosen as N = ND + 10 according to the bounds obtained in
the last section. The diversity measure ω according to Equation (86) has be calculated from the
matrix R with elements

Rik = ρ (xi − xk) ≈ ρN (xi − xk) , (144)

where xi, i = 1, ..., L are the antenna positions. We note that Equation (86) does not require
to solve the eigenvalue problem for R. Only the traces of the matrices R and R

†
R need to be

calculated.

Figure 9 shows the depency of ω on the number L of antennas for a UCA of radius r = 1 and a
uniform PAS of different opening angles ∆. The margenta dash-dotted line corresponds to ω = L
(i.e. the diversity measure of L uncorrelated antennas). The horizontal dashed lines mark the ω-
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Figure 10: The diversity measure ω as a function of the number of antennas for a ULA of size
∆x = 2 and a uniform PAS with different opening angles ∆. The signal comes from broadside
(α0 = π/2).

values for the continuous UCA and may be interpreted as the asymptotic limit L→ ∞. It can be
seen from the figure that for large L, the diversity measure runs into a saturation given by that
continuous case asymptote. It is interesting to note that ω does not increase monotonically with
L. This interesting fact has been already observed in [13] for the isotropic case (i.e. ∆ = 360◦)7.
In the same paper, it has also been pointed out that for a ULA, the maximal value of ω is typically
reached for a relatively small number of antennas, and the limiting value for L → ∞ lies below
that value. Figure 10 shows the situation for a ULA of size ∆x = 2, α0 = 90◦ and the same PAS
parameters as above. For ∆ = 360◦, the maximal value of ω is reached at the number of L = 6
antenna. For ∆ = 90◦ and ∆ = 45◦, this number is even lower. The black curve for ∆ = 180◦

hidden by the green curve corresponding to ∆ = 360◦ because of the mirror symmetry of that
geometrical configuration as already discussed in the context of the Doppler effect. Figure 10 (or
similar figures for other values of ∆x ) provides practical design guidance for the design of linear
arrays. The number of antennas should be chosen in such a way that ω is not only maximal for a
special case like ∆ = 360◦ but should stay robust against a change of the PAS.

5 Discussion and Conclusions

The diversity corresponding to an aperture A is characterised by the diversity spectrum {λ}
∞
i=1 of

eigenvalues of the spatial autocorrelation operator R that acts as an integral kernel on the Hilbert
space of square integrable functions defined on that aperture. The diversity spectrum depends on
the geometry of the aperture and the power azimuth spectrum that characterises the statistics of
the spatial fading. We have shown a method for the numerical calculation solving the eigenvalue
problem for an finite-dimension approximation of R. The method provides rigorous bounds of the
approximation error. A simpler, but less comprehensive characterisation compared to the whole

7The green curve of Figure 9 is identical to the black curve of Figure 4 in that paper.
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diversity spectrum eig (R) = {λ}
∞
i=1 is a single number named the diversity measure ω (R). It can

(roughly) be interpreted as the effective number of equivent independent diversity branches. Its
calculation is in the same framework, but it is simpler because no eigenvalue problem has to be
solved. The dependency of ω (R) on the aperture geometry, on the main angle of incidence, and
on the anisotropy of the PAS gives useful hints for the design of antenna arrays. For a vehicle
of constant velocity moving through the spatial fading pattern, the time dependent fading can be
obtained by a simple scaling, and a time interval corresponds to a spatial line segment. Therefore,
the time interleaving depth for a coded system can be assigned to a line segment, and the diversity
of that segment corresponds to the code diversity that can be exploited within the time interleaving
depth.

A Some Definitions and Facts about linear Operators

Let A be a linear operator on H. Its (hermitian) adjoint, A†, is defined by
〈

φ,A†ψ
〉

= 〈Aφ, ψ〉 . (145)

If A = A
† holds, the operator is called self-adjoint. In this paper, we need only to consider

bounded operators. For these operator, self-adjoint is the same as the (in general weaker) property
symmetric or hermitian.

A limit RN → R for operators may be defined in different meanings. In this paper, we need three
types of norms for an operator A on a Hilbert space H. We briefly recall their definitions and their
most important properties and refer to [20] for further details.

1. The (uniform) operator norm ‖A‖ is defined by

‖A‖ , sup
‖φ‖=1

‖Aφ‖ . (146)

Operators with ‖A‖ <∞ are called bounded operators.

2. The Hilbert-Schmidt norm ‖A‖2 is defined as

‖A‖2 ,

√

tr (A†A) , (147)

where tr (·) denotes the trace of an operator. For the special case of finite-dimensional
matrices, the Hilbert-Schmidt norm is called Frobenius norm. One can show that

‖A‖2 =

√

∑

ik

|Aik|
2

(148)

is an equivalent definition. In that equation, Aik = 〈ui, uk〉 are the matrix elements in
an arbitrary orthonormal basis ui. Operators with ‖A‖2 < ∞ are called Hilbert-Schmidt
operators. The Hilbert-Schmidt norm can also be written as

‖A‖2 =

√

√

√

√

∞
∑

i=1

λ2i , (149)

where the λ2i are the eigenvalues of A†
A. In case that A is self-adjoint, the real numbers λi

are just the eigenvalues of A.

3. The trace norm ‖A‖1 for a self-adjoint operator is given by

‖A‖1 =

∞
∑

i=1

|λi| , (150)

where λi are the eigenvalues of A and a purely discrete spectrum of A has been assumed.
Operators with ‖A‖1 <∞ are called trace class operators.
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In our paper, we make use of some properties of compact operators. For the exact mathematical
definition of compactness, we refer to [20]. For our purposes, it is sufficient to recall that every
Hilbert-Schmidt operator is compact (see Theorem VI.22 in [20]).

From the above definitions between norms, the relation

‖A‖
2
2 =

∥

∥A
†
A
∥

∥

1
≤ ‖A‖

2
1 (151)

follows immediately. Furthermore, there is the following hierarchical relation holds between the
norms defined above ([20], Theorem VI.22):

‖A‖ ≤ ‖A‖2 ≤ ‖A‖1 (152)

The following inequalities also hold

‖CAB‖1 ≤ ‖C‖ ‖A‖1 ‖B‖ , (153)

‖CAB‖2 ≤ ‖C‖ ‖A‖2 ‖B‖ , (154)

provided that all the norms exist.

B Proof of Theorem 2

In this appendix, we proof the bound (127) for the approximation error of the eigenvalues as stated
in Theorem 2. This bound is based on bounds for approximation errors for operators.

First of all, we shall proof that the operator R̃ with matrix elements R̃mn given by Equation (30)
is bounded.

Lemma 1: Under the assumption that S (α) is a piecewise continuous, bounded function over
the interval [−π, π], the operator R̃ with matrix elements R̃mn given by Equation (30) is bounded
with operator norm given by

∥

∥R̃
∥

∥ = 2π max
α∈[−π,π]

S (α) , ρmax

Proof: Since we have assumed that S (α) is a piecewise continuous, bounded function over the
interval [−π, π], it defines a bounded multiplication operator

S : X (α) 7→ Y (α) = S (α)X (α)

on L2
(

[−π, π] , dα2π
)

. Its operator norm is given by

‖S‖ = max
α∈[−π,π]

S (α) .

The Hilbert space L2
(

[−π, π] , dα2π
)

is isomorphic to the Hilbert space ℓ2 (Z) of square summable

sequences with indices running over Z. The vectors X (α) , Y (α) ∈ L2
(

[−π, π] , dα2π
)

correspond to
the sequences {xn}n∈Z

, {yn}n∈Z
∈ ℓ2 (Z) of their Fourier coefficients. The action of the operator

S in this discrete representation is given by the convolution

yn =

∞
∑

m=−∞

ŝm−nxn ,

where ŝn are the Fourier coefficients of S (α). Comparing with Equation (30) we see that R̃ = 2πS
holds in this represention. Since the operator norm does not depend on the representation, we
conclude that

∥

∥R̃
∥

∥ = 2π ‖S‖, which completes the proof. �

For two compact and self-adjoint operators, the difference of the corresponding eigenvalues is
bounded by the operator norm of their difference. We cite the following fact from the textbook of
Riesz and Nagy [22], § 95:
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Lemma 2: Let A and B be self-adjoint compact operators and define

C = A+B .

Assume that the eigenvalues λi (A) of A and λi (C) of C are ordered according to (129). Then
their difference is bounded by

|λi (C)− λi (A)| ≤ ‖B‖

for all i.

Corolarry to Lemma 2: Setting C = R, A = RN , and B = R−RN leads to the inequality

|λi (R)− λi (RN )| ≤ ‖R−RN‖ (155)

The goal now is to show that ‖R−RN‖ → 0 holds for N → ∞.

In the following, we assume that A ⊂ D, where D is a disk of radius r1. We define ND = ⌈eπr1⌉
and assume that N ≥ ND.

The transformation matrix T is defined by its elements Tmn = 〈um, vn〉. The Gram matrix
G = T

†
T has matrix elements Gmn = 〈vm, vn〉. The squared Hilbert-Schmidt norm of T is given

by

‖T‖
2
2 =

∥

∥T
†
T
∥

∥

1
= ‖G‖1 =

∞
∑

n=−∞

〈vn, vn〉 . (156)

Using Equation (97) we may write

〈vn, vn〉 =

∫

A

|vn (x)|
2 dµ (x) .

=

∫

A

J2n (2π |x|) dµ (x)

The integral is over the array A with dµ (x) given by Equation (54) or (65) for the respective cases.
Inserting the above expression into Equation (156) leads to

‖T‖
2
2 =

∫

A

∞
∑

n=−∞

J2n (2π |x|) dµ (x) .

The properties
∞
∑

n=−∞

J2n (x) = 1

and
∫

A

dµ (x) = 1

then yield
‖T‖

2
2 = 1 . (157)

We now define a truncated transformation matrix TN that has the same matrix elements as T

inside the middle square defined by |m| ≤ N and |n| ≤ N . All other matrix elements are set to
zero. The remainder matrix T−TN has only non-vanishing matrix elements outside that middle
square. Its squared Hilbert-Schmidt norm is given by

‖T−TN‖
2
2 = tr

[

(T−TN )
†
(T−TN )

]

= tr
(

T
†
T+T

†
NTN −T

†
TN −T

†
NT

)

= tr
(

T
†
T
)

+ tr
(

T
†
NTN

)

− tr
(

T
†
TN

)

− tr
(

T
†
NT

)

= tr
(

T
†
T
)

− tr
(

T
†
NTN

)

= tr
(

T
†
T−T

†
NTN

)
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Here we have used the fact that T
†
TN = T

†
NTN and thus tr

(

T
†
TN

)

= tr
(

T
†
NTN

)

. The

truncated Gram matrix GN = T
†
NTN has the same matrix elements as G inside the inner square

and zero elements outside. Thus, the expression derived above can be written as

‖T−TN‖
2
2 = tr (G−GN )

=
∑

|n|>N

〈vn, vn〉

=

∫

A

∑

|n|>N

J2n (2π |x|) dµ (x)

From Theorem 1 we get the bound

‖T−TN‖22 ≤ 0.01 exp [2 (ND −N)] .

Taking the square root yields

‖T−TN‖2 ≤ 0.1 exp (ND −N) . (158)

From
‖TN‖

2
2 =

∑

|n|≤N

〈vn, vn〉

and Equations (156) and (157) we conclude that

‖TN‖2 ≤ ‖T‖2 = 1 (159)

holds. We define the truncated correlation matrix

RN = TN R̃T
†
N . (160)

The Hilbert-Schmidt norm approximation error relative to R = TR̃T
† can now be estimated as

follows:

‖R−RN‖2 =
∥

∥

∥
TR̃T

† −TN R̃T
†
N

∥

∥

∥

2

=
∥

∥

∥
TR̃ (T−TN )† + (T−TN ) R̃T

†
N

∥

∥

∥

2

≤
∥

∥

∥
TR̃ (T−TN )

†
∥

∥

∥

2
+
∥

∥

∥
(T−TN ) R̃T

†
N

∥

∥

∥

2

≤ ‖T‖2
∥

∥R̃
∥

∥ ‖T−TN‖2 + ‖T−TN‖2
∥

∥R̃
∥

∥ ‖TN‖2

≤ 2
∥

∥R̃
∥

∥ ‖T−TN‖2

From the bound (158) we conclude

‖R−RN‖2 ≤ 0.2 ·
∥

∥R̃
∥

∥ exp (ND −N) . (161)

The norm hierarchy (152) yields

‖R−RN‖ ≤ 0.2 ·
∥

∥R̃
∥

∥ exp (ND −N) . (162)

From the Corollary to Lemma 2 we obtain

|λi (R)− λi (RN )| ≤ 0.2 ·
∥

∥

∥
R̃

∥

∥

∥
exp (ND −N) .

Lemma 1 then leads to Theorem 2.
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C Proof of Theorem 3

In this appendix, we prove the bound (133) for the approximation error of the squared Hilbert

Schmidt norms as stated in Theorem 3. From R = TR̃T
† and RN = TNR̃T

†
N and Inequality

(159) we conclude
‖R‖2 ≤

∥

∥R̃
∥

∥ and ‖RN‖2 ≤
∥

∥R̃
∥

∥ .

Then
∣

∣

∣
‖R‖

2
2 − ‖RN‖

2
2

∣

∣

∣
=

∣

∣

∣
‖R‖2 − ‖RN‖2

∣

∣

∣
(‖R‖2 + ‖RN‖2)

≤ 2
∥

∥R̃
∥

∥

∣

∣

∣
‖R‖2 − ‖RN‖2

∣

∣

∣

The bound (161) yields

∣

∣

∣
‖R‖

2
2 − ‖RN‖

2
2

∣

∣

∣
≤ 0.4

∥

∥R̃
∥

∥

2
exp (ND −N) .

With Lemma 1 we then obtain Theorem 3.
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