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ON COHOMOLOGY THEORY FOR TOPOLOGICAL GROUPS

ARATI S. KHEDEKAR AND C. S. RAJAN

Abstract. We construct some new cohomology theories for topological groups
and Lie groups and study some of its basic properties. For example, we introduce a
cohomology theory based on measurable cochains which are continuous in a neigh-
bourhood of identity. We show that if G and A are locally compact and second
countable, then the second cohomology group based on locally continuous measur-
able cochains as above parametrizes the collection of locally split extensions of G
by A.

1. Introduction

The cohomology theory of topological groups has been studied from different per-
spectives by W. T. van Est, Mostow, Moore, Wigner and recently Lichtenbaum
amongst others. W. T. van Est developed a cohomology theory using continuous
cochains in analogy with the cochain construction of cohomology theory of finite
groups. However, this definition of cohomology groups has a drawback, in that it
gives long exact sequences of cohomology groups only for those short exact sequences
of modules that are topologically split.

Based on a theorem of Mackey (cf. [Di]), guaranteeing the existence of measurable
cross sections for locally compact groups, Moore developed a cohomology theory of
topological groups using measurable cochains in place of continuous cochains. This
cohomology theory works for the category of Polish groups G and G-modules A
which are again Polish. We recall, a topological group G is said to be Polish, if its
topology is induced by a complete separable metric on G. This theory satisfies the
nice properties expected from a cohomology theory (cf. [Mo76]) viz., there exists long
exact sequences of cohomology groups of a Polish group G corresponding to a short
exact sequence of Polish G-modules, the correct interpretation of the first measurable
cohomology as the space of continuous crossed homomorphism, when G and A are
locally compact; an interpretation of the second cohomology H2

m(G,A) in terms of
topological extensions of G by A, etc. Here H∗

m(G,A) denotes the Moore cohomology
group of a topological group G and a topological G-module A. It further agrees with
the van Est continuous cohomology groups, when G is profinite and the coefficient
module A is discrete.

The cohomology theory developed by Moore has had numerous applications (for
some recent applications and also for further results on Moore cohomology groups
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2 ARATI S. KHEDEKAR AND C. S. RAJAN

see [Aus]). The motivation for us to consider the cohomology theory of topological
groups, is to explore the possibility of deploying such theories to the study of the
non-abelian reciprocity laws as conjectured by Langlands, just as the continuous co-
homology theory of Galois groups has proved to be immensely successful in class field
theory. In this context, the analogues of the Galois group like the Weil group Wk

attached to a number field k (or the conjectural Langlands group whose finite di-
mensional representations are supposed to parametrize automorphic representations)
are no longer profinite but are locally compact. Indeed such a motivation led the
second author to generalize a classical theorem of Tate on the vanishing of the Schur
cohomology groups to the context of Weil groups ([Ra]), to show that H2

m(Wk,C
∗)

vanishes, where we impose the trivial module structure on C
∗.

The immediate inspiration for us is the recent work of Lichtenbaum ([Li]), where he
outlines deep conjectures explaining the special values of zeta functions of varieties in
terms of Weil-étale cohomology. Here the cohomology of the generic fibre turns out
to be the cohomology of the Weil group. Lichtenbaum studies the cohomology theory
of topological groups from an abstract viewpoint based on the work of Grothendieck
([SGA4]), where he embeds the category of G-modules in a larger abelian category
with sufficiently many injectives. The cohomology groups are then the right derived
functors of the functor of invariants (we refer to the paper by Flach ([Fl]) for more
details and applications to the cohomology of Weil groups). Lichtenbaum imposes
a Grothendieck topology on the category of G-spaces, where the covers have local
sections. The required abelian category is the category of sheaves with respect to this
Grothendieck topology.

In this paper, we introduce a new cohomology theory of topological groups. We
modify Moore’s construction and impose a local regularity condition on the cochains
in a neighbourhood of identity (like continuity or smoothness in the context of Lie
groups) but assume the cochains to be measurable everywhere. The basic observation
which makes this possible is the following: given a short exact sequence of Lie groups

1 → G′ → G→ G′′ → 1,

there is a continuous section from a neighbourhood of identity in G′′ to G. More
generally, using the solution to Hilbert’s fifth problem and the observation for Lie
groups, Mostert (cf. [Mos]) showed that every short exact sequence of finite dimen-
sional locally compact groups

1 → G′ → G
π
→ G′′ → 1

is locally split i.e., there exists a continuous section from a neighbourhood of identity
in G′′ to G.

Define the group of 0-cochains C0(G,A) to be A. For n ≥ 1, define the group
Cn
lcm(G,A) of locally continuous measurable cochains to be the space of all measurable

functions f : Gn → A which are continuous in a neighbourhood of the identity in Gn.
The coboundary map is given by the standard formula. Now we define our locally
continuous cohomology theory Hn

lcm(G,A) as the cohomology of this cochain complex.
These cohomology groups interpolate the continous cohomology and the measurable
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cohomology theory of Moore: there are natural maps

Hn
c (G,A) → Hn

lcm(G,A) → Hn
m(G,A),

where Hn
c (G,A) denotes the continuous cohomology groups of G with values in A.

For the category of Lie groups, we replace continuity with the property of being
smooth around identity and we define the locally smooth measurable cohomology
theory (denoted by {Hn

lsm(G,A)}n≥0 ) of a Lie group G that acts smoothly on A.
Similarly, we can define locally holomorphic measurable cohomology theory (denoted
as {Hn

lhm(G,A)}n≥0) in the holomorphic category, based on measurable cochains holo-
morphic in a neighbourhood of identity.

We remark out here that although the cohomology theories developed by Moore
and Lichtenbaum seem sufficient for many purposes, the richness of applications of
cohomology arises from the presence of different cohomology theories that can be
compared to each other. The multiplicity of such theories allow the use of cohomo-
logical methods in a variety of contexts. In this regard, we expect that the principle
of imposing local regularity on the cochains, will allow it’s use in more geometric and
arithmetical contexts. For example, it is tantalizing to explore the relationship of
these theories to the measurable Steinberg 2-cocycle ([Mo68]), which is continuous on
a dense open subset (but not at identity!).

These locally regular cohomology theories can be related to the underlying category
theoretic properties of the group and it’s modules. For example, suppose there is an
extension

1 → A→ E → G→ 1

of G by A given by a measurable 2-cocycle. From the construction of this extension
(as given by Moore, cf. [Mo76, page 30]), it seems difficult to relate the topology of E
to that of G and A. If G and A are locally compact, it is a difficult theorem of Mackey
that E is locally compact (cf. [Mac]). Another difficulty arises, when we work with a
Lie group G and a smooth G-module A. It is not clear when an extension of G by A
defined by a measurable 2-cocycle is a Lie group. Further, there does not seem to be
any relationship between the Moore cohomology groups and the cohomology groups
of the associated Lie Algebra and its module.

We now describe some of our results towards establishing the legitimacy of these
theories. It can be seen that these locally regular cohomology theories are cohomo-
logical, in that there exists long exact sequence of cohomology groups associated to
locally split short exact sequences of modules. Further, the zeroth cohomology group
is the space AG of G-invariant elements in A. There exists a natural map

Hn
lcm(G,A) → Hn

m(G,A).

When G and A are Lie groups and the G-action is smooth, the following are natural
maps between cohomology groups.

Hn
lsm(G,A) → Hn

lcm(G,A) → Hn
m(G,A).
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For any topological group G and continuous G-module A, the first cohomology
group

H1
lcm(G,A) = {c : G→ A | c(st) = c(s) + s · c(t), c is continuous}.

When G, A are locally compact, second countable topological groups, it follows by
a theorem of Banach, that measurable crossed homomophisms from G to A are con-
tinuous. Thus we have

H1
m(G,A) = H1

lcm(G,A) = H1
cont(G,A).

For a Lie group G and smooth G-module A (a smooth G-module A is an abelian
Lie group such that the action G× A → A is smooth) which is locally compact and
second countable, the first cohomology group agrees with Moore cohomology group.

H1
m(G,A) = H1

lcm(G,A) = H1
lsm(G,A).

which is the group of all smooth crossed homomorphisms from G to A. The advantage
of working with locally regular cohomology can be seen in the holomorphic category.

Proposition 1. Given a complex Lie group G and a holomorphic G-module A,
H1
lhm(G,A) is the group of all holomorphic crossed homomorphisms from G to A.

The main theorem of this paper is to show that the second cohomology group
H2
lcm(G,A) for locally compact second countable G and A, parametrizes all the locally

split extensions of G by A .

Theorem 1. If G, A are both locally compact, second countable topological groups,
the second cohomology group, H2

lcm(G,A) parametrizes all the isomorphism classes of
extensions E of G by A,

1 → A
ı
→ E

π
→ G→ 1

which are locally split.

It is this theorem that confirms our expectation that these locally regular cohomol-
ogy theories can be a good and potentially useful cohomology theory for topological
groups. Our other attempts to constuct suitable cohomology theories failed to give a
suitable interpretation for the second cohomology group.

The proof of this theorem is a bit delicate. Given a locally continous measurable 2-
cocycle, we construct an abstract extension group E. We topologize E by first defining
the product topology in a sufficiently small ‘tubular’ neighbourhood of identity in E,
and by imposing the condition that left translations are continuous. To conclude that
E is a topological group, we need to show that inner conjugation by any element of
E is continuous at identity. For this, we follow the idea of proof of Banach’s theorem
that a measurable homomorphism of locally compact second countable groups is
continuous. We find that the proof of Banach’s theorem extends perfectly to prove
that inner conjugations are continuous.

In the smooth category, we have the following analogue of Theorem 1.

Theorem 2. Let G be a Lie group, A be a smooth G-module. The second cohomology
groups, H2

lsm(G,A) parametrizes all the locally split smooth extensions of G by A.
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Further, as a consequence of the positive solution to Hilbert’s fifth problem, we
have a comparison theorem as follows:

Theorem 3. Let G be a Lie group, A be a smooth G-module. Then the natural map,

H2
lsm(G,A) → H2

lcm(G,A)

is an isomorphism.

The locally smooth measurable cohomology groups can be related to Lie algebra
cohomology. This is easily done via the cohomology theory H�(G,A) based on germs
of smooth cochains defined in a neighbourhood of identity developed by Swierczkowski
([Sw, page 477]). We have a restriction map,

Hn
lsm(G,A) → Hn

�
(G,A),

given by restricting a locally smooth measurable cochain to a neighbourhood of iden-
tity in Gn where it is smooth.

Now suppose G acts on a finite dimensional real vector space V . Let L denotes the
Lie algebra associated to the Lie group G and let H(L, V ) denotes the Lie algebra
cohomology. It has been proved (cf. [Sw, Theorem 2]) that

H�(G, V ) ≃ H(L, V ).

2. Continuous and measurable cohomology theories

We briefly recall the earlier constructions of Čech type cohomology theories of
topological groups and their modules. Let G be a topological group and A be an
abelian topological group. Assume that there is an action of G on A. We say A is a
topological G-module if the group action,

G×A→ A,

is continuous.

Suppose A′, A, A′′ are topological G-modules and form a short exact sequence of
abelian groups:

0 → A′ ı
→ A


→ A′′ → 0,

We say it is a short exact sequence of topological G-modules, if ı,  are continuous, ı
is closed,  is open and there is an isomorphism of topological groups,

A/ı(A′) ≃ A′′.

2.1. Cohomology theory based on continuous cochains.

Definition 1. Define the continuous cohomology H∗
cont(G,A) as the cohomology of

the cochain complex {Cn
cont(G,A), d

n}n≥0 given as:

(i) C0
cont(G,A) = A

(ii) For n ≥ 0, Cn
cont(G,A) denotes the group of all continuous maps from the

product Gn to A.
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The coboundary formula is given by the standard definition. For any f ∈ Cn
cont(G,A),

dnf(s1, s2, . . . , sn+1) =s1 · f(s2, · · · , sn+1) +

n
∑

i=1

(−1)if(s1, . . . , sisi+1, . . . , sn+1)

+ (−1)n+1f(s1, s2, . . . , sn),

This theory coincides with the abstract cohomology theory, when the group is finite.
When G is profinite acting on a discrete abelian group, this cohomology theory is
compatible with direct limits. This theory was introduced by van Est (cf. [vEst]).

Example 1. Suppose G is a connected topological group and A is a discrete G-
module. Then it can be seen that G acts trivially on A. The continuous cochains are
just constant maps, and from the definition of the coboundary map, it can be seen
that all the higher cohomology groups vanish.

Consider the short exact sequence of trivial G = S1-modules,

0 → Z → R
π
→ S1 → 1.

From the above remark, and the fact that there are no continuous homomorphisms
from S1 to R, we see that,

H1
cont(S

1,Z) = H1
cont(S

1,R) = H2
cont(S

1,Z) = 0,

whereas
H1
cont(S

1, S1) = Homcont(S
1, S1) ≃ Z.

Hence this theory does not have long exact sequences of cohomology groups even for
the exponential sequence as above.

Further, the second cohomology group H2
cont(S

1,Z) = (0). Thus, the second con-
tinuous cohomology does not account for even the natural exponential exact sequence
given above.

2.2. Moore cohomology theory. The problem with continuous cohomology theory
arises from the fact that continuous cross sections do not exist in general. However,
we have the following theorem guaranteeing the existence of measurable sections:

Theorem 4 (Mackey, Dixmier). Let G be a polish group and H be a closed subgroup of
G. Then H is a polish group and the projection map G→ G/H admits a measurable
cross section.

We recall that a topological group G is said to be polish if its topology admits a
complete separable metric.

Define the group Cn
m(G,A) of measurable n-cochains with values in a topologi-

cal G-module A to be the space of all measurable maps from Gn to A. With the
coboundary map as before, we obtain a cochain complex {Cn

m(G,A), d
n}. We define

the measurable or the Moore cohomology groups Hn
m(G,A) are as cohomology groups

{Cn
m(G,A), d

n}.
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The measurable cohomology groups have many of the nice properties required
for a cohomology theory, viz., long exact sequences of cohomology groups for any
short exact sequence of G-modules, correct interpretation of the low rank cohomology
groups, comparison with continuous cohomology, a form of Shapiro’s lemma, weak
forms of Hochschild-Serre spectral sequences, etc.

One of the difficult aspects of Moore’s theory, is that even if we restrict ourselves
to the category of topological groups and continuous G-modules, to compute the
cohomology, we need to work in the measurable category. The measurable cochain
groups are large and it is difficult to compute them. For instance, the construction of
the extension group corresponding to a measurable 2-cocycle is not direct, and uses
the topology on induced modules.

2.3. Induced modules and extension groups. Suppose that G, A are second
countable, locally compact topological groups and A is a topological G-module. De-
note by I(A) the group of measurable maps from G to A.

Since A is Polish, there exists a metric ρ on A whose underlying topology is the
same as the original topology on A. Further, we can assume that ρ is bounded. We
take a finite measure dν on G, which is equivalent to the Haar measure on G (cf.
[Mo76]). Define a metric on I(A) as follows

ρ̄(f1, f2) =

∫

G

ρ(f1(x), f2(x))dν(x)

This makes I(A) a Polish group. We define a G-action on I(A) by,

(s · f)(t) = sf(s−1t) ∀ s, t ∈ G, f ∈ U(G,A).

Via this action I(A) becomes a topologicalG-module and A embeds as aG-submodule
of I(A) as submodule of the constant maps. It can be seen that the higher measurable
cohomology groups of I(A) are trivial (cf. [Mo76]). We have a short exact sequence,

0 → A→ I(A) → U(A) → 0.

Moore showed that the second measurable cohomology group parametrizes the
collection of extensions:

Proposition 2. Suppose a Polish group G acts continuously on an abelian Polish
group A. Then H2

m(G,A) parametrizes the isomorphism classes of topological exten-
sions of G by A,

1 → A→ E → G→ 1.

Proof. Given a topological extension E of G by A, the construction of the 2-cocycle
corresponding to the extension is done (as before) using the existence of the measur-
able cross-section guarenteed by the theorem of Dixmier-Mackey.
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For our purpose, we briefly recall the proof of the converse. From the short exact
sequence, and the cohomological triviality of I(A), we obtain an isomorphism,

H2
m(G,A) ≃ H1

m(G,U(A)).

Corresponding to a 2-cocycle b ∈ Z2
m(G,A), we obtain a measurable crossed homo-

morphism, i.e., a continuous homomorphism T : G → : U(A) ⋊ G. Let E be the
image of T (G). We have a short exact sequence,

0 → A→ I(A)⋊G→ U(A)⋊G→ 0.

The required extension group E is obtained as the inverse image of E in I(A) ⋊ G.
We equip the group E with subspace topology of I(A)⋊G. It can be verified that E
is a closed subgroup of I(A)⋊G, and hence it is a Polish group. �

Remark 1. From this construction, it does not seem possible to directly relate the
topology of E to that of G and A; for example, if G and A are locally compact,
will E be locally compact? This question was already answered in the affirmative by
Mackey (cf. [Mac]), but the proof is neither easy nor direct.

A similar problem arises when we work with Lie groups and we want to relate the
manifold structure on E to that of G and A. This provides us another motivation
(apart from the work of Lichtenbaum) for the construction of a cohomology theory
based on measurable cochains which are continuous (or more generally are regular in
a suitable sense) in a neighbourhood of identity.

3. Locally continuous measurable cohomology theory

We now describe our construction of a cohomology theory for topological groups,
based on measurable cochains which are continuous in a neighbourhood of identity.
We first establish basic properties of this cohomology theory. Our main aim is to show
that the second cohomology group describes the equivalence classes of topological
extensions that are locally split. The construction of the extension allows us to
directly relate the topology on the extension group to that of the subgroup and the
quotient group.

3.1. Definition and basic functorial properties. We define the group Cn
lcm(G,A)

of locally continuous measurable n-cochains on G with values in A to be the space
of measurable functions from Gn to A which are continuous in some neighbourhood
of identity in Gn. The standard coboundary map involves the group action, group
multiplication on G, and composition in A.

(s1, s2, · · · sn+1) = s1 · (s2, s3, · · · sn+1),

(s1, · · · si, si+1, · · · sn+1) 7→ (s1, · · · sisi+1, · · · sn+1).

All these maps are continuous, and hence dn in Definition 1 takes Cn
lcm(G,A) to

Cn+1
lcm (G,A). Therefore, {C•

lcm(G,A), d
•}n≥0 forms a cochain complex. For every

n ≥ 0, we denote the group of n-cochains by

Zn
lcm(G,A) = {f : Gn → A : dnf(s1, s2, · · · , sn+1) = 0}.
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and we denote the group of n-coboundaries by

Bn
lcm(G,A) = Image (dn−1) for n ≥ 1.

We define B0
lcm(G,A) = 0. The locally continuous cohomology groups Hn

lcm(G,A) for
n ≥ 0 are defined as the n-th cohomology group of the cochain complex {C•

lcm(G,A), d
•},

i.e.,

Hn
lcm(G,A) =

Zn
lcm(G,A)

Bn
lcm(G,A)

.

It is clear that H0
lcm(G,A) = AG the space of G-invariants in A. These cohomology

groups lie between the continuous cohomology and the measurable cohomology, i.e.,
there are natural maps,

Hn
cont(G,A) → Hn

lcm(G,A) → Hn
m(G,A).

We will see that this cohomology theory addresses the problems related to the coho-
mology theories discussed earlier. We first verify some of the basic properties satisfied
by these cohomology groups.

3.2. Change of groups. Let A, A′ be topological modules for G,G′ respectively.
Suppose there are continuous homomorphism φ : G′ → G, ψ : A → A′ satisfying the
following compatibility condition:

G×A −−−→ A

φ

x









y

ψ





y

ψ

G′×A′ −−−→ A′

g′ · ψ(a) = ψ(φ(g′) · a) ∀a ∈ A, g′ ∈ G′.

Then there is a map of cohomology groups,

Hn
lcm(G,A) → Hn

lcm(G
′, A′).

In particular, this gives functorial maps for G = G′,

Hn
lcm(G,A) → Hn

lcm(G,A
′).

For G′ = H , a subgroup of G, we have the restriction homomorphism

Hn
lcm(G,A) → Hn

lcm(H,A).

3.3. Locally split short exact sequences.

Definition 2. A short exact sequence of topological groups

0 → G′ ı
→ G


→ G′′ → 0

is an algebraically exact sequence of groups with the additional property that ı is
a closed and  is open. It is said to be locally split, if the homomorphism  admits
a local section, i.e., there exists an open neighbourhood U ′′ of identity in G′′ and a
continuous map σ : U ′′ → G such that j ◦ σ = idU ′′.
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We recall the definition of a finite dimensional topological space and topological
group:

Definition 3. A topological space X has finite topological dimension k, if every
covering U of X has a refinement U ′ in which every point of X occurs in at most k+1
sets in U ′, and k is the smallest such integer. Finite dimensional topological groups
are topological groups that have finite dimension as a topological space.

The following theorem due to Mostert (cf. [Mos, page 647]) provides examples of
locally split short exact sequences:

Theorem. Let G be a finite dimensional locally compact group and H be a closed
normal subgroup of G, then G/H admits a local cross-section.

This theorem is obvious when G is a Lie group, and it follows from the fact that
that any finite dimensional locally compact group is an inverse limit of Lie groups.
For detailed proof, refer to (cf. [Mos]).

Lemma 1. Consider a locally split short exact sequence of topological groups 1 →
G′ ı

→ G

→ G′′ → 1. Then there exists a measurable section σ : G′′ → G which is

continuous in a neighbourhood of identity on G′′.

Proof. By the hypothesis and Zorn’s lemma, we can assume that there is a maximal
Z ⊂ G′′ measurable set containing an open neighbourhood of identity, and a section
σ : Z → G continuous in a neighbourhood of identity on G′′. Suppose Z is not equal
to G. By translation, given an element w in the complement of Z in G′′ we can find
a neighbourhood Uw of w in G′′, and a continuous section σw to  on Uw. Patching
the sections σ and σw|Uw∩(G′′−Z) we get a measurable extension of σ. By maximality
this implies Z = G′′. �

Remark 2. When the group G′′ is Lindelöf (meaning every open cover of G′′ admits
a countable subcover), the above lemma can be proved easily without using Zorn’s
lemma.

3.3.1. Long exact sequence. As a corollary of Lemma 1, we associate to each locally
split short exact sequence, a long exact sequence of locally continuous measurable
cohomology groups.

Corollary 1. Consider a locally split short exact sequence of topological G-modules.
0 → A′ → A→ A′′ → 0. Then there is a short exact sequence of cochain complexes,

0 → C∗
lcm(G,A

′)
ı̃
→ C∗

lcm(G,A)
̃
→ C∗

lcm(G,A
′′) → 0.

Hence, there is a long exact sequence of locally continuous measurable cohomology
groups,

0 → H0
lcm(G,A

′) → H0
lcm(G,A) → H0

lcm(G,A
′′)

δ
→ H1

lcm(G,A
′) → · · ·
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Proof. Since this is fundamental to our construction of cohomology theories, we briefly
indicate the construction of the connecting homomorphism

δ : Hn
lcm(G,A

′′) → Hn+1
lcm (G,A′).

We choose a locally continous measurable section σ : A′′ → A as given by Lemma 1.
The connecting homomorphism is defined as,

δ(s) = d(σ ◦ s), s ∈ Zn
lcm(G,A

′′).

This gives a well-defined cocycle with values in A′, and the cohomology class defined
by this cocycle is independent of the choice of the section σ. �

3.3.2. The first cohomology group.

Proposition 3. Suppose G is a topological group and and A is a topological G-module.
Then

Z1
lcm(G,A) = Z1

cont(G,A)

is the space of continuous crossed homomorphisms from G to A.

Proof. A locally continuous measurable 1-cocycle is a measurable function c : G→ A
satisfying the cocycle condition

c(s1s2) = s1 · c(s2) + c(s1) ∀s1, s2 ∈ G.

Further, there exists an open set U ⊂ G containing identity such that c|U is continu-
ous. For any x ∈ G arbitrary, the map c|xU satisfies following formula.

c(xs) = x · c(s) + c(x) for all s ∈ U.

Since the group action is continuous and the map of translation by c(x) is continuous
on A, we see that c is continuous on xU . �

Remark 3. This holds in greater generality in the context of the measurable coho-
mology groups constructed by Moore. Using Banach’s theorem that any measurable
homomorphism between two polish groups is continuous, it can be seen that if G
and A are locally compact and G acts continuously on A, then the first measurable
cohomology group is the group of all continuous crossed homomorphisms from G to
A.

3.4. Other constructions. It is possible to construct other cohomology theories
imposing different conditions on the nature of the cochains. For example, the proof
of Lemma 1 can be modified to extend a continuous section to a dense, open subset
of G′′. We can then construct a cohomology theory based on continuous cochains
defined on dense open subsets of products of G (or even measurable cochains which
are continuous on dense open subsets of products of G). However, such a cohomology
theory does not have restriction maps to subgroups in general. Further, it seems
difficult to relate the second cohomology group (based on continuous cochains defined
on dense open subsets of products of G) to extensions of G.
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Another construction can be based on set theoretic cochains which are continuous
in a neighbourhood of identity of Gn. But here again, the second cohomology group
does not seem to correspond to extensions of G having local sections.

4. Locally split extensions and H2
lcm(G,A)

Let G, A be locally compact second countable topological groups, and assume
that A is a continuous G-module. Our aim out here is to establish a bijective cor-
respondence between the second cohomology group H2

lcm(G,A) and the collection of
all locally split extensions E of G by A, i.e., those extensions for which there exists a
continuous section for the map π : E → G in some neighbourhood of identity.

Theorem 5. Let G be a locally compact, second countable topological group acting
continuously on a locally compact, second countable abelian group A. Then the sec-
ond cohomology group H2

lcm(G,A) parametrizes isomorphism classes of locally split
extensions of G by A.

Consider a locally split extension E of G by A. We now associate a unique coho-
mology class in H2

lcm(G,A). By Lemma 1, choose a measurable section σ : G → E
which is continuous in a neighbourhood of identity in G. Define fσ : G × G → A
as fσ(s1, s2) = σ(s1)σ(s2)σ(s1s2)

−1. It can be verified that fσ satisfies the cocycle
condition and is continuous in a neighbourhood of identity in G × G. If we choose
some other section τ having properties as above, then

fτ (s1, s2) = fσ(s1, s2) + d(στ−1)(s1, s2).

Since σ, τ : G → A are in C1
lcm(G,A), we see that στ−1 : G → A is measurable. It is

continuous around identity and hence it gives a 1-cochain in C1
lcm(G,A). Therefore,

d(στ−1) is a locally continuous 2-coboundary and hence, both the sections give the
same class in H2

lcm(G,A).

4.1. Neighbourhoods of identity in E. Consider a measurable 2-cocycle F : G×
G→ A which is continuous on a neighbourhood UF ×UF ⊂ G×G of identity. Since
it is an abstract 2-cocycle, we get an abstract extension

1 → A
ı
→ E

π
→ G→ 1.

In order to topologize E, we define a base B for the neighbourhoods of identity in E
that consists of sets of the form UA×UG, where UA and UG are open neighbourhoods
of identity in A and G respectively, such that F |UG×UG

is continuous. It is easy to see
that B is a filter base in the terminology of Bourbaki (cf. [Bou, Chapter 1, Section
6.3]). Let us call any subset of E, containing some member of B, as a neighbourhood
of identity in E.

Since the cocycle F is continuous in a neighbourhood of identity, it can be verified
that the multiplication map E × E → E (resp. inverse map E → E) are continuous
in a neighbourhood of identity. From Proposition 1 of Bourbaki (cf.[Bou, Chapter
3, Section 1.2, page 221]), for E to be a topological group with B as a base for the
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neighbourhoods at identity, it is necessary and sufficient that inner conjugation by
any element a ∈ E is continuous at identity: for a ∈ Ẽ and any V ∈ B̃, there exists
V ′ ∈ B̃ such that V ′ ⊂ a · V · a−1. We single this out as a theorem:

Theorem 6. Let E be an extension of the group G by A corresponding to the 2-
cocycle F : G × G → A and is provided with the neighbourhood topology B defined
above. Then for any x ∈ E, the map of inner conjugation ıx : E → E is continuous
at identity.

Proof of this theorem will occupy next few sections. The proof of this theorem
is modelled on the proof of Banach’s theorem that measurable homomorphims of
second coutntable locally compact topological groups are continuous. Heuristically,
this can be considered as saying that the topology of a locally compact group can
be recovered from the underlying measure theory. Our proof of the above theorem
makes this heuristic precise.

In our situation, E can be equipped with a measure structure since the cocycle F
is measurable. We topologize E with a neighbourhood base filter B, imposing the
condition that left translation is continuous. We show that there exists a left invariant
measure on E. This will allow us to define convolution of measurable functions.
We then use the fact that the multiplication and inverse maps are continuous in a
neighbourhood of identity e, together with a global argument to prove the above
theorem.

4.2. Topology on extension group. We topologize E by considering the left trans-
lates xB as a base for the open neighbourhoods of x ∈ E. With this topology left
multiplication by any element x ∈ E is a continuous map from E to E. It is easy
to observe the following proposition listing some basic properties of the topological
space E.

Proposition 4. (i) The homomorphisms ı, π are continuous and π is an open
map.

(ii) There exists an open neighbourhood UF ⊂ G of identity in G, and a contin-
uous section σ : UF → E.

(iii) The inclusion ı : A → E is a homeomorphism onto its image and ı(A) is a
closed subset of E.

(iv) E is a locally compact, second countable, Hausdorff space.
(v) The Borel algebra on E is generated by members of the filters ∪

x∈E
xB. More-

over, the measure structure on E is product of measure structures on G and
A.

(vi) The group law and the inverse map on E are Borel measurable functions.
Hence, the map ıx : E → E of inner conjugation by any x ∈ E is Borel
measurable.

Proof. Since E is second countable, its Borel measurable sets are generated by small
open sets, namely the members of ∪

x∈E
xB. We observe the formulae for group law and
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the inverse map:

(a1, s1)(a2, s2) = (a1 + s1 · a2 + F (s1, s2), s1s2),

(a, g)−1 = (s−1 · (−a) + s−1(−F (s, s−1)), eG).

The cocycle, F : G × G → A is measurable, and G, A are topological groups.
Therefore, the group law and inverse map are measurable on the product measure
space MA ×MG which is the Borel measure space ME on E. �

4.3. Construction of left invariant measure on E. In this section we construct
a left invariant Borel measure on E. By Riesz representation theorem, it is equivalent
to construct an integral on E which is invariant under left translation. For the
construction of the left invariant integral, we follow the method of [Fe, Chapter 3,
Section 7]. We remark that in our setting, the only change is given by Lemma 4,
analogous to the uniform continuity lemma given by [Fe, Chapter 2, Proposition 1.9].

Let Cc(E) denote the space of real valued continuous functions with compact sup-
port on E, and C+

c (E) ⊂ Cc(E) the subspace of functions taking nonnegative real
values. We denote by f, g, h the functions in Cc(E). For a function f on E and u ∈ E,
let fu(x) = f(ux), x ∈ E denote the left translation of f by u.

Lemma 2. Let E be as in Proposition (6), and let f, g ∈ C+
c (E). Let g 6= 0 with

nonnegative values. Then there exist finitely many positive real numbers c1, c2, . . . , cr
and elements u1, u2, . . . , ur ∈ E such that

(1) f ≤ c1gu1 + c2gu2 + · · ·+ crgur

where gui : E → R is defined as gui(s) = g(uis), for all s ∈ E.

The proof follows from the compactness of the support of f . This allows us to
define the following:

Definition 4. Suppose f, g ∈ C+
c (E) are as above, we define the approximate integral

of f relative to g as

(f ; g) = inf

{

r
∑

i=1

ci

}

,

where the tuple (c1, c2, . . . , cr} runs over all the finite sequences of non-negative num-
bers for which there exist group elements u1, u2, . . . , ur satisfying the proposition
above. By linearity, we define (f ; g) for any f ∈ Cc(E).

Definition 5. Fix a compactly supported function g : E → R+. If f, φ ∈ C+
c (E) and

φ 6= 0, define Iφ(f) = (g;φ)−1(f ;φ)

It can be seen that the approximate integral Iφ(f) satisfies the following properties.
The arguments are similar and follows from analogous properties satisfied by (f ; g)
(see [Fe, Chapter 3, Lemma 7.4 and page 202]):

Lemma 3. Let f, f1, f2,∈ C+
c (E). Then:
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(i) If f 6= 0 then (g; f)−1 ≤ Iφ(f) ≤ (f ; g);
(ii) Iφ(fx) = Iφ(f) for all x ∈ G;
(iii) Iφ(f1 + f2) ≤ Iφ(f1) + Iφ(f2);
(iv) Iφ(cf) = cIφ(f) for all c ∈ R≥0.

We next show that, if φ has small compact support, Iφ is “nearly additive”. For this
purpose, we require a lemma on uniform continuity, the analogue of [Fe, Corollary
1.10, page 167], whose proof we give since we do not yet have an uniform structure
on E.

Lemma 4. Let f be a real valued continuous function on E and ǫ > 0. Suppose C is
a compact subset of E. Then, there is a neighbourhood V of e such that

|f(x)− f(y)| < ǫ whenever x, y ∈ C, x−1y ∈ V.

Proof. Suppose the lemma is not true. Then there exists ǫ > 0, a sequence Vi of
neighbourhoods of identity e in E with ∩Vi = {e}, elements xi, yi ∈ C with x−1

i yi ∈
Vi, such that

|f(xi)− f(yi)| ≥ ǫ.

We can assume that Vi+1Vi+1 ⊂ Vi. Since xi, yi are in a compact set C, we can
assume by passing to a subsequence, that the sequence xi (resp. yi) converges to x0
(resp. y0). Since f is continuous,

|f(x0)− f(y0)| ≥ ǫ.

Since, {xi} converges to x0, choose Nk ≥ k+ 1 such that xi ∈ x0Vk+1 for i ≥ Nk ≥
k + 1. Now,

yi ∈ xiVi ⊂ (x0Vk+1) · Vi.

Since i ≥ k + 1,

(x0Vk+1) · Vi ⊂ (x0Vk+1) · Vk+1 ⊂ x0Vk.

Therefore, yi ∈ x0Vk whenever i ≥ Nk. Hence the sequence {yi} converges to x0.
Since f is continuous, this gives a contradiction.

�

We now prove that Iφ is nearly additive.

Lemma 5. Given f1, f2 ∈ C+
c (E) and ǫ > 0, we can find a neighbourhood V of e

such that, if φ ∈ C+
c (E) is non-zero and supp(φ) ⊂ V , then

(2) |Iφ(f1) + Iφ(f2)− Iφ(f1 + f2)| ≤ ǫ

The proof is similar to the proof of Lemma in [Fe, Chapter 3, 7.7], only we use
Lemma 4 in place of the lemma on uniform continuity available for a locally compact
topological group.
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Proof. Fix a non-zero function f ′ ∈ C+
c (E) which is strictly positive on the supp(f1+

f2). We can find this function because E is locally compact and Hausdorff. Choose
δ to be a small positive number such that

(3) (f ′; g)δ(1 + 2δ) + 2δ(f1 + f2; g) < ǫ.

Now put f = f1 + f2 + δf ′, and define

hi(x) =

{

fi(x)
f(x)

if f(x) 6= 0,

0 otherwise.

The functions h1, h2 have compact support. By the left uniform continuity (cf.
Lemma 4) applied to hi, i = 1, 2, we can choose a neighbourhood V of identity so
that

(4) |hi(x)− hi(y)| < δ for i = 1, 2 and x−1y ∈ V.

We can further assume by restricting to a smaller neighbourhood of identity e ∈ E
that multiplication and inverse maps are continuous on V .

Now let φ be any non-zero function in C+
c (E) with support contained inside V . We

shall prove the lemma for φ. By Lemma 2, we can find 0 ≤ cj ∈ R and uj ∈ G such
that

f ≤
r

∑

j=1

cjφuj .

If φ(ujx) 6= 0, we have ujx ∈ V . Therefore by Lemma 4,

|hi(u
−1
j )− hi(x)| < δ.

Hence for i = 1, 2 and for every x ∈ E, we have

fi(x) = hi(x)f(x) ≤
r

∑

j=1

cjφ(ujx)hi(x) ≤
r

∑

j=1

cjφ(ujx)(hi(u
−1
j ) + δ).

This implies,

(fi;φ) ≤
r

∑

j=1

cj(hi(u
−1
j ) + δ), i = 1, 2.

But h1 + h2 ≤ 1 implies that

(f1;φ) + (f2;φ) ≤
r

∑

j=1

cj(1 + 2δ).

Taking infimum over {
∑

cj}, we obtain

(f1;φ) + (f2;φ) ≤ (1 + 2δ)(f ;φ)

Multiplying by (g;φ)−1, we get the relation of relative integrals,

Iφ(f1) + Iφ(f2) ≤ (1 + 2δ)Iφ(f).

By properties of Iφ, and the choice of f ′, we see that

Iφ(f1) + Iφ(f2) ≤ δIφ(f
′).
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Therefore we have,

Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + 2δIφ(f1 + f2) + δ(1 + 2δ)Iφ(f
′) < Iφ(f1 + f2) + ǫ.

This proves the lemma. �

This completes the proof that Iφ is nearly additive, when φ has sufficiently small
compact support. From Lemma 3 we also have

(g; f)−1 ≤ Iφ(f) ≤ (f ; g)

whenever g 6= 0 and f, φ, g are compactly supported real valued functions on E.

Proposition 5. There exists a non-zero left invariant integral on E.

Proof. For each f ∈ C+
c (E), f 6= 0, let Sf = [(g; f)−1, (f ; g)], a compact interval.

Consider the set S =
∏

06=f∈C+
c (E)

Sf (with the cartesian product topology). By Ty-

chonoff’s theorem S is compact. Let {φi} be a net of non-zero elements of C+
c (E)

such that, for each neighbourhood V of identity, supp(φi) ⊂ V for sufficiently large
i. By the properties of Iφi, we know that Iφi ∈ S for each i. Since S is compact, we
can replace {φi} by a subnet, and assume that Iφi → I in S. Putting I(0) = 0, and
passing to the limit over i, we get from the properties of Iφi the following:

(i) (g; f)−1 ≤ I(f) ≤ (f ; g), if 0 6= f ∈ C+
c (E).

(ii) I(fx) = I(f), for all f ∈ C+
c (E); for all x ∈ E.

(iii) I(cf) = cI(f)for all c ∈ R+; and for all f ∈ C+
c (E).

(iv) I(f1 + f2) = I(f1) + I(f2) for all f1, f2 ∈ C+
c (E).

Now any continuous function f : E → C with compact support, can be written as
f = (f1 − f2) + i(f3 − f4), with each fi ∈ C+

c (E). Define

(5) I(f) = I(f1)− I(f2) + i(I(f3)− I(f4))

�

Remark 4. This integral defines a left invariant measure on E, Notice that the
integral is positive, i.e., I(f) > 0, whenever 0 6= f ∈ C+

c (E). Let µ be the Borel
measure on E, corresponding to the left invariant integral I on E. If x ∈ G, we see
that

µ(W ) = µ(xW )

where W is a Borel subset of E whose closure is compact. Further, if K is any
compact subset of E then µ(K) <∞.

4.4. Global argument. We now derive a consequence of the existence of a non-
trivial left invariant integral on E. We start with a general observation:

Lemma 6. Let G1, G2 be two groups, and f : G1 → G2 be a group homomorphism.
Suppose that G1, G2 are topological spaces, and G2 satisfies Lindelöf property. As-
sume further that there exist non-zero left invariant measures µ1 (resp. µ2), on the
Borel subalgebra of G1 (resp. of G2 ).
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Let f be measurable and W ⊂ G2 be an arbitrary open subset. Then

• The measure µ2(W ) > 0.
• If f is surjective, the measure of the preimage µ1(f

−1(W )) > 0.

Proof. Since W is open in G2 and G2 is Lindelöf, there exist countably many left
translates {tiW}i∈N which cover G2. Since the measure is left invariant and non-zero,
it follows that the measure of W is positive.

Since f is surjective, there exist elements si ∈ G1, such that f(si) = ti. Since f is
measurable, the inverse image f−1(W ) is a measurable subset of G1. Since {tiW}i∈N
cover G2, the collection {sif

−1(W )}i∈N covers G1. Since the measure µ1 is non-zero
on G1, it follows that µ1(f

−1(W )) > 0.

�

We apply this global argument when E = G1 = G2 with f = ıx inner conjugation
by an element x ∈ E:

Corollary 2. Let E be as above and µ denote the left invariant measure constructed
in the foregoing subsection. Let W be an open subset of E and x an element of E.
Then

µ(i−1
x (W )) > 0.

4.5. Convolution. The proof of Banach’s theorem for locally compact groups pro-
ceeds by first showing that convolution of measurable functions satisfying suitable
properties is continuous. In our context, we can carry out such an argument for mea-
surable functions supported in a sufficiently small neighbourhood of identity in E.
However, here we establish directly a statement that suffices for proving Theorem 6.
The proof makes more use of symmetric subsets, has the advantage of simplifying the
required arguments in our context by reducing the requirement of uniform continuity
to Lemma 4. The key proposition is the following:

Proposition 6. Let M be a measurable, symmetric (i.e. M = M−1) subset of E.
Suppose thatM ⊂ π−1(U2), for U2 a symmetric relatively compact open neighbourhood
of identity in G such that the product of the closures U 2U2 ⊂ UF . Assume that identity
e ∈M and measure µ(M) is positive and finite. Then the set

MM = {xy : x ∈ M, y ∈ M}

contains an open neighbourhood of identity in E.

Granting this proposition, we now prove Theorem 6.

Proof of Theorem 6. We need to show that for any sufficiently small neighbourhood
V of identity in E the set ı−1

x (V ) contains an open neighbourhood of identity e ∈ E.
Let W be a symmetric open neighbourhood of e in E satisfying following
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(i) W is symmetric (i.e., W = W−1)
(ii) W ⊂ π−1(xU2x

−1)
(iii) WW ⊂ V

Let M ′ = ı−1
x (W ). By Corollary 2, µ(M ′) > 0. Since W ⊂ π−1(xU2x

−1), we have
ı−1
x (W ) ⊂ π−1(U2). Intersecting wih a symmetric compact set K containing identity
e ∈ E, we can assume that M = ı−1

x (W ) ∩ K has finite, positive measure, and
is contained inside π−1(U2). By Proposition 6, we see that the product set MM
contains an open neighbourhood V ′

x of e. Now

ı−1
x (V ) ⊇ ı−1

x (WW ) ⊃MM ⊃ V ′
x.

This proves Theorem 6. �

We now proceed to the proof of Proposition 6. For x ∈ E, define the function

u(x) = µ(M ∩ xM).

The proof of the proposition reduces to the following lemma:

Lemma 7. Under the hypothesis of Proposition 6, u is a continuous function.

Assuming Lemma 7 we now prove Proposition 6.

Proof of Proposition 6. If u(x) 6= 0. them M ∩ xM 6= ∅. Hence x ∈ MM−1 = MM
as M is assumed to be symmetric. Further, u(e) = µ(M) > 0. Since u is continuous,
this proves Proposition 6. �

We now proceed to the proof of Lemma 7.

Proof of Lemma 7. Let χM denote the characteristic function of M . Then u(x) can
be defined by the following integral.

u(x) = µ(M ∩ xM)

=

∫

M∩xM

dµ(y)

=

∫

M

χM(x−1y)dµ(y)

=

∫

E

χM(y)χM(x−1y)dµ(y).

We observe that support of u is contained insideMM ⊆ U2U2. SinceM ⊂ π−1(U2), by
Lusin’s theorem choose a function f ∈ CC(E) with support contained inside π−1(U 2)
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such that
∫

E

|χM(y)− f(y)| dµ(y) < ǫ1,

for some sufficiently small ǫ1 > 0.

Let {xn}n∈N be a sequence converging to x0 in π−1(U2U2). To show the continuity
of u restricted to π−1(U2U2), it is enough to show that the sequence {u(xn)} converges
to u(x0). We have

|u(xn)− u(x0)| =

∣

∣

∣

∣

∣

∣

∫

E

χM(y)(χM(x−1
n y)− χM (x−1

0 y))dµ(y)

∣

∣

∣

∣

∣

∣

.

Since M is symmetric, we also have χM(y−1) = χM(y). Therefore,

|u(xn)− u(x0)| ≤

∫

E

χM(y)|χM(y−1xn)− χM(y−1x0)|dµ(y).

We have

|u(xn)− u(x0)| ≤

∫

E

χM(y)|χM(y−1xn)− f̃(y−1xn)|dµ(y)

+

∫

E

χM(y)|f̃(y−1xn)− f̃(y−1x0)|dµ(y)

+

∫

E

χM(y)|f̃(y−1x0)− χM(y−1x0)|dµ(y),

where f̃(z) = f(z−1) for z ∈ E. Since the integral is left invariant, by replacing y by
xny (resp. by x0y) in the first (resp. third) term on the right, we see that

∫

E

χM(y)|χM(y−1xn)− f̃(y−1xn)|dµ(y) =

∫

E

χM (xny)|χM(y−1)− f̃(y−1)|dµ(y)

≤

∫

E

|χM(y−1)− f̃(y−1)|dµ(y)

=

∫

E

|χM(y)− f(y)|dµ(y)

< ǫ1.

Here we have used the fact that M is symmetric and definition of f̃ . Similarly, we
obtain

∫

E

χM(y)|f̃(y−1x0)− χM(y−1x0)|dµ(y) < ǫ1.

Now we estimate the middle term. Since inverse map is continuous in π−1(UF ) and

support of f is contained inside π−1(UF ), the function f̃(y) = f(y−1) is continuous.



ON COHOMOLOGY THEORY FOR TOPOLOGICAL GROUPS 21

Given ǫ2 > 0, by Lemma 4, there exists a symmetric neighbourhood W2 contained in-
side π−1(UF ) (here again we are using fact that inverse map is continuous on π−1(UF ))
such that

|f̃(z1)− f̃(z2)| < ǫ2 for z−1
1 z2 ∈ W2.

Since xn converges to x0, there exists a natural number N such that for n ≥ N ,

xn ∈ x0W2. i.e., x−1
0 xn ∈ W2.

Since W2 is symmetric, this condition can be rewritten as

x−1
n x0 ∈ W2.

Hence,

(y−1xn)
−1(y−1x0) = x−1

n x0 ∈ W2.

By applying Lemma 4 to the continuous function f̃ , we obtain

|f̃(y−1xn)− f̃(y−1x0)| ≤ ǫ2, for n ≥ N.

Hence for n ≥ N , the middle term can be estimated as
∫

E

χM(y)|f̃(y−1xn)− f̃(y−1x0)|dµ(y) < ǫ2

∫

E

χM(y) < ǫ2µ(M).

Combining the above estimates, we obtain

|u(xn)− u(x0)| < 2ǫ1 + ǫ2µ(M) for all n ≥ N.

This establishes continuity of u and hence proves Lemma 7. �

4.6. Comparison with other cohomology theories. Suppose G is a locally com-
pact group acting on a locally compact group A. Then we have a natural map

H2
lcm(G,A) → H2

m(G,A).

As a corollary to Banach’s theorem we show that the above map is injective:

Corollary 3. Let G, A be locally compact, second countable groups. Then the natural
map

H2
lcm(G,A) → H2

m(G,A)

is injective.

Proof. Suppose a 2-cohomology class c inH2
lcm(G,A) is trivial inH

2
m(G,A). Construct

the corresponding extension E of c. Then c = 0 in H2
m(G,A), implies that there exists

a measurable section σ : G → E which is a group homomorphism. By Theorem 6,
we know that E is locally compact. It can be seen that E is also second countable.
Hence by Banach’s theorem, σ is a continuous group homorphism, and this implies
that the extension E ≃ A⋊G. �

Corollary 4. Suppose that either of the following conditions hold:

(i) G is a profinite group and A is a discrete G-module.
(ii) G is a Lie group and A is a finite dimensional vector space.
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Then the natural maps,

H2
cont(G,A) → H2

lcm(G,A) → H2
m(G,A),

are isomorphisms.

Proof. This follows from the previous corollary and the isomorphism

H2
cont(G,A) → H2

m(G,A)

for the given cases (cf. [Mo76]). �

5. Cohomology theory for Lie groups

In this chapter, we work in the smooth category in the context of Lie groups G, A
with smooth actions G × A → A. Here we can define an analogous cohomology
theory Hn

lsm(G,A) where we impose the condition that the measurable cochains are
locally smooth and study some of its basic properties. We show in the context of
Lie groups that the second locally smooth measurable cohomology group H2

lsm(G,A)
parametrizes the collection of locally split extensions of G by A. Further we observe as
a corollary to the solution of Hilbert’s Fifth problem and Theorem 6, an isomorphism
of H2

lcm(G,A) with H
2
lsm(G,A).

Let G be a Lie group and A be a smooth G-module. Analogous to the construction
in the continuous case, we form a cochain complex {Cn

lsm(G,A), d
n}n≥0. This starts

with C0
lsm(G,A) = A, and for higher n, Cn

lsm(G,A) is the group of all measurable
functions f : Gn → A, which are smooth around identity. It is easily checked that the
standard coboundary operator restricts to define a cochain complex.

Definition 6. The locally smooth cohomology theory {Hn
lsm(G,A)}n≥0 is defined as

the cohomology groups of the cochain complex {Cn
lsm(G,A); d

n}n≥0.

It is clear that there exists a mapHn
lsm(G,A

′′) → Hn
lcm(G,A

′′). It is easy to establish
the following properties of Hn

lsm(G,A).

Proposition 7. (i) H0
lsm(G,A) = AG.

(ii) The first cohomology group H1
lsm(G,A) is the group of all smooth crossed

homomorphisms from G to A.
(iii) Given a short exact sequence of G-modules

0 → A
ı
→ A


→ A→ 0,

there is a long exact sequence of cohomology groups

· · · → H i
lsm(G,A

′) → H i
lsm(G,A) → H i

lsm(G,A
′′)

δ
→ H i+1

lsm(G,A) → · · · .

Proof. The proof of (ii) follows from the smoothness at identity and the cocycle
condition. For (iii), given a short exact sequence of G-modules, it follows from the
property that the sequence is locally split (i.e.  admits a smooth local section). We
extend the section to a locally smooth measurable section σ : A′′ → A. Arguing as
before, we obtain the long exact sequence of cohomology groups. �



ON COHOMOLOGY THEORY FOR TOPOLOGICAL GROUPS 23

Remark 5. We can introduce an analogous cohomology theory in the holomorphic
context based on measurable cochains which are holomorphic in a neighbourhood of
identity. In this context, we observe that the first cohomology group H1

lhm(G,A) is
the space of all holomorphic crossed homomorphisms from G to A (see Proposition
1). Since the closed graph theorem is not applicable in the holomorphic context, we
cannot obtain this result from the smooth version by an application of arguments as
above.

5.1. Extensions of Lie groups. We describe now the second cohomology group.

Theorem 7. Let G be a Lie group and A be a smooth G-module. Then the second
cohomology group H2

lsm(G,A) parametrizes equivalence classes of extensions E of G
by A,

1 → A
ı
→ E

π
→ G→ 0,

where E is a Lie group with a measurable cross section σ : G → E such that σ is
smooth around identity in G.

Proof. Given an extension E of G by A with a locally smooth measurable cross section
σ : G → E, we assign to it the 2-cohomology class of Fσ : G× G → A ∈ Z2

lcm(G,A)
that takes (s1, s2) ∈ G×G to Fσ(s1)Fσ(s2)Fσ(s1s2)

−1.

For proving converse, we take an arbitrary cohomology class F̄ ∈ H2
lsm(G,A).

Choose a representative F and construct an abtract group extension E

1 → A
ı
→ E

π
→ G→ 1.

Suppose G0 is the connected component of identity in G, we claim that the subgroup
E0 := π−1(G0) ≺ E is a Lie group. Since G0 is a normal subgroup of G and π is
surjective, the subgroup E0 is normal in E. We shall first verify that E0 is a Lie
group (we remark here that we can carry out a similar argument in the continuous
case to show directly that E0 is a topological group, instead of using Theorem 6). We
then use the measurability condition to show that the extension E is a Lie group.

Since the cocycle F is smooth in a neighbourhood of identity, we assume that UG
is sufficiently small so that the following holds:

• The product map

(x, y, z) 7→ xyz

is smooth from UG × UG × UG to UF . This can be ensured by assuming that
the following functions are smooth on UG × UG × UG:

(6) (s1, s2, s3) 7→ F (s1s2, s3) and (s1, s2, s3) 7→ F (s1, s2s3).

• The map s 7→ s−1 is smooth from π−1(UG) to π
−1(UG) (here we have assumed

UG is symmetric).

We define an atlas on E0 by imposing that left translations are diffeomorphisms and
imposing the product of smooth structure on π−1(UG) ≃ A×UG, i.e., the atlas consists
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of (xU, φ ◦ Lx−1), where x ∈ E0 and U is an open subset of π−1(UG). Here (U, φ) is a
part of the atlas for the product smooth structure on π−1(UG).

We first claim that this gives us an atlas: suppose there exists elements x, y ∈ E0

and open sets U, V contained inside π−1(UG) such that xU ∩ yV 6= ∅. By taking the
union of U and V , we can assume that U = V . We have the charts,

xU
L
x−1

−−−→ U
φ
−→W

yU
L
y−1

−−−→ U
φ
−→W

where W is an open subset in some Euclidean space. Let V = U ∩ x−1yU be the
image of Lx−1(xU ∩ yU). We need to show that the map,

φ ◦ Ly−1 ◦ Lx ◦ φ
−1 : φ(V ) →W is smooth.

For this it is enough to show that

Ly−1x : V → U is smooth.

The hypothesis implies that there exists elements z, z′ in U such that xz = yz′, i.e.,
y−1x = z′z−1. This implies that

y−1x ∈ π−1(UG)× π−1(UG).

Hence the required smoothness follows from the assumption that the triple product
is smooth from π−1(UG)× π−1(UG)× π−1(UG) to π

−1(UF ). This concludes the proof
that E0 with the above atlas is a smooth manifold. We remark that the manifold
structure is such that left translations are diffeomorphisms.

We now have to show that E0 is a Lie group. For this we first observe that inner
conjugation by any element x ∈ E0 is smooth at identity. Since G0 is a connected
Lie group, the neighbourhood UG generates G as a group. It follows that the group
E0 is generated by π−1(UG). Hence any element x ∈ E0 can be written as

x = x1 · · ·xr, where each xi ∈ π−1(UG).

By our choice of UG, inner conjugation by any xi ∈ π−1(UG) is smooth at identity.
Since the inner conjugation by x is a composite of inner conjugations by the elements
xi, it follows that inner conjugation by any element of x ∈ E0 is smooth at identity.

We now show that the multiplication map E0 × E0 → E0 is smooth. Suppose
x, y ∈ E0. Let U be a sufficiently small neighbourhood of identity in E such that
the conjugation map z 7→ y−1zy is smooth where z ∈ U . Now the multiplication map
xU × yU can be written as,

(xz)(yz′) = (xy)(y−1zy)z′ z, z′ ∈ U.

We can assume that U, y−1Uy ⊂ π−1(UG). Since left multiplication by xy is smooth,
and multiplication is smooth on π−1(UG)× π−1(UG), we conclude that multiplication
is a smooth map from E0 ×E0 to E0.

Similarly, to show that the inverse map is smooth on E0, say around x ∈ E0, we
take U to be a sufficiently small neighbourhood of identity in E0 such that z 7→
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xz−1x−1, z ∈ U is smooth on U . (we use the fact that inverse map is smooth on
π−1(UG) and assume that U ⊂ π−1(UG)). Now,

(xz)−1 = x−1(xz−1x−1), z ∈ U.

As left translations are smooth, it follows that the inverse map is smooth on E0. This
concludes the proof that E0 is a Lie group.

Remark 6. We remark again out here, that the above arguments did not require to
start with that E or E0 is a topological group. The above arguments, carried out
in the continuous category, will directly yield that E0 is a topological group. We
have only used the fact that any neighbourhood of identity in G generates G as a
group and that cocyles are locally regular (locally regular means locally continuous
or locally smooth depending on the setting).

Now we want to conclude that E is a Lie group. For this, we first show that E is a
topological group. Since the cocycle is measurable, we see that inner conjugation ix
by any element x ∈ E is a measurable automorphism of E0. By Banach’s theorem,
it follows that ix is continuous on E0. (in particular it follows that E is a topological
group).

Since ıx is continuous on E0, the graph of ıx is closed in E0 × E0. Therefore, the
graph of ıx is a closed subgroup of the Lie group E0 × E0. Therefore,the graph of ıx
is a Lie group of E0 ×E0. Therefore, that ix is a smooth diffeomorphism of E0. We
now argue as above to conclude that E is a Lie group. Therefore we get the following
short exact sequences of topological groups,

1 → A
ı
→ E

π
→ G→ 1.

Since E and G are Lie groups with a continuous group homomorphism π : E → G,
we see that graph of π is a closed subgroup of E×G which is a Lie group. Therefore
graph of π is a Lie subgroup. This implies that π is smooth. By implicit function
theorem, π admits a smooth cross section in a neighbourhood of identity. We use
arguments similar to those used in proving Lemma 1 and extend this to a locally
smooth measurable cross section σ from G to E. This concludes proof of Theorem
7. �

5.2. A comparison theorem. In this section, as a corollary of positive solution to
Hilbert’s fifth problem, we show the following:

Theorem 8. Let G be a Lie group and A be a smooth G-module. Then the natural
map,

H2
lsm(G,A) → H2

lcm(G,A),

is an isomorphism.

Proof. Let F : G × G → A be a locally continuous measurable 2-cocycle on G with
values in A. We shall show that F is cohomologous to a locally smooth measurable
2-cocycle b. By Theorem 6, we obtain a locally split (topological) extension E of G
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by A:

1 → A
ı
→ E

π
→ G→ 1.

Denote by Ec the connected component of E containing identity. Since the extension
is locally split and G and A are Lie groups, it follows that Ec is locally Euclidean.
Hence by positive solution to Hilbert fifth problem (cf. [Y],[Gl],[Mo-Zi]), we conclude
that Ec is a Lie group.

Now the map π|Ec → G is a continuous homomorphism. Hence the graph of π|Ec

is a closed subgroup of the Lie group Ec × G. Therefore, it is a Lie subgroup and
this shows that the projection map π|Ec is smooth. Applying the implicit function
theorem, we can find a smooth cross section of π in a neighbourhood of identity on
G to Ec. By arguments similar to Lemma 1, we extend this to a measurable section
σ from G to E.

The section σ gives raise to a 2-cocycle bσ : G×G→ A in Z2
lsm(G,A) given by the

formula bσ(s1, s2) = σ(s1)σ(s2)σ(s1s2)
−1. One can observe that bσ is cohomologous

to F in Z2
lcm(G,A). This yields a surjective map

H2
lsm(G,A) → H2

lcm(G,A).

We, next claim this map to be injective. Suppose a class b ∈ H2
lsm(G,A) is trivial

in H2
lcm(G,A). Corresponding to b ∈ H2

lsm(G,A), by Theorem 7 we obtain a Lie
group E which is an extension of G by A Since b = 0 in H2

lcm(G,A), there exists a
locally continuous measurable section σ : G → E which is a group homomorphism.
Since it is continuous at identity, it is continuous everywhere. Hence we obtain a
continuous isomorphism between the Lie groups E and A⋊G. By an application of
the closed graph theorem, this isomorphism is smooth. Therefore, the cohomology
class b is trivial in H2

lsm(G,A). Hence it follows that

H2
lsm(G,A) → H2

lcm(G,A)

is an isomorphism. �
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