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A mean curvature estimate for cylindrically

bounded submanifolds

Luis J. Aĺıas and Marcos Dajczer

Abstract

We extend the estimate obtained in [1] for the mean curvature of a
cylindrically bounded proper submanifold in a product manifold with
an Euclidean space as one factor to a general product ambient space
endowed with a warped product structure.

Let (Lℓ, gL) and (P n, gP ) be complete Riemannian manifolds of dimension
ℓ and n, respectively, where Lℓ is non compact. Then, let Nn+ℓ = Lℓ ×ρ P

n

be the product manifold Lℓ × P n endowed with the warped product metric
ds2 = dgL + ρ2dgP for some positive warping function ρ ∈ C∞(L).

Let BP (r0) denote the geodesic ball with radius r0 centered at a reference
point o ∈ P n. We assume that the radial sectional curvatures in BP (r0) along
the geodesics issuing from o are bounded asKrad

P ≤ b for some constant b ∈ R,
and that 0 < r0 < min{injP (o), π/2

√
b} where injP (o) is the injectivity radius

at o and π/2
√
b is replaced by +∞ if b ≤ 0. Then, the mean curvature of

the geodesic sphere SP (r0) = ∂BP (r0) can be estimated from below by the
mean curvature of a geodesic sphere of a space form of curvature b, namely,

Cb(t) =





√
b cot(

√
b t) if b > 0,

1/t if b = 0,√
−b coth(

√
−b t) if b < 0.

By a cylinder in the warped space Nn+ℓ we mean a closed subset of the form

Cr0 = {(x, y) ∈ Nn+ℓ : x ∈ Lℓ and y ∈ BP (r0)}.
Since the submanifolds Lℓ × {p0} ⊂ Nn+ℓ are totally geodesic, we have that

|ρHCr0
| ≥ n− 1

ℓ+ n− 1
Cb(r0)

where HCr0
is the mean curvature vector field of the hypersurface Lℓ×Sp(r0).
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The following theorem extends the result in [1] where the cylinders under
consideration are contained in product spaces Rℓ×P n. After the statement,
we recall from [2] the concept of an Omori-Yau pair on a Riemannian manifold
and discuss some implications of its existence.

Theorem 1. Let f : Mm → Lℓ ×ρ P
n be an isometric immersion where Lℓ

carries an Omori-Yau pair for the Hessian and the functions ρ, |grad log ρ|
are bounded. If f is proper and f(M) ⊂ Cr0, then supM |H| = +∞ or

sup
M

ρ|H| ≥ m− ℓ

m
Cb(r0) (1)

where H is the mean curvature vector field of f .

We see in the proof that the existence in Lℓ of a Omori-Yau pair for
the Hessian provides conditions, in a function theoretic form, that guarantee
the validity of the Omori-Yau Maximum Principle on Mm in terms of the
corresponding property of Lℓ and the geometry of the immersion.

Definition 2. The pair of functions (h, γ) for h: R+ → R+ and γ: M → R+

form an Omori-Yau pair for the Hessian in M if they satisfy:

(a) h(0) > 0 and h′(t) ≥ 0 for all t ∈ R+,

(b) lim sup
t→+∞

th(
√
t)/h(t) < +∞,

(c)

∫ +∞

0

dt/
√

h(t) = +∞,

(d) The function γ is proper,

(e) |grad γ| ≤ c
√
γ for some c > 0 outside a compact subset of M ,

(f) Hess γ ≤ d
√

γh(
√
γ) for some d > 0 outside a compact subset of M .

Similarly, the pair (h, γ) forms an Omori-Yau pair for the Laplacian in M if
they satisfy conditions (a) to (e) and

(f’) ∆γ ≤ d
√
γh(

√
γ) for some d > 0 outside a compact subset of M .
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The following fundamental result due to Pigola, Rigoli and Setti [3] gives
sufficient conditions for an Omori-Yau Maximum Principle to hold for a
Riemannian manifold.

Theorem 3. Assume that a Riemannian manifold M carries an Omori-Yau
pair for the Hessian (respec., Laplacian). Then, the Omori–Yau Maximum
Principle for the Hessian (respec., Laplacian) holds in M .

Recall that the Omori–Yau Maximum Principle for the Hessian holds
for M if for any function g ∈ C∞(M) bounded from above there exists a
sequence of points {pk}k∈N in M such that

(a) lim
k→∞

g(pk) = sup
M

g,

(b) |grad g(pk)| ≤ 1/k,

(c) Hess g(pk)(X,X) ≤ (1/k)gM(X,X) for all X ∈ TpkM .

Similarly, the Omori–Yau Maximum Principle for the Laplacian holds for M
if the above properties are satisfied with (c) replaced by

(c’) ∆g(pk) ≤ 1/k.

Example 4. Let Mm be a complete but non compact Riemannian manifold
and denote r(y) = distM(y, o) for some reference point o ∈ Mm. Assume
that the radial sectional curvature of Mm satisfies Krad ≥ −h(r), where the
smooth function h satisfies (a) to (c) in Definition 2 and is even at the origin,
that is, h(2k+1)(0) = 0 for k ∈ N. Then, it was shown in [3] that the functions
(h, r2) form an Omori-Yau pair for the Hessian. As for the function h, one
can choose

h(t) = t2
N∏

j=1

(log(j)(t))2, t ≫ 1,

where log(j) stands for the j-th iterated logarithm.

To conclude this section, we first observe that Theorem 1 is sharp. This
is clear from (1) by taking as P n a space-form and as M the hypersurface
Lℓ×SP (r0) inNn+ℓ. Moreover, in view of Example 4 it follows taking Lℓ = R

ℓ

and constant ρ that we recover the result in [1].
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1 The proof

We first introduce some additional notations and then we recall a few basic
facts on warped product manifolds.

Let 〈 , 〉 denote the metrics in Nn+ℓ, Lℓ and Mm whereas ( , ) stands for
the metric in P n. The corresponding norms are | | and ‖ ‖. In addition, let

∇ and ∇̃ denote the Levi-Civita connections in Mm and Nn+ℓ, respectively,
and ∇L and ∇P the ones in Lℓ and P n.

We always denote vector fields in TL by T, S and in TP by X, Y . In
addition, we identify vector fields in TL and TP with basic vector fields in
TN by taking T (x, y) = T (x) and X(x, y) = X(y).

For the Lie-brackets of basic vector fields, we have that [T, S] ∈ TL and
[X, Y ] ∈ TP are basic and that [X, T ] = 0. Then, we have

∇̃ST = ∇L
ST,

∇̃XT = ∇̃TX = T (̺)X

and
∇̃XY = ∇P

XY − 〈X, Y 〉gradL̺

where the vector fields X, Y and T are basic and ̺ = log ρ.

Our proof follows the main steps in [2]. In fact, a substantial part of the
argument is to show that the Omori-Yau pair for the Hessian in Lℓ induces
an Omori-Yau pair for the Laplacian for a non compact Mm when |H| is
bounded. Thus, the Omori–Yau Maximum Principle for the Laplacian holds
in Mm, and the proof follows from a application of the latter.

Suppose that Mm is non compact and let (h,Γ) be an Omori-Yau pair for
the Hessian in Lℓ. For p ∈ Mm denote f(p) = (x(p), y(p)). Set Γ̃(x, y) = Γ(x)
for (x, y) ∈ Nn+ℓ and

γ(p) = Γ̃(f(p)) = Γ(x(p)).

We show next that (h, γ) is an Omori-Yau pair for the Laplacian in Mm.
First, we argue that the function γ is proper. To see this, let pk ∈ Mm be a
divergent sequence, i.e., pk → ∞ in Mm as k → +∞. Thus, f(pk) → ∞ in
Nn+ℓ since f is proper. Since f(M) lies inside a cylinder, then x(pk) → ∞ in
Lℓ. Hence, γ(pk) → +∞ as k → +∞ since Γ is proper, and thus γ is proper.
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It remains to verify conditions (e) and (f ′) in Definition 2. We have from
Γ̃(x, y) = Γ(x) that

〈gradN Γ̃(x, y), X〉 = 0.

Thus,
gradN Γ̃(x, y) = gradLΓ(x).

Since γ = Γ̃ ◦ f , we obtain

gradN Γ̃(f(p)) = gradMγ(p) + gradN Γ̃(f(p))⊥ (2)

where ( )⊥ denotes taking the normal component to f . Then,

|gradMγ(p)| ≤ |gradN Γ̃(f(p))| = |gradLΓ(x(p))| ≤ c
√
Γ(x(p)) = c

√
γ(p)

outside a compact subset of Mm, and thus (e) holds.
We have that

∇̃Tgrad
N Γ̃ = ∇L

Tgrad
LΓ.

Hence,
Hess Γ̃(T, S) = Hess Γ(T, S)

and
Hess Γ̃(T,X) = 0.

Moreover,
∇̃Xgrad

N Γ̃ = ∇̃Xgrad
LΓ = gradLΓ(̺)X.

Hence,
Hess Γ̃(X, Y ) = 〈gradLΓ, gradL̺〉〈X, Y 〉.

For a unit vector e ∈ TpM , set e = eL+eP where eL ∈ Tx(p)L and eP ∈ Ty(p)P .
Then,

Hess Γ̃(f(p))(e, e) = Hess Γ(x(p))(eL, eL)+〈gradLΓ(x(p)), gradL̺(x(p))〉|eP |2.

Moreover, an easy computation using (2) yields

Hess γ(p)(e, e) = Hess Γ̃(f(p))(e, e) + 〈gradLΓ(x(p)), α(p)(e, e)〉

where α denotes the second fundamental of f with values in the normal
bundle. Thus,

Hess γ(p)(e, e) = Hess Γ(x(p))(eL, eL) + 〈gradLΓ(x(p)), gradL̺(x(p))〉|eP |2
+ 〈gradLΓ(x(p)), α(p)(e, e)〉.
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Since Hess Γ ≤ d
√

Γh(
√
Γ) for some positive constant d outside a compact

subset of Lℓ and the immersion is proper, then

Hess Γ(x(p))(eL, eL) ≤ d

√
γ(p)h(

√
γ(p))|eL|2 ≤ d

√
γ(p)h(

√
γ(p))

outside a compact subset of Mm. From |gradLΓ| ≤ c
√
Γh(

√
Γ) for some c

outside a compact subset of Lℓ and supL |gradL̺| < +∞, we have

〈gradLΓ(x(p)), gradL̺(x(p))〉|eP |2 ≤ c′
√

γ(p)

for some positive constant c′ outside a compact subset ofMm. Being γ proper
and h unbounded from (a) and (b) in Definition 2, then

√
γ ≤

√
γh(

√
γ)

outside a compact subset of Mm. Thus, we obtain

Hess γ(e, e) ≤ d1

√
γh(

√
γ) + 〈gradLΓ(x), α(e, e)〉 (3)

for same constant d1 > 0, outside a compact subset of Mm.
On the other hand, we may assume that

|H| ≤ c
√

h(
√
γ) (4)

for some constant c > 0, outside a compact subset of Mm. Otherwise, there
exists a sequence {pk}k∈N in Mm such that pk → ∞ as k → +∞ and

|H(pk)| > k

√
h(
√
γ(pk)).

Being γ proper and h unbounded from (a) and (b) in Definition 2, we conclude
that supM |H| = +∞, in which case we are done with the proof of the
theorem.

We obtain from (3) using (4) that

∆γ ≤ c1

√
γh(

√
γ)

for some constant c1 > 0 outside a compact subset of Mm, and thus (f ′) has
been proved.
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Consider the distance function r(y) = distP (y, o) in BP (r0) and define
r̃ ∈ C∞(N) by r̃(x, y) = r(y). Then,

〈gradN r̃(x, y), T 〉 = 0.

Thus,
ρ2(x)gradN r̃(x, y) = gradP r(y).

We obtain that

∇̃Tgrad
N r̃ = ∇̃T (ρ

−2gradP r) = −ρ−2T (̺)gradP r.

Therefore,
Hess r̃(T, S) = 0

and
Hess r̃(T,X) = −ρ−2T (̺)〈gradP r,X〉 = −T (̺)(gradP r,X).

Moreover,

∇̃Xgrad
N r̃ = ∇̃X(ρ

−2gradP r) = ρ−2
(
∇P

Xgrad
P r − 〈X, gradP r〉gradL̺

)
.

Hence,

Hess r̃(X, Y ) = ρ−2〈∇P
Xgrad

P r, Y 〉 = (∇P
Xgrad

P r, Y ) = Hess r(X, Y ).

For e ∈ TM , we have

Hess r̃(e, e) = −2〈gradL̺, e〉(gradP r, eP ) + Hess r(eP , eP ).

From the Hessian comparison theorem, we obtain

Hess r(eP , eP ) ≥ Cb(r)(‖eP‖2 − (gradP r, eP )2).

Therefore,

Hess r̃(e, e) ≥ −2〈gradL̺, e〉(gradP r, eP )+Cb(r)(‖eP‖2−(gradP r, eP )2). (5)

We define u ∈ C∞(M) by

u(p) = r(y(p)).

Thus, u = r̃ ◦ f and

gradN r̃(f(p)) = gradMu(p) + gradN r̃(f(p))⊥. (6)
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Using (6) gives

Hess u(ei, ej) = Hess r̃(ei, ej) + 〈gradN r̃, α(ei, ej)〉

where e1, . . . , em an orthonormal frame of TM . Thus,

∆u =

m∑

j=1

Hess r̃(ej , ej) +m〈gradN r̃, H〉. (7)

We have from ej = eLj + ePj that

1 = 〈ej , ej〉 = ρ2‖ePj ‖2 +
ℓ∑

k=1

〈ej, Tk〉2

where T1, . . . , Tℓ is an orthonormal frame for TL. Hence,

m = ρ2
m∑

j=1

‖ePj ‖2 +
ℓ∑

k=1

|T⊤

k |2,

where T⊤ is the tangent component of T . We obtain that

m∑

j=1

‖ePj ‖2 ≥ (m− ℓ)ρ−2. (8)

We obtain from (5) and

(gradP r, ePj ) = 〈gradN r̃, ePj 〉 = 〈gradN r̃, ej〉 = 〈gradMu, ej〉

that

Hess r̃(ej , ej) ≥ −2〈gradL̺, ej〉〈gradMu, ej〉+ Cb(u)(‖ePj ‖2 − 〈gradMu, ej〉2).

Taking trace and using (8) gives

m∑

j=1

Hess r̃(ej , ej) ≥ −2〈gradL̺, gradMu〉+ Cb(u)
(
(m− ℓ)ρ−2 − |gradMu|2

)
.

Since
〈gradN r̃, gradN r̃〉 = ρ2(ρ−2gradP r, ρ−2gradP r) = ρ−2,
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we have
〈gradN r̃, H〉 ≥ −ρ−1|H|.

We conclude using (7) that

∆u ≥ −2〈gradL̺, gradMu〉+ Cb(u)
(
(m− ℓ)ρ−2 − |gradMu|2

)
−mρ−1|H|.

Thus,

ρ|H| ≥ m− ℓ

m
Cb(u)−

ρ2

m

(
∆u+ 2|gradL̺||gradMu|+ Cb(u)|gradMu|2

)
.

If Mm is compact, the proof follows easily by computing the inequality
at a point of maximum of u. Thus, we may now assume that Mm is non
compact and that (4) holds.

Since f(M) ⊂ Cr0 , we have u∗ = supM u ≤ r0 < +∞. By the Omori-Yau
maximum principle there is a sequence {pk}k∈N in Mm such that

u(pk) > u∗ − 1/k, |gradMu(pk)| < 1/k and ∆u(pk) < 1/k.

By assumption, we have supL ρ = K1 < +∞ and supL |gradL̺| = K2 < +∞.
Hence,

sup
M

ρ|H| ≥ ρ(pk)|H(pk)| ≥
m− ℓ

m
Cb(u(pk))−

K2
1

m

(
1 + 2K2

k
+

1

k2
Cb(u(pk))

)
.

Letting k → +∞, we obtain

sup
M

ρ|H| ≥ m− ℓ

m
Cb(u

∗) ≥ m− ℓ

m
Cb(r0),

and this concludes the proof of the theorem.
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