A mean curvature estimate for cylindrically bounded submanifolds

Luis J. Alías and Marcos Dajczer

Abstract

We extend the estimate obtained in [1 for the mean curvature of a cylindrically bounded proper submanifold in a product manifold with an Euclidean space as one factor to a general product ambient space endowed with a warped product structure.

Let $\left(L^{\ell}, g_{L}\right)$ and $\left(P^{n}, g_{P}\right)$ be complete Riemannian manifolds of dimension ℓ and n, respectively, where L^{ℓ} is non compact. Then, let $N^{n+\ell}=L^{\ell} \times{ }_{\rho} P^{n}$ be the product manifold $L^{\ell} \times P^{n}$ endowed with the warped product metric $d s^{2}=d g_{L}+\rho^{2} d g_{P}$ for some positive warping function $\rho \in C^{\infty}(L)$.

Let $B_{P}\left(r_{0}\right)$ denote the geodesic ball with radius r_{0} centered at a reference point $o \in P^{n}$. We assume that the radial sectional curvatures in $B_{P}\left(r_{0}\right)$ along the geodesics issuing from o are bounded as $K_{P}^{\text {rad }} \leq b$ for some constant $b \in \mathbb{R}$, and that $0<r_{0}<\min \left\{\operatorname{inj}_{P}(o), \pi / 2 \sqrt{b}\right\}$ where $\operatorname{inj}_{P}(o)$ is the injectivity radius at o and $\pi / 2 \sqrt{b}$ is replaced by $+\infty$ if $b \leq 0$. Then, the mean curvature of the geodesic sphere $S_{P}\left(r_{0}\right)=\partial B_{P}\left(r_{0}\right)$ can be estimated from below by the mean curvature of a geodesic sphere of a space form of curvature b, namely,

$$
C_{b}(t)= \begin{cases}\sqrt{b} \cot (\sqrt{b} t) & \text { if } \quad b>0 \\ 1 / t & \text { if } b=0 \\ \sqrt{-b} \operatorname{coth}(\sqrt{-b} t) & \text { if } \quad b<0\end{cases}
$$

By a cylinder in the warped space $N^{n+\ell}$ we mean a closed subset of the form

$$
\mathcal{C}_{r_{0}}=\left\{(x, y) \in N^{n+\ell}: x \in L^{\ell} \text { and } y \in B_{P}\left(r_{0}\right)\right\}
$$

Since the submanifolds $L^{\ell} \times\left\{p_{0}\right\} \subset N^{n+\ell}$ are totally geodesic, we have that

$$
\left|\rho H_{\mathcal{C}_{r_{0}}}\right| \geq \frac{n-1}{\ell+n-1} C_{b}\left(r_{0}\right)
$$

where $H_{\mathcal{C}_{r_{0}}}$ is the mean curvature vector field of the hypersurface $L^{\ell} \times S_{p}\left(r_{0}\right)$.

The following theorem extends the result in [1] where the cylinders under consideration are contained in product spaces $\mathbb{R}^{\ell} \times P^{n}$. After the statement, we recall from [2] the concept of an Omori-Yau pair on a Riemannian manifold and discuss some implications of its existence.

Theorem 1. Let $f: M^{m} \rightarrow L^{\ell} \times{ }_{\rho} P^{n}$ be an isometric immersion where L^{ℓ} carries an Omori-Yau pair for the Hessian and the functions ρ, $|\operatorname{grad} \log \rho|$ are bounded. If f is proper and $f(M) \subset \mathcal{C}_{r_{0}}$, then $\sup _{M}|H|=+\infty$ or

$$
\begin{equation*}
\sup _{M} \rho|H| \geq \frac{m-\ell}{m} C_{b}\left(r_{0}\right) \tag{1}
\end{equation*}
$$

where H is the mean curvature vector field of f.
We see in the proof that the existence in L^{ℓ} of a Omori-Yau pair for the Hessian provides conditions, in a function theoretic form, that guarantee the validity of the Omori-Yau Maximum Principle on M^{m} in terms of the corresponding property of L^{ℓ} and the geometry of the immersion.

Definition 2. The pair of functions (h, γ) for $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and $\gamma: M \rightarrow \mathbb{R}_{+}$ form an Omori-Yau pair for the Hessian in M if they satisfy:
(a) $h(0)>0$ and $h^{\prime}(t) \geq 0$ for all $t \in \mathbb{R}_{+}$,
(b) $\limsup _{t \rightarrow+\infty} t h(\sqrt{t}) / h(t)<+\infty$,
(c) $\int_{0}^{+\infty} \mathrm{d} t / \sqrt{h(t)}=+\infty$,
(d) The function γ is proper,
(e) $|\operatorname{grad} \gamma| \leq c \sqrt{\gamma}$ for some $c>0$ outside a compact subset of M,
(f) Hess $\gamma \leq d \sqrt{\gamma h(\sqrt{\gamma})}$ for some $d>0$ outside a compact subset of M.

Similarly, the pair (h, γ) forms an Omori-Yau pair for the Laplacian in M if they satisfy conditions (a) to (e) and
(f') $\Delta \gamma \leq d \sqrt{\gamma h(\sqrt{\gamma})}$ for some $d>0$ outside a compact subset of M.

The following fundamental result due to Pigola, Rigoli and Setti 3] gives sufficient conditions for an Omori-Yau Maximum Principle to hold for a Riemannian manifold.

Theorem 3. Assume that a Riemannian manifold M carries an Omori-Yau pair for the Hessian (respec., Laplacian). Then, the Omori-Yau Maximum Principle for the Hessian (respec., Laplacian) holds in M.

Recall that the Omori-Yau Maximum Principle for the Hessian holds for M if for any function $g \in C^{\infty}(M)$ bounded from above there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in M such that
(a) $\lim _{k \rightarrow \infty} g\left(p_{k}\right)=\sup _{M} g$,
(b) $\left|\operatorname{grad} g\left(p_{k}\right)\right| \leq 1 / k$,
(c) Hess $g\left(p_{k}\right)(X, X) \leq(1 / k) g_{M}(X, X)$ for all $X \in T_{p_{k}} M$.

Similarly, the Omori-Yau Maximum Principle for the Laplacian holds for M if the above properties are satisfied with (c) replaced by

$$
\text { (c') } \Delta g\left(p_{k}\right) \leq 1 / k .
$$

Example 4. Let M^{m} be a complete but non compact Riemannian manifold and denote $r(y)=\operatorname{dist}_{M}(y, o)$ for some reference point $o \in M^{m}$. Assume that the radial sectional curvature of M^{m} satisfies $K^{\mathrm{rad}} \geq-h(r)$, where the smooth function h satisfies (a) to (c) in Definition 2 and is even at the origin, that is, $h^{(2 k+1)}(0)=0$ for $k \in \mathbb{N}$. Then, it was shown in [3] that the functions $\left(h, r^{2}\right)$ form an Omori-Yau pair for the Hessian. As for the function h, one can choose

$$
h(t)=t^{2} \prod_{j=1}^{N}\left(\log ^{(j)}(t)\right)^{2}, \quad t \gg 1
$$

where $\log ^{(j)}$ stands for the j-th iterated logarithm.
To conclude this section, we first observe that Theorem 1 is sharp. This is clear from (1) by taking as P^{n} a space-form and as M the hypersurface $L^{\ell} \times S_{P}\left(r_{0}\right)$ in $N^{n+\ell}$. Moreover, in view of Example[4it follows taking $L^{\ell}=\mathbb{R}^{\ell}$ and constant ρ that we recover the result in [1].

1 The proof

We first introduce some additional notations and then we recall a few basic facts on warped product manifolds.

Let \langle,$\rangle denote the metrics in N^{n+\ell}, L^{\ell}$ and M^{m} whereas (,) stands for the metric in P^{n}. The corresponding norms are | | and $\|\|$. In addition, let ∇ and $\widetilde{\nabla}$ denote the Levi-Civita connections in M^{m} and $N^{n+\ell}$, respectively, and ∇^{L} and ∇^{P} the ones in L^{ℓ} and P^{n}.

We always denote vector fields in $T L$ by T, S and in $T P$ by X, Y. In addition, we identify vector fields in $T L$ and $T P$ with basic vector fields in $T N$ by taking $T(x, y)=T(x)$ and $X(x, y)=X(y)$.

For the Lie-brackets of basic vector fields, we have that $[T, S] \in T L$ and $[X, Y] \in T P$ are basic and that $[X, T]=0$. Then, we have

$$
\begin{gathered}
\widetilde{\nabla}_{S} T=\nabla_{S}^{L} T \\
\widetilde{\nabla}_{X} T=\widetilde{\nabla}_{T} X=T(\varrho) X
\end{gathered}
$$

and

$$
\widetilde{\nabla}_{X} Y=\nabla_{X}^{P} Y-\langle X, Y\rangle \operatorname{grad}^{L} \varrho
$$

where the vector fields X, Y and T are basic and $\varrho=\log \rho$.
Our proof follows the main steps in [2]. In fact, a substantial part of the argument is to show that the Omori-Yau pair for the Hessian in L^{ℓ} induces an Omori-Yau pair for the Laplacian for a non compact M^{m} when $|H|$ is bounded. Thus, the Omori-Yau Maximum Principle for the Laplacian holds in M^{m}, and the proof follows from a application of the latter.

Suppose that M^{m} is non compact and let (h, Γ) be an Omori-Yau pair for the Hessian in L^{ℓ}. For $p \in M^{m}$ denote $f(p)=(x(p), y(p))$. Set $\tilde{\Gamma}(x, y)=\Gamma(x)$ for $(x, y) \in N^{n+\ell}$ and

$$
\gamma(p)=\tilde{\Gamma}(f(p))=\Gamma(x(p))
$$

We show next that (h, γ) is an Omori-Yau pair for the Laplacian in M^{m}. First, we argue that the function γ is proper. To see this, let $p_{k} \in M^{m}$ be a divergent sequence, i.e., $p_{k} \rightarrow \infty$ in M^{m} as $k \rightarrow+\infty$. Thus, $f\left(p_{k}\right) \rightarrow \infty$ in $N^{n+\ell}$ since f is proper. Since $f(M)$ lies inside a cylinder, then $x\left(p_{k}\right) \rightarrow \infty$ in L^{ℓ}. Hence, $\gamma\left(p_{k}\right) \rightarrow+\infty$ as $k \rightarrow+\infty$ since Γ is proper, and thus γ is proper.

It remains to verify conditions (e) and $\left(f^{\prime}\right)$ in Definition 2. We have from $\tilde{\Gamma}(x, y)=\Gamma(x)$ that

$$
\left\langle\operatorname{grad}^{N} \tilde{\Gamma}(x, y), X\right\rangle=0
$$

Thus,

$$
\operatorname{grad}^{N} \tilde{\Gamma}(x, y)=\operatorname{grad}^{L} \Gamma(x)
$$

Since $\gamma=\tilde{\Gamma} \circ f$, we obtain

$$
\begin{equation*}
\operatorname{grad}^{N} \tilde{\Gamma}(f(p))=\operatorname{grad}^{M} \gamma(p)+\operatorname{grad}^{N} \tilde{\Gamma}(f(p))^{\perp} \tag{2}
\end{equation*}
$$

where ()$^{\perp}$ denotes taking the normal component to f. Then,

$$
\left|\operatorname{grad}^{M} \gamma(p)\right| \leq\left|\operatorname{grad}^{N} \tilde{\Gamma}(f(p))\right|=\left|\operatorname{grad}^{L} \Gamma(x(p))\right| \leq c \sqrt{\Gamma(x(p))}=c \sqrt{\gamma(p)}
$$

outside a compact subset of M^{m}, and thus (e) holds.
We have that

$$
\widetilde{\nabla}_{T} \operatorname{grad}^{N} \tilde{\Gamma}=\nabla_{T}^{L} \operatorname{grad}^{L} \Gamma .
$$

Hence,

$$
\operatorname{Hess} \tilde{\Gamma}(T, S)=\operatorname{Hess} \Gamma(T, S)
$$

and

$$
\text { Hess } \tilde{\Gamma}(T, X)=0
$$

Moreover,

$$
\widetilde{\nabla}_{X} \operatorname{grad}^{N} \tilde{\Gamma}=\widetilde{\nabla}_{X} \operatorname{grad}^{L} \Gamma=\operatorname{grad}^{L} \Gamma(\varrho) X
$$

Hence,

$$
\text { Hess } \tilde{\Gamma}(X, Y)=\left\langle\operatorname{grad}^{L} \Gamma, \operatorname{grad}^{L} \varrho\right\rangle\langle X, Y\rangle
$$

For a unit vector $e \in T_{p} M$, set $e=e^{L}+e^{P}$ where $e^{L} \in T_{x(p)} L$ and $e^{P} \in T_{y(p)} P$. Then,

Hess $\tilde{\Gamma}(f(p))(e, e)=$ Hess $\Gamma(x(p))\left(e^{L}, e^{L}\right)+\left\langle\operatorname{grad}^{L} \Gamma(x(p)), \operatorname{grad}^{L} \varrho(x(p))\right\rangle\left|e^{P}\right|^{2}$.
Moreover, an easy computation using (2) yields

$$
\text { Hess } \gamma(p)(e, e)=\operatorname{Hess} \tilde{\Gamma}(f(p))(e, e)+\left\langle\operatorname{grad}^{L} \Gamma(x(p)), \alpha(p)(e, e)\right\rangle
$$

where α denotes the second fundamental of f with values in the normal bundle. Thus,

$$
\text { Hess } \begin{aligned}
\gamma(p)(e, e) & =\operatorname{Hess} \Gamma(x(p))\left(e^{L}, e^{L}\right)+\left\langle\operatorname{grad}^{L} \Gamma(x(p)), \operatorname{grad}^{L} \varrho(x(p))\right\rangle\left|e^{P}\right|^{2} \\
& +\left\langle\operatorname{grad}^{L} \Gamma(x(p)), \alpha(p)(e, e)\right\rangle .
\end{aligned}
$$

Since Hess $\Gamma \leq d \sqrt{\Gamma h(\sqrt{\Gamma})}$ for some positive constant d outside a compact subset of L^{ℓ} and the immersion is proper, then

$$
\text { Hess } \Gamma(x(p))\left(e^{L}, e^{L}\right) \leq d \sqrt{\gamma(p) h(\sqrt{\gamma(p)})}\left|e^{L}\right|^{2} \leq d \sqrt{\gamma(p) h(\sqrt{\gamma(p)})}
$$

outside a compact subset of M^{m}. From $\left|\operatorname{grad}^{L} \Gamma\right| \leq c \sqrt{\Gamma h(\sqrt{\Gamma})}$ for some c outside a compact subset of L^{ℓ} and $\sup _{L}\left|\operatorname{grad}^{L} \varrho\right|<+\infty$, we have

$$
\left\langle\operatorname{grad}^{L} \Gamma(x(p)), \operatorname{grad}^{L} \varrho(x(p))\right\rangle\left|e^{P}\right|^{2} \leq c^{\prime} \sqrt{\gamma(p)}
$$

for some positive constant c^{\prime} outside a compact subset of M^{m}. Being γ proper and h unbounded from (a) and (b) in Definition 2, then

$$
\sqrt{\gamma} \leq \sqrt{\gamma h(\sqrt{\gamma})}
$$

outside a compact subset of M^{m}. Thus, we obtain

$$
\begin{equation*}
\text { Hess } \gamma(e, e) \leq d_{1} \sqrt{\gamma h(\sqrt{\gamma})}+\left\langle\operatorname{grad}^{L} \Gamma(x), \alpha(e, e)\right\rangle \tag{3}
\end{equation*}
$$

for same constant $d_{1}>0$, outside a compact subset of M^{m}.
On the other hand, we may assume that

$$
\begin{equation*}
|H| \leq c \sqrt{h(\sqrt{\gamma})} \tag{4}
\end{equation*}
$$

for some constant $c>0$, outside a compact subset of M^{m}. Otherwise, there exists a sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in M^{m} such that $p_{k} \rightarrow \infty$ as $k \rightarrow+\infty$ and

$$
\left|H\left(p_{k}\right)\right|>k \sqrt{h\left(\sqrt{\gamma\left(p_{k}\right)}\right)} .
$$

Being γ proper and h unbounded from (a) and (b) in Definition 2, we conclude that $\sup _{M}|H|=+\infty$, in which case we are done with the proof of the theorem.

We obtain from (3) using (4) that

$$
\Delta \gamma \leq c_{1} \sqrt{\gamma h(\sqrt{\gamma})}
$$

for some constant $c_{1}>0$ outside a compact subset of M^{m}, and thus $\left(f^{\prime}\right)$ has been proved.

Consider the distance function $r(y)=\operatorname{dist}_{P}(y, o)$ in $B_{P}\left(r_{0}\right)$ and define $\tilde{r} \in C^{\infty}(N)$ by $\tilde{r}(x, y)=r(y)$. Then,

$$
\left\langle\operatorname{grad}^{N} \tilde{r}(x, y), T\right\rangle=0
$$

Thus,

$$
\rho^{2}(x) \operatorname{grad}^{N} \tilde{r}(x, y)=\operatorname{grad}^{P} r(y) .
$$

We obtain that

$$
\widetilde{\nabla}_{T} \operatorname{grad}^{N} \tilde{r}=\widetilde{\nabla}_{T}\left(\rho^{-2} \operatorname{grad}^{P} r\right)=-\rho^{-2} T(\varrho) \operatorname{grad}^{P} r .
$$

Therefore,

$$
\text { Hess } \tilde{r}(T, S)=0
$$

and

$$
\text { Hess } \tilde{r}(T, X)=-\rho^{-2} T(\varrho)\left\langle\operatorname{grad}^{P} r, X\right\rangle=-T(\varrho)\left(\operatorname{grad}^{P} r, X\right)
$$

Moreover,

$$
\widetilde{\nabla}_{X} \operatorname{grad}^{N} \tilde{r}=\widetilde{\nabla}_{X}\left(\rho^{-2} \operatorname{grad}^{P} r\right)=\rho^{-2}\left(\nabla_{X}^{P} \operatorname{grad}^{P} r-\left\langle X, \operatorname{grad}^{P} r\right\rangle \operatorname{grad}^{L} \varrho\right) .
$$

Hence,

$$
\text { Hess } \tilde{r}(X, Y)=\rho^{-2}\left\langle\nabla_{X}^{P} \operatorname{grad}^{P} r, Y\right\rangle=\left(\nabla_{X}^{P} \operatorname{grad}^{P} r, Y\right)=\text { Hess } r(X, Y)
$$

For $e \in T M$, we have

$$
\text { Hess } \tilde{r}(e, e)=-2\left\langle\operatorname{grad}^{L} \varrho, e\right\rangle\left(\operatorname{grad}^{P} r, e^{P}\right)+\text { Hess } r\left(e^{P}, e^{P}\right) .
$$

From the Hessian comparison theorem, we obtain

$$
\text { Hess } r\left(e^{P}, e^{P}\right) \geq C_{b}(r)\left(\left\|e^{P}\right\|^{2}-\left(\operatorname{grad}^{P} r, e^{P}\right)^{2}\right)
$$

Therefore,

$$
\begin{equation*}
\text { Hess } \tilde{r}(e, e) \geq-2\left\langle\operatorname{grad}^{L} \varrho, e\right\rangle\left(\operatorname{grad}^{P} r, e^{P}\right)+C_{b}(r)\left(\left\|e^{P}\right\|^{2}-\left(\operatorname{grad}^{P} r, e^{P}\right)^{2}\right) \tag{5}
\end{equation*}
$$

We define $u \in C^{\infty}(M)$ by

$$
u(p)=r(y(p))
$$

Thus, $u=\tilde{r} \circ f$ and

$$
\begin{equation*}
\operatorname{grad}^{N} \tilde{r}(f(p))=\operatorname{grad}^{M} u(p)+\operatorname{grad}^{N} \tilde{r}(f(p))^{\perp} \tag{6}
\end{equation*}
$$

Using (6) gives

$$
\text { Hess } u\left(e_{i}, e_{j}\right)=\text { Hess } \tilde{r}\left(e_{i}, e_{j}\right)+\left\langle\operatorname{grad}^{N} \tilde{r}, \alpha\left(e_{i}, e_{j}\right)\right\rangle
$$

where e_{1}, \ldots, e_{m} an orthonormal frame of $T M$. Thus,

$$
\begin{equation*}
\Delta u=\sum_{j=1}^{m} \operatorname{Hess} \tilde{r}\left(e_{j}, e_{j}\right)+m\left\langle\operatorname{grad}^{N} \tilde{r}, H\right\rangle \tag{7}
\end{equation*}
$$

We have from $e_{j}=e_{j}^{L}+e_{j}^{P}$ that

$$
1=\left\langle e_{j}, e_{j}\right\rangle=\rho^{2}\left\|e_{j}^{P}\right\|^{2}+\sum_{k=1}^{\ell}\left\langle e_{j}, T_{k}\right\rangle^{2}
$$

where T_{1}, \ldots, T_{ℓ} is an orthonormal frame for $T L$. Hence,

$$
m=\rho^{2} \sum_{j=1}^{m}\left\|e_{j}^{P}\right\|^{2}+\sum_{k=1}^{\ell}\left|T_{k}^{\top}\right|^{2}
$$

where T^{\top} is the tangent component of T. We obtain that

$$
\begin{equation*}
\sum_{j=1}^{m}\left\|e_{j}^{P}\right\|^{2} \geq(m-\ell) \rho^{-2} \tag{8}
\end{equation*}
$$

We obtain from (5) and

$$
\left(\operatorname{grad}^{P} r, e_{j}^{P}\right)=\left\langle\operatorname{grad}^{N} \tilde{r}, e_{j}^{P}\right\rangle=\left\langle\operatorname{grad}^{N} \tilde{r}, e_{j}\right\rangle=\left\langle\operatorname{grad}^{M} u, e_{j}\right\rangle
$$

that
Hess $\tilde{r}\left(e_{j}, e_{j}\right) \geq-2\left\langle\operatorname{grad}^{L} \varrho, e_{j}\right\rangle\left\langle\operatorname{grad}^{M} u, e_{j}\right\rangle+C_{b}(u)\left(\left\|e_{j}^{P}\right\|^{2}-\left\langle\operatorname{grad}^{M} u, e_{j}\right\rangle^{2}\right)$.
Taking trace and using (8) gives
$\sum_{j=1}^{m}$ Hess $\tilde{r}\left(e_{j}, e_{j}\right) \geq-2\left\langle\operatorname{grad}^{L} \varrho, \operatorname{grad}^{M} u\right\rangle+C_{b}(u)\left((m-\ell) \rho^{-2}-\left|\operatorname{grad}^{M} u\right|^{2}\right)$.
Since

$$
\left\langle\operatorname{grad}^{N} \tilde{r}, \operatorname{grad}^{N} \tilde{r}\right\rangle=\rho^{2}\left(\rho^{-2} \operatorname{grad}^{P} r, \rho^{-2} \operatorname{grad}^{P} r\right)=\rho^{-2},
$$

we have

$$
\left\langle\operatorname{grad}^{N} \tilde{r}, H\right\rangle \geq-\rho^{-1}|H|
$$

We conclude using (7) that

$$
\Delta u \geq-2\left\langle\operatorname{grad}^{L} \varrho, \operatorname{grad}^{M} u\right\rangle+C_{b}(u)\left((m-\ell) \rho^{-2}-\left|\operatorname{grad}^{M} u\right|^{2}\right)-m \rho^{-1}|H| .
$$

Thus,

$$
\rho|H| \geq \frac{m-\ell}{m} C_{b}(u)-\frac{\rho^{2}}{m}\left(\Delta u+2\left|\operatorname{grad}^{L} \varrho\right|\left|\operatorname{grad}^{M} u\right|+C_{b}(u)\left|\operatorname{grad}^{M} u\right|^{2}\right) .
$$

If M^{m} is compact, the proof follows easily by computing the inequality at a point of maximum of u. Thus, we may now assume that M^{m} is non compact and that (4) holds.

Since $f(M) \subset \mathcal{C}_{r_{0}}$, we have $u^{*}=\sup _{M} u \leq r_{0}<+\infty$. By the Omori-Yau maximum principle there is a sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in M^{m} such that

$$
u\left(p_{k}\right)>u^{*}-1 / k, \quad\left|\operatorname{grad}^{M} u\left(p_{k}\right)\right|<1 / k \text { and } \Delta u\left(p_{k}\right)<1 / k
$$

By assumption, we have $\sup _{L} \rho=K_{1}<+\infty$ and $\sup _{L}\left|\operatorname{grad}^{L} \varrho\right|=K_{2}<+\infty$. Hence,
$\sup _{M} \rho|H| \geq \rho\left(p_{k}\right)\left|H\left(p_{k}\right)\right| \geq \frac{m-\ell}{m} C_{b}\left(u\left(p_{k}\right)\right)-\frac{K_{1}^{2}}{m}\left(\frac{1+2 K_{2}}{k}+\frac{1}{k^{2}} C_{b}\left(u\left(p_{k}\right)\right)\right)$.
Letting $k \rightarrow+\infty$, we obtain

$$
\sup _{M} \rho|H| \geq \frac{m-\ell}{m} C_{b}\left(u^{*}\right) \geq \frac{m-\ell}{m} C_{b}\left(r_{0}\right),
$$

and this concludes the proof of the theorem.

References

[1] L. J. Alías, G. P. Bessa, M. Dajczer, The mean curvature of cylindrically bounded submanifolds, Math. Ann. 345, (2009) 367-376.
[2] L. J. Alías, G. P. Bessa, J. F. Montenegro and P. Piccione. Curvature estimates for submanifolds in warped products. Preprint 2010. Available at http://arxiv.org/abs/1009.3467
[3] S. Pigola, M. Rigoli, A. Setti, Maximum Principle on Riemannian Manifolds and Applications, Memoirs Amer. Math. Soc. 822 (2005).

Luis J. Alias
Departamento de Matematicas
Universidad de Murcia
Campus de Espinardo
E-30100 Espinardo, Murcia
Spain
ljalias@um.es

Marcos Dajczer
IMPA
Estrada Dona Castorina, 110
22460-320 - Rio de Janeiro -RJ
Brazil
marcos@impa.br

