A mean curvature estimate for cylindrically bounded submanifolds

Luis J. Alías and Marcos Dajczer

Abstract

We extend the estimate obtained in [1] for the mean curvature of a cylindrically bounded proper submanifold in a product manifold with an Euclidean space as one factor to a general product ambient space endowed with a warped product structure.

Let (L^{ℓ}, g_L) and (P^n, g_P) be complete Riemannian manifolds of dimension ℓ and n, respectively, where L^{ℓ} is non compact. Then, let $N^{n+\ell} = L^{\ell} \times_{\rho} P^n$ be the product manifold $L^{\ell} \times P^n$ endowed with the warped product metric $ds^2 = dg_L + \rho^2 dg_P$ for some positive warping function $\rho \in C^{\infty}(L)$.

Let $B_P(r_0)$ denote the geodesic ball with radius r_0 centered at a reference point $o \in P^n$. We assume that the radial sectional curvatures in $B_P(r_0)$ along the geodesics issuing from o are bounded as $K_P^{\text{rad}} \leq b$ for some constant $b \in \mathbb{R}$, and that $0 < r_0 < \min\{\inf_P(o), \pi/2\sqrt{b}\}$ where $\inf_P(o)$ is the injectivity radius at o and $\pi/2\sqrt{b}$ is replaced by $+\infty$ if $b \leq 0$. Then, the mean curvature of the geodesic sphere $S_P(r_0) = \partial B_P(r_0)$ can be estimated from below by the mean curvature of a geodesic sphere of a space form of curvature b, namely,

$$C_b(t) = \begin{cases} \sqrt{b}\cot(\sqrt{b}t) & \text{if } b > 0, \\ 1/t & \text{if } b = 0, \\ \sqrt{-b}\coth(\sqrt{-b}t) & \text{if } b < 0. \end{cases}$$

By a cylinder in the warped space $N^{n+\ell}$ we mean a closed subset of the form

$$C_{r_0} = \{(x, y) \in N^{n+\ell} : x \in L^{\ell} \text{ and } y \in B_P(r_0)\}.$$

Since the submanifolds $L^{\ell} \times \{p_0\} \subset N^{n+\ell}$ are totally geodesic, we have that

$$|\rho H_{\mathcal{C}_{r_0}}| \ge \frac{n-1}{\ell+n-1} C_b(r_0)$$

where $H_{\mathcal{C}_{r_0}}$ is the mean curvature vector field of the hypersurface $L^{\ell} \times S_p(r_0)$.

The following theorem extends the result in [1] where the cylinders under consideration are contained in product spaces $\mathbb{R}^{\ell} \times P^n$. After the statement, we recall from [2] the concept of an Omori-Yau pair on a Riemannian manifold and discuss some implications of its existence.

Theorem 1. Let $f: M^m \to L^{\ell} \times_{\rho} P^n$ be an isometric immersion where L^{ℓ} carries an Omori-Yau pair for the Hessian and the functions ρ , $|\operatorname{grad} \log \rho|$ are bounded. If f is proper and $f(M) \subset \mathcal{C}_{r_0}$, then $\sup_M |H| = +\infty$ or

$$\sup_{M} \rho |H| \ge \frac{m - \ell}{m} C_b(r_0) \tag{1}$$

where H is the mean curvature vector field of f.

We see in the proof that the existence in L^{ℓ} of a Omori-Yau pair for the Hessian provides conditions, in a function theoretic form, that guarantee the validity of the Omori-Yau Maximum Principle on M^m in terms of the corresponding property of L^{ℓ} and the geometry of the immersion.

Definition 2. The pair of functions (h, γ) for $h: \mathbb{R}_+ \to \mathbb{R}_+$ and $\gamma: M \to \mathbb{R}_+$ form an *Omori-Yau pair for the Hessian* in M if they satisfy:

- (a) h(0) > 0 and $h'(t) \ge 0$ for all $t \in \mathbb{R}_+$,
- (b) $\limsup_{t \to +\infty} th(\sqrt{t})/h(t) < +\infty$,

(c)
$$\int_0^{+\infty} dt / \sqrt{h(t)} = +\infty,$$

- (d) The function γ is proper,
- (e) $|\operatorname{grad} \gamma| \le c\sqrt{\gamma}$ for some c > 0 outside a compact subset of M,
- (f) Hess $\gamma \leq d\sqrt{\gamma h(\sqrt{\gamma})}$ for some d > 0 outside a compact subset of M.

Similarly, the pair (h, γ) forms an *Omori-Yau pair for the Laplacian* in M if they satisfy conditions (a) to (e) and

(f') $\Delta \gamma \leq d \sqrt{\gamma h(\sqrt{\gamma})}$ for some d > 0 outside a compact subset of M.

The following fundamental result due to Pigola, Rigoli and Setti [3] gives sufficient conditions for an Omori-Yau Maximum Principle to hold for a Riemannian manifold.

Theorem 3. Assume that a Riemannian manifold M carries an Omori-Yau pair for the Hessian (respec., Laplacian). Then, the Omori-Yau Maximum Principle for the Hessian (respec., Laplacian) holds in M.

Recall that the Omori-Yau Maximum Principle for the Hessian holds for M if for any function $g \in C^{\infty}(M)$ bounded from above there exists a sequence of points $\{p_k\}_{k\in\mathbb{N}}$ in M such that

- (a) $\lim_{k \to \infty} g(p_k) = \sup_M g$,
- (b) $|\operatorname{grad} g(p_k)| \leq 1/k$,
- (c) Hess $g(p_k)(X,X) \leq (1/k)g_M(X,X)$ for all $X \in T_{p_k}M$.

Similarly, the Omori-Yau Maximum Principle for the Laplacian holds for M if the above properties are satisfied with (c) replaced by

(c')
$$\Delta g(p_k) \leq 1/k$$
.

Example 4. Let M^m be a complete but non compact Riemannian manifold and denote $r(y) = \operatorname{dist}_M(y,o)$ for some reference point $o \in M^m$. Assume that the radial sectional curvature of M^m satisfies $K^{\operatorname{rad}} \geq -h(r)$, where the smooth function h satisfies (a) to (c) in Definition 2 and is even at the origin, that is, $h^{(2k+1)}(0) = 0$ for $k \in \mathbb{N}$. Then, it was shown in [3] that the functions (h, r^2) form an Omori-Yau pair for the Hessian. As for the function h, one can choose

$$h(t) = t^2 \prod_{j=1}^{N} (\log^{(j)}(t))^2, \ t \gg 1,$$

where $\log^{(j)}$ stands for the j-th iterated logarithm.

To conclude this section, we first observe that Theorem 1 is sharp. This is clear from (1) by taking as P^n a space-form and as M the hypersurface $L^{\ell} \times S_P(r_0)$ in $N^{n+\ell}$. Moreover, in view of Example 4 it follows taking $L^{\ell} = \mathbb{R}^{\ell}$ and constant ρ that we recover the result in [1].

1 The proof

We first introduce some additional notations and then we recall a few basic facts on warped product manifolds.

Let $\langle \, , \, \rangle$ denote the metrics in $N^{n+\ell}$, L^ℓ and M^m whereas (,) stands for the metric in P^n . The corresponding norms are $| \ |$ and $| \ | \ |$. In addition, let ∇ and $\widetilde{\nabla}$ denote the Levi-Civita connections in M^m and $N^{n+\ell}$, respectively, and ∇^L and ∇^P the ones in L^ℓ and P^n .

We always denote vector fields in TL by T, S and in TP by X, Y. In addition, we identify vector fields in TL and TP with basic vector fields in TN by taking T(x,y) = T(x) and X(x,y) = X(y).

For the Lie-brackets of basic vector fields, we have that $[T, S] \in TL$ and $[X, Y] \in TP$ are basic and that [X, T] = 0. Then, we have

$$\widetilde{\nabla}_S T = \nabla_S^L T,$$

$$\widetilde{\nabla}_X T = \widetilde{\nabla}_T X = T(\varrho) X$$

and

$$\widetilde{\nabla}_X Y = \nabla_X^P Y - \langle X, Y \rangle \operatorname{grad}^L \varrho$$

where the vector fields X, Y and T are basic and $\varrho = \log \rho$.

Our proof follows the main steps in [2]. In fact, a substantial part of the argument is to show that the Omori-Yau pair for the Hessian in L^{ℓ} induces an Omori-Yau pair for the Laplacian for a non compact M^m when |H| is bounded. Thus, the Omori-Yau Maximum Principle for the Laplacian holds in M^m , and the proof follows from a application of the latter.

Suppose that M^m is non compact and let (h, Γ) be an Omori-Yau pair for the Hessian in L^{ℓ} . For $p \in M^m$ denote f(p) = (x(p), y(p)). Set $\tilde{\Gamma}(x, y) = \Gamma(x)$ for $(x, y) \in N^{n+\ell}$ and

$$\gamma(p) = \tilde{\Gamma}(f(p)) = \Gamma(x(p)).$$

We show next that (h, γ) is an Omori-Yau pair for the Laplacian in M^m . First, we argue that the function γ is proper. To see this, let $p_k \in M^m$ be a divergent sequence, i.e., $p_k \to \infty$ in M^m as $k \to +\infty$. Thus, $f(p_k) \to \infty$ in $N^{n+\ell}$ since f is proper. Since f(M) lies inside a cylinder, then $x(p_k) \to \infty$ in L^{ℓ} . Hence, $\gamma(p_k) \to +\infty$ as $k \to +\infty$ since Γ is proper, and thus γ is proper. It remains to verify conditions (e) and (f') in Definition 2. We have from $\tilde{\Gamma}(x,y) = \Gamma(x)$ that

$$\langle \operatorname{grad}^N \tilde{\Gamma}(x, y), X \rangle = 0.$$

Thus,

$$\operatorname{grad}^N \tilde{\Gamma}(x, y) = \operatorname{grad}^L \Gamma(x).$$

Since $\gamma = \tilde{\Gamma} \circ f$, we obtain

$$\operatorname{grad}^{N} \tilde{\Gamma}(f(p)) = \operatorname{grad}^{M} \gamma(p) + \operatorname{grad}^{N} \tilde{\Gamma}(f(p))^{\perp}$$
 (2)

where () $^{\perp}$ denotes taking the normal component to f. Then,

$$|\operatorname{grad}^{M} \gamma(p)| \le |\operatorname{grad}^{N} \tilde{\Gamma}(f(p))| = |\operatorname{grad}^{L} \Gamma(x(p))| \le c\sqrt{\Gamma(x(p))} = c\sqrt{\gamma(p)}$$

outside a compact subset of M^m , and thus (e) holds.

We have that

$$\widetilde{\nabla}_T \operatorname{grad}^N \widetilde{\Gamma} = \nabla_T^L \operatorname{grad}^L \Gamma.$$

Hence,

Hess
$$\tilde{\Gamma}(T, S) = \text{Hess } \Gamma(T, S)$$

and

Hess
$$\tilde{\Gamma}(T, X) = 0$$
.

Moreover,

$$\widetilde{\nabla}_X \operatorname{grad}^N \widetilde{\Gamma} = \widetilde{\nabla}_X \operatorname{grad}^L \Gamma = \operatorname{grad}^L \Gamma(\varrho) X.$$

Hence,

Hess
$$\tilde{\Gamma}(X,Y) = \langle \operatorname{grad}^L \Gamma, \operatorname{grad}^L \rho \rangle \langle X, Y \rangle$$
.

For a unit vector $e \in T_pM$, set $e = e^L + e^P$ where $e^L \in T_{x(p)}L$ and $e^P \in T_{y(p)}P$. Then,

$$\operatorname{Hess}\ \tilde{\Gamma}(f(p))(e,e) = \operatorname{Hess}\ \Gamma(x(p))(e^L,e^L) + \langle \operatorname{grad}^L\Gamma(x(p)), \operatorname{grad}^L\varrho(x(p))\rangle |e^P|^2.$$

Moreover, an easy computation using (2) yields

Hess
$$\gamma(p)(e,e) = \text{Hess } \tilde{\Gamma}(f(p))(e,e) + \langle \text{grad}^L \Gamma(x(p)), \alpha(p)(e,e) \rangle$$

where α denotes the second fundamental of f with values in the normal bundle. Thus,

Hess
$$\gamma(p)(e, e) = \text{Hess } \Gamma(x(p))(e^L, e^L) + \langle \text{grad}^L \Gamma(x(p)), \text{grad}^L \varrho(x(p)) \rangle |e^P|^2 + \langle \text{grad}^L \Gamma(x(p)), \alpha(p)(e, e) \rangle.$$

Since Hess $\Gamma \leq d\sqrt{\Gamma h(\sqrt{\Gamma})}$ for some positive constant d outside a compact subset of L^{ℓ} and the immersion is proper, then

$$\operatorname{Hess} \ \Gamma(x(p))(e^L,e^L) \leq d\sqrt{\gamma(p)h(\sqrt{\gamma(p)})}|e^L|^2 \leq d\sqrt{\gamma(p)h(\sqrt{\gamma(p)})}$$

outside a compact subset of M^m . From $|\operatorname{grad}^L\Gamma| \leq c\sqrt{\Gamma h(\sqrt{\Gamma})}$ for some c outside a compact subset of L^ℓ and $\sup_L |\operatorname{grad}^L\varrho| < +\infty$, we have

$$\langle \operatorname{grad}^L \Gamma(x(p)), \operatorname{grad}^L \varrho(x(p)) \rangle |e^P|^2 \le c' \sqrt{\gamma(p)}$$

for some positive constant c' outside a compact subset of M^m . Being γ proper and h unbounded from (a) and (b) in Definition 2, then

$$\sqrt{\gamma} \le \sqrt{\gamma h(\sqrt{\gamma})}$$

outside a compact subset of M^m . Thus, we obtain

Hess
$$\gamma(e, e) \le d_1 \sqrt{\gamma h(\sqrt{\gamma})} + \langle \operatorname{grad}^L \Gamma(x), \alpha(e, e) \rangle$$
 (3)

for same constant $d_1 > 0$, outside a compact subset of M^m .

On the other hand, we may assume that

$$|H| \le c\sqrt{h(\sqrt{\gamma})}\tag{4}$$

for some constant c > 0, outside a compact subset of M^m . Otherwise, there exists a sequence $\{p_k\}_{k \in \mathbb{N}}$ in M^m such that $p_k \to \infty$ as $k \to +\infty$ and

$$|H(p_k)| > k\sqrt{h(\sqrt{\gamma(p_k)})}.$$

Being γ proper and h unbounded from (a) and (b) in Definition 2, we conclude that $\sup_{M} |H| = +\infty$, in which case we are done with the proof of the theorem

We obtain from (3) using (4) that

$$\Delta \gamma \le c_1 \sqrt{\gamma h(\sqrt{\gamma})}$$

for some constant $c_1 > 0$ outside a compact subset of M^m , and thus (f') has been proved.

Consider the distance function $r(y) = \operatorname{dist}_P(y, o)$ in $B_P(r_0)$ and define $\tilde{r} \in C^{\infty}(N)$ by $\tilde{r}(x, y) = r(y)$. Then,

$$\langle \operatorname{grad}^N \tilde{r}(x,y), T \rangle = 0.$$

Thus,

$$\rho^2(x)\operatorname{grad}^N \tilde{r}(x,y) = \operatorname{grad}^P r(y).$$

We obtain that

$$\widetilde{\nabla}_T \operatorname{grad}^N \widetilde{r} = \widetilde{\nabla}_T (\rho^{-2} \operatorname{grad}^P r) = -\rho^{-2} T(\varrho) \operatorname{grad}^P r.$$

Therefore,

Hess
$$\tilde{r}(T,S)=0$$

and

$$\operatorname{Hess}\, \tilde{r}(T,X) = -\rho^{-2}T(\varrho)\langle \operatorname{grad}^P r, X\rangle = -T(\varrho)(\operatorname{grad}^P r, X).$$

Moreover,

$$\widetilde{\nabla}_X \operatorname{grad}^N \widetilde{r} = \widetilde{\nabla}_X (\rho^{-2} \operatorname{grad}^P r) = \rho^{-2} \left(\nabla_X^P \operatorname{grad}^P r - \langle X, \operatorname{grad}^P r \rangle \operatorname{grad}^L \varrho \right).$$

Hence,

$$\operatorname{Hess} \, \tilde{r}(X,Y) = \rho^{-2} \langle \nabla_X^P \operatorname{grad}^P r, Y \rangle = (\nabla_X^P \operatorname{grad}^P r, Y) = \operatorname{Hess} \, r(X,Y).$$

For $e \in TM$, we have

Hess
$$\tilde{r}(e,e) = -2\langle \operatorname{grad}^L \varrho, e \rangle (\operatorname{grad}^P r, e^P) + \operatorname{Hess} r(e^P, e^P).$$

From the Hessian comparison theorem, we obtain

Hess
$$r(e^P, e^P) \ge C_b(r)(\|e^P\|^2 - (\operatorname{grad}^P r, e^P)^2).$$

Therefore,

Hess
$$\tilde{r}(e,e) \ge -2\langle \operatorname{grad}^L \varrho, e \rangle (\operatorname{grad}^P r, e^P) + C_b(r) (\|e^P\|^2 - (\operatorname{grad}^P r, e^P)^2).$$
 (5)

We define $u \in C^{\infty}(M)$ by

$$u(p) = r(y(p)).$$

Thus, $u = \tilde{r} \circ f$ and

$$\operatorname{grad}^{N} \tilde{r}(f(p)) = \operatorname{grad}^{M} u(p) + \operatorname{grad}^{N} \tilde{r}(f(p))^{\perp}. \tag{6}$$

Using (6) gives

Hess
$$u(e_i, e_j) = \text{Hess } \tilde{r}(e_i, e_j) + \langle \text{grad}^N \tilde{r}, \alpha(e_i, e_j) \rangle$$

where e_1, \ldots, e_m an orthonormal frame of TM. Thus,

$$\Delta u = \sum_{j=1}^{m} \text{Hess } \tilde{r}(e_j, e_j) + m \langle \text{grad}^N \tilde{r}, H \rangle.$$
 (7)

We have from $e_j = e_j^L + e_j^P$ that

$$1 = \langle e_j, e_j \rangle = \rho^2 ||e_j^P||^2 + \sum_{k=1}^{\ell} \langle e_j, T_k \rangle^2$$

where T_1, \ldots, T_ℓ is an orthonormal frame for TL. Hence,

$$m = \rho^2 \sum_{j=1}^m ||e_j^P||^2 + \sum_{k=1}^{\ell} |T_k^{\top}|^2,$$

where T^{\top} is the tangent component of T. We obtain that

$$\sum_{j=1}^{m} \|e_j^P\|^2 \ge (m-\ell)\rho^{-2}.$$
 (8)

We obtain from (5) and

$$(\operatorname{grad}^P r, e_i^P) = \langle \operatorname{grad}^N \tilde{r}, e_i^P \rangle = \langle \operatorname{grad}^N \tilde{r}, e_j \rangle = \langle \operatorname{grad}^M u, e_j \rangle$$

that

Hess
$$\tilde{r}(e_j, e_j) \ge -2\langle \operatorname{grad}^L \varrho, e_j \rangle \langle \operatorname{grad}^M u, e_j \rangle + C_b(u) (\|e_j^P\|^2 - \langle \operatorname{grad}^M u, e_j \rangle^2).$$

Taking trace and using (8) gives

$$\sum_{j=1}^{m} \operatorname{Hess} \, \tilde{r}(e_j, e_j) \ge -2 \langle \operatorname{grad}^{L} \varrho, \operatorname{grad}^{M} u \rangle + C_b(u) \left((m-\ell) \rho^{-2} - |\operatorname{grad}^{M} u|^2 \right).$$

Since

$$\langle \operatorname{grad}^N \tilde{r}, \operatorname{grad}^N \tilde{r} \rangle = \rho^2 (\rho^{-2} \operatorname{grad}^P r, \rho^{-2} \operatorname{grad}^P r) = \rho^{-2},$$

we have

$$\langle \operatorname{grad}^N \tilde{r}, H \rangle \ge -\rho^{-1} |H|.$$

We conclude using (7) that

$$\Delta u \ge -2\langle \operatorname{grad}^L \varrho, \operatorname{grad}^M u \rangle + C_b(u) \left((m-\ell)\rho^{-2} - |\operatorname{grad}^M u|^2 \right) - m\rho^{-1}|H|.$$

Thus,

$$\rho|H| \ge \frac{m-\ell}{m} C_b(u) - \frac{\rho^2}{m} \left(\Delta u + 2|\operatorname{grad}^L \varrho||\operatorname{grad}^M u| + C_b(u)|\operatorname{grad}^M u|^2 \right).$$

If M^m is compact, the proof follows easily by computing the inequality at a point of maximum of u. Thus, we may now assume that M^m is non compact and that (4) holds.

Since $f(M) \subset \mathcal{C}_{r_0}$, we have $u^* = \sup_M u \leq r_0 < +\infty$. By the Omori-Yau maximum principle there is a sequence $\{p_k\}_{k\in\mathbb{N}}$ in M^m such that

$$u(p_k) > u^* - 1/k$$
, $|\operatorname{grad}^M u(p_k)| < 1/k$ and $\Delta u(p_k) < 1/k$

By assumption, we have $\sup_L \rho = K_1 < +\infty$ and $\sup_L |\operatorname{grad}^L \varrho| = K_2 < +\infty$. Hence,

$$\sup_{M} \rho |H| \ge \rho(p_k)|H(p_k)| \ge \frac{m-\ell}{m} C_b(u(p_k)) - \frac{K_1^2}{m} \left(\frac{1+2K_2}{k} + \frac{1}{k^2} C_b(u(p_k)) \right).$$

Letting $k \to +\infty$, we obtain

$$\sup_{M} \rho |H| \ge \frac{m-\ell}{m} C_b(u^*) \ge \frac{m-\ell}{m} C_b(r_0),$$

and this concludes the proof of the theorem.

References

- [1] L. J. Alías, G. P. Bessa, M. Dajczer, *The mean curvature of cylindrically bounded submanifolds*, Math. Ann. **345**, (2009) 367–376.
- [2] L. J. Alías, G. P. Bessa, J. F. Montenegro and P. Piccione. *Curvature estimates for submanifolds in warped products*. Preprint 2010. Available at http://arxiv.org/abs/1009.3467

[3] S. Pigola, M. Rigoli, A. Setti, *Maximum Principle on Riemannian Manifolds and Applications*, Memoirs Amer. Math. Soc. **822** (2005).

Luis J. Alias
Departamento de Matematicas
Universidad de Murcia
Campus de Espinardo
E-30100 Espinardo, Murcia
Spain
ljalias@um.es

Marcos Dajczer IMPA Estrada Dona Castorina, 110 22460-320 — Rio de Janeiro —RJ Brazil marcos@impa.br