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ON BREDON (CO-)HOMOLOGICAL DIMENSIONS OF GROUPS

by Martin Georg Fluch

The objects of interest in this thesis are classifying spaces EFG for discrete
groups G with stabilisers in a given family F of subgroups of G. The main
focus of this thesis lies in the family Fvc(G) of virtually cyclic subgroups
of G. A classifying space for this specific family is denoted by EG. It has a
prominent appearance in the Farrell–Jones Conjecture. Understanding the
finiteness properties of EG is important for solving the conjecture.

This thesis aims to contribute to answering the following question for a
group G: what is the minimal dimension a model for EG can have? One way
to attack this question is using methods in homological algebra. The natural
choice for a cohomology theory to study G-CW-complexes with stabilisers in a
given family F is known as Bredon cohomology. It is the study of cohomology
in the category of OFG-modules. This category relates to models for EFG in
the same way as the category of G-modules relates to the study of universal
covers of Eilenberg–Mac Lane spaces K(G, 1).

In this thesis we study Bredon (co-)homological dimensions of groups. A
major part of this thesis is devoted to collect existing homological machinery
needed to study these dimensions for arbitrary families F. We contribute to
this collection.

After this we turn our attention to the specific case of F = Fvc(G). We
derive a geometric method for obtaining a lower bound for the Bredon (co-)ho-
mological dimension of a group G for a general family F, and subsequently
show how to exploit this method in various cases for F = Fvc(G).

Furthermore we construct model for EG in the case that G belongs to a
certain class of infinite cyclic extensions of a group B and that a model for
EB is known. We give bounds on the dimensions of these models. Moreover,
we use this construction to give a concrete model for EG, where G is a soluble
Baumslag–Solitar group. Using this model we are able to determine the exact
Bredon (co-)homological dimensions of these groups.

The thesis concludes with the study of groups G of low Bredon dimension
for the family Fvc(G) and we give a classification of countable, torsion-free,
soluble groups which admit a tree as a model for EG.
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Introduction

1. Classifying Spaces and Bredon (Co-)Homology of Groups

Classifying spaces and their finiteness conditions form an important part

of various areas in pure mathematics such as group theory, algebraic topology

and geometric topology.

Given a group G and a non-empty family F of subgroups of G which

is closed under conjugation and finite intersections, one can consider the

homotopy category of G-CW-complexes with stabilisers in F. This category is

known to have terminal objects, see for example [Lüc05, p. 275]. A terminal

object in this category is called a classifying space of G for the family F or

alternatively, a model for EFG.

If F = {1} is the trivial family of subgroups, then the universal cover EG

of an Eilenberg–Mac Lane space K(G, 1) is a model for EFG. If F = Ffin(G)

is the family of finite subgroups of G, then a model for EFG is also known

as the universal space for proper actions. This space is commonly denoted

by EG and it has a prominent appearance as the geometric object in the

Baum–Connes Conjecture.

Recently the classifying space EG of G for the family Fvc(G) of virtually

cyclic subgroups of G has caught the interest of the mathematical community

(recall that a group is called virtually cyclic if it contains a cyclic subgroup

of finite index). The reason for this is that the classifying space EG appears

on the geometric side of the Farrell–Jones Conjecture for Algebraic K- and

L-Theory. This conjecture has originally been stated by Thomas Farrell and

Lowell Jones in 1993 in their famous paper [FJ93].

Let R be a ring with unit and involution. There exists G-homology

theories

HG
n (?;KR) and HG

n (?;L
〈−∞〉
R )

in the sense of [LR05, pp. 738f.] such that, if evaluated at a singleton
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space {∗}, we recover the algebraic K- and L-groups of the group ring RG.

That is

HG
n ({∗};KR) ∼= Kn(RG) and HG

n ({∗};L〈−∞〉R ) ∼= L〈−∞〉n (RG)

for all n ∈ Z [LR05, p. 735]. Now the Farrell–Jones Conjecture makes the

following prediction.

Farrell–Jones Conjecture. [LR05, p. 736] The assembly maps

Avc: H
G
n (EG;KR)→ HG

n ({∗};KR)

Avc: H
G
n (EG;L

〈−∞〉
R )→ HG

n ({∗};L〈−∞〉R )

induced by the projection EG→ {∗} are isomorphisms for all n ∈ Z.

The codomains of the assembly maps are the groups which we want to

compute but whose computation is known to be difficult. On the other hand,

the domains of the assembly maps are easier to calculate as one can apply

methods from Algebraic Topology such as spectral sequences and Chern

characters to it [LR05].

The Farrell–Jones Conjecture is known to imply numerous other famous

conjectures from different fields of pure mathematics, including the Bass Con-

jecture in Algebraic K-Theory, the Borel Conjecture in Geometric Topology,

the Kaplansky Conjecture in Group Theory and the Novikov Conjecture in

Topology [LR05].

Progress in studying the Farrell–Jones Conjecture relies much on under-

standing finiteness conditions of the classifying space EG. Models for EG

and EG have been studied extensively, see for example [Lüc05]. However,

there is not much known yet about the classifying space for the family of

virtually cyclic subgroups. Classes of groups that are understood are word

hyperbolic groups [JPL06], virtually polycyclic groups [LW07], relative hy-

perbolic groups [LO07] and CAT(0)-groups [Lüc09, Far09]. Furthermore,

there exist general constructions for finite index extensions [Lüc00] and

direct limits of groups [LW07]. Some more specific constructions can also be

found in [CFH06] and [MPP08].

The focus in this thesis lies on groups G which admit a finite dimensional

model for EG. This leads to the study of the Bredon geometric dimension of

2



a group G with respect to the family Fvc(G), which by definition is the least

integer n (or ∞) such that there exists an n-dimensional model for EG.

Homological methods provide suitable tools to study finiteness conditions

of classifying spaces. The natural choice of a homology theory for G-CW-

complexes with stabilisers in a given family F is the Bredon cohomology

of groups. This homology theory has been introduced for finite groups by

Glen Bredon in [Bre67] and it has been generalised to arbitrary groups and

arbitrary families of subgroups by Lück [Lüc89]. Related to the Bredon

geometric dimension of a group is the concept of the Bredon homological and

cohomological dimension of a group which is defined in a purely algebraic

way.

We aim in this thesis to utilise the algebraic Bredon machinery as far as

possible in order to study the Bredon geometric dimensions of groups G with

respect to the family Fvc(G).

2. Structure of this Thesis

The first three chapters in this thesis do not specialise to the family of

virtually cyclic subgroups but introduce the theory in a more general setting.

In Chapter 1 the category of Bredon modules over the orbit category

OFG is introduced. Free and projective Bredon modules are constructed. It

is explained how the categorical tensor product gives rise to a tensor product

over the orbit category OFG which is the Bredon analogue to the tensor

product over the group ring ZG in the category of G-modules. This tensor

product is used to define flat Bredon modules. The chapter is finished with

the definition of the restriction, induction and coinduction functors and a

summary of their basic properties.

In Chapter 2, G-CW-complexes and classifying spaces with stabilisers

in a given family F are defined. It is explained how one derives from the

categorical definition the homotopy characterisation of a classifying space.

Geometric finiteness conditions are discussed and their relationship to alge-

braic properties in the corresponding category of Bredon modules.

Chapter 3 introduces the notion of Bredon (co-)homological dimension.

The relationship between the algebraic and geometric Bredon dimensions

is studied as well as how the algebraic Bredon dimensions depend on the
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family of subgroups. We deduce the algebraic analogue to a result from Lück

and Weiermann [LW07] which gives a lower bound for the dimension when

passing to a larger group, see Theorem 3.37 and Theorem 3.38. In the same

chapter we construct a standard resolution and derive an algebraic analogue

to a result in [LW07] which gives upper bounds on the Bredon dimensions of

direct unions of groups, see Proposition 3.5 and Theorem 3.42; these results

are a generalisation of work by Nucinkis [Nuc04] which she has carried out

for the family of finite subgroups. In Section 12 we study the tensor product

of projective resolutions which gives us the possibility to derive an upper

bound for the Bredon cohomological dimension of direct products of groups,

see Theorem 3.61. Finally we derive a Künneth formula for Bredon homology,

see Theorem 3.67.

In Chapter 4 we begin to specialise to the family of virtually cyclic sub-

groups. Using geometric methods we derive a lower bound for the Bredon

(co-)homological dimension of a group G (still with respect to a general family

of subgroups). Using this tool we use known classifying spaces for the family

of virtually cyclic groups in order to calculate the Bredon (co-)homological

dimensions hdG and cdG for various groups. The results include the di-

mensions for Z2, free groups and the fundamental groups of finite graphs of

finite groups. We also study of the Bredon cohomological dimension cdG

for nilpotent groups. The chapter concludes by investigating under which

conditions an elementary amenable group G admits a finite dimensional

model for EG.

In the next chapter we turn our attention to the construction of a concrete

model for EG where G = B o Z is an infinite cyclic extension of a group B.

Under certain conditions on the action of Z on B, we can make a classifying

space of G from a model for EB. The construction relies on a generalisation

of a result by Juan-Pineda and Leary [JPL06], see Proposition 5.9. The class

of groups for which this result is applicable include certain HNN-extensions

with abelian or free base group and standard wreath products by Z, see
Section 5. We calculate the algebraic and geometric Bredon dimensions of

the soluble Baumslag–Solitar groups BS(1,m), m ∈ Z \ {0}, with respect

to the family of virtually cyclic subgroups, see Theorem 5.20. We end this

chapter by showing that some of the key ideas of this chapter can be applied
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successfully in other settings than infinite cyclic extensions. Namely, we use

them to calculate the least dimension a model for EG can have when G is a

free product.

The final chapter of this thesis is an attempt to study and classify groups

with low Bredon dimension with respect to the family of virtually cyclic

subgroups. Using the result of Theorem 5.20 and a classification result by

Gildenhuys [Gil79] we classify countable, torsion-free, soluble groups G which

have Bredon geometric dimension 1 with respect to the family of virtually

cyclic subgroups, see Theorem 6.6.

3. Notation, Conventions and Preliminaries

The set of natural numbers is denoted by N and 0 is considered to be a

natural number. The group of integers is Z, the field of rational numbers

is denoted by Q, the field of real numbers is denoted by R and the field of

complex numbers is denoted by C. Rings are always assumed to have a unit.

If G is a group and R a ring, then RG denotes the group ring which consists

of all formal R-linear combinations of elements in G.

If a, b ∈ R ∪ {±∞}, then [a, b] denotes the closed interval

[a, b] := {x ∈ R : a ≤ x ≤ b}.

As a topological space R is considered to have the standard topology

obtained from the Euclidian metric. Similarly C has the topology of the

underlying Euclidian space R2.

If n ∈ N, then the (n−1)-sphere Sn−1 and the n-discDn are the subspaces

Sn−1 := {x ∈ Rn : |x| = 1},

Dn := {x ∈ Rn : |x| ≤ 1}.

We set S−1 := ∅. The 1-sphere S1 can be identified with multiplicative group

of complex numbers z with |z| = 1 and this multiplicative structure makes

S1 into a topological group.

Throughout this thesis we are working in the convenient category of

compactly generated topological spaces in the sense of [Ste67]. By definition

a subset A ⊂ X of a compactly generated space X is closed in X if and only

if A ∩K is closed in X for every compact subset K of X. Locally compact

spaces are compactly generated.
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We use the following notation for categories: Set denotes the category

of sets and Ab denotes the category of abelian groups. If R is a ring, then

Mod-R (R-Mod) denotes the category of right (left) R-modules. In the

special case that R is the group ring ZG we denote this category by Mod-G

(G-Mod); the objects in this category are called G-modules.

We use the symbols
∏

and
∐

to denote the product and coproduct in a

category. In particular
∏

denotes the cartesian product and
∐

denotes the

disjoint union in the category of sets.

We assume in this thesis that the reader is familiar with the basic concepts

of transformation groups [Kaw91], category theory [ML98], and homological

algebra [Wei94].

Furthermore we assume that the reader is familiar with the classical

cohomology of groups and classical and cohomological finiteness conditions

of groups [Bro82, Bie81]. In particular, we denote by hdG the homological

dimension of a group G, by cdG its cohomological dimension and by gdG its

geometric dimension. For virtually torsion-free groups G we have the notion

of virtual cohomological dimension and this dimension is denoted by vcdG,

see [Bro82, pp. 225f.].
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CHAPTER 1

The Category of Bredon Modules

1. Families of Subgroups

Definition 1.1. Let G be a group. A set F of subgroups of G is called a

family if it is non-empty and closed under conjugation. We say that F is

a semi-full family if H ∩K ∈ F for any H,K ∈ F. We say that F is a full

family if F is closed under taking subgroups.

Example 1.2. Commonly used families are the following:

(1) the trivial family {1} which consists of the trivial subgroup only;

(2) the family Ffin(G) of finite subgroups of G;

(3) the family Fvc(G) of virtually cyclic subgroups of G;

(4) the family Fall(G) of all subgroups of G;

(5) given a non-empty G-set X we have the family

F(X) := {Gx : x ∈ X}

of stabilisers of X.

Note that the examples (1) to (4) are full families of subgroups of G. However,

the family F(X) is in general neither subgroup closed or even intersection

closed.

There are different common constructions how to obtain a new family of

subgroups from a given one. In what follows we list those which appear in

this thesis.

If F is a family of subgroups of G and K a subgroup of G then

F ∩K := {H ∩K : H ∈ F}

is a family of subgroups of K provided that F ∩K is not empty. The latter

is ensured if F is a full family of subgroups of G. In this case F ∩K is a full

family, too.
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Given two groups G1 and G2 and families F1 and F2 of subgroups of G1

and G2 respectively we define their cartesian product F1 × F2 to be the set

F1 × F2 := {H1 ×H2 : H1 ∈ F1 and H2 ∈ F2}.

This is a family of subgroups of the group G1×G2. If F1 and F2 are semi-full

families of subgroups, then so is F1 × F2. But in general it is not true that

the cartesian product of two full families is again a full family: not every

subgroup K of H1 ×H2 ∈ F1 × F2 is equal to K1 ×K2 for some Ki ∈ Fi.

Given an arbitrary family F of a group G we can always complete it to

a full family of subgroups of G. This completion is denoted by F̄ and is by

definition

F̄ := {H ≤ G : H ≤ K for some K ∈ F}.

This is by construction the smallest full family of subgroups of G which

contains the family F.

Definition 1.3. A pair (G,F) of families of subgroups of G consists of two

families F and G of subgroups of G with F ⊂ G. A pair (G,F) of families of

subgroups is called semi-full (full) if both F and G are semi-full (full).

2. The Orbit Category

Definition 1.4. Let F be a family of subgroups of G. Then the orbit category

OFG is the following small category. The objects of OFG are homogeneous

G-spaces G/H with H ∈ F and the morphisms of OFG are G-maps. In the

case that F = Fall(G) we write OG for the orbit category.

Given two subgroups H and K of G we denote the set of all G-maps

from G/H to G/K by [G/H,G/K]G. The set [G/H,G/H]G is a monoid in

general and we denote its identity element either by id or 1.

A G-map f : G/H → G/K is characterised by its value on the coset H.

If f(H) = xK for some x ∈ G, then the condition that f is a G-map implies

xK ∈ (G/K)H = {xK ∈ G/K : hxK = xK for all h ∈ H}

= {xK ∈ G/K : Hx ≤ K}.

Conversely, given any xK ∈ (G/K)H , there exists a unique G-map f : G/H →
G/K with f(H) = xK. Therefore we have a bijective correspondence

[G/H,G/K]G ∼= (G/K)H . (1.1)

8



given by f 7→ f(H).

Therefore we can label any G-map f between homogeneous G-spaces as

follows: we denote by fx,H,K the unique G-map f : G/H → G/K which maps

H to xK. With this notation two G-maps fx,H,K and fx′,H′,K′ are the same

if and only if H = H ′, K = K ′ and x−1x′ ∈ K. In particular fx,H,H is the

identity map on G/H if and only if x ∈ H.

If we are given two G-maps fx,H,K and f ′y,K,L, then the composite map

fy,K,L ◦ fx,H,K is a G-map G/H → G/K and we have

(fy,K,L ◦ fx,H,K)(H) = fy,K,L(xK) = xfy,K,L(K) = xyL.

In other words we have the following simple rule to calculate the composite

of two G-maps between homogeneous G-spaces:

fy,K,L ◦ fx,H,L = fxy,H,L

The structure of the orbit category OFG depends not only on the group

G but also very much on the family F of subgroups of G. We list a few

standard facts from the theory of topological transformation groups which

illustrate this situation.

(1) If F = {1}, then the orbit category has only one object G/1. Clearly

every element of [G/1, G/1]G is invertible, that is [G/1, G/1]G =

Aut(G/1). We have an isomorphism of groups G→ Aut(G/1) which

sends an element g to the automorphism

lg: G/1 7→ G/1,

x 7→ gx.

In particular, every morphism in the orbit category OFG is invertible.

(2) If F ⊂ Ffin(G), then still every endomorphism in OFG is invertible,

that is [G/H,G/H]G = Aut(G/H) for every H ∈ F. This is because

if fg,H,H is an endomorphism of OFG, then Hg ≤ H and since H

is finite it follows that Hg = H. Therefore also Hg−1 ≤ H and

fg−1,H,H is a morphism of the orbit category OFG. Necessarily

fg−1,H,H is the inverse to ϕ.

(3) In general one has that Aut(G/H) is isomorphic to the Weyl-group

WG(H) := NG(H)/H of H in G. This is, because an endomorphism
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fg,H,H of OFG is invertible if and only if g ∈ NG(H) and two endo-

morphism fg,H,H and fg′,H,H are the same if g′g−1 ∈ H. However,

if H is not finite then there may exists elements in mor(G/H,G/H)

which are not invertible and therefore do not belong to the automor-

phism group Aut(G/H).

Thus broadly speaking, the larger the family F becomes the more the orbit

category OFG looses structure.

3. The Category of Bredon Modules

Definition 1.5. Let F be a family of subgroups of a group G. A functor

M : OFG→ Ab

from the orbit category OFG to the category Ab of abelian groups is called

a Bredon module M over the orbit category OFG (or an OFG-module). If

the functor M is contravariant (covariant) then we call M a right (left)

OFG-module.

Let M and N be two OFG-modules of the same variance. A morphism

f : M → N of OFG-modules is a natural transformation from the functor M

to the functor N .

Let M be a right (left) OFG-module and ϕ a morphism of the orbit

category OFG. If there is no danger of confusion, then we may abbreviate the

homomorphismM(ϕ) by ϕ∗ (ϕ∗ respectively). In order to avoid complicating

the language we shall understand a statement about Bredon modules without

specified variance to be true for both left and right Bredon modules.

Examples 1.6. The following are simple but yet important standard exam-

ples of some Bredon modules:

(1) Let A be an abelian group. Then A denotes the constant OFG-

module given by A(G/H) := A and A(ϕ) := id for any object G/H

and any morphism ϕ of the orbit category OFG. It is both a left and

a right OFG-module. If we want to emphasise the dependency on

the family F then we may write AF for the constant OFG-module A.

(2) A important special case of the above example is the trivial OFG-

module which is the constant OFG-module ZF.
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(3) Let K be a fixed subgroup of G. We construct a right OFG-module

Z[?, G/K]G as follows: Given an object G/H of the orbit category

OFG we let Z[G/H,G/K]G be the free abelian group with basis the

set [G/H,G/K]G. If ϕ: G/H → G/L is a morphism in OFG, then

ϕ∗: Z[G/L,G/K]G → Z[G/H,G/K]G is the unique homomorphism

of abelian groups which maps the basis element f ∈ [G/L,G/H]G

to f ◦ ϕ ∈ [G/H,G/K]G.

(4) In a similar way as above we can construct a left OFG-module

Z[G/K, ?]G. Given a morphism ϕ of the orbit category OFG the

homomorphism ϕ∗ is defined by pre-composition instead of post-

composition.

The class of all right OFG-modules together with the morphisms of OFG-

modules form a category which we denote by OFG-Mod. Similar we have the

category Mod-OFG of all left OFG-modules. By construction these categories

are the functor categories [OFG
op,Ab] and [OFG,Ab] respectively [Mit65,

pp. 63ff.]. It follows from standard arguments in category theory that the

functor categories Mod-OFG and OFG-Mod inherit many properties from

the abelian category Ab [Fre64, ML98, Wei94]. In what follows we collect

some of those results for Mod-OFG.

The category Mod-OFG is abelian, complete and cocomplete (that is ar-

bitrary limits and colimits exist) since the category Ab is. Limits and colimits

are calculated componentwise. This includes: products, coproducts, direct

limits, kernels, images and intersections. In particular, filtered limits (which

include direct limits) are exact in Mod-OFG as they are exact in Ab [Wei94,

p. 57]. Furthermore, since kernels and images are calculated component wise

we have that a sequence

M ′ →M →M ′′

of right OFG-modules is exact atM if and only if the corresponding sequences

M ′′(G/H)→M(G/H)→M ′(G/H)

of abelian groups are exact at M(G/H) for every H ∈ F.

Finally, we remark that the category Mod-OFG has enough projectives

because the category Ab is cocomplete and has enough projectives [Wei94,

p. 43]. Since Ab is complete and has enough injectives, it follows by a similar

11



Z[G/H,G/K]G Z[G/H,G/K ′]G

Z[G/H ′, G/K]G Z[G/H ′, G/K ′]G

-
Z[G/H,ϕ]G

?

Z[ψ,G/K]G

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

Z[ϕ,ψ]G

?

Z[ψ,G/K′]G

-
Z[G/H,ϕ]G

Figure 1

argument that Mod-OFG has enough injectives, too. Therefore we can define

left and right derived functors and take advantage of homological methods in

the study of the category of Bredon modules over the orbit category OFG.

Definition 1.7. Let G1 and G2 be two groups and F and G families of

subgroups of G1 and G2 respectively. A OFG1-OGG2-bimodule M is a

bifunctor

M : OFG1×OGG2 → Ab

that is covariant in the first variable and contravariant in the second variable.

Example 1.8. Given a group G and family F of subgroups of G, then we

have a OFG-OFG-bifunctor

Z[?, ??]G: OFG×OFG→ Ab .

which is is defined as follows. Given a pair G/K and G/H of objects in

OFG, its value is defined to be the free abelian group Z[G/H,G/K]G. Given

any pair ψ: G/K → G/K ′ and ϕ: G/H ′ → G/H of morphisms in OFG, the

group homomorphism

Z[ϕ,ψ]G: Z[G/H,G/K]G → Z[G/H ′, G/K ′]G

is defined to be the unique group homomorphism which sends a basis ele-

ment f ∈ [G/H,G/K]G to ψ ◦ f ◦ϕ ∈ [G/H ′, G/K ′]G. This is precisely the

necessary definition needed in order to combine the constructions (3) and (4)

in Example 1.6 into a OFG-OFG-bimodule, see the diagram in Figure 1

and [ML98, p. 37].
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4. Bredon Modules and G-Modules

Recall that a right G-module M is an abelian group M with an action

of G on the right. The action of G is extended linearly to a homomorphism

from the group ring ZG into the endomorphism ring of M . The category of

all right G-modules is denoted by Mod-G.

In what follows we consider the special case that F = {1} is the trivial fam-

ily of subgroups. In Section 2 we have already noted that mor(G/1, G/1) =

Aut(G/1) is isomorphic to the group G. This isomorphism is given by

ϕg,1,1 7→ g−1. Its inverse is given by g 7→ ϕg−1,1,1.

Now a functor from OFG to Ab determines an abelian group M ′ =

M(G/1) and a homomorphism mor(G/1, G/1)→ End(M ′). Since all endo-

morphisms of G/1 are invertible it follows that this homomorphism is actually

a homomorphism G→ Aut(M ′). It is given by g 7→M(ϕg−1,1,1). If M is a

contravariant functor, that is a right OFG-module, then we have

ϕ∗(gh)−1,1,1 = ϕ∗h−1g−1,1,1 = (ϕg−1,1,1 ◦ ϕh−1,1,1)∗ = ϕ∗h−1,1,1 ◦ ϕ
∗
g−1,1,1

for all g, h ∈ G. Therefore xg := ϕ∗g−1,1,1 defines an right action of G on M ′

and this makes M ′ into a right G-module.

In the case that F = {1} we can reverse this construction. Given any

right G-module M ′ we can construct a right OFG-module in the obvious way

as follows. We set M(G/1) := M ′ and if ϕg,1,1 is a morphism of the orbit

category OFG, then we let ϕ∗g,1,1 be the morphism given by x 7→ xg−1 for all

x ∈M ′. Then

(ϕg,1,1 ◦ ϕh,1,1)∗ = ϕ∗hg,1,1 = x 7→ x(hg)−1

= x 7→ (xg−1)h−1 = ϕ∗h,1,1 ◦ ϕ∗g,1,1

which shows that M is indeed a contravariant functor.

Thus in the case that F = {1} we have a one-to-one correspondence

between right OFG modules and right G-modules given by the above construc-

tion. Furthermore a morphism f : M → N between two right OFG-modules

is given by a single homomorphism f ′: M ′ → N ′ of abelian groups. It follows

from the fact that f is a natrual transformation that f ′ is a homomorphism of

G-modules. It follows that the assignment M 7→M ′ and f 7→ f ′ is functorial.

13



Therefore one has the known result that the categories Mod-OFG and

Mod-G are naturally isomorphic if F = {1} is the trivial family of subgroups

of G. Of course one has the dual result that the category OFG-Mod of left

Bredon modules over the orbit category OFG and the category G-Mod of left

G-modules are naturally isomorphic in the case that F = {1}. In other words

the theory of Bredon modules is a generalisation of the theory of modules

over group rings.

5. F-Sets and Free Bredon Modules

Free objects are usually defined as left adjoint to a suitable forgetful

functor. In the case of Bredon modules, the target category of this forgetful

functor is not the category Set of sets but the category of F-sets, which we

denote by F-Set. There are several ways to see and describe this category.

Definition 1.9. An F-set ∆ = (∆, ϕ) is a pair consisting of a set ∆ and a

function ϕ: ∆→ F. For H ∈ F we denote by ∆H the pre-image ϕ−1({H})
and call it the H-component of the F-set ∆. A map f : (∆, ϕ)→ (∆′, ϕ′) of

F-sets is a function f : ∆→ ∆′ of sets such that the diagram

∆ ∆′

F

-f

@
@@R

ϕ
�

��	 ϕ′

commutes.

Note that by definition the class of all F-sets, together with maps of

F-sets, forms a comma category over F in the sense of [ML98, p. 45]. We

denote this category by F-Set.

Lemma 1.10. Consider the set F as a discrete category. Then the functor

category [F,Set] is isomorphic to F-Set.

Proof. Note, that since F is considered as a discrete category a functor

F→ Set is characterised by its values on the objects of F. Given a F-set ∆,

there exists precisely one functor ∆: F→ Set that maps H to ∆H for every

H ∈ F. This gives a bijection between the objects of F-Set and the objects of

[F,Set]. Moreover, any morphism f : ∆→ ∆′ in F-Set induces a collection

of functions fH : ∆H → ∆′H indexed by the elements F. Since F is a discrete
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category this gives rise to a natural transformation between the corresponding

functors ∆: F→ Set and ∆′: F→ Set and thus a morphism in [F,Set]. It

follows that we get a bijection between the corresponding morphism sets in

F-Set and [F,Set]. Thus the two categories are isomorphic. �

There exists the obvious forgetful functor from the category F-Set to

the category Set which sends a F-set ∆ to the underlying set ∆. Using this

functor we can pull back much of the terminology for sets to the category of

F-sets. In particular we speak of a finite (countable) F-set if the underlying

set is finite (countable). Only with categorical statements we have to be

careful: for example the F-set ∆′ is a subset of the F-set ∆ if ∆′H ⊂ ∆H

for every H ∈ F. As in functor categories limits and colimits are calculated

component wise. In particular this is true for the product (cartesian product)

and coproduct (disjoint union) of F-sets. In detail, if ∆i are F-sets indexed

by some index set I then their product and coproduct are given by(∏
i∈I

∆i

)
H

=
∏
i∈I

∆i,H and
(∐
i∈I

∆i

)
H

=
∐
i∈I

∆i,H

for every H ∈ F.

Given a OFG-moduleM we denote the underlying F-set also byM , which

is given by

MH := M(G/H)

for all H ∈ F. A morphism of OFG-modules gives in an obvious way rise to

a map of the underlying F-sets. In this way we get a forgetful functor

U : Mod-OFG→ F-Set

(and likewise we have a forgetful functor from OFG-Mod to F-Set). We say

that a F-set X is a subset of an OFG-module M if X is a subset of the F-set

UM . Any subset of an OFG-module is implicitly considered as a F-set.

Definition 1.11. Let M be an OFG-module and X a subset of M . Then

the smallest submodule of M containing X is denoted by 〈X〉 and is called

the submodule of M generated by the F-set X. If M = 〈X〉 then we say

that M is generated by X and that X is a F-set of generators of M . We say

that M is a finitely generated OFG-module if there exists a finite F-set of

generators of M .
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Lemma 1.12. Let K ∈ F and consider the right OFG-module Z[?, G/K]G

of Example 1.6. Then the subset ∆ of Z[?, G/K]G given by

∆H :=

{
{id} if H = K,

∅ otherwise
(1.2)

is a generating set of Z[?, G/K]G.

Proof. Denote byM the submodule of Z[?, G/K]G generated by ∆. We

know that M(G/H) is a subgroup of Z[G/H,G/K]G for any H ∈ F and we

want to show that actually equality holds in every case.

Therefore let ϕ ∈ [G/H,G/K]G be a generator of Z[G/H,G/K]G. Since

∆ generates M we know that id ∈ M(G/K). Then ϕ∗(id) = id ◦ϕ = ϕ ∈
M(G/H). Since this is true for any generator ϕ of the group Z[G/H,G/K]G

we must have that M(G/H) = Z[G/H,G/K]G and the claim follows. �

Proposition 1.13. The forgetful functor U : Mod-OFG→ F-Set has a left

adjoint F : F-Set→ Mod-OFG.

Proof. First we define the functor F for singleton F-sets. Let K ∈ F

and consider the singleton F-set ∆ with ∆K := {∗} and ∆H := ∅ for H 6= K.

We set

F∆ := Z[?, G/K]G

and identify ∆ with the singleton subset of Z[?, G/K]K as given in (1.2) in

the previous lemma. We have to show that for any (right) OFG-module M

the adjoint relation

morF(F∆,M) ∼= mor(∆, UM) (1.3)

is satisfied, where the morphism set on the left is in Mod-OFG and the

morphism set on the right is in F-Set. But this follows from the Yoneda type

formula in the next lemma.

A general F-set ∆ can always be written as the coproduct

∆ =
∐
x∈∆

∆x

of its singleton subsets ∆x. The natural way to extend the definition of the

functor F to arbitrary F-sets is to set

F∆ :=
∐
x∈∆

F∆x.
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Then we have isomorphisms

morF(F∆,M) ∼=
∏
x∈∆

morF(F∆x,M)

∼=
∏
x∈∆

mor(∆x, UM) ∼= mor(∆, UM)

which are natural, both in ∆ and M . Thus F is a left adjoint functor to the

forgetful functor U . �

Note that there is a canonical inclusion of the F-set ∆ = (∆, ϕ) into F∆

given by

x 7→ id ∈ (F∆x)(G/ϕ(x)).

Using this inclusion we have a canonical way to identify the F-set ∆ as a

subset of the right OFG-module F∆. Note that under this identification ∆

becomes a generating F-set of F∆.

Lemma 1.14 (Yoneda Type Formula). Let K ∈ F and let M be a right

OFG-module. Then there exists an isomorphism

eK : morF(Z[?, G/K]G,M) ∼= M(G/K)

of abelian groups given by the evaluation map eK(f) := fK(id). This isomor-

phism is natural in M .

Proof. For the proof of the first part see for example [MV03, p. 9].

The naturality claim states that for any morphism η: M → N of right

OFG-modules, the diagram

morF(Z[?, G/K],M) M(G/K)

morF(Z[?, G/K], N) N(G/K)

-eK

?

η∗

?

ηK

-eK

commutes, where η∗ is the homomorphism which maps any morphism

f ∈ morF(Z[?, G/K],M) to η ◦ f ∈ morF(Z[?, G/K], N). But this follows

immediately from

(eK ◦ η∗)(f) = eK(η ◦ f) = (η ◦ f)K(id) = ηK(fK(id)) = (ηK ◦ eK)(f). �

Definition 1.15. Let M be a right OFG-module and let B a subset of M .

We say that M is free with basis B if there exists an isomorphism

FB ∼= M
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that maps B seen as a subset of FB to B as a subset of M .

In the terms of the adjoint relation (1.3) the above definition can be

interpreted in the following familiar way: a right OFG-module M is free with

basis B if B is a subset of M such that for any right OFG-module N and

any morphism f0: B → N of F-sets there exists a unique extension of f0 to

a morphism f : M → N of OFG-modules.

Note that from the proof of Proposition 1.13 follows that theOFG-modules

of the form Z[?, G/K]G, K ∈ F, are the building blocks for free right Bredon

modules and if ∆ = (∆, ϕ) is a F-set, then

F∆ =
∐
δ∈∆

Z[?, G/ϕ(δ)]G. (1.4)

Lemma 1.16. A OFG-module M is finitely generated if and only if there

exists a short exact sequence of OFG-modules

0→ K → F →M → 0

where F is a finitely generated free OFG-module.

Proof. If M is finitely generated, then there exists a finite generating

F-set X of M . Set F := FX. Then F is finitely generated and surjects

onto M . If one lets K be the kernel of this surjection one obtains the above

short exact sequence.

On the other hand, if F is free with a finite basis X, then the image of X

under the surjection F → M is a finite F-subset of M which generates M .

Therefore M is finitely generated. �

Definition 1.17. A OFG-moduleM is called finitely presented if there exists

a short exact sequence

0→ K → F →M → 0

where F is a finitely generated free OFG-module and N is a finitely generated

OFG-module.

Note that the definitions, results and their proofs in this section carry

word for word over to left OFG-modules with right OFG-modules of the

form Z[?, G/K]G replaced by corresponding left OFG-modules of the form

Z[G/K, ?]G.
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6. From G-Sets to Bredon Modules

There is an alternative way to see the construction of the previous section,

namely as a functor from the category of G-sets to the category of right

Bredon modules.

Recall that given subgroups H and K of G there exists the identification

η: [G/H,G/K]G ∼= (G/K)H

which sends a G-map ψ to the image ψ(H). Now [?, ??]G is a bifunctor

[?, ??]G: OG×OG→ Set

contravariant in the first and covariant in the second variable. Restricting

this functor to OFG×OG and composed with the functor Z[?]: Set→ Ab

which sends a set X to the free abelian group Z[X] with basis X this gives

the functor of Example 1.8.

The functor [?, ??]G extends to a bi-functor

[?, ??]G: OG×G-Set→ Set,

contravariant in the first and contravariant in the second variable, which

sends a transitive G-set G/H and a G-set X to the set [G/H,X]G of all

G-maps from G/H to X. Note that as before there is an identification

η: [G/H,X]G ∼= XH (1.5)

which sends a G-map ψ: G/H → X to ψ(H).

If f : X → Y is a G-map, then this gives a map

f∗: [G/H,X]G → [G/H, Y ]G,

ψ 7→ f ◦ ψ.

Under the identification (1.5) is just the restriction of f to a map XH → Y H .

On the other hand, if ϕ: G/H → G/K is a morphism of OG then this

gives a map

ϕ∗: [G/K,X]G → [G/H,X]G,

ψ 7→ ψ ◦ ϕ.

To see what ϕ∗ becomes under the identification assume that ϕ = fg,H,K .

Then g is uniquely determined up to right multiplication by an element of K
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and Hg ≤ K. If x ∈ XK and h ∈ H, then

hgx = g(g−1hg)x = gx

and therefore gx ∈ XH . If we set ψ := η−1(x) ∈ [G/K,X]G, then

ϕ∗(ψ)(H) = (ψ ◦ ϕ)(H) = ψ(gK) = gψ(K) = gx.

Thus ϕ∗ becomes under the identification (1.5) the map XK → XH which

sends x to gx.

Let ∆ = (∆, ϕ) be a F-set and consider the G-set

X :=
∐
x∈∆

G/ϕ(x)

which is the disjoint union of homogeneous G-spaces G/ϕ(x) with ϕ(x) ∈ F.

Then

[?, X]G =
∐
x∈∆

[?, G/ϕ(x)]G

and since the functor Z[?]: Set→ Ab commutes with coproducts it follows

that

Z[?, X]G =
∐
x∈∆

Z[?, G/ϕ(x)]G

is the free right OFG-module with basis the F-set ∆ as introduced in the

previous section. On the other hand it is clear that if X is a G-set with

F(X) ⊂ F, then Z[?, X]G is a free OFG-module. Therefore we obtain the

following result.

Proposition 1.18. Let F be a family of subgroups of G. Then we have a

covariant functor

Z[?, ??]G: G-Set→ Mod-OFG .

This functor sends disjoint unions of G-sets are send to coproducts in

Mod-OFG. The free right OFG-modules are precisely all the Bredon modules

of the form Z[?, X]G where X is a G-set with F(X) ⊂ F. �

Let X be a set and let Xλ, λ ∈ Λ, be a collection of subsets of X indexed

by an abstract index set Λ. We say that X is the directed union of the sets

Xλ if the following two conditions hold:

(1) for every x ∈ X there exists a λ ∈ Λ such that x ∈ Xλ;

(2) for every λ1, λ2 ∈ Λ there exists a µ ∈ Λ such that Xλ1 ⊂ Xµ and

Xλ2 ⊂ Xµ.
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Since a directed union is a special case of a colimit in the category of sets (or

G-sets) we may identify X = lim−→Xλ.

Lemma 1.19. Assume that the G-set X is the directed union of G-invariant

subsets Xλ, λ ∈ Λ. Let H be a subgroup G. Then XH is the directed union

of the subsets XH
λ , λ ∈ Λ. That is

XH = lim−→XH
λ .

Proof. This follows immediately from the fact that XH
λ = XH∩Xλ. �

Proposition 1.20. The homomorphism of right OFG-modules

lim−→Z[?, Xλ]G → Z[?, X]G (1.6)

induced by the canonical monomorphisms Z[?, Xλ]G ↪→ Z[?, X]G is an iso-

morphism.

Proof. We have

Z[?, X]G ∼= Z[?, lim−→Xλ]G

∼= Z
[
lim−→[?, Xλ]G

]
(Lemma 1.19)

∼= lim−→Z[?, Xλ]G

where the last isomorphism is due to the fact that the functor Z[?]: Set→ Ab

commutes with arbitrary colimits since it is the left adjoint to the forgetful

functor U : Ab → Set, see [ML98, pp. 118f.]. Now the composite of this

sequence of isomorphism is precisely the homomorphism (1.6). �

Lemma 1.21. Let X be a G-set such that the orbit space X/G is countable.

Then Z[?, X]G is countably generated if one of the following conditions holds:

(1) F(X) ⊂ F;

(2) G and F are countable.

Proof. Let R be a complete system of representatives for the orbits

X/G. Then the OFG-module Z[?, X]G is a countable coproduct

Z[?, X]G ∼=
∐
x∈R

Z[?, G/Gx]G.

If F(X) ⊂ F then the right hand side is free and thus Z[?, X]G is countably

generated. This proves the first case.
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Thus assume that G and F are countable. We construct for any x ∈ R
a countably generated free OFG module Fx that surjects onto Z[?, G/Gx]G.

The construction is dual to the construction given in [Wei94, p. 43]. Since

G is countable the set [G/H,G/Gx]G is countable for any H ∈ F. Set

Fϕ,H := Z[?, G/H]G for each ϕ ∈ [G/H,G/Gx]G and H ∈ F. Then

Fx :=
∐
H∈F

∐
ϕ∈[G/H,G/Gx]G

Fϕ,H

is a countable free OFG-module that surjects onto Z[?, G/Gx]G. This sur-

jection can be constructed as follows. For each ϕ ∈ [G/H,G/Gx]G let

fx,H : Fϕ,H → Z[?, G/Gx]G be the unique morphism of OFG-modules that

maps the generator of Fϕ,H to the generator ϕ of Z[G/H,G/Gx]G. Then

fx :=
∐
H∈F

∐
ϕ∈[G/H,G/Gx]G

fϕ,H

is a surjection of Fx onto Z[?, G/Gx]. It follows that

F :=
∐
x∈R

Fx

is a countably generated free OFG-module that surjects onto Z[?, X]G. �

7. Projective Bredon Modules

It follows from a categorical argument that free objects share the following

universal property: any morphism f : P →M from a free OFG-module P to

an arbitrary OFG-module M factors through any epimorphism p: M ′ →M .

That is we can always find a morphism P →M ′ making the following diagram,

with the row exact, commute:

P

M ′ M 0

pppppppp	 ?

f

-p -

(1.7)

Projective objects are the usual generalisation of free objects. We recall

the definition of a projective object in the category of Bredon modules and

the following result, which is a standard result for abelian categories.

Definition 1.22. An OFG-module P is called projective if for every diagram

of the form (1.7) with exact row, there exists a morphism P → M ′ that

makes the diagram commute.
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Proposition 1.23. Let P be a Bredon module over the orbit category OFG.

Then the following statements for P are equivalent:

(1) P is projective;

(2) every exact sequence 0→M → N → P → 0 splits;

(3) morF(P, ?) is an exact functor;

(4) P is a direct summand of a free OFG-module.

Proof. The result can be found in any homological algebra book, for

example [Wei94, pp. 33ff.]. �

Again the above definitions and results are valid in the category of left

OFG-modules as they are valid in the category of right OFG-modules.

8. Two Tensor Products for Bredon Modules

There are two possible ways to define a tensor product for Bredon modules.

The first one generalises the tensor product over the group ring ZG for G-

modules. The second tensor product is the generalisation of the tensor

product over Z in the category of G-modules with the diagonal action of ZG
on the tensor product.

8.1. The Tensor Product over F. The definition of the tensor product

over F involves the categorical tensor product as described in [Sch70b,

pp. 45ff.]. Given a small category B, the categorical tensor product is a

bifunctor

?⊗B ?? : [Bop,Ab]× [B,Ab]→ Ab

with properties expected from a tensor product.

In the case that B = OFG a concrete model for this tensor product

is given in [Lüc89, p. 166]: if M is a right OFG-module and N is a left

OFG-module, then let P be the abelian group

P :=
∐
H∈F

M(G/H)⊗N(G/H) (1.8)

where the tensor product is taken over Z. Let Q be the subgroup of P

generated by all elements of the form ϕ∗(m) ⊗ n − m ⊗ ϕ∗(n) with m ∈
M(G/H), n ∈ N(G/K), ϕ ∈ [G/K,G/H]G, H,K ∈ F. Then the tensor

product M ⊗FN of M and N over F is defined as the abelian group

M ⊗FN := P/Q.
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If f : M →M ′ and g: N → N ′ are morphisms of right and left OFG-modules

respectively, then f ⊗F g: M ⊗FN →M ′⊗FN
′ is defined in the obvious way.

Altogether the tensor product over F becomes an additive bifunctor

?⊗F ?? : Mod-OFG×OFG-Mod→ Ab . (1.9)

Proposition 1.24. Let M be a fixed right OFG-module and let N be a fixed

left OFG-module. Then the functors

M ⊗F ?? : OFG-Mod→ Ab

and

?⊗FN : Mod-OFG→ Ab

preserve arbitrary colimits.

Proof. See [Sch70b, pp. 46f.]. �

The fact that the functor ?⊗FN preserves colimits is not a surprise

because functors that have right adjoints preserve colimits [ML98, pp. 118f.]

and the functor ?⊗FN has a right adjoint, namely Mor(N, ?) [Sch70b,

p. 46]. This is the functor that assigns to each abelian group A the right

OFG-module Mor(N,A), which is defined on the objects G/H of OFG by

Mor(N,A)(G/H) := mor(N(G/H), A), where the morphism set on the

defining side is in Ab. Explicitly, for an abelian group A and a right OFG-

module M the adjoint relation is

mor(M ⊗FN,A) ∼= mor(M,Mor(N,A)). (1.10)

Lemma 1.25. Let M be a right OFG-module and N a left OFG-module.

Then for every K ∈ F we have isomorphisms

M(?)⊗F Z[G/K, ?]G ∼= M(G/K)

and

Z[?, G/K]G⊗FN(?) ∼= N(G/K)

which are natural in M and N .

Proof. These are known results, see for example [Lüc89, p. 166] or

[MV03, p. 14]. We carry out the details for the first isomorphism in order
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to exhibit the precise definition of the isomorphism. The second isomorphism

is constructed in the same way.

Let P and Q be the abelian groups as in the definition of the tensor

product over F. That is we have that M(?)⊗F Z[G/K, ?]G is a quotient of

the group

P =
∐
H∈F

M(G/H)⊗ Z[G/K,G/H]G.

Observe that each element of the abelian group M(G/H)⊗ Z[G/K,G/H]G

can be written uniquely as a finite sum

m1 ⊗ ϕ1 + . . .+mn ⊗ ϕn

with mi ∈ M(G/H) and ϕi ∈ [G/H,G/K]G. If m ∈ M(G/H) and ϕ ∈
[G/K,G/H]G then ϕ∗(m) ∈M(G/K). It follows that there exists a unique

well defined homomorphism

ηH : M(G/K)⊗ Z[G/K,G/H]G →M(G/K)

of abelian groups for which ηH(m⊗ϕ) = ϕ∗(m) for every m ∈M(G/H) and

ϕ ∈ [G/K,G/H]G. The collection {ηH : H ∈ F} defines then a homomor-

phism

η: P →M(G/K).

This homomorphism is surjective, since for every m ∈ M(G/K) we have

ηK(m⊗ id) = id∗(m) = m. Furthermore, elements of the form

ϕ∗1(m)⊗ ϕ2 −m⊗ (ϕ1)∗(ϕ2) = ϕ∗1(m)⊗ ϕ2 −m⊗ (ϕ1 ◦ ϕ2)

are in the kernel of η, since

η(ϕ∗1(m)⊗ ϕ2 −m⊗ (ϕ1 ◦ ϕ2)) = η(ϕ∗1(m)⊗ ϕ2)− η(m⊗ (ϕ1 ◦ ϕ2))

= ϕ∗2(ϕ∗1(m))− (ϕ1 ◦ ϕ2)∗(m)

= (ϕ1 ◦ ϕ2)∗(m)− (ϕ1 ◦ ϕ2)∗(m)

= 0.

It follows that Q ⊂ ker η.

On the other hand, assume thatm⊗ϕ ∈ ker η. Then ϕ∗(m) = η(m⊗ϕ) =

0 and we get

m⊗ ϕ = −(ϕ∗(m)⊗ id−m⊗ ϕ∗(id)) ∈ Q.
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Hence ker η = Q and η induces an isomorphism

M(?)⊗F Z[G/K, ?]G = P/Q ∼= M(G/K).

The naturality of this isomorphism is evident. �

A priori the tensor product M ⊗FN of two OFG-modules is only an

abelian group. But if either M or N is a Bredon bimodule, then the tensor

product can be made into a Bredon module as well. More precisely, assume

we are given two groups G1 and G2, a family F of subgroups of G1 and a

family G of subgroups of G2. If M is an OGG2-OFG1-bimodule and N a left

OFG1-module, then

M(?, ??)⊗FN(??)

is a left OGG2-module. Similarly, if M is a right OFG1-module and N an

OFG1-OGG2-bimodule, then

M(?)⊗FN(?, ??)

is a right OGG2-module.

For a fixed OFG1-OGG2-bimodule we get an adjoint relation for the tensor

product similar to (1.10):

Lemma 1.26. Let B be a OFG1-OGG2-bimodule. Then the functor

?⊗FB: Mod-OFG1 → Mod-OGG2

is left adjoint to the functor

morG(B, ?): Mod-OGG2 → Mod-OFG1.

Explicitly we have for every right OFG1-module M and every right OGG2-

module N the adjoint relation

morG(M⊗FB,N) ∼= morF(M,morG(B,N)). (1.11)

Proof. See [Lüc89, p. 169]. �

8.2. The Tensor Product over Z. The second tensor product for

Bredon modules is the tensor product over Z [Lüc89, p. 166]. Given two

right OFG-modules M and N define a right OFG-module M ⊗N as follows.

For H ∈ F let (M ⊗N)(G/H) := M(G/H)⊗N(G/H) where the tensor

product on the defining side is taken over Z. If ϕ: G/H → G/K is a morphism
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in the orbit category OFG, then define (M ⊗ N)(ϕ) := ϕ ⊗ ϕ, which is a

homomorphism (M ⊗N)(G/K)→ (M ⊗N)(G/H).

If f : M →M ′ and g: N → N ′ are morphisms in Mod-OFG, then f ⊗ g
is defined to be the morphism

f ⊗ g: M ⊗N →M ′ ⊗N ′

which is given by (f ⊗ g)H := fH ⊗ gH for every H ∈ F.

In this way the tensor product of right OFG-modules over Z is an additive

bifunctor

?⊗ ?? : Mod-OFG×Mod-OFG→ Mod-OFG .

The tensor product over Z for left OFG-modules is defined in a similar

way.

9. Flat Bredon Modules

The tensor product functor over F maps epimorphisms to epimorphisms

and thus this functor is right exact. But in general the tensor product over F

is not exact.

Definition 1.27. A rightOFG-moduleM is called flat if the functorM ⊗F ??

is exact. Dually a left OFG-module N is called flat if the functor ?⊗FN is

exact.

Proposition 1.28. Projective OFG-modules are flat.

Proof. This is true in general in abelian categories. But the result

follows also from Proposition 1.24 and Lemma 1.25. �

Under mild conditions on the family F of subgroups Nucinkis has given a

characterisation of flat OFG-modules in [Nuc04, p. 38], which is the Bredon

equivalent to Lazard’s Theorem in [Laz69, p. 84].

Proposition 1.29. [Nuc04, Theorem 3.2] Assume that F is a full family

of subgroups of G. Then the following statements are equivalent for a right

OFG-module M :

(1) M is flat;

(2) any morphism ϕ: P →M from a finitely presented OFG-module P

to M factors through some finitely generated free OFG-module F ;

(3) M is the direct limit of finitely generated free OFG-modules. �
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10. Restriction, Induction and Coinduction

The concept of restriction, induction and coinduction as known for mod-

ules over group rings generalizes to Bredon modules. Roughly speaking in

the case of group rings these functors are defined using a ring homomorphism

induced by an inclusion H ↪→ G where H is a subgroup of G. In the case of

Bredon cohomology the role of this ring homomorphism is replaced by a func-

tor between orbit categories. The following definition is due to Lück [Lüc89,

pp. 166f.].

Definition 1.30. Let F be a family of subgroups of a group G1 and let G

be a family of subgroups of a group G2. Furthermore let F : OFG1 → OGG2

be a functor between the corresponding orbit categories. Associated with the

functor F we have the following three additive functors:

resF : Mod-OGG2 → Mod-OFG1,

M 7→M(??)⊗G Z[F (?), ??]G2 (restriction with F ),

indF : Mod-OFG1 → Mod-OGG2,

M 7→M(?)⊗F Z[??, F (?)]G2 (induction with F )

and

coindF : Mod-OFG1 → Mod-OGG2,

M 7→ morF(Z[F (?), ??]G2 ,M(?)) (coinduction with F ).

There are two other ways to interpret the restriction functor. Namely we

have natural equivalences of resF with the following two functors (see [Lüc89,

pp. 116f.]):

res′F : Mod-OGG2 → Mod-OFG1,

M 7→M ◦ F

and

res′′F : Mod-OGG2 → Mod-OFG1,

M 7→ morG(Z[??, F (?)]G2 ,M(??)).
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Here the first natural equivalence is essentially due to Lemma 1.25. The

second natural equivalence is due to the Yoneda-style isomorphism

morG(Z[??, F (?)]G2 ,M(??)) ∼= (M ◦ F )(?)

which gives a natural equivalence of res′′F with res′F .

As in the ordinary case, restriction, induction and coinduction with F

are closely related functors. From the adjunction relation (1.11) we get the

following result:

Proposition 1.31. Induction with F is a left adjoint to restriction with F .

Coinduction with F is a right adjoint to restriction with F .

Proof. Due to (1.11) we have the following sequences of natural isomor-

phisms for any right OFG-module M and right OGG-module N :

morG(indF M,N) ∼= morG(M(?)⊗F Z[??, F (?)]G2 , N(??))

∼= morF(M(?),morG(Z[??, F (?)]G2 , N(??)))

∼= morF(M, res′F N)

∼= morF(M, resF N)

and

morF(resF N,M) ∼= morF(N(??)⊗G Z[F (?), ??]G2 ,M(?))

∼= morG(N(??),morF(Z[F (?), ??]G2 ,M(?)))

∼= morG(N, coindF M). �

In the following we list some further properties for the above functors,

though not all of them will be needed. Most of the following results are direct

consequences of the adjunction result above.

Proposition 1.32. Restriction with F is an exact functor, induction with

F is a right exact functor and coinduction with F is a left exact functor.

Proof. This is a direct application of Theorem 2.6.1 in [Wei94, pp. 51f.].

It states that if L and R are additive functors and L is a left adjoint to R

(and therefore R is a right adjoint to L), then L is right exact and R is left

exact. �

Proposition 1.33. Induction and restriction with F preserve arbitrary col-

imits. Coinduction and restriction with F preserve arbitrary limits.
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Proof. The result follows from the fact that left adjoints preserve

all colimits and dually that right adjoints preserve all limits, see [ML98,

pp. 118f.]. �

Proposition 1.34. Induction with F preserves frees and projectives. If M

is a finitely generated OFG1-module, then so is indF M . If both families F

and G are full families of subgroups, then induction with F preserves flats.

Proof. All the statements except the last one can be found in [Lüc89,

p. 169]. IfM is a flat right OFG1-module and F is a full family of subgroups of

G1, then from Proposition 1.29 it follows that M is the direct limit of finitely

generated free OFG1-modules Mλ. Then since induction with F preserves

colimits, we get

indF M ∼= indF (lim−→Mλ) ∼= lim−→(indF Mλ).

Since the Mλ are finitely generated free Bredon modules so are the indF Mλ.

Thus indF M is the direct limit of finitely generated free OGG2-modules and

since the family G of subgroups of G2 is full we can apply again Propo-

sition 1.29 from which it then follows that the OGG2-module indF M is

flat. �

Proposition 1.35. Coinduction with F preserves injectives.

Proof. This is a direct application of Theorem 2.3.10 in [Wei94, p. 41],

since coinduction with F is an additive functor that is right adjoint to the

exact restriction functor. �
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CHAPTER 2

Classifying Spaces

1. G-CW-Complexes

G-CW-complexes have been introduced by J. H. C. Whitehead in [Whi49]

and are widely known by now. The concept has been generalised to the

equivariant case in [Mat71], [Ill72] and [tD87]. In this thesis we use the

definition described in [Lüc89, pp. 6f.]. Even though we are concerned with

the study of classifying spaces for discrete group we will state the definition

of a G-CW-complex and of a classifying space first for topological groups

before we pass to discrete groups in the subsequent studies.

By a topological group G we understand a group G which is at the same

time a Hausdorff space such that the the map

G×G→ G,

(g, h) 7→ gh−1

is continuous.

Definition 2.1. [Lüc89, pp. 6f.] Let G be a topological group acting

continuously on a topological space X. A G-CW-complex structure on X

consists of

(1) a filtration X0 ⊂ X1 ⊂ X2 ⊂ . . . of X which exhausts X, and

(2) a collection {eni : i ∈ In} of G-subspaces ein ⊂ Xn for each n ∈ N,

with the properties

(1) X has the weak topology with respect to the filtration {Xn : n ∈ N}
(that is B ⊂ X is closed in X if and only if B ∩Xn is closed in Xn

for every n ∈ N);
(2) for each n ≥ 1 there exists a G-pushout as in Figure 2 such that

eni = Qni (G/Hi×IntDn). Here theHi are closed subgroups of G, the

qi: G/Hi×Sn−1 → Xn−1 are continuous maps and the Qi: G/Hi×
Dn → Xn are continuous maps corresponding to the qi.
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∐
i∈In G/Hi × Sn−1

∐
i∈In G/Hi ×Dn

Xn−1

Xn

∐
qi

∐
Qi

Figure 2. Attaching equivariant n-cells to the (n − 1)-
skeleton of X, n ≥ 1.

The G-subspace Xn is called the n-skeleton of X. The eni are called

the open equivariant n-cells of X. The (closed) equivariant n-cells are the

G-subspaces ēni := Qi(G/Hi ×Dn).

Note that if G = 1 is the trivial group, one recovers from the above

definition the non-equivariant CW-complex in the sense of [Whi49].

If G is a discrete group, then one can express the above definition also in

the following way: a CW-complex X with a G-action is a G-CW-complex

if the action of G on X is cellular and the cell stabilisers are the point

stabilisers [Lüc89, p. 8]. That is, the action of G on X permutes the cells

and any g ∈ G which fixes a cell fixes this cell pointwise.

There are various finiteness properties for G-CW-complexes which are

generalisations of the corresponding finiteness properties of CW-complexes.

The following is a list of some common finiteness properties.

Definition 2.2. Let X be a G-CW-complex as in the definition before.

(1) If there exists a integer n ≥ −1 such that X = Xn (with the

convention that X−1 := ∅), then the least such integer is called

the dimension of X and we denote this fact by dimX = n. If no

such integer exists, then we say that X is an infinite dimensional

G-CW-complex and we denote this fact by dimX =∞.

(2) We say that X is of finite type if it has only finitely many equivariant

cells in each dimension.

(3) We say that X is finite if X consists of only finitely many equivariant

cells.
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Note that a G-CW-complex is finite if and only if it is of finite type and

finite dimension. Moreover, a G-CW-complex X is finite if and only if the

quotient space X/G is compact.

2. Classifying Spaces

In the literature there are several variations of the concept of a universal

G-space (also known as a classifying space of G) for the family F, see for

example the survey article [Lüc05], which is also the source of the following

definition.

Definition 2.3. Let G be a topological group and let F be a semi-full family

of closed subgroups of G. A G-CW-complex X is a classifying space of G for

the family F or a model for EFG, if it satisfies the following two conditions:

(1) F(X) ⊂ F;

(2) if Y is a G-CW-complex with F(Y ) ⊂ F, then there exists a G-map

f : Y → X which is unique up to G-homotopy.

In other words, a model for EFG is a terminal object in the homotopy

category of G-CW-complexes with isotropy groups in the family F. In

particular, a model for EFG is only unique up to G-homotopy and the G-

homotopy class of a classifying space of G for the family F can be seen as an

invariant of the group G.

For any given group G and semi-full family F of subgroups G there exists

a classifying space of G for the family F [Lüc05, p. 275]. Furthermore it has

been shown in [Lüc05, p. 275], that a G-CW-complex X with F(X) ⊂ F is

a model for EFG if and only if the fixed point set XH is weakly contractible

for every H ∈ F. A space X is called weakly contractible if the homotopy

groups πn(X,x) are trivial for all n ∈ N and all x ∈ X.

A contractible space is always weakly contractible. However, in general a

weakly contractible space does not need to be contractible. But if G is discrete

and X is a model for EFG, then for every H ∈ F the fixed point space XH has

the homotopy type of a CW-complex and is therefore contractible [Whi78,

pp. 219ff.]. Thus we obtain the following known characterisation result, see

for example [LM00, p. 295].
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Proposition 2.4. Let G be a discrete group and let F be a semi-full family

of subgroups of G. A G-CW-complex X is a model for EFG if and only if

the following two conditions are satisfied:

(1) F(X) ⊂ F;

(2) XH is contractible for every H ∈ F. �

For full families of subgroups the the above result has the following

corollary, which is often used as the definition of a classifying space of discrete

groups for full families of subgroups.

Corollary 2.5. Let G be a discrete group and let F be a full family of

subgroups of G. A G-CW-complex X is a model for EFG if and only if the

following two conditions are satisfied:

(1) XH = ∅ for every subgroup H of G which is not in F;

(2) XH is contractible for every H ∈ F.

Proof. We only need to show that for full families F the assumption (1)

in Proposition 2.4 is equivalent to the assumption (1) in this corollary.

“⇒”: Let H be a subgroup of G which is not in the family F. Assume

towards a contradiction that XH 6= ∅ and let x ∈ XH . Then H is a subgroup

of Gx. Now Gx ∈ F(X) ⊂ F and since F is a full family of subgroups of G

we get H ∈ F which is a contradiction! Therefore XH = ∅.

“⇐”: Let H ∈ F(X). Then XH 6= ∅ and thus H ∈ F. �

Examples 2.6. (1) If F = {1} is the trivial family of subgroups then

a contractible G-CW-complex X is a model for EFG if the action of

G of on X is free. In particular the universal cover of an Eilenberg–

Mac Lane space K(G, 1) is a model for EFG. It is customary to

abbreviate EG := EFG.

(2) If F = Ffin(G) a model for EFG is also known as the universal space

of proper actions of G. In literature the abbreviation EG := EFG

is commonly used.

(3) In the case that F = Fvc(G), which is the family of subgroups on

which focus of study of this thesis lies, the abbreviation EG := EFG

is used.
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3. Free Resolutions Obtained from Classifying Spaces

If F is a semi-full family of subgroups of G, then a model for EFG can

be used to construct a free resolution of the trivial OFG-module ZF. The

construction is as follows (see for example [Lüc89, pp. 151f.] or [MV03,

pp. 10ff.]).

Let X be a G-CW-complex. Consider the cellular chain complex C(X) =

(C∗(X), d∗). This chain complex is defined by

Cn(X) := H∆
n (Xn, Xn−1)

with H∆
n denoting the singular homology functor. The differentials

dn: Cn(X)→ Cn−1(X) (2.1)

of the cellular chain complex are the connecting homomorphisms of the triple

(Xn, Xn−1, Xn−2), see for example [Geo08, pp. 40ff.].

Let ∆n be the set of all n-cells of the G-CW-complex X. Since G acts

on X by permuting the cells of X the set ∆n is in a natural way a G-set.

Note that ∆H
n is the set of all n-cells of the CW-complex XH for any group

subgroup H of G.

We define the right OFG-module Cn(X) to be

Cn(X) := Z[?,∆n]G.

For each n ≥ 1 we define homomorphisms

dn: Cn(X)→ Cn−1(X)

of right OFG-modules as follows. First note that for every H ∈ F and n ≥ 1

we have Cn(X)(G/H) = Cn(XH). Let

dn,H : Cn(X)(G/H)→ Cn−1(X)(G/H)

be the differential dn: Cn(XH)→ Cn−1(XH) of the cellular chain complex

C(XH). If ϕ ∈ [G/H,G/K]G is a morphism of the orbit category OFG,

say ϕ = fg,H,K , then ϕ∗: Cn(X)(G/K) → Cn(X)(G/H) is for each n ∈ N
the homomorphism induced by the map XK → XH which sends x to gx.

Since this map defines a chain map C(XK)→ C(XH) this implies that the
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diagram

Cn(XK) Cn−1(XK)

Cn(XH) Cn−1(XH)

-
dn,K

?

ϕ∗

?

ϕ∗

-
dn,H

commutes for every n ≥ 1. In particular this implies that the homomorphism

dn,H define a homomorphism dn: Cn(X)→ Cn−1(X) of right OFG-modules.

Furthermore, for every H ∈ F there exists an augmentation homomor-

phism εH : C0(XH)→ Z which sends every 0-cell of the CW-complex XH to 1.

It follows that these homomorphism define an augmentation homomorphism

ε: C0(X)→ ZF.

Lemma 2.7. The sequence

. . . −→ C2(X)
d2−→ C1(X)

d1−→ C0(X)
ε−→ ZF −→ 0 (2.2)

is a chain complex of OFG-modules.

Proof. Let H ∈ F. Then the sequence (2.2) evaluated at G/H is the

augmented cellular chain complex of the CW-complex XH and the claim

follows. �

Lemma 2.8. Assume that XH is contractible for every H ∈ F. Then the

sequence (2.2) is exact.

Proof. If XH is contractible then the augmented cellular chain complex

of the CW-complex XH is exact. Thus the claim follows by evaluating the

sequence (2.2) at G/H for any H ∈ F. �

The results of this section yield the following conclusion.

Proposition 2.9. Let F be a semi-full family of subgroups and let X be

a model for EFG. Then the sequence (2.2) of right OFG-modules is a free

resolution of the trivial OFG-module ZF.

Proof. Since X is a model for EFG, we have that F(X) ⊂ F and so the

OFG-modules Cn(X) are free by Proposition 1.18. The fixed point sets XH

are contractible for any H ∈ F and therefore the sequence (2.2) is exact by

Lemma 2.8. �
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4. Geometric Finiteness Conditions in Terms of Algebraic

Properties

If follows from the construction of the previous section that the finiteness

conditions of Definition 2.2 on a model X for EFG imply the following

statements:

(1) if dimX = n then there exists a free resolution of the trivial OFG-

module ZF of length n in Mod-OFG;

(2) if X is of finite type then there exists a resolution of the trivial OFG-

module ZF by finitely generated free Bredon modules in Mod-OFG;

(3) if X is finite then there exists a finite length resolution of the

trivial OFG-module ZF by finitely generated free Bredon modules

in Mod-OFG.

In [LM00] it has been shown that the above statements are nearly

reversible. The relevant part of the main result in this article is the following

Proposition 2.10. [LM00, Theorem 0.1] Let G be a discrete group, let F

be a semi-full family of subgroups of G and let n ≥ 3. Then we have:

(1) there is a n-dimensional model for EFG if and only if there exists

a projective resolution of the trivial OFG-module ZF of length n in

Mod-OFG.

(2) there exists a finite type model for EFG if and only if there exists

a model for EFG with finite equivariant 2-skeleton and the trivial

OFG-module ZF has a resolution by finitely generated projective

Bredon modules in Mod-OFG;

(3) there exists a finite model for EFG if and only if there exists a

model for EFG with finite equivariant 2-skeleton and the trivial

OFG-module ZF has a resolution of finite length by finitely generated

free Bredon modules in Mod-OFG. �

In this thesis we focus on the question whether for a group G and full

family F of subgroups of G, there exists a finite dimensional model for EFG.

This leads to the following definition.

Definition 2.11. Let G be a group and F semi-full family of subgroups.

Assume that there exists a finite dimensional model for EFG. Then the least
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integer n ≥ 0 for which there exists an n-dimensional model for EFG is called

the Bredon geometric dimension of G for the family F and we denote this by

gdFG := n. If there exist no finite dimensional model for EFG, then we set

gdFG :=∞.

Following the notation introduced at the end of Section 2 we abbreviate

gdFG by gdG if F = {1}, by gdG if F = Ffin(G) and by gdG if F = Fvc(G).
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CHAPTER 3

Bredon (Co-)Homological Dimensions

1. Bredon (Co-)Homology

Since the category Mod-OFG has enough projectives we can define derived

functors and do homological algebra [Wei94, pp. 30ff.]. We are interested

in the derived functors of the morphism functor morF(?, ??) and the tensor

product functor ?⊗F ??. Therefore, for each right OFG-module M , we choose

a projective resolution P∗(M) of M .

Definition 3.1. Let N be a right OFG-module. Then ExtnF(?, N) is the n-th

right derived functor of morF(?, N), that is

ExtnF(M,N) := Hn(morF(P∗(M), N).

for any right OFG-module M and all n ∈ N.
Likewise, if N is a left OFG-module, then TorFn(?, N) is the n-th left

derived functor of ?⊗FN , that is

TorFn(M,N) := Hn(P∗(M)⊗F N)

for all right OFG-modules M and all n ∈ N.

It is a standard fact in homological algebra that this definition is – up to

natural isomorphism – independent of the choice of the projective resolutions.

Furthermore it is a standard fact that the Ext∗F and TorF∗ functors are also

functorial in the second variable.

Proposition 3.2. The following statements about a right OFG-module M

are equivalent:

(1) M is projective;

(2) morF(M, ?) is an exact functor;

(3) ExtnF(M,N) = 0 for every right OFG-module N and every n ≥ 1;

(4) Ext1
F(M,N) = 0 for every right OFG-module N .
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Proposition 3.3. The following statements for a right OFG-module M are

equivalent:

(1) M is flat;

(2) M ⊗F ? is an exact functor;

(3) TorFn(M,N) = 0 for every left OFG-module N and every n ≥ 1;

(4) TorF1(M,N) = 0 for every left OFG-module N .

Proof of Proposition 3.2 and 3.3. These are standard results in

homological algebra, see for example [Wei94, p. 50] and [Wei94, p. 69]. �

Let N be a left OFG-module. We say that a right OFG-module M is

?⊗FN -acyclic if the groups TorFn(M,N) vanish for every n ≥ 1. Thus M is

flat if and only if it is ?⊗FN -acyclic for any left OFG-module N .

Note that from the theory of derived functors, it follows that we can relax

the requirement on the resolution of M used to calculate the Tor groups. In

fact any ?⊗FN -acyclic resolution of M will be sufficient [Wei94, p. 47]. As

this requirement is satisfied by flat OFG-modules this means we can calculate

the Tor groups using flat resolutions.

Definition 3.4. Let G be a group, F a family of subgroups of G and let M

be a right OFG-module. Then the Bredon cohomology groups Hn
F (G;M) of G

with coefficients inM are defined as the Ext groups of the trivial OFG-module

ZF with coefficients in M , that is

Hn
F (G;M) := ExtnF(ZF,M).

Similarly, if N is a left OFG-module, then the Bredon homology groups

HF
n(G;N) of G with coefficients in N are defined to be the Tor groups of the

trivial OFG-module ZF with coefficients in N , that is

HF
n(G;N) := TorFn(ZF, N).

2. The Standard Resolution

Concrete examples of projective resolutions of the trivial OFG-module ZF

are useful in order to calculate the Bredon (co-)homology groups of a group

G. In Section 3 we have already seen how to obtain a free resolution of ZF

from a model for EFG. Another example of a very specific free resolution of

ZF is the standard resolution.
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Recall that in classical group (co-)homology there exists the standard

resolution

. . .→ Z[G×G×G]→ Z[G×G]→ ZG→ Z→ 0 (3.1)

of the trivial G-module Z by free G-modules, see for example [Bro82, pp. 18f.].

This resolution is also known as the bar resolution. From the view point of

category theory, standard resolutions arise from simplicial objects constructed

from comonads (also known as triples), see [ML98, pp. 180ff.] and [Wei94,

pp. 278ff.].

Nucinkis has shown in [Nuc04, pp. 41f.] how the construction (3.1)

generalises to the Bredon setting for the family F = Ffin(G) of finite subgroups

of G. That is, there exists a free resolution

. . .→ Z[?,∆2]G → Z[?,∆1]G → Z[?,∆0]G → ZF → 0

of the trivial OFG-module ZF where ∆n is the G-set

∆n := {(g0K0, . . . , gnKn) : gi ∈ G and Ki ∈ F}.

It turns out that we can construct a resolution of this form of the trivial

OFG-module ZF for an arbitrary non-empty family F of subgroups of G. The

details are as follows.

For n ≥ 1 and 0 ≤ i ≤ n define G-maps ∂i: ∆n → ∆n−1 by

∂i(g0K0, . . . , gnKn) := (g0K0, . . . , ĝiKi, . . . , gnKn)

where (g0K0, . . . , ĝiKi, . . . , gnKn) denotes the (n − 1)-tuple obtained from

the n-tuple (g0K0, . . . , gnKn) by deleting the i-th component. With these

maps the collection ∆∗ := {∆n : n ∈ N} of G-sets becomes a semi-simplicial

complex.

Let ∆−1 be the singleton G-set ∆−1 := {∗}. We get an augmentation

G-map ε: ∆0 → ∆−1 if we set ε(g0K0) := ∗ for every g0K0 ∈ ∆0, that is

ε ◦ ∂0 = ε ◦ ∂1.

Applying the functor Z[?, ??]G to the semi-simplicial G-set ∆ gives a

semi-simplicial OFG-module

Z[?,∆∗]G := {Z[?,∆n]G : n ∈ N}
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with augmentation ε: Z[?,∆0]G → Z[?, {∗}]G = ZF. The associated aug-

mented chain complex C∗(∆∗) is given by

Cn(∆∗) :=

{
Z[?,∆∗]G n ≥ −1

0 otherwise

with the differentials given by

dn :=


∑n

i=0(−1)i∂i n > 0

ε n = 0

0 n < 0

It follows that C∗(∆∗) is necessarily a complex of OFG-modules, that is

dn−1 ◦ dn = 0 for every n ∈ Z [Wei94, pp. 259ff.].

Proposition 3.5. The sequence

. . . −→ Z[?,∆2]G
d2−→ Z[?,∆1]G

d1−→ Z[?,∆0]G
ε−→ ZF −→ 0 (3.2)

is a resolution of the trivial OFG-module ZF. If F is a semi-full family of

subgroups then this resolution is free.

Proof. First observe that Z[?,∆−1]G = ZF. Thus the sequence (3.2) is

nothing else than the associated augmented chain complex C∗(∆∗).

We need to show that the sequence (3.2) evaluated at any object G/H

of the orbit category OFG is an exact sequence of abelian groups. We know

already that

. . . −→ Z[G/H,∆2]G
d2,H−→ Z[G/H,∆1]G

d1,H−→ Z[G/H,∆0]G
εH−→ ZF −→ 0

is a chain complex of abelian groups. Thus it remains to show that there

exists a contracting homotopy h: id ' 0. But such a contracting homotopy

is known to be given by

hn(g0K0, . . . , gnKn) := (H, g0K0, . . . , gnKn)

for n ∈ N, h−1(∗) := (H) and hn := 0 for n > −1.

Given σ := (g0K0, . . . , gnKn) ∈ ∆n its stabiliser Gσ is

Gσ = K
g−1
0

0 ∩ . . . ∩Kg−1
n
n .

If F is a semi-full family of subgroups of G, then Gσ ∈ F for any σ ∈
∆n. That is F(∆n) ⊂ F. Hence the OFG-modules Z[?,∆n]G are free by

Proposition 1.18. �
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Definition 3.6. We call the resolution (3.2) the standard resolution of the

trivial OFG-module ZF.

Lemma 3.7. Let G be a group and let F be a semi-full family of subgroups

of G. If both G and F are countable then the standard resolution of the trivial

OFG-module ZF is countably generated.

Proof. If G and F are countable then ∆n is countable and thus ∆n/G

is countable. Now the claim follows from Lemma 1.21. �

3. Bredon (Co-)Homological Dimensions

In Section 4 in the previous chapter we have introduced the Bredon

geometric dimension of a group G with respect to a family F of subgroups

of G. It has two closely related algebraic invariants, the Bredon cohomological

and Bredon homological dimension. They are the obvious generalisations of

the classical (co-)homological dimensions.

Definition 3.8. Let G be a group and let F be a family of subgroups

of G. Assume that there exists an integer n ∈ N such that the trivial OFG-

module ZF has a projective resolution

0→ Pn → . . .→ P1 → P0 → ZF → 0

in Mod-OFG of length n but not one of length n − 1. We say that G has

Bredon cohomological dimension n with respect to the family F, which we

denote by cdFG := n. If no finite length projective resolution exists, then

we say that G has infinite Bredon cohomological dimension with respect to F,

which we denote by cdFG :=∞.

We abbreviate cdFG by cdG, cdG or cdG in the case that F is the

trivial family, the family of finite or the family of virtually cyclic subgroups

respectively.

The definition of the Bredon homological dimension follows the same

idea, except that projective OFG-modules are replaced by flat OFG-modules:

Definition 3.9. Let G be a group and let F be a family of subgroups

of G. Assume that there exists an integer n ∈ N such that the trivial OFG-

module ZF has a flat resolution

0→ Qn → . . .→ Q1 → Q0 → ZF → 0
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in Mod-OFG of length n but not one of length n − 1. We say that G has

Bredon homological dimension n with respect to the family F, which we denote

by hdFG := n. If no finite length flat resolution exists then we say that G

has infinite Bredon homological dimension with respect to F, which we denote

by hdFG :=∞.

Analogous to before we abbreviate hdFG by hdG, hdG or hdG in the

case that F is the trivial family, the family of finite or the family of virtually

cyclic subgroups respectively.

The Bredon (co-)homological dimension is a special case of the projective

and flat dimension of a right OFG-module M . These dimensions are defined

in a similar spirit as the minimal length of a projective (or respectively flat)

resolution of the OFG-module M . We denote the projective dimension of M

by pdFM and the flat dimension of M by fldFM . With this notation, the

(co-)homological dimension of a group G is the projective and flat dimension

of the trivial OFG-module ZF, that is

cdFG = pdF ZF and hdFG = fldF ZF.

The following two propositions are standard results in homological algebra

in abelian categories; their proof can be found in [Wei94, pp. 93ff.], for

example.

Proposition 3.10. Let M be a right OFG-module. Then the following

statements are equivalent:

(1) pdFM ≤ n;
(2) ExtdF(M,N) = 0 for every right OFG-module N and every d > n;

(3) Extn+1
F (M,N) = 0 for every right OFG-module N ;

(4) given any projective resolution of M ,

. . .→ P2 → P1 → P0 →M → 0,

the kernel of Pn → Pn−1 is projective. �

There are two immediate applications of this result. The first is that

if we can show that ExtdF(M,N) 6= 0 for some right OFG-module N , then

pdFM ≥ d. The second application is that, given a projective resolution P∗
of a right OFG-module M with pdFM ≤ n, we obtain a projective resolution

0→ K → Pn−1 → . . .→ P0 →M → 0
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of length n, where K is the kernel of dn: Pn → Pn−1 and K → Pn−1 is

the restriction of dn to K. That is, any projective resolution of M can be

truncated by inserting a suitable projective kernel as soon as the length of

the resolution exceeds the projective dimension of M .

Proposition 3.11. Let M be a right OFG-module. Then the following

statements are equivalent:

(1) fldFM ≤ n;
(2) TorFd(M,N) = 0 for every left OFG-module N and every d > n;

(3) TorFn+1(M,N) = 0 for every left OFG-module N ;

(4) given any flat resolution of M ,

. . .→ Q2 → Q1 → Q0 →M → 0,

the kernel of Qn → Qn−1 is flat. �

Of course this proposition has two analogous immediate applications, just

as the previous proposition had. Firstly, a non-trivial TorFd(M,N) gives rise

to a lower bound for the flat dimension of M . Secondly, any flat resolution

of M can be truncated by inserting a suitable flat kernel as soon as the length

of the resolution exceeds the flat dimension of M .

4. Cohomological vs. Homological vs. Geometric Dimension

In this section, we will compare the three Bredon dimensions we have

introduced in the previous section for a fixed family F of subgroups of G.

The first result is just a direct consequence of the fact that projective Bredon

modules are flat.

Lemma 3.12. For any family F of subgroups of a group G we have

hdFG ≤ cdFG. �

The next result has been proven by Nucinkis in [Nuc04, p. 42] for the

family of finite subgroups of G. The proof also works without modification

for more general families of subgroups.

Theorem 3.13. Let G be a countable group and let F be a full family of

subgroups of G. If F is countable then

cdFG ≤ hdFG+ 1.
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To prove this theorem, we need a result by Nucinkis that gives an upper

bound on the cohomological dimension of countably presented flat modules.

Proposition 3.14. [Nuc04, Proposition 3.5] Let F be a full family of

subgroups. Then every countably presented flat right OFG-module M has

pdFM ≤ 1. �

Proof of Theorem 3.13. In order to avoid triviality, we assume that

hdFG is finite. Consider the standard resolution

. . .→ F2 → F1 → F0 → ZF → 0

of the trivial OFG-module ZF as defined in section 2. Since G and F are

countable, this resolution is countably generated by Lemma 3.7.

Let K be the n-th kernel of the above resolution, which is flat. It follows

that K is countably presented. Since the family F of subgroups is assumed

to be full we can apply Proposition 3.14, which tells us that pdFK ≤ 1.

From this it follows that there exists a projective resolution of the trivial

OFG-module ZF of length n+ 1 and hence cdFG ≤ n+ 1. �

Remark 3.15. Let G be a countable group. Then G has only countably

many finitely generated subgroups.

Hence in the case F = Ffin(G), Theorem 3.13 and Lemma 3.12 combine

to recover the statement of Theorem 4.1 in [Nuc04]. Moreover, since virtual

cyclic groups are finitely generated we get that Theorem 4.1 in [Nuc04] also

holds for the family of virtual cyclic subgroups of G, that is to say we have

the following result.

Theorem 3.16. Let G be a countable group. Then

cdG ≤ hdG+ 1. �

Next we compare the Bredon cohomological dimension to the Bredon

geometric dimension of a group in the case that F is a full family of subgroups

of G. In Section 3 we have seen that a model for EFG gives rise to a projective

resolution of the trivial OFG-module ZF. If the model of EFG has finite

dimension n, then the projective resolution of ZF has length n. Thus we have

the following result.
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Lemma 3.17. For any semi-full family F of subgroups of G we have

cdFG ≤ gdFG. �

As a consequence of the first part of Proposition 2.10 we get the following

statement about the geometric and cohomological Bredon dimension of a

group G.

Proposition 3.18. Let F be a semi-full family of subgroups of G. If cdFG ≥
3 or gdFG ≥ 4 then cdFG = gdFG.

Proof. If cdF ≥ 3 then there exists a model EFG of dimension cdFG

by Proposition 2.10, that is gdFG ≤ cdFG and thus equality holds by the

previous Lemma. If gdFG ≥ 4 then there exists no projective resolution of

length gdFG − 1 by Proposition 2.10 and therefore cdFG ≥ gdFG. Again

equality holds by the previous lemma. �

In [EG57] it has been shown that cdG = gdG whenever cdG ≥ 3. In

the same paper it has been asked whether cdG = gdG in general. The

statement that this is true is known as the Eilenberg–Ganea Conjecture.

Groups with cdG ≤ 1 cannot give counter examples to this conjecture since

cdG = 0 implies that G is trivial and cdG = 1 implies that G is free by

a famous work of Stallings [Sta68] and Swan [Swa69]. The trivial group

has geometric dimension 0 and since free groups can act freely on a tree it

follows that gdG = 1 for free groups. Therefore a possible counter example

to the Eilenberg–Ganea Conjecture needs to be a torsion free group G with

cdG = 2 and gdG = 3. Until the present day, neither such counter example

has been found nor has the conjecture been proven.

The conjecture generalises to the Bredon setting as follows.

Eilenberg–Ganea Conjecture (for Bredon Cohomology). Let F be a semi-

full of subgroups of a group G. Then cdFG = gdFG.

Let G be a group and consider F = Ffin(G). We see in the next section

that the implication gdG = 0 ⇒ cdG = 0 is actually an equivalence.

Therefore gdG = 1 implies cdG = 1. On the other hand it is known that

cdG = 1 implies that the rational cohomological dimension cdQG = 1, see

for example [BLN01, p. 493], which in turn implies that gdG = 1 by a

result by Dunwoody [Dun79]. Altogether, this and Proposition 3.18 imply
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that cdG = gdG for all groups G with cdG 6= 2. Thus a possible counter

example for the above conjecture for the family of finite subgroups must

satisfy cdG = 2 and gdG = 3. Brady, Leary and Nucinkis have shown

in [BLN01] that there exist certain right-angled Coxeter groups which have

precisely this property. That is, the Eilenberg–Ganea Conjecture is false

for the family of finite subgroups. This also implies that the statement of

Proposition 3.18 is the best possible if one does not impose any further

restriction on the family F.

A natural question question is to ask whether the Eilenberg–Ganea

Conjecture is true for the family F = Fvc(G) of virtually cyclic subgroups. It

is unknown, whether in cdG = 1 is equivalent to gdG = 1 (we will show in

the end of this thesis that this is true for countable, torsion-free soluble groups,

see Theorem 6.6). Therefore possible counter examples to the conjecture

must fall – similar to [EG57] – into one of the following three cases.

(1) cdG = 1 and gdG = 2;

(2) cdG = 1 and gdG = 3;

(3) cdG = 2 and gdG = 3;

There is not much known about groups G with gdG = 2 or gdG = 3. Juan-

Pineda and Leary have shown in [JPL06] that for Gromov-hyperbolic groups

gdG ≤ 2 implies that gdG = 2 provided that G is not virtually cyclic. Lück

and Weiermann have shown that vcdG = 2 implies gdG = 3 for virtually

polycyclic groups. In the next chapter we will show that the Eilenberg–Ganea

Conjecture for the family Fvc holds for these groups. Moreover, we will show

in Chapter 5 that the soluble Baumslag–Solitar groups BS(1,m) staisfy the

Eilenberg–Ganea Conjecture for the family Fvc.

5. Groups of Bredon Dimension Zero

Proposition 3.19. Let G be a group and F a semi-full family of subgroups

of G. Then gdFG = 0 if and only if G ∈ F.

Proof. Again the proof is a standard argument. If G ∈ F then any

singleton space {∗} is a model for EFG and thus gdFG = 0. On the other

hand, if gdFG = 0, then G has a singleton space {∗} as a model for EFG
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as this is the only 0-dimensional contractible G-CW-complex which exists.

Clearly {∗}G 6= ∅ and thus G ∈ F. �

Proposition 3.20. Let G be a group and F a family of subgroups of G. If

G ∈ F, then the trivial OFG-module ZF is free and in particular cdFG = 0.

If the family F is semi-full, then cdFG = 0 implies that G ∈ F.

In order to prove this statement we need a result from Symonds. For a

family F of subgroups of G, he defines a component of F to be an equivalence

class under the equivalence relation generated by inclusion [Sym05, p. 265].

Note that if F is a semi-full family of subgroups of G, then F has only one

component. This is because for any H1, H2 ∈ F, we have that H1 ∩H2 is

contained in F and is a common subgroup of H1 and H2.

Lemma 3.21. [Sym05, Lemma 2.5] Let F be a family of subgroups of G.

Then the trivial OFG-module ZF is projective if and only if each component

of F has a unique maximal element M and this M is equal to its normaliser

NG(M) in G. �

Proof of Proposition 3.20. Assume first that G ∈ F, then a stan-

dard argument shows that cdFG = 0 as follows. Since [G/H,G/G]G contains

only one map (namely the trivial map) we have that Z[G/H,G/G]G = Z for

every H ∈ F. Furthermore, every morphism of the orbit category OFG is

mapped to the identity map. Thus it follows that the trivial OFG-module

ZF is equal to the free right OFG-module Z[?, G/G]G. Hence cdFG = 0.

Next, assume that the family F is semi-full and that cdFG = 0. Let

H1, H2 ∈ F be two arbitrary subgroups. Since F is closed under finite

intersections it has only one component. Then by Lemma 3.21 the family

F has a unique maximal element M with M = NG(M). Assume towards

a contradiction that NG(M) (and therefore M) is a proper subgroup of G.

Then there exists a g ∈ G \M such that Mg 6= M . Since F is closed under

conjugation, it follows that Mg ∈ F. Now let N ∈ F with Mg ≤ N . Then

M ≤ Ng−1 and so M = Ng−1 by the maximality of M . Therefore Mg = N

and since N was an arbitrary element of F with Mg ≥ N it follows that Mg

is maximal in F. Thus by the uniqueness of a maximal element in F we have

that Mg = M , which is a contradiction. Therefore M = G and so G ∈ F. �
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For completeness, we include the statement about groups G with hdFG

equal to zero. This result is just the statement of Theorem 3.13 in the case

hdFG = 0.

Proposition 3.22. Let G be a group and let F be a semi-full family of

subgroups of G. If both G and F are countable then hdFG = 0 implies

cdFG ≤ 1. �

Note that the estimation cdFG ≤ 1 is sharp. For example, Q is the direct

union of its cyclic subgroups. It follows by two results which we will prove

later in Section 11, namely Theorem 3.42 and Corollary 3.44, that hdQ = 0

and cdQ ≤ 1. On the other hand Q is not virtually cyclic and so cdQ 6= 0

by Proposition 3.20. Therefore Q is group with hdQ = 0 and cdQ = 1.

6. Induction with IK and Preservation of Exactness

In Section 4 we have compared different types of Bredon dimensions for a

given group and with respect to a given family of subgroups. In order to make

comparisons of the same kind of Bredon dimensions, but for different groups,

or if we are interested how the the choice of the family of subgroups affects

a certain Bredon dimension, then the restriction and induction functors are

an important tool. The exactness of these functors is an important property

and we already know that the restriction functor is always exact. The result

we present in this section is due to Symonds [Sym05].

In this section we consider induction with the following functor. Let K

be a fixed subgroup of G. If ∅ 6= F ∩K ⊂ F then we obtain a well defined

functor

IK : OF∩KK → OFG

of orbit categories as follows: on objects of OF∩KK we set IK(K/H) := G/H

and if f : K/H → K/L is a G-map, then IK(f) is the obvious extension of f

to a G-map G/H → G/L, which by abuse of notation we will also denote

by f .

Lemma 3.23. Let H ∈ F and L ∈ F ∩ K. Let R be a complete set of

representatives for the left cosets in (G/K)H . Then there exists a bijection

ηL: [G/H,G/L]G →
∐
x∈R

[K/Hx,K/L]K (3.3)
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of sets.

Proof. If x ∈ R then Hx ≤ K and thus the right hand side of (3.3) is

well defined. Let fg,H,L ∈ [G/H,G/L]G. Then Hg ≤ L and since L ∈ F ∩K
we have that Hg ≤ K. This implies that gK ∈ (G/K)H and thus there exists

a unique x ∈ R and y ∈ K such that g = xy.

Assume that fg′,H,L = fg,H,L. Then g′ = gl for some l ∈ L ≤ K.

Furthermore there exists a unique x′ ∈ R and y′ ∈ K such that g′ = x′y′.

Thus gl = xyl = x′y′ and from this follows that x−1x′ = yl(y′)−1 ∈ K. This

means that x and x′ are in the same left coset of K in G. Therefore x = x′

and yl = y′. That is x is uniquely determined by fg,H,L and y is uniquely

determined by fg,H,L up to right multiplication by an element of L.

Since (Hx)y = Hxy = Hg ≤ L we get that fy,Hx,L ∈ [K/Hx,K/L]K and

we define ηL(fg,H,L) := fy,Hx,L. Since x is uniquely determined by the map

fg,H,L, and since y is uniquely determined by the map fg,H,L up to right

multiplication by an element of L, this definition of ηL(fg,H,L) is well defined

and ensures that ηL is an injective map.

It remains to show that the map ηL is surjective. Therefore choose an

arbitrary x ∈ R and let fy,Hx,L ∈ [K/Hx,K/L]K . Then

Hxy = (Hx)y ≤ L

and thus fxy,H,L ∈ [G/H,G/L]G and ηL(fxy,H,L) = fy,Hx,L. Therefore, we

conclude that η is surjective. �

Lemma 3.24. Let H ∈ F. Then the left OF∩KK-module

Z[K/Hx, ?]K

is free for every x ∈ G for which xK ∈ (G/K)H .

Proof. We only need to show that Hx ∈ F∩K. Since F is closed under

conjugation we have Hx ∈ F. Since xK ∈ (G/H)H we have Hx ≤ K and

thus Hx = Hx ∩K ∈ F ∩K. �

Lemma 3.25. Assume that F ∩ K is a non-empty subset of F. Then the

collection of isomorphisms {ηL : L ∈ F ∩K} defined in Lemma 3.23 give an

isomorphism

η: Z[G/H, IK(?)]G →
∐
x∈R

Z[K/Hx, ?]K (3.4)
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of left OF∩KG-modules. In particular, Z[G/H, IK(?)]G is a free left OF∩KK-

module.

Proof. The assumption on F∩K ensures that both the functor IK and

the category of left OF∩KK-modules are defined. We have to show that the

isomorphisms ηL form a natural transformation of covariant functors. We do

this by chasing generators around the necessary diagrams.

Let L1, L2 ∈ F ∩K, ϕ ∈ [K/L1,K/L2]K and f ∈ [G/H, IK(K/L1)]G =

[G/H,G/L1]G. Then there exists a z ∈ K such that ϕ = fz,L1,L2 and a g ∈ G
such that f = fg,H,L1 . Furthermore there exists a unique x ∈ R such that

we can write fg,H,L1 = fxy,H,L1 for some y ∈ K. This y is unique up to right

multiplication by an element of L1. We need to chase f around the following

diagram.

[G/H,G/L1]G [K/Hx,K/L1]K

[G/H,G/L2]G [K/Hx,K/L2]K

-
ηL1

?

ϕ∗

?

ϕ∗

-
ηL2

On the one hand we have

(ϕ∗ ◦ ηL1)(fg,H,L1) = ϕ∗(fy,Hx,L1)

= fz,L1,L2 ◦ fy,Hx,L1

= fyz,Hx,L2 ∈ Z[K/Hx,K/L2]K .

On the other hand we have

(ηL2 ◦ ϕ∗)(fg,H,L1) = ηL2(fz,L1,L2 ◦ fxy,H,L1)

= ηL2(fxyz,H,L2)

= fyz,Hx,L2 ∈ Z[K/Hx,K/L2]K

where the last equality follows from yz ∈ K. Therefore the maps {ηL : L ∈
F ∩K} define a homomorphism of left OF∩KK-modules. Since each ηL is an

isomorphism it follows that η is an isomorphism, too.

The Bredon modules in the coproduct on the right hand side of (3.4) are

all free by Lemma 3.24. We can conclude that the right hand side of (3.4) is

free and the claim follows. �
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Note that in Symonds’ article [Sym05, p. 226] the above result to-

gether with Lemma 1.25 is used as the definition of the induction functor

indIK : Mod-OF∩KK → Mod-OFG.

Proposition 3.26. Let F be a family of subgroups of G. Let K ≤ G be some

subgroup for which F ∩K is a non-empty subset of F. Then induction with

IK : OF∩KK → OFG is an exact functor.

Proof. Let 0 → L → M → N → 0 be an exact sequence of right

OF∩KK-modules. Applying the functor indIK to this sequence yields the

sequence

0→ indIK L→ indIK M → indIK N → 0 (3.5)

of OFG-modules. We evaluate this sequence at H ∈ F and obtain

0→ L(?)⊗F∩K Z[G/H, IK(?)]G →M(?)⊗F∩K Z[G/H, IK(?)]G

→ N(?)⊗F∩K Z[G/H, IK(?)]G → 0 (3.6)

By the previous lemma the left OF∩KK-module Z[G/H, IK(?)]G is free and

hence flat. Thus the sequence (3.6) is exact. Since this holds for every H ∈ F

we have that the sequence (3.5) of OFG-modules is exact. �

7. Restriction with IK and Preservation of Projectives

Let G be a group and F a family of subgroups of G. Let K be a subgroup

of G such that ∅ 6= F ∩K ⊂ F. Lemma 3.25 states that restriction with IK
preserves free left Bredon modules. It turns out that restriction with IK

preserves free right Bredon modules, too. However, we get a different answer

to how the restricted free right Bredon modules look like. The following

statements together with their proofs are due to Martínez-Pérez [MP02,

p. 167].

Lemma 3.27. Let F be a family of subgroups of G and let K be a subgroup

of G such that F ∩K 6= ∅. Then for any H ∈ F and any complete set R of

representatives for the double cosets K\G/H we have an isomorphism

η: Z[IK(?), G/H]G →
∐
x∈R

Z[?,K/(K ∩Hx−1
)]K

of right OF∩KK-modules. In particular if F ∩K ⊂ F then Z[IK(?), G/H]G

is a free right OF∩KK-module.
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Proof. Since F∩K 6= ∅ the category of right OF∩KK-modules is defined

and the claim of the lemma makes sense.

Let L ∈ F∩K and let fg,L,H ∈ [G/L,K/H]G. Then there exists a unique

x ∈ R such that we can write g = yxh for some y ∈ K and h ∈ H. Since g is

uniquely determined by f , up to right multiplication by an element of H, it

follows that x is uniquely determined by f . Assume that we have y1 ∈ K and

h1 ∈ H such that yxh = y1xh1. Then y−1
1 y = xh1h

−1x−1 ∈ Hx−1 and since

y−1
1 y ∈ K we get even that y and y1 lie in the same left coset of K ∩Hx−1

in K. Furthermore from Lyxh = Lg ≤ H follows that Ly ≤ Hh−1x−1
= Hx−1 .

Since L ≤ K and y ∈ K we get Ly ≤ Ky = K and thus altogether that

Ly ≤ K ∩Hx−1 . Hence f
y,L,K∩Hx−1 ∈ [K/L,K/(K ∩Hx−1

)]K and we obtain

a well defined map

ηL: Z[G/L,G/H]G →
∐
x∈R

Z[K/L,K/(K ∩Hx−1
)]K

by ηL(fyxh,L,G) := f
y,L,K∩Hx−1 ∈ [K/L,K/(K ∩Hx−1

)]K .

It follows that the above defined map is bijective. By chasing generators

around the usual diagrams it follows that the collection {ηL : L ∈ F ∩ L} of
maps defines an isomorphism η of right OF∩KK-modules as required in the

statement of the lemma.

Let H ∈ F. Since F is closed under conjugation Hx−1 ∈ F and thus

K ∩Hx−1 ∈ F ∩Hx−1 . Therefore all the summands of the codomain of η

are free right OF∩KK-modules and therefore the domain of η must be a free

OF∩KK-module, too. �

Proposition 3.28. [MP02, Lemma 3.7] Let F be a family of subgroups of G.

Let K ≤ G be some subgroup of G such that F∩K is a non-empty subset of F.

Then restriction with IK preserves free Bredon modules and consequently also

projective Bredon modules.

Proof. The first statement is Lemma 3.27 (for right Bredon modules)

and 3.25 (for left Bredon modules). The statement about projective right

Bredon modules follows from the first statement since restriction is an additive

functor. �
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8. Shapiro’s Lemma in the Bredon Setting

Proposition 3.29. Let F be a family of subgroups of G and let K be a

subgroup of G such that F ∩K is a non-empty subset of F. Then

(1) For any right OFG-module M and any right OF∩KK-module N we

have

Ext∗F∩K(resIK M,N) ∼= Ext∗F(M, coindIK N);

(2) For any right OFG-module M and any left OF∩KK-module N we

have

TorF∩K∗ (resIK M,N) ∼= TorF∗(M, indIK N).

In both cases the isomorphism is natural in both M and N .

Proof. From a projective resolution

. . .→ P2 → P1 → P0 →M → 0

of the OFG-module M we obtain a sequence

. . .→ resIK P2 → resIK P1 → resIK P0 → resIK M → 0

of OF∩KK-modules. This sequence is exact (since restriction preserves exact-

ness) and each resIK Pi is prjective by Proposition 3.28.

Now consider the first case, that is M is a right OFG-module and N is a

right OF∩KK-module. Then

ExtnF∩K(M,N) = Hn(morF∩K(resIK P∗, N)) ∼=

Hn(morF(P∗, coindIK N)) = ExtnF(M, coindIK N)

for any n ∈ N. Here the middle isomorphism is due to the fact that the

restriction functor resIK is left adjoint to coinduction functor coindIK . In

particular the isomorphism is natural in M and N . This proves the first

isomorphism of the statement of the proposition.

Consider the second part of the statement. That is, M is a right OFG-

module and N is a left OF∩KK-module. Then we have for any n ∈ N natural
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isomorphisms

resIK Pn(??)⊗F∩K N(??) ∼=
(
Pn(?)⊗F Z[IK(??), ?]G

)
⊗F∩K N(??)

∼= Pn(?)⊗F

(
Z[IK(??), ?]G⊗F∩K N(??)

)
∼= Pn(?)⊗F indIK N(?),

where the middle isomorphism is due to the fact that the categorical tensor

product is associative [MP02, p. 163]. Using this we obtain

TorF∩Kn (M,N) = Hn(resIK P∗⊗F∩K N) ∼=

Hn(P∗⊗F indIK N) = TorFn(M, indIK N)

which again is natural in both M and N . �

Corollary 3.30. Let F be a family of subgroups of G. Furthermore, let K be

a subgroup of G such that ∅ 6= F∩K ⊂ F. Then restriction with IK preserves

flat right Bredon modules.

Proof. Let M be a flat right OFG-module. Then

TorF∩K1 (resIK M,N) ∼= TorF1(M, indIK N) = 0

for any left OF∩KK-module N . Therefore resIK M is flat. �

Proposition 3.31 (Shapiro’s Lemma). Let F be a family of subgroups of G

and let K be a subgroup of G such that F ∩K is a non-empty subset of F.

Then for any right OF∩KK-module M and any left OF∩KK-module N , there

exist isomorphisms

H∗F∩K(K;M) ∼= H∗F(G; coindIK M)

and

HF∩K
∗ (K;N) ∼= HF

∗ (G; indIK N)

which are natural in M and N .

Proof. Note that resIK ZF
∼= ZF∩K . Then Proposition 3.29 says that

we have isomorphisms, natural in M and N , such that

H∗F∩K(K;M) = Ext∗F∩K(ZF∩K ,M) ∼= Ext∗F(ZF, coindIK M) = H∗F(G;M)

and likewise

HF∩K
∗ (K;N) = TorF∩K∗ (ZF∩K , N) ∼= TorF∗(ZF, indIK N) = HF

∗ (G;N). �
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9. Bredon Dimensions for Subgroups

The following results about the dimension of subgroups are generalisations

of the corresponding results in classical (co-)homology of groups. The proofs

for the classical statements work without structural modifications.

Proposition 3.32. Let G be a group and F a family of subgroups of G. Then

for any subgroup K of G such that F∩K is a non-empty subset of F we have

inequalities

cdF∩K K ≤ cdFG and hdF∩K K ≤ hdFG.

Proof. Since restriction is exact in general and since restriction with IK
preservers projectives (Proposition 3.28) we get from a projective resolution

0→ Pn → . . .→ P1 → P0 → ZF → 0,

where n = cdFG, a projective resolution

0→ resIK Pn → . . .→ resIK P1 → resIK P0 → resIK ZF → 0.

Now the first claim follows from resIK ZF = ZF∩K .

Similarly, since restriction with IK preserves flats (Corollary 3.30), one

obtains from a flat resolution

0→ Qm → . . .→ Q1 → Q0 → ZF → 0

with m = hdFG a flat resolution of the trivial OF∩KK-module of length m.

Therefore the second statement is true, too. �

Note that if F is a family of subgroups of G and if we are given a chain

of subgroups H ≤ K ≤ G such that ∅ 6= F ∩H ⊂ F ∩K ⊂ F, then we get

the inequalities

cdF∩H H ≤ cdF∩K K ≤ cdFG

and

hdF∩H H ≤ hdF∩K K ≤ hdFG

as in the case of classical group (co-)homology. In particular, if F is a full

family of subgroups of G then we get the above inequalities for any chain of

subgroups H ≤ K ≤ G.

For the geometric Bredon dimension we have the analogous result to

Proposition 3.32.
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Proposition 3.33. Let G be a group and let F be a full family of subgroups

of G. Then for any subgroup K of G we have that

gdF∩K K ≤ gdFG.

Proof. The proof is standard. First of all observe that F ∩K is a full

family of subgroups of K, since F is a full family of subgroups of G. Thus

the geometric dimension gdF∩K K is defined. In order to avoid triviality,

assume that n := gdFG is finite. Then there exists an n-dimensional model

X for EFG which is also a K-space when restricting the action of G to K.

Since F is closed under taking subgroups, it follows that F ∩K ⊂ F and as a

consequence X is an n-dimensional model for EF∩KK. Thus gdF∩K K ≤ n
and the proposition follows. �

As before, if F is satisfies the conditions of Proposition 3.33 then so does

F ∩K and we get for any subgroup H of K the sequence of inequalities

gdF∩H H ≤ gdF∩K K ≤ gdFG

as in the case of classical group (co-)homology.

10. (Co-)Homological Dimension when Passing to Larger

Families of Subgroups

In this section we consider the following setup: Let (G,F) be a pair

of families of subgroups of G and we denote by I the inclusion functor

I: OFG ↪→ OGG of the corresponding orbit categories.

Proposition 3.34. (1) If there exists a k ∈ N such that pdF(resI P ) ≤
k for every projective OGG-module P then

cdFG ≤ cdGG+ k.

(2) If there exists a k ∈ N such that fldF(resI Q) ≤ k for every flat

OGG-module Q then

hdFG ≤ hdGG+ k.

To prove this proposition we need the following standard result from

homological algebra.

Lemma 3.35. Assume that we have a resolution

0→ Xn → . . .→ X0 →M → 0

58



of the OFG-module M . If there exists a k ∈ N such that pdFXi ≤ k for all

0 ≤ i ≤ n, then pdFM ≤ n+ k. Similarly, if there exists a k ∈ N such that

fldFXi ≤ k for all 0 ≤ i ≤ n, then fldFM ≤ n+ k.

Proof. We prove the first claim by induction on n. If n = 0 then

X0
∼= M and pdFM = pdFX0 ≤ k and we are done.

Thus assume that n′ ≥ 1 and that the statement of the lemma is true for

n ≤ n′ − 1. Then we have a short exact sequence

0→ Xn′ → Xn′−1 → im dn′ → 0

with pdFXn′ ≤ k and pdFXn′−1 ≤ k. Then a standard argument in homolog-

ical algebra, see for example [Wei94, p. 95], implies that pdF(im dn′) ≤ k+ 1.

Since im dn′ = ker dn′−1 we get a resolution

0→ ker dn′−1 → Xn′−2 → . . .→ X0 →M → 0

of M by OFG-modules of projective dimension at most k+ 1. This resolution

has length n′ − 1 and we can apply the induction hypothesis. It follows that

pdFM ≤ (n′ − 1) + (k + 1) = n′ + k. Therefore the statement of the lemma

is also true in the case n = n′.

Finally, the remaining statement of the lemma for the flat dimension

of M is verified in exactly the same way. �

Proof of Proposition 3.34. We prove the cohomological statement

first: In order to avoid triviality assume that n := cdGG is finite. Then there

exists a projective resolution

0→ Pn → . . .→ P0 → ZG → 0

of length n of the trivial OGG-module ZG. Applying the restriction functor

resI to this sequence yields a sequence

0→ resI Pn → . . .→ resI P0 → ZF → 0

of OFG-modules that is exact, since restriction preserves exactness in general.

By assumption pdF(resI Pi) ≤ k for all 0 ≤ i ≤ n and so the first claim of

the proposition follows now from Lemma 3.35.

Now the homological statement is proven in exactly the same way and

this concludes the proof. �
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The following result gives a upper bound for the dimensions pdF(resI P ),

which appear in first part of Proposition 3.34, in terms of Bredon cohomolog-

ical dimensions of the subgroups in G.

Proposition 3.36. Assume that F∩K is a non-empty subset of F for every

K ∈ G. Then the following two statements are true:

(1) If there exists a k ∈ N such that cdF∩K K ≤ k for every K ∈ G then

pdF(resI P ) ≤ k

for every projective OGG-module P .

(2) Assume further that F is a full family of subgroups of G. If there

exists a k ∈ N such that hdF∩K K ≤ k for every K ∈ G then

fldF(resI P ) ≤ k

for every projective OGG-module P .

Proof. Since restriction is an additive functor it is enough to carry

out the proof for projective OGG-modules of the form P = Z[?, G/K]G for

K ∈ G.

We prove the cohomological statement first. By assumption cdF∩K K ≤ k
and therefore there exists a projective resolution

0→ Pk → . . .→ P0 → ZF∩K → 0

of the trivial OF∩KK-module ZF∩K . Since F ∩K is a non-empty subset of

F, the inclusion functor IK : OF∩KK → F is defined. We have by Propo-

sition 3.26 that induction with IK is exact. Therefore we get an exact

sequence

0→ indIK Pk → . . .→ indIK P0 → indIK ZF∩K → 0.

Induction preserves projectives and thus we have obtained a projective resolu-

tion of the OFG-module indIK ZF∩K of length k. By Lemma 2.7 in [Sym05,

p. 268] we have that Z[?, G/K]G ∼= indIK ZF∩K as OFG-modules. On the

other hand we have the equality Z[?, G/K]G = resI P of OFG-modules and

therefore pdF(resI P ) ≤ k.

Next consider the assumptions of the homological statement of the propo-

sition. Since hdF∩K K ≤ k we have a flat resolution

0→ Qk → . . .→ Q0 → ZF∩K → 0
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of the trivial OFG-module ZF. As before we can apply the induction functor

IK to obtain an exact sequence

0→ indIK Qk → . . .→ indIK Q0 → Z[?, G/K]G → 0.

Since F is assumed to be a full family of subgroups of G if follows that F∩K is

a full family of subgroups ofK. It follows from Proposition 1.34 that induction

preserves flats and hence the above resolution is a flat resolution of Z[?, G/K]G

of length k. Now the claim follows from the fact Z[?, G/K]G = resI(P ). �

The next two theorems are the algebraic counterparts to Proposition 5.1 (i)

in [LW07].

Theorem 3.37. Let (G,F) be a pair of families of subgroups of G. Assume

that F ∩K is a non-empty subset of F for every K ∈ G. If there exists a

k ∈ N such that cdF∩K K ≤ k for every K ∈ G, then

cdFG ≤ cdGG+ k.

Proof. This is an immediate consequence of Proposition 3.34 and Propo-

sition 3.36. �

Theorem 3.38. Let (G,F) be a pair of families of subgroups of G. Assume

that F is a full family. If there exists a k ∈ N such that hdF∩K K ≤ k for

every K ∈ G, then

hdFG ≤ hdGG+ k.

Proof. Let Q be a flat OGG-module. By Proposition 1.29 we have that

Q is the filtered colimit of finitely generated free OGG-modules Qλ. Since

Mod-OGG is an AB5–category with enough projectives, and ?⊗FB is a left

adjoint for any left OFG-module, we have by Corollary 2.6.16 in [Wei94,

p. 58] that

TorFk+1(lim−→ resI Qλ, B) ∼= lim−→TorFk+1(resI Qλ, B) (∗)

for any left OFG-module B. By Proposition 3.36, part (2), it follows that

fldF(resI Qλ) ≤ k. Therefore TorFk+1(resI Qλ, B) = 0 for every λ and thus

the right hand side of (∗) is equal to 0, too. Hence we get that

TorFk+1(resI Q,B) ∼= TorFk+1(lim−→ resI Qλ, B) = 0
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for any left OFG module B since the restriction functor commutes with

colimits. But this implies that fldF(resI Q) ≤ k. Since Q was an arbitrary flat

OGG-module, we can apply Proposition 3.34 to get hdFG ≤ hdGG+ k. �

The following example is the algebraic equivalent to the first part of

Corollary 5.4 in [LW07, p. 18].

Example 3.39. Consider the pair (Fvc(G),Ffin(G)) of subgroups of G. The

family Ffin(G) is closed under conjugation. For any K ∈ Fvc(G) we have

that Ffin(G) ∩ K is a non-empty subset of Ffin(G) and it is known that

hdK ≤ 1 and cdK ≤ 1, see for example [LW07, p. 22]. Hence we have by

Theorem 3.38 and Theorem 3.37 the two inequalities

hdG ≤ hdG+ 1 and cdG ≤ cdG+ 1.

11. (Co-)Homological Dimension for Direct Unions

This section is motivated by Theorem 4.2 in [Nuc04, pp. 42f.]. In this

theorem upper bounds for the Bredon (co-)homological dimension for direct

unions of groups are given for the family of finite subgroups. The proof given

by Nucinkis extends to a more general setting.

A direct union of groups is a special case of direct limits of groups, a

constructive description for the latter can for example be found in [Rob96,

pp. 22ff.].

Definition 3.40. Let {Gλ : λ ∈ Λ} be a family of subgroups of a group G,

indexed by an abstract indexing set Λ. We say that G is the direct union of

the groups Gλ if the following two conditions hold:

(1) for every λ, µ ∈ Λ there exists a ν ∈ Λ such that Gλ ≤ Gν and

Gµ ≤ Gν ;
(2) for every g ∈ G there exists a λ ∈ Λ such that g ∈ Gλ.

Note that we can recover G from this definition as a direct limit of the

subgroups Gλ in the sense of [Rob96, pp. 22ff.] as follows. We define a

relation “≤” on Λ by

λ ≤ µ :⇐⇒ Gλ ≤ Gµ.
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In this way Λ becomes a directed set. Whenever Gλ ≤ Gµ there exists an

inclusion map ϕµλ: Gλ → Gµ. It is clear that

{Gλ, ϕµλ : λ, µ ∈ Λ and λ ≤ µ}

forms a directed system of groups and that the obvious inclusion homomor-

phisms ıλ: Gλ ↪→ G give an isomorphism

ı: lim−→Gλ → G.

We use this isomorphism to identify the direct limit lim−→Gλ with G.

Definition 3.41. Let G be the direct union of a family {Gλ} of its subgroups
indexed by the set Λ. Assume that we are given a family F of subgroups of

G and for each λ ∈ Λ a family Fλ of subgroups of Gλ. We say that these

families of subgroups are compatible with the direct union if the following

four conditions are satisfied:

(1) Fλ ⊂ Fµ for every λ, µ ∈ Λ with λ ≤ µ,
(2) Fλ ⊂ F for every λ ∈ Λ,

(3) F ⊂
⋃
λ∈Λ Fλ,

(4) Fλ = F ∩Gλ for all λ ∈ F.

The main result of this section will be a generalised version of Theorem 4.2

in [Nuc04]:

Theorem 3.42. Assume that a group G is the direct union of a family

{Gλ : λ ∈ Λ} of its subgroups. Assume that we are given full families F and

Fλ, λ ∈ Λ, which are all non-empty and that are compatible with the direct

union. Then

(1) hdFG ≤ sup{hdFλ Gλ} in general, and

(2) cdFG ≤ sup{cdFλ Gλ}+ 1 if the index set Λ is countable.

Note that due to Proposition 3.32 we always have the inequalities

sup{hdFλ Gλ} ≤ hdFG and sup{cdFλ Gλ} ≤ cdFG.

In particular the inequality for the homological dimension in Theorem 3.42 is

always an equality.

Before we prove the above theorem let us first give a criterion for the

families F and Fλ, λ ∈ Λ, to be compatible with the direct union.
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Proposition 3.43. Let G be the direct union of a family {Gλ : λ ∈ Λ} of its
subgroups. Let F be a family of subgroups of G and Fλ families of subgroups

of Gλ. Assume that F is closed under forming subgroups, every K ∈ F is

finitely generated and Fλ = F ∩ Gλ for every λ ∈ Λ. Then the families of

subgroups F and Fλ, λ ∈ Λ, are compatible with the direct union.

Proof. Condition (4) of Definition 3.41 is satisfied by assumption. Since

F is closed under forming subgroups condition (2) is satisfied. If λ ≤ µ

then Gλ ≤ Gµ and it follows that Fλ ⊂ Fµ. Hence condition (1) is satisfied.

Now let K ∈ F be an arbitrary group. Then there exists a finite set of

generators {k1, . . . , kn} of K. For each 1 ≤ i ≤ n there exists a λi ∈ Λ

such that ki ∈ Gλi . So there exists a λ ∈ Λ such that λi ≤ λ for every

1 ≤ i ≤ n. It follows that {k1, . . . , kn} ⊂ Gλ and therefore K ⊂ Gλ. Hence

K ∈ F ∩Gλ = Fλ and condition (3) is satisfied. �

Corollary 3.44. The families Ffin(G) and Ffin(Gλ) are compatible with the

direct union. Likewise the families Fvc(G) and Fvc(Gλ) are compatible with

the direct union. �

Note that from the first case of the Corollary 3.44 and together with

Theorem 3.42 we recover Theorem 4.2 in [Nuc04].

Before proving Theorem 3.42 we require some auxiliary results.

First of all, if ∅ 6= F∩K ⊂ F then we can extend the functor IK : OF∩KK →
OFG (see Section 6) to K-sets X with F(X) ⊂ F ∩K by applying it to each

orbit seperately. That is, if X =
∐
x∈RK/Kx where R is a complete system

of representatives for the K-orbits of X, then

IK(X) :=
∐
x∈R

G/Kx.

The set IK(X) is then a G-set with F(IK(X)) = F(X) ⊂ F ∩K ⊂ F.

Lemma 3.45. Let K ≤ G be a subgroup such that F ∩K is a non-empty

subset of F. Then

indIK Z[?, X]G ∼= Z[?, IK(X)]G

for any K-set X with F(X) ⊂ F ∩K.
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Proof. Let R be a complete set of representatives of the orbit space

X/K. Then we have the following sequence of isomorphisms of OFG-modules.

indIK Z[?, X]G ∼=
∐
x∈R

indIK Z[?,K/Kx]K

∼=
∐
x∈R

(
Z[??,K/Kx]K ⊗F∩K Z[?, IK(??)]G

)
∼=
∐
x∈R

Z[?, IK(K/Kx)]G

∼=
∐
x∈R

Z[?, G/Kx]G

∼= Z[?, IK(X)]G �

Lemma 3.46. Consider the direct limiting system

{Z[?, G/Gλ]G, ϕ
µ
λ : λ, µ ∈ Λ and λ ≤ µ}

directed by Λ where the morhpisms ϕµλ: Z[?, G/Gλ]G → Z[?, G/Gµ]G are

induced by the projections G/Gλ → G/Gµ. Then

lim−→Z[?, G/Gλ]G ∼= ZF.

Proof. For each λ ∈ Λ we have a homomorphism

ηλ: Z[?, G/Gλ]G → Z[?, G/G]G = ZF

induced by the projection pλG/Gλ → G/G. Clearly ηµ = ϕµλ ◦ ηλ for all

λ ≤ µ. Thus the ηλ define a homomorphism

η: lim−→Z[?, G/Gλ]G → ZF

We need to show that

ηH : lim−→Z[G/GHλ ]→ Z

is an isomorphism for every H ∈ F. Since the functor Z[?]: Set → Ab

commutes with arbitrary colimits it is enough to show that lim−→(G/Gλ)H =

(G/G)H = G/G where the last equality is due to the trivial action of H on

the singleton set G/G.

We verify this by showing that G/G satisfies the universal property of

a colimit. Therefore assume that we are given a set X and a collection of

maps fλ: G/Gλ → X such that fλ = fµ ◦ ϕµλ for all λ ≤ µ.
First of all, observe that each fλ is a constant function. To see this,

observe that if g ∈ G there exists µ ∈ Λ such that g ∈ Gµ and Gλ ≤ Gµ.

65



Then

fλ(gGλ) = fµ(ϕµλ(gGλ)) = fµ(Gµ) = fµ(ϕµλ(Gλ)) = fλ(Gλ)

which is independent of the choice of g ∈ G. Furthermore, the value fλ(Gλ)

is independent of λ. This is because given any λ1, λ2 ∈ Λ there exists a µ

such that Gλ1 ≤ Gµ and Gλ2 ≤ Gµ. Then

fλ1(Gλ1) = fµ(ϕµλ1
(Gλ1)) = fµ(Gµ) = fµ(ϕµλ2

(Gλ2)) = fλ2(Gλ2).

Now it follows that there exists a function f : G/G → X such that

fλ = f ◦ ϕλ for all λ ∈ Λ and that this function must be unique. Thus G/G

has the universal property of a colimit and this concludes the proof. �

Proof of Theorem 3.42. The main part of the proof consists of con-

structing a free resolution of the trivial OFG-module ZF using the standard

resolutions of the trivial OFλGλ-modules ZFλ
for λ ∈ Λ.

For every λ ∈ Λ let

. . . −→ Fλ,2
dλ,2−→ Fλ,1

dλ,1−→ Fλ,0
ελ−→ Zλ −→ 0 (3.7)

be the sequence of OFG-modules obtained from the standard resolution (3.2)

of the trivial OFλGλ-module ZFλ
by applying the functor indIGλ . Induction

by IGλ is exact and thus the sequence (3.7) is exact. From the construction

of the standard resolution and from Lemma 3.45 we know that

Fλ,n ∼= Z[?, IGλ(∆λ,n)]G.

Furthermore Zλ ∼= Z[?, G/Gλ]G.

Observe that

IGλ(∆λ,n) = {(g0K0, . . . , gnKn) : gi ∈ G and Ki ∈ Fλ}.

In particular for any λ ≤ µ we have Fλ ⊂ Fµ and therefore IGλ(∆λ,n) ⊂
IGµ(∆µ,n). We denote the this inclusion by ϕµλ. Clearly this inclusion is

G-equivariant. Therefore we get a morphism

ϕµλ: Fλ,n → Fµ,n

of right OFG-modules. The collection {Fλ,n, ϕµλ : λ, µ ∈ Λ and λ ≤ µ} forms

a direct limiting system directed by Λ. For each n ∈ N we denote its limit

by Fn.

Similarly, for any λ ≤ µ there exists a unique G-map ϕ: G/Gλ → G/Gµ

which sends Gλ to Gµ. These G-maps give rise to morphisms ϕµλ: Zλ → Zµ.
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It follows that the collection {Zλ, ϕµλ : λ, µ ∈ Λ and λ ≤ µ} forms a direct

limiting system directed by Λ. We denote its limit by Z.

It follows that for every λ ≤ µ and n ≥ 1 we have that the diagrams

Fλ,n Fλ,n−1

Fµ,n Fµ,n−1

-
dλ,n

?

ϕµλ

?

ϕµλ

-
dµ,n

and

Fλ,0 Zλ

Fµ,0 Zµ

-ελ

?

ϕµλ

?

ϕµλ

-
εµ

commute. Therefore we obtain a sequence

. . . −→ F2
d2−→ F1

d1−→ F0
ε−→ Z −→ 0. (3.8)

This sequence is exact, since direct limits preserve exactness.

It follows that the collection {IGλ(∆λ,n), ϕµλ and λ ≤ µ} of G-sets is a

direct limiting system directed by Λ. Its limit is

∆n := {(g0K0, . . . , gnKn) : gi ∈ G and K ∈ F}

and this G-set is actually the direct union of the IGλ(∆λ,n). As a consequence

Fn ∼= Z[?,∆n]G by Proposition 1.20. Furthermore, it follows that Z ∼= ZF by

Lemma 3.46. Thus the sequence (3.8) is nothing else but the free standard

resolution of the trivial OFG-module ZF. We are now ready to prove the two

claims of the theorem:

We first show that

hdFG ≤ sup{hdFλ Gλ}.

In order to avoid triviality we assume that n := sup{hdFλ Gλ} is finite. From
the resolution (3.8) of the trivial OFG-module we obtain the resolution

0→ K → Fn−1 → . . .→ F0 → ZF → 0 (3.9)

where K is the (n− 1)-th kernel of the resolution (3.8). We claim that K is

flat. Since direct limits and induction with IGλ are exact, it follows that

K ∼= lim−→(indIGλ Kλ)

where the Kλ are the (n− 1)-th kernels of the free standard resolution of the

trivial OFλGλ-modules ZFλ
. But these are flat because hdFλ Gλ ≤ n. Since

the functor indIGλ preserves flats we have that K is the direct limit of flats
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and hence is flat as well. Therefore (3.9) is a flat resolution of the trivial

OFG-module ZF of length n and so hdFG ≤ sup{hdFλ Gλ}.

Next, we assume that the set Λ is countable and we want to verify the

second claim of the theorem, that

cdFG ≤ sup{cdFλ Gλ}+ 1.

Again, in order to avoid triviality we assume that n := sup{cdFλ Gλ} is finite.
As before, let K be the (n − 1)-th kernel of the standard resolution (3.8).

Similarly, it follows that K is the direct limit

K ∼= lim−→(indGλ Kλ)

of projectives. Since Λ is assumed to be countable we can apply Lemma 3.4

in [Nuc04, p. 40]. This lemma states that the limit of a countable directed

system of projective right OFG-modules has projective dimension at most 1.

Hence pdFK = 1 and there exists a projective resolution

0→ P1 → P0 → K → 0

of K. We can splice this sequence together with (3.9) to get a projective

resolution

0→ P1 → P0 → Fn → . . .→ F0 → ZF → 0

of the trivial OFG-module ZF. Hence cdFG ≤ sup{cdFλ Gλ}+ 1. �

Proposition 3.47. Let G be a group and F be a full family of finitely gen-

erated subgroups of G. If G is locally F, that is every finitely generated

subgroup of G is contained in the family F, then hdFG = 0. If in addition G

is countable, then cdFG ≤ 1.

Proof. Every group G is the direct union of its finitely generated sub-

groups Gλ. Set Fλ := F ∩ Gλ. By assumption Gλ ∈ F, and so by Proposi-

tion 3.20, ZFλ
is projective and in particular a flat OFλGλ-module, and thus

cdFGλ = hdFGλ = 0. Since F is closed under forming subgroups, we have

that the families F and Fλ are compatible with the limit by Proposition 3.43.

Now the first part of Theorem 3.42 gives hdFG = 0. If G is countable then F

is countable by Remark 3.15 and thus the second part of Theorem 3.42 gives

the estimation cdFG ≤ 1. �
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Examples of families which satisfy the conditions of Proposition 3.47 are

Ffin(G) and Fvc(G) in case that G is locally finite and Fvc(G) in the case

that G is locally virtually cyclic. Thus we obtain the following corollary to

Proposition 3.47.

Corollary 3.48. Assume that G is a locally finite group. Then hdG = 0

in general and if in addition G is countable then cdG ≤ 1. Similarly, if G

is locally virtually cyclic then hdG = 0 in general, and if in addition G is

countable, then cdG ≤ 1. �

12. Tensor Product of Projective Resolutions

Let G and H be groups and f : G→ H a group homomorphisms. Assume

that we are given families F and G of subgroups of G and H respectively,

such that f(F) ⊂ G.

Then we can construct a functor f : OFG→ OGH as follows. Given an

object G/K in OFG we set f(G/K) := H/f(K) which is an object of OGH.

If ϕ: G/K → G/L is a morphism in OFG which maps K → gL, g ∈ G, then

Kg ≤ L and therefore

f(K)f(g) = f(Kg) ≤ f(L).

Hence there exists a unique H-map f(G/K)→ f(G/L) which maps the coset

f(K) to the coset f(g)f(L). We denote this H-map by f(ϕ). This way we

get a map f : mor(G/K,G/L)→ mor(f(G/K), f(G/L)) for each pair G/K,

G/L of objects in OFG.

Lemma 3.49. The above construction gives a functor f : OFG→ OGH.

Proof. If id is the identity on G/K, that is id = ϕe,K,K , then

f(id) = f(ϕe,K,K) = ϕf(e),f(K),f(K) = ϕe,f(K),f(K) = id

is the identity on f(G/K).

Assume we are given two morphisms ϕg1,K1,K2 and ϕg2,K2,K3 in OFG,

then we know that

ϕg2,K2,K3 ◦ ϕg1,K1,K2 = ϕg2g1,K1,K3 .
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Therefore

f(ϕg2,K2,K3 ◦ ϕg1,K1,K3) = f(ϕg2g1,K1,K3) = ϕf(g2g1),f(K1),f(K3)

= ϕf(g2)f(g1),f(K1),f(K3) = ϕf(g1),f(K1),f(K2) ◦ ϕf(g2,f(K2),f(K3). �

We apply the above result to the following setting. Given two groups

G1 and G2 we consider the group G := G1 ×G2. Assume we are given two

semi-full families of subgroups F1 and F2 of G1 and G2 respectively. The

natural choice for a family F of subgroups of G is the cartesian product of

the families F1 and F2. Recall that by definition this family is

F1 × F2 = {H1 ×H2 : H1 ∈ F1 and H2 ∈ F2},

see Section 1 in Chapter 1. The projection homomorphisms pi: G → Gi

satisfy pi(F) = Fi. Therefore we obtain projection functors

pi: OFG→ OFiGi

Given right OFiGi-modules Mi, i = 1, 2, we can now form a tensor product

of these modules over Z as follows. Applying the restriction functor respi to

Mi we obtain a OFG-module respiMi and we can form the OFG-module

resp1 M1 ⊗ resp2 M2.

Essentially this module is the tensor product of M1 and M2 with the orbit

category OF1G1 acting on the first factor and the orbit category OF2G2

acting on the second factor of the tensor product. This construction is the

generalisation of the classical construction of the tensor product M1 ⊗M2 of

a G1-module M1 and a G2-module M2 with G1 acting on the first factor and

G2 acting on the second factor. This in turn makes M1 ⊗M2 a G-module.

Lemma 3.50. For i = 1, 2 we have the equality respi ZFi = ZF.

Proof. Given a H = H1 ×H2 ∈ F we have

(respi ZFi)(G/H) = ZFi(Gi/Hi) = Z = ZF(G/H),

and similarly if ϕ is a morphism in OFG, then

(respi ZFi)(ϕ) = (ZFi ◦ pi)(ϕ) = id = ZF(ϕ). �

Corollary 3.51. Let Mi be an OFiGi-module, i = 1, 2. Then

resp1 M1 ⊗ resp2 ZF2
= resp1 M1 and resp1 ZF1

⊗ resp2 M2 = resp2 M2.
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In particular we have the equality resp1 ZF1
⊗ resp2 ZF2

= ZF. �

Lemma 3.52. Let Fi = Z[?, Xi]Gi be free right OFiGi-modules, i = 1, 2.

Then resp1 F1 ⊗ resp2 F2 is the free right OFG-module Z[?, X]G with the diag-

onal action of G = G1 ×G2 on X := X1 ×X2.

Proof. For each H = H1 ×H2 ∈ F we have

(resp1 F1 ⊗ resp2 F2)(G/H) = Z[G1/H1, X1]G1 ⊗ Z[G2/H2, X2]G2

= Z
[
[G1/H1, X1]G1 × Z[G2/H2, X2]G2

]
∼= Z[G/H,X]G

and this isomorphism is given by

ψ1 ⊗ ψ2 7→ ψ

where ϕ: G/H → X is the G-map given by

H 7→
(
ψ1(H1), ψ2(H2)

)
.

Denote this isomorphism by ηH . We claim that these isomorphisms form

isomorphism

η: Z[?, X1]G1 ⊗ Z[?, X2]G2 → Z[?, X]G

of OFG-modules. This can be verified by a straightforward diagram chase as

follows.

Let H = H1 ×H2,K = K1 ×K2 ∈ F and ϕ = (ϕ1, ϕ2) ∈ [G/H,G/K]G.

Furthermore, let ψ1⊗ψ2 a basis element of Z[G1/K1, X1]G1⊗Z[G2/K2, X2]G2 .

Then

(ηH ◦ ϕ∗)(ψ1 ⊗ ψ2) = ηH((ψ1 ⊗ ψ2) ◦ ϕ)

= ηH((ψ1 ◦ ϕ1)⊗ (ψ2 ◦ ϕ2))

= (ψ1 ◦ ϕ1, ψ2 ◦ ϕ2)

= ϕ∗(ψ1, ψ2)

= (ϕ∗ ◦ ηK)(ψ1 ⊗ ψ2).

Therefore the ηG/H form an homomorphism of right OFG-modules and since

each ηG/H is an isomorphism the homomorphism η is an isomorphism, too. �

Corollary 3.53. Let Pi be projective right OFiGi-modules, i = 1, 2. Then

resp1 P1 ⊗ resp2 P2 is a projective OFG-module.
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Proof. Since Pi is projective it is a direct summand of a free OFiGi-

module Fi, say Fi = Pi⊕Qi for some projective Qi. Since restriction and the

tensor product over Z are additive functors we get by the previous lemma

that

resp1 F1 ⊗ resp2 F2 = (resp1 P1 ⊗ resp2 P2)⊕ (resp1 P1 ⊗ resp2 Q2)

⊕ (resp1 Q1 ⊗ resp2 P2)⊕ (resp1 Q1 ⊗ resp2 Q2)

is a free OFG-module. Therefore resp1 P1 ⊗ resp2 P2 is a direct summand of a

free OFG-module and thus projective. �

Lemma 3.54. Let Fi = Z[?, Xi]Gi be a free right OFiGi-modules, i = 1, 2.

Then respi Fi is a free right OFG-module.

Proof. This follows essentially from the observation that

respi Z[?, Xi]Gi = Z[?, Xi]Gi ,

where the Gi set Xi on the right hand side of the equation is seen as a G-set

by gx := pi(g)x. �

Corollary 3.55. Let Pi be a projective right OFiGi-module. Then respi Pi

is a projective OFG-module.

Proof. This follows again from the fact that respi is an additive functor

and hence a direct summand of free OFiGi-modules is mapped to direct

summand of a OFG-module which is free by the previous lemma. �

Let P∗ → ZF1
be a resolution of right OF1G1-modules and let Q∗ → ZF2

be a resolution of right OF2G2-modules. Then we can form the double

complex

Cp,q := resp1 Pp ⊗ resp2 Qq (3.10)

of right OFG-modules where p, q ∈ N. Taking the total complex of this double

complex gives the chain complex

. . .→ C3 → C2 → C1 → C0.

Denote the epimorphisms P0 → ZF1
and Q0 → ZF2

by ε1 and ε2. Then we

obtain a morphism ε := resp1 ε1 ⊗ resp2 ε2 from C0 onto resp1 ZF1
⊗ resp2 ZF2

.
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Proposition 3.56. Let P∗ → ZF1
and Q∗ → ZF2

be free (projective) resolu-

tions. Then

. . .→ C2 → C1 → C0
ε→ ZF → 0 (3.11)

is a free (projective) resolution of the trivial OFG-module ZF.

Proof. It follows straight from Lemma 3.52 (Corollary 3.53) that the

OFG-modules Ci are free (projective). The domain of ε is by construction C0

and its codomain is ZF by Corollary 3.51. Thus it remains to show that the

sequence (3.11) is exact. For this we need to show that (3.11) evaluated at

any object G/H of the orbit category OFG is exact.

Therefore let H = H1×H2 ∈ F. Set P ′∗ := P∗(G1/H1) = (resp1 P∗)(G/H)

and Q′∗ := Q∗(G2/H2) = (resp2 Q∗)(G/H). Since restriction is an exact

functor we obtain two exact resolutions P ′∗
ε′1→ Z and Q′∗

ε′2→ Z of abelian

groups with ε′i := (respi εi)H . Since Pk is projective it is a direct summand

of a free OF1G1-module Fk. By definition Fk(G1/H1) is a free abelian group.

Since colimits are calculated componentwise it follows that Pk(G1/H1) is

a direct summand of Fk(G1/H1) and hence a free abelian group. Thus

P ′∗ → Z is a free resolution of Z and likewise is Q′∗ → Z. Let C ′∗ be the total

complex of the double complex P ′∗ ⊗Q′∗. It follows that this complex gives

a free resolution of Z where the augmentation map ε′: C ′0 → Z is given by

ε′ := ε′1 ⊗ ε′2, see for example [Bro82, p. 107]. We claim that this resolution

of Z is identical with the resolution obtained from evaluating

. . .→ C2 → C1 → C0 → ZF → 0

at G/H. This claim is verified by straightforward calculation as follows.

First, for any n ∈ N we have

Cn(G/H) =
n∐
k=0

Ck,n−k(G/H)

=
n∐
k=0

(resp1 Pk)(G/H)⊗ (resp2 Qn−k)(G/H) (3.12)

=
n∐
k=0

P ′k ⊗Q′n−k = C ′n

and ZF(G/H) = Z by definition. Hence the sequences agree on objects and

it remains to show that the homomorphisms agree as well.
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For the homomorphism εG/H : C0(G/H) → Z we have the following

sequence of equalities

εH = (resp1 ε1 ⊗ resp2 ε2)H = (resp1 ε1)H ⊗ (resp2 ε2)H = ε′1 ⊗ ε′2 = ε′.

A similar kind of argument shows that, for any n ≥ 1, the differentials

dn,H : Cn(G/H)→ Cn−1(G/H) agree with the differentials d′n: C ′n → C ′n−1

under the identification (3.12). �

Corollary 3.57. If cdF1 G1 ≤ m and cdF2 G2 ≤ n then cdFG ≤ m+ n. �

In order to simplify the notation we set H̃i := pi(H) and H̃ := H̃1 × H̃2

for any subgroup H of G. That is, H̃ is the smallest subgroup of G which

contains H and which is of the form H1 ×H2 with H1 ≤ G1 and H2 ≤ G2.

Lemma 3.58. Let X1 be a G1-set and X2 a G2-set. Consider the set X =

X1 ×X2 with the diagonal G-action given by (g1, g2)(x1, x2) := (g1x1, g2x2).

Then

XH = XH̃ = XH̃1
1 ×XH̃2

2 .

Proof. The second equality is clear by construction of H̃ and X. It

remains to show that the first equality is true. Since H ≤ H̃ we have that

XH̃ ⊂ XH . Thus it remains to show that XH ⊂ XH̃ . Let x = (x1, x2) ∈ XH

and let h = (h1, h2) ∈ H̃. There exist h′1 ∈ H̃1 and h′2 ∈ H̃2 such that

(h1, h
′
2), (h′1, h2) ∈ H. Then (h1x1, h

′
2x2) = (h1, h

′
2)(x1, x2) = (x1, x2) and

likewise (h′1x1, h2x2) = (h′1, h2)(x1, x2) = (x1, x2). Hence (h1, h2)(x1, x2) =

(x1, x2) and this implies that x ∈ XH̃ . �

Recall that given a family F of subgroups of a group G, we defined its

subgroup completion F̄ to be the smallest full family of subgroups of G which

contains F (see Section 1 in Chapter 1).

Lemma 3.59. Assume that F1 and F2 are full families of subgroups. Let X1,

Y1 be G1-sets with stabilisers in F1 and let X2, Y2 be G2-sets with stabilisers

in F2. Consider the sets X := X1 ×X2 and Y := Y1 × Y2 with the diagonal

action of G = G1 ×G2. Then any morphism

f : Z[?, X]G → Z[?, Y ]G

of right OFG-modules can be extended to a morphism of right OF̄G-modules

by fH := fH̃ .
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Proof. Since F1 and F2 are full families of subgroups of G1 and G2 it

follows that H̃ ∈ F for any H ∈ F̄. Furthermore it follows from the previous

lemma that Z[G/H,X]G = Z[G/H̃,X]G and Z[G/H, Y ]G = Z[G/H̃, Y ]G.

Therefore fH is defined for any H ∈ F̄. We need to show that this extension

of f indeed gives a morphism of OF̄G-modules.

Let H,K ∈ F̄ and let ϕ := ϕg,H,K : G/H → G/K be a morphism in OF̄G.

We need to show that the diagram

Z[G/K,X]G Z[G/K, Y ]G

Z[G/H,X]G Z[G/H, Y ]G

-fK

?
ϕ∗

?
ϕ∗

-fH

(3.13)

commutes.

Since Hg ≤ K it follows that H̃g ≤ K̃. Let ϕ̃ := ϕg,H̃,K̃ which is a

morphism in OFG as well as a morphism in OF̄G. By the definition of the

Bredon modules Z[?, X]G and Z[?, Y ]G and from Lemma 3.58 it follows that

ϕ∗ ◦ id = id ◦ ϕ̃∗. Now in order to show that the diagram (3.13) commutes

we imbed it into the following larger diagram.

Z[G/K̃,X]G Z[G/K̃, Y ]G

Z[G/K,X]G Z[G/K, Y ]G

Z[G/H,X]G Z[G/H, Y ]G

Z[G/H̃,X]G Z[G/H̃, Y ]G

-
fK̃

?

ϕ̃∗

?

ϕ̃∗

HH
HH

HHY id

-fK

?
ϕ∗

��
��

��*id

?
ϕ∗

-fH

���
����

id
HHH

HHHj

id

-
fH̃

The large outer square of this diagram commutes by assumption. The

upper and lower trapezoid commute by definition and the above said means

that the left and right trapezoid commute. It follows that the inner small

square commutes, that is, we have shown that the diagram (3.13) commutes.

�
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Under the same assumptions as in the previous lemma we can extend the

morphism ε: Z[?, X]G → ZF of OFG-modules to a morphism

ε: Z[?, X]G → ZF̄

of OF̄G-modules by setting εH := εH̃ for every H ∈ F̄.

Assume that cdF1 G1 ≤ m and cdF2 G2 ≤ n. Then there exists projective

resolutions P∗ → ZF1
and Q∗ → ZF2

of length m and n respectively. By

an Eilenberg swindle we may assume the resolutions are free. Then by

Lemma 3.52 the double chain complex (3.10) of OFG-modules satisfies the

assumptions of Lemma 3.59. Hence we may extend it to a double chain

complex of OF̄G-modules. Passing to the total complex we obtain a sequence

. . .→ C3 → C2 → C1 → C0
ε→ ZF̄ → 0

of OF̄G-modules. By construction the exactness of this sequence follows from

the exactness of the sequence (3.11) which was proven in Proposition 3.56.

This sequence has length n+m. This proves the following result.

Proposition 3.60. Let F1 and F2 be full families of subgroups. Then

cdF̄G ≤ cdF1 G1 + cdF2 G2. �

Theorem 3.61. Let F1 and F2 be a full families of subgroups of G1 and G2

respectively. Let F := F1 × F2. Assume that G is a full family of subgroups

of G = G1 ×G2 with G ⊂ F̄ and such that G ∩K 6= ∅ for every K ∈ F̄. If

there exists k ∈ N such that cdG∩K K ≤ k for every K ∈ F then

cdGG ≤ cdF1 G1 + cdF2 G2 + k.

Proof. Let K ∈ F̄. Then K ≤ K̃ ∈ F and G ∩ K is a non-empty

subset of G∩ K̃. Thus cdG∩K K ≤ cdG∩K̃ K̃ which by the assumption of the

theorem is less or equal to k. Then cdGG ≤ cdF̄G + k by Theorem 3.37.

Now the statement follows from the previous proposition. �

Corollary 3.62. Let G := G1 ×G2. Then

cdG ≤ cdG1 + cdG2 and cdG ≤ cdG1 + cdG2 + 3.

Proof. The cartesian product K1×K2 of two finite groups is finite and

therefore cd(K1 ×K2) = 0. Thus cdG ≤ cdG1 + cdG2 by Theorem 3.61.

On the other hand, the cartesian product K1 × K2 of two virtually

cyclic groups is a virtually polycyclic group with virtually cohomological
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dimension vcd(K1 × K2) ≤ 2. In [LW07] it has been shown that this

implies gd(K1 × K2) ≤ 3. Then cdG ≤ cdG1 + cdG2 + 3 follows from

Theorem 3.61. �

Note that the inequality in Corollary 3.62 is sharp. For example, take

G1 := Z and G2 := Z. Then cdGi = 1 and cdGi = 0. Moreover cdG = 2

and in Proposition 4.5 we will see that cdG = 3. Therefore we have in this

case

cdG = cdG1 + cdG2 and cdG = cdG1 + cdG2 + 3.

13. Crossproduct and Künneth Formula for Bredon Homology

In this section we consider G := G1 × G2 with the notation as in the

section before. Moreover, throughout this section M and M ′ will be a left

OF1G1-module and OF2G2-module respectively.

Lemma 3.63. The map

[G/H,G/K]G ×M(G1/H̃1)×M ′(G2/H̃2)

→ [G1/H1, G1/K̃1]G1 ×M(G1/H1)

× [G2/H2, G2/K̃2]G2 ×M ′(G2/H2)

(gK,m,m′) 7→ (g̃1K̃1,m, g̃2K̃2,m
′), (3.14)

where H,K ∈ F, defines for every K ∈ F an isomorphism of groups

θ:
∐
H∈F

Z[G/H,G/K]G ⊗M(G1/H̃1)⊗M ′(G2/H̃2)

−→
( ∐
H1∈F1

Z[G1/H1, G1/K̃1]G1 ⊗M(G1/H1)
)
⊗( ∐

H2∈F2

Z[G2/H2, G2/K̃2]G2 ⊗M ′(G2/H2)
)
. (3.15)

Proof. First note that the right hand side of (3.15) can be rewritten to∐
H∈F

(
Z[G1/H̃1, G1/K̃1]G1 ⊗M(G1/H̃1)⊗

Z[G2/H̃2, G2/K̃2]G2 ⊗M ′(G2/H̃2)
)
.

Thus it is enough to show that the rule (3.14) gives rise to an isomorphism

for each fixed H ∈ F. In turn, for this it is enough to show that the obvious
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restriction of the map (3.14) gives rise to an isomorphism

Z[G/H,G/K]G → Z[G1/H1, G1/K̃1]G1 ⊗ Z[G2/H2, G2/K̃2]G2 . (3.16)

Note that any G-map f : G/H → G/K is in fact a G-map f : G1/H̃1 ×
G2/H̃2 → G1/K̃1 × G2/K̃2 which is uniquely characterised by Gi-maps

f̃i: Gi/H̃i → Gi/K̃i which map H̃i 7→ g̃iK̃i, i = 1, 2. In other words, the

map f 7→ (f̃1, f̃2) gives an isomorphism

[G/H,G/K]G → [G1/H̃1, G1/K̃1]G1 × [G2/H̃2, G2/K̃2]G2 (3.17)

of sets. In turn this gives rise to an isomorphism of groups as in (3.16) and

by construction this isomorphism agrees with the isomorphism obtained by

the obvious restriction of the map (3.14). �

Lemma 3.64. Let K ∈ F. Then the map (3.14) defines (this definition is

made precise in the proof) an isomorphism

η: (resp1 Z[?, G1/K̃1]G1 ⊗ resp2 Z[?, G2/K̃2]G2)⊗F (resp1 M ⊗ resp2 M
′)

−→ (Z[?, G1/K̃1]G1 ⊗F1 M)⊗ (Z[?, G2/K̃2]G2 ⊗F2 M
′) (3.18)

of abelian groups.

Proof. For each H ∈ F we have

(resp1 Z[?, G1/K̃1]G1 ⊗ resp2 Z[?, G2/K̃2]G2)(G/H)

= Z[G1/H̃1, G1/K̃1]G1 ⊗ Z[G2/H̃2, G2/K̃2]G2 = Z[G/H,G/K]G

using the identification given by (3.17).

Now the domain of the isomorphism (3.18) is by definition the abelian

group P/Q with

P =
∐
H∈F

(
(resp1 Z[?, G1/K̃1]G1 ⊗ resp2 Z[?, G2/K̃2]G2)(G/H)

⊗ (resp1 M ⊗ resp2 M
′)(G/H)

)
=
∐
H∈F

Z[G/H,G/K]G ⊗M(G1/H̃1)⊗M ′(G2/H̃2)

where Q is the subgroup of P generated by all elements of the form

ϕ∗(f)⊗ (m⊗m′)− f ⊗ ϕ∗(m⊗m′) (3.19)
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where f : G/H → G/K is a G-map (that is a generator of the abelian group

Z[G/H,G/K]G), m⊗m′ ∈M(G1/L̃1)⊗M ′(G2/L̃2), ϕ ∈ [G/L,G/H]G and

H,L ∈ F.

Likewise Z[?, G1/K̃1]G1 ⊗F1 M is the abelian group R/S with

R :=
∐

H1∈F1

Z[G1/H1, G1/K̃1]G1 ⊗M(G1/H1)

where S is the subgroup of R generated by all elements of the form

ϕ∗1(f1)⊗m− f1 ⊗ ϕ1∗(m) (3.20)

where f1: G1/H1 → G1/K̃1 is a G1-map (that is a generator of the abelian

group Z[G1/H1, G1/K̃1]G1), m ∈ M(G1/L1), ϕ1 ∈ [G1/L1, G1/H1]G1 and

H1, L1 ∈ F1. And in the very same fashion we express the abelian group

Z[?, G2/K̃2]G2 ⊗F2 M
′ as the quotient R′/S′.

Since the tensor product is right exact the projection homomorphism

π1: R→ R/S and π2: R′ → R′/S′ give an epimorphism π1 ⊗ π2: R⊗R′ →
R/S ⊗ R′/S′. If we precompose this epimorphism with the isomorphism

θ: P → R⊗R′ from Lemma 3.63 we get an epimorphism

P → R/S ⊗R′/S′

The first claim of Lemma 3.64 is now that this epimorphism factors through

P/Q, that is there exists a homomorphism η making the diagram

P R⊗R′

P/Q R/S ⊗R′/S′
?

π

-θ

?

π1⊗π2

-η

commute. Since π and (π1 ⊗ π2) ◦ θ are both epimorphisms it follows that

this η is necessarily unique and also an epimorphism. In order to see that the

epimorphism η exists, we must show that Q ⊂ ker((π1 ⊗ π2) ◦ θ). Since θ is

an isomorphism this is equivalent to θ(Q) ⊂ ker(π1 ⊗ π2). By Proposition 6,

[Bou98, p. 252] the kernel of π1 ⊗ π2 has the following simple description

ker(π1 ⊗ π2) = 〈s⊗ r′, r ⊗ s′ : r ∈ R, r′ ∈ R′, s ∈ S, s′ ∈ S′〉.

Thus let x be a generator of Q as in (3.19), then

θ(x) = θ(ϕ∗(f)⊗ (m⊗m′))− θ(f ⊗ ϕ∗(m⊗m′))

= θ((f ◦ ϕ)⊗ (m⊗m′))− θ(f ⊗ ϕ∗(m)⊗ ϕ∗(m′)))
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=
(
(f̃1 ◦ ϕ̃1)⊗m⊗ (f̃2 ◦ ϕ̃2)⊗m′

)
−
(
f̃1 ⊗ ϕ̃1∗(m)⊗ f̃2 ⊗ ϕ̃2∗(m

′)
)

=
(
(f̃1 ◦ ϕ̃1)⊗m⊗ (f̃2 ◦ ϕ̃2)⊗m′

)
−
(
f̃1 ⊗ ϕ̃1∗(m)⊗ (f̃2 ◦ ϕ̃2)⊗m′

)
+
(
f̃1 ⊗ ϕ̃1∗(m)⊗ (f̃2 ◦ ϕ̃2)⊗m′

)
−
(
f̃1 ⊗ ϕ̃1∗(m)⊗ f̃2 ⊗ ϕ̃2∗(m

′)
)

=
(
((f̃1 ◦ ϕ̃1)⊗m− f̃1 ⊗ ϕ̃1∗(m))⊗ (f̃2 ◦ ϕ̃2)⊗m′

)
+
(
f̃1 ⊗ ϕ̃1∗(m)⊗ ((f̃2 ◦ ϕ̃2)⊗m′ − f̃2 ⊗ ϕ̃2∗(m

′))
)

=
(

(ϕ̃∗1(f̃1)⊗m− f̃1 ⊗ ϕ̃1∗(m)︸ ︷︷ ︸
∈S

) ⊗ ((f̃2 ◦ ϕ̃2)⊗m′︸ ︷︷ ︸
∈R′

)
)

+
(

(f̃1 ⊗ ϕ̃1∗(m)︸ ︷︷ ︸
∈R

) ⊗ (ϕ̃∗2(f̃2)⊗m′ − f̃2 ⊗ ϕ̃2∗(m
′)︸ ︷︷ ︸

∈S′

)
)

∈ ker(π1 ⊗ π2).

This concludes the first part of the claim of the lemma.

It remains to show that the epimorphism η is actually an isomorphism.

For this we need to show that θ maps Q epimorphically onto ker(π1 ⊗ π2).

Let s be a generator of S as in (3.20). Let f2: G2/H2 → G1/K̃2 be

an arbitrary G2-map and m′ ∈ M ′(G2/H2), that is r := f2 ⊗ m′ is a

generator of R′. Let ϕ: G1/L1 × G2/H2 → G1/H1 × G2/H2 be the G-

map given by ϕ(L1 ×H2) := ϕ1(H1)×H2. Then ϕ̃1 = ϕ1 and ϕ̃2 = id. Set

L := L1 × H2 and H := H1 × H2. Furthermore set f := f1 × f2. Then

f̃1 = f1 and f̃2 = f2 by construction. With these definitions it follows that

x := ϕ∗(f)⊗ (m⊗m′)− f ⊗ ϕ∗(m⊗m′) is a generator of Q and

θ(x) = θ(ϕ∗(f)⊗ (m⊗m′)) − θ(f ⊗ ϕ∗(m⊗m′))

=
(
ϕ̃∗1(f̃1)⊗m⊗ ϕ̃∗2(f̃2)⊗m′

)
−
(
f̃1 ⊗ ϕ̃1∗(m)⊗ f̃2 ⊗ ϕ̃2∗(m

′)
)

=
(
ϕ∗1(f1)⊗m⊗ f2 ⊗m′

)
−
(
f1 ⊗ ϕ1(m)⊗ f2 ⊗m′

)
=
(
ϕ1(f1)⊗m− f1 ⊗ ϕ1(m)

)
⊗
(
f2 ⊗m′

)
= s⊗ r′.

Similarly to (3.20) we can show that any element r⊗ s′ with r a generator of

R and s′ a generator of S′ is contained in θ(Q). Thus ker(π1 ⊗ π2) ⊂ θ(Q)

and equality holds. �

Lemma 3.65. The isomorphism η in Lemma 3.64 is natural in each of

its factors. That is, given morphisms f1: Z[?, G1/K̃1]G1 → Z[?, G1/L̃1]G1,
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f2: Z[?, G2/K̃2]G2 → Z[?, G2/L̃2]G2, f3: M → N , f4: M ′ → N ′ we have

η ◦
(
f1, f2, f3, f4

)
=
(
(f1 ⊗ f2)⊗F (f3 ⊗ f4)

)
◦ η.

Proof. This follows immediately from the simple form of the map (3.14).

�

Proposition 3.66. Let F = Z[?, X1]G1 and F ′ = Z[?, X2]G2 be a free OF1G1-

module and OF2G2-module. Then the isomorphism η defined in Lemma 3.64

induces in a canonical way an isomorphism

η: (resp1 F ⊗ resp2 F
′)⊗F (resp1 M ⊗ resp2 M

′)

−→ (F ⊗F1 M)⊗ (F ′ ⊗F2 M
′).

Proof. The main work has already been done in Lemma 3.64 and the

remaining claim follows from the additivity of the setup. For completeness,

the purely technical details are as follows. Write

X1 =
∐
α

G1/H1,α and X2 =
∐
β

G2/H2,β

as the disjoint union of transitive G1-sets and G2-sets with stabilisers in

F1 and F2 respectively. Then F =
∐
Fα with Fα := Z[?, G1/H1,α]G1 and

similarly F ′ =
∐
F ′β with F ′β := Z[?, G2/H2,β]G2 . We get

(resp1 F ⊗ resp2 F
′)⊗F (resp1 M ⊗ resp2 M

′)

=
∐
α,β

(
(resp1 Fα ⊗ resp2 F

′
β)⊗F (resp1 M ⊗ resp2 M

′)
)

which is mapped by η :=
∐
ηα,β summand wise isomorphically onto∐

α,β

(
(Fα ⊗F1 M)⊗ (F ′β ⊗F2 M

′)
)

= (F ⊗F1 M)⊗ (F ′ ⊗F2 M
′). �

Now let F∗ → ZF1
be a free resolution of the trivial OF1G1-module and

let F ′∗ → ZF2
be a free resolution of the trivial OF2G2-module. From the

previous section we know that the total complex of resp1 F∗ ⊗ resp2 F
′
∗ gives

a free resolution of the trivial OFG-module ZF. Tensoring this total complex

over the orbit category OFG with resp1 M ⊗ resp2 M
′ gives a chain complex

whose objects are given by

Cn :=
n∐
k=0

(
(resp1 Fk ⊗ resp2 F

′
n−k) ⊗F (resp1 M ⊗ resp2 M

′)
)
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The isomorphism from Proposition 3.66 maps these groups isomorphically

onto

C ′n :=
n∐
k=0

(
(Fk ⊗F1 M) ⊗ (F ′n−k ⊗F2 M

′)
)
.

We denote these isomorphisms by ηn: Cn → C ′n, n ∈ N. Using Lemma 3.65

one can conclude that this collection of isomorphisms defines a chain map

η: C∗ → C ′∗.

Now C ′∗ is nothing else than the chain complex obtained as a total complex

of (F∗ ⊗F1 M)⊗ (F ′∗ ⊗F2 M
′). Following [Bro82, pp. 108f.], if z is a p-cycle

of F∗ ⊗F1 M and z′ a q-cycle of F ′∗ ⊗F2 M
′, then

z × z′ := η−1(z ⊗ z′)

is a (p+ q)-cycle of C∗. Its homology class depends only on the homology

class of z and z′. Thus we obtain a homology cross product

× : HF1
p (G1;M)⊗HF2

q (G2;M ′)→ HF1×F2
p+q (G1 ×G2; resp1 M ⊗ resp2 M

′)

which maps [z]⊗ [z′] 7→ [z]× [z′] := [z × z′] as in the classical case.

Theorem 3.67 (Künneth Formula for Bredon Homology). Assume that

there exists free resolutions F∗ → ZF1
and F ′∗ → ZF2

such that the chain

complex F∗ ⊗F1 M or the chain complex F ′∗ ⊗F2 M
′ is a free chain complex.

Then for every n ∈ N there exists a short exact sequence

0→
n∐
k=0

HF1
k (G1;M)⊗HF2

n−k(G2;M ′)

α−→ HF1×F2
n (G1 ×G2; resp1 M ⊗ resp2 M

′)

−→
n−1∐
k=0

Tor1(HF1
k (G1;M), HF2

n−k−1(G2;M ′)→ 0

of abelian groups. The homomorphism α is given by the homological cross

product, that is, α(z ⊗ z′) := z × z′. If both chain complexes F∗ ⊗F1 M and

F ′∗⊗F2M
′ are dimension wise free, then this sequence is split, but this splitting

is not natural.

Proof. This is essentially the Künneth Formula for chain complexes of

abelian groups applied to chain complexes F∗ ⊗F1 M and F ′∗ ⊗F2 M
′ (see for

example [Spa66, pp. 227ff.]) together with Proposition 3.66. �
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CHAPTER 4

Bredon Dimensions for the Family Fvc

1. A Geometric Lower Bound for hdFG and cdFG

Assume that F is a semi-full family of subgroups of G. Then the geometric

dimension gdFG is defined and gives an upper bound for the dimension cdFG,

and therefore also for hdFG. In this section, we will prove a result that can be

used to obtain a lower bound for the cohomological and homological Bredon

dimension of G using geometrical methods.

Definition 4.1. Let F be a semi-full family of subgroups of G. We say that

Y is a model for BFG if there exists a model X for EFG such that Y = X/G,

that is, Y is the orbit space of some classifying space for the family F.

The main result of this section will be the following theorem. It is

essentially the generalisation of the classical fact that

Hn(G;Z) ∼= Hn(Y ) and Hn(G;Z) ∼= Hn(Y )

where Y is an Eilenberg–Mac Lane space K(G, 1), see for example [Bro82,

pp. 36ff.].

Theorem 4.2. Let G be a group and let F be a semi-full family of subgroups

of G. Then for every n ∈ N we have isomorphisms

HF
n(G;ZF) ∼= Hn(BFG) and Hn

F (G;ZF) ∼= Hn(BFG)

of abelian groups.

Now this result together with Proposition 3.10 and Proposition 3.11

implies the following immediate result.

Corollary 4.3. If Hn(BFG) 6= 0 then hdFG ≥ n. Likewise Hm(BFG) 6= 0

implies cdFG ≥ m. �

Before we can prove this theorem we need the following auxiliary result.

This result is the main reason for the Theorem 4.2 to be true.
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Proposition 4.4. Let F be a semi-full family of subgroups of G. Then we

have an isomorphism C∗(EFG)⊗F ZF
∼= C∗(BFG) of chain complexes.

Proof. To simplify the notation, denote by X a model for EFG and by

π: X → X/G the canonical projection onto the orbit space. For each H ∈ F

this map restricts to the map π: XH → X/G which in turn induces a chain

map

πH : C∗(X
H)→ C∗(X/G).

Then the coproduct of these chain maps is a chain map

P∗ :=
∐
H∈F

C∗(X
H)→ C∗(X/G)

which we will denote (with abuse of notation) by π.

Let τ be an n-cell of the CW-complex X/G. Then there exists an n-cell

σ of the G-CW-complex X such that π(σ) = τ . Let H be the isotropy group

Gσ of σ. Then H ∈ F and τ lies in the image of πH . Therefore π is surjective.

Denote by Q∗ the kernel of the map π. We claim that

C∗(X)⊗F ZF = P∗/Q∗. (4.1)

Recall that by definition

C∗(X)⊗F ZF = P ′∗/Q
′
∗

where

P ′∗ =
∐
H∈F

C∗(X
H)⊗ Z =

∐
H∈F

C∗(X
H) = P∗

and Q′∗ is the subcomplex generated by the elements of the form ϕ∗(σ)− σ.
Note that in the case of the trivialOFG-module ZF we have ϕ∗ = id. Now (4.1)

follows from the following claim.

Claim 1. Q′n = Qn for all n ∈ N.

“Q′n ⊂ Qn”: This inclusion follows immediately from

π(ϕ∗(σ)− σ) = π(gσ)− π(σ) = 0.

“Q′n ⊃ Qn”: Let x ∈ Qn. Then there exists pairwise distinct orbits A1, . . . ,

An of orbits of n-cells of X such that we can write

x = x1 + . . .+ xr
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with each xs, 1 ≤ s ≤ r satisfying the following: there exists ks ≥ 1 and for

1 ≤ i ≤ ks there exist unique Hs,i ∈ F, σs,i ∈ XHs,i and as,i ∈ Z \ {0} such
that σs,i ∈ As and

xs =

ks∑
i=1

as,i σs,i.

Now π(x) = 0 if and only if π(xs) = 0 for each 1 ≤ s ≤ r. In particular

each xs ∈ Qn and it is enough to show that each xs ∈ Q′n.
Thus assume that r = 1. We obmit the variable s from the notation, that

is

x =

k∑
i=1

aiσi (4.2)

where the σi are n-cell of XHi and the ai are all non-zero integers and the σi
belong all to the same orbit.

We can find elements gi ∈ G such that σi+1 = giσi for i = 1, . . . , k − 1.

For each i set Ki := Hi ∩ giHig
−1
i . Since F is assumed to be closed under

conjugation and taking finite intersections, it follows that the Ki are all

elements of F. By construction we have that g−1
i Kigi = g−1

i Higi ∩Hi ≤ Hi

and thus there exists a G-map ϕi: G/Ki → G/Hi that maps Ki to giHi.

Then ϕ∗i (σi) = giσi = σi+1.

Using this equality together with si := a1 + . . .+ ai, we can successively

rewrite the right hand side of (4.2) in the following way:

x = a1(σ1 − σ2) + (a1 + a2)σ2 + a3σ3 + . . .+ akσk

= s1(σ1 − ϕ∗1(σ1)) + s2(σ2 − σ3) + (s2 + a3)σ3 + a4σ4 + . . .+ akσk

= s1(σ1 − ϕ∗1(σ1)) + s2(σ2 − ϕ∗2(σ2)) + . . .+

+ sk−1(σk−1 − ϕ∗k−1(σk−1)) + skσk.

On the other hand, by assumption we have π(σ1) = . . . = π(σk) and thus

π(x) = a1π(σ1) + . . .+ akπ(σk) = skπ(σ1) and this is equal to 0 if and only

if sk = 0. Thus

x =
k−1∑
i=1

si(σi − ϕ∗i (σi)) ∈ Q′n.

Alltogether Q′n = Qn for every n ∈ N and this proves Claim 1. On the

other hand, Claim 1 implies the claim of the proposition and this concludes

the proof. �
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Proof of Theorem 4.2. First of all, we have

Hn(BFG) ∼= Hn(C∗(BFG))

∼= Hn(C∗(EFG)⊗F ZF) (by Proposition 4.4)

∼= HF
n(G;ZF)

and this proves the first isomorphism.

In order to verify the second isomorphism, we first observe that we have

hom(C∗(BFG),Z) ∼= morF(C∗(BFG),ZF)

∼= morF(C∗(EFG)⊗F ZF,ZF) (by Proposition 4.4)

∼= morF(C∗(EFG),morF(ZF,ZF)) (adjoint isomorphism)

∼= morF(C∗(EFG),ZF).

From this it follows

Hn(BFG) ∼= Hn(hom(C∗(BFG),Z))

= Hn(morF(C∗(EFG),ZF)

∼= Hn
F (G;ZF)

which is the second isomorphism. �

2. Applications of Theorem 4.2

In order to apply the result of Theorem 4.2 we need groups G for which we

know nice enough models X for EG so that we can determine the homology

or cohomology groups of X/G. In this section we present examples where

this is the case. Juan-Pineda and Leary have described in [JPL06, p. 138] a

model for EZ2. The construction goes back to Lück and it is as follows.

Label the maximal infinite cyclic subgroups of Z2 by Hi, i ∈ Z. We

have Z2/Hi
∼= Z and there exists a 1-dimensional model Xi for E(Z2/Hi).

It is a line on which Z2/Hi acts by translation. Let πi: Z2 → Z2/Hi be the

canonical projection. Then Z2 acts on Xi by gx := πi(g)x.

For each i ∈ Z we consider the join Xi ∗Xi+1. There exists canonical

embeddings ϕi: Xi ↪→ Xi ∗Xi+1 and ψi: Xi ↪→ Xi−1 ∗Xi. We let X be the

Z2-space

X :=
(∐
i∈Z

Xi ∗Xi+1

)/
∼
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Xi−1 Xi Xi+1

Figure 3. A model for EZ2. The thick lines represents the
models Xi

∼= R for EZ2/Hi.

where the equivalence relation “∼” is given by

y1 ∼ y2 :⇐⇒ ∃x ∈ Xi: ϕi(x) = y1 and ψi(x) = y2.

Note that the embeddings ϕi: Xi ↪→ Xi∗Xi+1 induce embeddings ϕi: Xi ↪→ X

and we use them to identify the Xi as subspaces of X. See Figure 3 for a

schematic picture of the space X.

It follows that X is a 3-dimensional model for EZ2. This is because of

the following observations:

(1) X is contractible by construction;

(2) if H is an infinite cyclic subgroup of Z2, then H ≤ Hi for some

unique i ∈ Z and therefore XH = XHi = Xi which is contractible;

(3) if H is not cyclic, then H = K1×K2 with K1 and K2 infinite cyclic

subgroups of Z2 and

XH ⊂ XK1 ∩XK2
= XHi1 ∩XHi2 = ∅

for some i1, i2 ∈ Z, i1 6= i2.

We have that (Xi ∗Xi+1)/G ∼= S3 and Xi/G ∼= S1 for every i ∈ Z and

thus H3(X/G) is free abelian of infinite rank [JPL06, p. 138]. In particular

X is a model for EZ2 of minimal dimension, that is gdZ2 = 3.

Now Theorem 4.2 states that hdZ2 ≥ 3 and therefore we get the following

complete statement about the Bredon dimensions with respect to the family

of virtually cyclic subgroups.
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Proposition 4.5. hdZ2 = cdZ2 = gdZ2 = 3. �

From this result we obtain immediately two interesting consequences

regarding virtually polycyclic groups.

Proposition 4.6. Let G be a virtually polycyclic group. Then

cdG = gdG.

Proof. To avoid triviality we assume that G is not virtually cyclic. By

Proposition 2 in [Seg83, p. 2], the group G is virtually poly-Z. Since G is not

virtually cyclic we have vcdG ≥ 2. In particular G contains a subgroup that

is an extension of Z by Z, which in turn contains a subgroup isomorphic to Z2.

Thus cdG ≥ cdZ2 = 3. Now the claim follows from Proposition 3.18. �

Note that in Theorem 5.12 in [LW07, p. 22] a complete description of

gdG for virtually polycyclic groups are given. The above result states that

the same theorem gives a complete description of cdG for virtually polycyclic

groups, too.

Proposition 4.7. Let G be a virtually polycyclic group with vcdG = 2. Then

hdG = cdG = gdG = 3.

Proof. Since G has a subgroup isomorphic to Z2 we have hdG ≥
hdZ2 = 3. On the other hand Theorem 5.12 in [LW07, p. 22] gives gdG = 3

and thus all three Bredon dimensions agree and are equal to 3. �

The next two applications of Theorem 4.2 rely on Juan-Pineda and

Leary’s construction of a model for EG for a class of group which includes

Gromov-hyperbolic groups, see Proposition 9 and Corollary 10 in [JPL06].

The class of groups considered in [JPL06] is characterised by the following

condition: Every infinite virtually cyclic subgroup H of G is contained in

a unique maximal virtually cyclic subgroup Hmax of G which is equal to

its own normaliser. This class is known to contain all Gromov-hyperbolic

groups [GdlH90, Theorem 8.37].

Recall that if H is a virtually cyclic subgroup it is known (see for exam-

ple [JPL06]) that H has a unique maximal normal finite subgroup N and

one of the following three cases is true: H is finite, H/N is infinite cyclic (in
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this case we call H orientable) or H/N is infinite dihedral (in this case we

call H non-orientable).

Proposition 4.8. [JPL06, Proposition 9 and Corollary 10] Let G be a group

satisfying the above condition on the set of infinite virtually cyclic subgroups.

Let C be a complete system of representatives for the conjugacy classes of

maximal infinite virtually cyclic subgroups of G. Denote by Co and the set of

orientable elements of C and denote by Cn the set of non-orientable elements

of C. Then a model for EG can be obtained from model for EG by attaching

(1) orbits of 0-cells indexed by C;
(2) orbits of 1-cells indexed by Co ∪ {1, 2} × Cn;
(3) orbits of 2-cells indexed by C.

Furthermore, a model for BG can be obtained from a model for BG by

attaching 2-cells indexed by Co. �

Proposition 4.9. Let G be a Gromov-hyperbolic group which is not virtually

cyclic. Then hdG ≥ 2. Moreover, if gdG ≤ 2, then

hdG = cdG = gdG = 2.

Proof. It has been shown in [JPL06, p. 141], that if G is Gromov-

hyperbolic group which not virtually cyclic, then H2(BG) 6= 0. This follows

from the following two facts:

(1) for large enough integers d the Ribs complex Rd(G) is a finite model

for EG [BCH94, MS02];

(2) G has infinitely many conjugacy classes of maximal infinite virtually

cyclic subgroups [JPL06, p. 141, Theorem 13].

Thus it follows from Theorem 4.2 that hdG ≥ 2 if G is a Gromov-hyperbolic

group which is not virtually cyclic.

If moreover gdG ≤ 2, then there exists a 2-dimensional model for EG by

Proposition 4.8, that is gdG ≤ 2. Therefore we have altogether

2 ≤ hdG ≤ cdG ≤ gdG ≤ 2

and equality holds. �

Corollary 4.10. Let F be a free group of rank at least 2. Then

hdF = cdF = gdF = 2.
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Proof. Free groups are characterised by the fact that they can act

freely on a tree, that is gdF = 1. Since F is torsion free it follows that

gdF = gdF = 1. Free groups are Gromov-hyperbolic and thus the claim

follows from Proposition 4.9. �

Another example of Gromov-hyperbolic groups are fundamental groups

of finite graphs of finite groups. We use the notation as introduced by Serre

in [Ser80, pp. 41ff.]. Given a connected, non-empty, orientated graph Y , a

graph (G, Y ) of groups consists of

(1) a collection of groups GP indexed by the vertices P ∈ vertY of Y ;

(2) a collection of groups Gy indexed by the edges y ∈ edgeY of Y

subject to the condition Gy = Gȳ where ȳ denotes the inverse edge

of y;

(3) for each edge y ∈ edgeY , a monomorphism Gy ↪→ Gt(y) where t(y)

denotes the terminal vertex of the edge y.

From this data one can construct the fundamental group π1(G, Y ) of the

graph of groups (G, Y ), see [Ser80]. By abuse of notation we say that a group

is the fundamental group of the graph of groups (G, Y ) if G ∼= π1(G, Y ).

The G is the fundamental group of a graph of groups, then there exists

canonical inclusions of the vertex groups GP , P ∈ vertY , into G. Further-

more, one can construct a tree T with an action of G with vertex stabilisers

being precisely the conjugates of the groups GP and with the edge stabilisers

being precisely the conjugates of the edge groups Gy, y ∈ edgeY , and such

that T/G = Y . This tree is called the universal cover of (G, Y ) or the

Bass–Serre tree associated with the fundamental group of the graph of groups

(G, Y ). Conversely, every group G which admits an action on a tree T is

the fundamental group of some graph of groups (G, Y ) such that T is the

associated Bass–Serre tree of the graph of groups.

Examples 4.11. (1) Let (1, Y ) be a graph of groups whose vertex

and edge groups are all trivial. Then π1(1, Y ) ∼= π1(Y ) is the

fundamental group of the graph Y .

(2) Let Y be the graph with two edges (that is non-oriented edge) and

two vertices, that is a line segment. Let (G, Y ) be the graph of

groups with vertex groups A and B and with edge group C, see
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Figure 4. A segment of groups and loop of groups [Ser80, p. 41].

Figure 4. Then π1(G, Y ) ∼= A ∗C B is the free product of A and B

with the common subgroup C amalgamated.

(3) Let Y be the graph with two edges and one vertex, that is a loop.

Let (G, Y ) be the graph of groups with vertex group A and with

edge group B, see Figure 4. Then π1(G, Y ) is an HNN-extension of

the group A.

Proposition 4.12. Let G be the fundamental group of a finite graph of finite

groups (G, Y ), and assume that G is not virtually cyclic. Then

hdG = cdG = gdG = 2.

Proof. Fundamental groups of a finite graph of finite groups have a free

subgroup of finite index [DD89, p. 104]. Free groups are Gromov-hyperbolic

and the property of being Gromov-hyperbolic is preserved by finite extensions.

Therefore the group G is Gromov-hyperbolic.

Fundamental groups of finite graphs of groups are known to admit a

1-dimensional model for EG. To see this, let T be the Bass–Serre tree

associated with the graph of groups (G, Y ). Then F(T ) ⊂ Ffin(G). On

the other hand, it is a well known fact that a finite group cannot act fixed

point free on a tree and therefore TH 6= ∅ for all H ∈ Ffin(G). Thus T is a

one-dimensional model for EG and we have gdG ≤ 1.

Altogether the conditions of Proposition 4.9 are satisfied and the claim

follows since G is not virtually cyclic by assumption. �
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3. Dimensions of Extensions of C∞

The results of this section rely on a result which Martínez-Pérez has

obtained using a spectral sequence that she has constructed for Bredon

(co-)homology in [MP02].

Proposition 4.13 (Martínez-Pérez). Let G be an extension

0→ N → G→ Q→ 0

of a group N by a group Q = G/N . Let

H := {H ≤ G : N ≤ H and H/N ∈ Fvc(Q)}

and set

m := sup{hdH : H ∈ H} and n := sup{cdH : H ∈ H}.

Then we have the estimates:

m ≤ hdG ≤ hdQ+m and n ≤ cdG ≤ cdQ+ n.

Proof. The lower bound is a direct consequence of Proposition 3.32.

The upper bound is due to Martínez-Pérez’s result in [MP02, pp. 171f.]. �

For future reference we state the following corollary to this result.

Corollary 4.14. Let G be an extension of a group N by a group Q. Assume

that hdQ <∞. Then hdG <∞ if and only if there exists an integer k such

that hdH ≤ k for every N ≤ H ≤ G such that H/N is virtually cyclic.

The statement remains true if “hd” is replaced by “cd” or “gd”.

Proof. The statements about hdG and cdG are direct consequences

of Proposition 4.13. The last statements follows from the second since the

Bredon cohomological and Bredon geometric dimension agree for values

greater than 3 by Proposition 3.18. �

In this section we apply Proposition 4.13 to the special case where

N = C∞, that is G is an extension

0→ C∞ → G→ Q→ 0

of the infinite cyclic group C∞ by an arbitrary group Q.
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Proposition 4.15. Let G be an extension of the infinite cyclic group C∞ by

an arbitrary group Q. Then precisely one of the following cases occurs:

(1) Q has no element of infinite order. Then all H ∈ H are virtually

cyclic and

hdG ≤ hdQ and cdG ≤ cdQ;

(2) Q has elements of infinite order. Then

3 ≤ hdG ≤ hdQ+ 3 and 3 ≤ cdG ≤ cdQ+ 3.

Proof. If Q does not have elements of infinite order then every C∞ ≤
H ≤ G with H/C∞ virtually cyclic is itself virtually cyclic and therefore

hdG = cdG = 0. Now the first claim follows from Proposition 4.13.

If Q does have an element of infinite order then there exists C∞ ≤
H ≤ G with H/C∞ infinite virtually cyclic. In this case vcdH = 2 and

therefore hdH = gdH = 3 by Proposition 4.7. The second claim follows now

from 4.13. �

Note that we can replace C∞ by an infinite virtually cyclic group N and

still get the same result.

Proposition 4.16. For the braid group B3 we have the estimate

3 ≤ hdB3 ≤ cdB3 = gdB3 ≤ 5.

Proof. The braid group B3 is an extension of the infinite cyclic group

C∞ by the modular group C2 ∗ C3. Now C2 ∗ C3 is not virtually cyclic and

therefore hd(C2 ∗ C3) = cd(C2 ∗ C3) = 2 by Proposition 4.12. Moreover

it has an element of infinite order and thus 3 ≤ hdB3 ≤ cdB3 ≤ 5 by

Proposition 4.15. Furthermore cdB3 ≥ 3 and therefore it must be equal to

gdB3 by Proposition 3.18. �

4. Nilpotent Groups

The Hirsch length hG of a group G is an invariant of groups which has

originally been defined for polycyclic groups. For polycyclic groups it is

the number of infinite cyclic factors in a infinite cyclic series of G [Rob96,

p. 152].

The notion of Hirsch length can be extended to elementary amenable

groups, which is a class of groups which contains all locally nilpotent groups
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and also all soluble groups (more detail will follow in the next section). The

extension can be done in such a way that the following holds.

Proposition 4.17. [Hil91, Theorem 1] Let G be an elementary amenable

group. Then

(1) if H is a subgroup of G then hH ≤ hG;

(2) if G is the direct union of subgroups Gλ, λ ∈ Λ, then

hG = sup{hGλ};

(3) if H is a normal subgroup of G, then hG = hH + h(G/H). �

A finitely generated nilpotent group is known to be polycyclic [Rob96,

p. 137]. It is shown in [LW07] that

vcdG− 1 ≤ gdG ≤ vcdG+ 1

for virtually polycyclic groups G. For virtually polycyclic groups the virtually

cohomological dimension vcdG is equal to the Hirsch length hG. Therefore

Proposition 4.6 states that we have for finitely generated nilpotent groups

the estimate

hG− 1 ≤ cdG ≤ hG+ 1.

If G is a countable group, then G is the countable direct union of its

finitely generated subgroups Gλ and we have the estimate

k ≤ cdG ≤ k + 1

where k := sup{cdGλ}. On the other hand, if G is locally nilpotent group,

then

hG = sup{hGλ},

by Proposition 4.17. Since hGλ = cdGλ for all λ it follows that k = hG. We

get the following estimate for cdG for locally nilpotent groups.

Proposition 4.18. Let G be a countable locally nilpotent group with finite

Hirsch length hG. Then

hG− 1 ≤ cdG ≤ hG+ 2.

In particular this estimate is true for countable nilpotent groups.
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Note that if G locally virtually cyclic, then cdG ≤ 1. Otherwise G

contains a subgroup isomorphic to Z2 and it follows that cdG ≥ 3 and

hG ≥ 2.

The proof of Proposition 4.18 relies heavily on Lück and Weiermann’s

geometric result for virtually polycyclic groups [LW07]. In what follows

we will give an algebraic proof which avoids the use of geometric results as

far as possible. The only geometric input we need in the following result is

that gdZn ≤ n+ 1. In the case of n = 2 this follows from the very simple

model for EZ2 explained in [JPL06] and for general n ∈ N it follows from a

construction in [CFH06]. In both cases the results are obtained with a much

simpler machinery than the general result in [LW07]. Note that the geometric

results enter in the proof of Theorem 4.22 at the following two places: we

need gdZn ≤ n+ 1 for general n in the proof of Lemma 4.20 and gdZ2 = 3

is implicitly used in the inequality (4.3) in the proof of Proposition 4.21.

If G is a nilpotent group, then the set τ(G) consisting of all elements of G

which have finite order is a fully invariant subgroup of G and the quotient

G/τ(G) is torsionfree [Rob96, p. 132]. The subgroup τ(G) is called the

torsion-subgroup of G.

Lemma 4.19. Let G be a countable nilpotent group. Then hdG ≤ hdG/τ(G)

and cdG ≤ gdG/τ(G) + 1.

Proof. Let S be a subgroup of G such that τ(G) ≤ S and S/τ(G) is a

virtually cyclic subgroup of G/τ(G). We claim that hdS = 0 and cdS ≤ 1.

Since G/τ(G) is torsion-free it follows that S/τ(G) is infinite cyclic. Thus

we have a short exact sequence

1→ τ(G)→ S → S/τ(G)→ 1

The group S is the countable and hence it is the countable union of its finitely

generated subgroups Sλ. Since Sλ is a finitely generated nilpotent group it

follows that Sλ is a polycyclic group. In particular Sλ satisfies the maximal

condition on subgroups [Rob96, p. 152]. As a consequence this implies that

τ(G) ∩ Sλ cannot have a infinite strictly ascending sequence of finite groups

and hence it is finite. Therefore Sλ is virtually cyclic. It follows that S is

locally virtually cyclic. Therefore hdS = 0 and cdS ≤ 1 and this proves the

claim.
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We can apply Martínez-Pérez’s spectral sequence, that is the result of

Proposition 4.13, and we get the desired inequalities

hdG ≤ hdQ and cdG ≤ cdQ+ 1. �

Lemma 4.20. Let G be a torsion-free abelian group. Then

cdG ≤ hG+ 2.

Proof. In order to avoid triviality we assume that that the Hirsch length

of G is finite. In general, torsion-free soluble groups of finite Hirsch length are

countable [Bie81, p. 100]. In particular G is countable. The group G is the

direct union of its finitely generated subgroups Gλ. Since G is torsion-free and

abelian, it follows that Gλ ∼= Znλ . Then cdZnλ ≤ gdZnλ ≤ nλ+ 1 = hGλ+ 1

where the last inequality is due to [CFH06]. Therefore

cdG ≤ sup{cdGλ}+ 1 ≤ sup{hGλ}+ 2 = hG+ 2. �

Proposition 4.21. Let G be a torsion-free nilpotent group. Then

cdG ≤ hG+ 5(c− 1) + 2

where c is the nilpotency class of G.

Proof. If c = 1 then G is abelian and the claim is the statement of

Lemma 4.20. Therefore assume that c ≥ 2 and that the statement is true for

groups with nilpotency class strictly less then c.

Let N := ζ(G) be the centre of G and consider the central extension

1→ N → G→ Q→ 1.

Since G is torsion-free it follows by a theorem of Mal’cev that Q is torsion-

free [Rob96, p. 137]. The nilpotency class of Q is c − 1 and therefore we

have by induction the inequality

cdQ ≤ hQ+ 5(c− 2) + 2.

Let H be a subgroup of G with N ≤ H and H/N a virtually cyclic

subgroup of Q. Since Q is torsion-free it follows that H/N is infinite cyclic.

Therefore we have a short exact sequence

1→ N → H → H/N → 1
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and this sequence is split since H/N is free. Every element of H commutes

with every element of N = ζ(G) and thus N ≤ ζ(H). Therefore the above

extension is central and hence H ∼= N ×H/N . Then

cdH ≤ cdN + cdH/N︸ ︷︷ ︸
=0

+3 (4.3)

≤ hN + 5

where the first inequality is due to Corollary 3.62 and the second inequality

is due to Lemma 4.20. We can apply Proposition 4.13 and get altogether

cdG ≤ hN + 5 + cdQ

≤ hN + hQ+ 5(c− 1) + 2

≤ hG+ 5(c− 1) + 2 �

Theorem 4.22. Let G be a countable nilpotent group. Then

cdG ≤ hG+ 5(c− 1) + 3

where c is the nilpotency class of G.

Proof. Let Q := G/τ(G) and consider the short exact sequence

1→ τ(G)→ G→ Q→ 1.

Since τ(G) is locally finite we have h(τ(G)) = 0 and it follows that hQ =

hG. Furthermore the nilpotency class of Q is at most c. We can apply

Proposition 4.21 to Q and we get

cdQ ≤ hQ+ 5(c− 1) + 2

= hG+ 5(c− 1) + 2.

The claim follows now from Lemma 4.19. �

5. Elementary Amenable Groups

In the previous section we have already made a vague reference to el-

ementary amenable groups. This class of groups was first introduced by

von Neumann in [Neu29]. It is the smallest class of groups which contains all

finite groups and the infinite cyclic group and which is closed under forming

extensions, increasing unions, see for example [HL92]. This class is closed

under forming subgroups and quotients. It follows that the class of elementary
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amenable groups includes all locally finite groups, all locally nilpotent groups

and all virtually soluble groups.

In the previous section we have shown that locally nilpotent groups G

with finite Hirsch length have finite Bredon cohomological dimension with

respect to the family Fvc(G) and thus admit a finite dimensional model for

EG.

The natural question is to ask, if the same is true for elementary amenable

groups. However, since the class of elementary amenable groups contains

arbitrary large locally finite groups (which have have Hirsch length 0 by

Proposition 4.17) one can quickly see that this cannot be the case.

Lemma 4.23. [LW07] Let G be a locally finite group. If |G| = ℵn for some

n ∈ N then gdG = n+ 1. If |G| = ℵω then gdG =∞.

Proof. Since G is locally finite it follows that Fvc(G) = Ffin(G) and

therefore gdG = gdG. Thus the first claim is directly the statement of

Example 5.32 in [LW07, p. 36]. The remaining claim needs a simple inter-

mediate step. Assume |G| = ℵω. Let n ∈ N and let X be a subset of G with

|X| = ℵn. Then the subgroup H generated by X has cardinality ℵn, too.
Thus gdH = n+ 1 by the first part. Since n was chosen arbitrary we deduce

from gdG ≥ gdH = n+ 1 that gdG =∞. �

In what will follow in this section, two special subgroups of a group G

will be of importance. Given an arbitrary group G there exists a unique

maximal normal locally finite subgroup which we denote by Λ(G) [Rob96,

p. 436]. There exists also a unique maximal normal torsion subgroup which

we denote by τ(G), see for example [LR04, p. 90]. The subgroup τ(G) is

called the torsion radical of G. Note that for nilpotent groups τ(G) agrees

with the definition on page 95. Clearly Λ(G) ≤ τ(G) but equality does not

hold in general [Rob96, pp. 422ff.]. However, equality holds in case that G

is soluble [LR04, p. 90].

Lemma 4.24. Let G be an elementary amenable group with finite Hirsch

length. Then

|G| < ℵω ⇐⇒ |Λ(G)| < ℵω.
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Proof. “⇒”: Clear.

“⇐”: The quotient G/Λ(G) has a finite index torsion-free soluble

subgroup H, see [Weh95]. Since G/Λ(G) has finite Hirsch length it follows

that H has finite Hirsch length and thus it is countable. Then also G/Λ(G)

is countable. Assume that |Λ(G)| ≤ ℵn for some n ∈ N. Then an extension

of |Λ(G)| by a countable group has still cardinality at most ℵn. Thus

|G| < ℵω. �

Lemma 4.25. Let G be an elementary amenable group with hG =∞. Then

gdG =∞.

Proof. We have gdG ≥ cdG ≥ cdG − 1 ≥ cdQG − 1 where the last

inequality is due to the following standard argument [BLN01]: evaluating

any projective resolution P∗ → Z of the trivial OFfin(G)G-module at G/1 and

tensoring it with Q gives a projective resolution of the trivial QG-module Q.

However, cdQG ≥ hG is true for any elementary amenable group

by [Hil91, pp. 167f]. Therefore, if hG = ∞ it follows that cdQG = ∞
and thus gdG =∞, too. �

Combining Lemma 4.23, 4.24 and 4.25 gives immediately the following

Lemma 4.26. Let G be an elementary amenable group. Then

gdG <∞⇒ |G| < ℵω and hG <∞. �

In other words, the question, which elementary amenable groups do admit

a finite dimensional model for EG reduces to the following question: what

conditions on a elementary amenable group G in addition to |G| < ℵω and

hG < ∞ need to be satisfied in order to ensure gdG < ∞? One may also

ask if those conditions are actually sufficient?

The structure of elementary amenable groups G with finite Hirsch length

has been studied by Hillman and Linnell in [HL92] and Wehrfritz in [Weh95].

Proposition 4.27. [HL92, Weh95] Let G be an elementary amenable group

with hG < ∞. Then G/Λ(G) is a finite extension of a torsion-free soluble

group. �

In what follows we will need frequently the following result proven by

Lück.
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Lemma 4.28. [Lüc00, p. 191]. Let G be a group and let H be a finite index

subgroup of G. Then

gdG ≤ |G : H| · gdH.

In particular gdG <∞ if and only if gdH <∞. �

Note that since torsion-free soluble groups of finite Hirsch length are

countable [Bie81, p. 100] it follows that an elementary amenable group

G of finite Hirsch length is countable modulo Λ(G) [HL92]. Therefore an

elementary amenable group which admits a finite dimensional model for EG

are not far away from being countable torsion-free soluble with finite Hirsch

length.

Therefore we will restrict first to the following question: does a countable

soluble group G with finite Hirsch length admit a finite dimensional model

for EG? In the following we try to describe a possible way to obtain a positive

answer to this question. However, the proposed strategy has still gaps which

remain open at the time of writing.

We collect two results about soluble groups and linear groups which will

be needed in what follows.

Proposition 4.29. [Weh74, Corollary 1.2] Let G be a finite extension of a

torsion-free, soluble group. Then hG <∞ implies that G is Q-linear. �

Proposition 4.30. (Gruneberg, see for example [Weh73, p. 102]) Let G

be a linear group. Then its Fitting subgroup Fit(G) is nilpotent. �

Furthermore, for what follows, we need the next two assumptions to be

satisfied. We return our attention to these assumptions in a moment.

4.31. Let G be a countable torsion-free soluble group with hG < ∞. Let

N := Fit(G) and denote by ζ(N) the centre of N . Then there exists an

integer k ≥ 0 such that gdK ≤ k for every ζ(N) ≤ K ≤ G with K/ζ(N)

virtually cyclic.

4.32. Let G be a countable soluble group with hG <∞. Then

gd(G/Λ(G)) <∞⇒ gd(G) <∞.
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Proposition 4.33. Assume that the assumptions 4.31 and 4.32 are satisfied.

Then any countable soluble group G with finite Hirsch length admits a finite

dimensional model for EG.

Proof. We proof by induction on the Hirsch length h(G). If h(G) = 0

then G is locally finite which in turn implies gdG ≤ 1.

Thus we may assume that h(G) ≥ 1. Then G/Λ(G) is a finite extension of

a torsion free soluble group H by Proposition 4.27. Since G is not locally finite

it follows that H is non-trivial. Since H is soluble it follows that N := Fit(H)

must be non-trivial as it contains the smallest non-trivial term of the derived

series [Rob96, p. 133]. Moreover H is Q-linear by Proposition 4.29 and

therefore N must be nilpotent by Proposition 4.30. Therefore the centre

ζ(N) of N must be non-trivial and since H is torsion-free it follows that

h(ζ(N)) ≥ 1. Since ζ(N) is characteristic in N and since N is normal in H

it follows that ζ(N) is normal in H. Therefore we can form the quotient

group H/ζ(N) and h(H/ζ(N)) ≤ h(G/Λ(G))− 1 = h(G)− 1. It follows by

induction that gd(H/ζ(N)) <∞.

Since we assume that assumption 4.31 is satisfied for the group H it

follows that there exists an integer k such that

gdK ≤ k

for every ζ(N) ≤ K ≤ H for which K/ζ(N) is virtually cyclic. Therefore it

follows by Corollary 4.14 that gd(H/ζ(N)) <∞ implies gdH <∞. Since H

has finite index in G/Λ(G) this implies that gd(G/Λ(G)) <∞ by Lemma 4.28.

Finally, assumption 4.32 implies that gdG <∞. �

We return our attention to the assumption 4.31 which is clearly a necessary

condition in Proposition 4.33. The centre ζ(N) of the Fitting subgroup

N = Fit(G) of a soluble group G is known to be the centraliser CG(N)

of N in G [Rob96, p. 149]. This is another information in addition to

the many constraints we know from the setup in the assumption 4.31. By

Proposition 4.18 we know that gd(ζ(N)) is finite and one may hope that

with all the additional information provided one can conclude that virtually

cyclic extensions

1→ ζ(N)→ K → K/ζ(N)→ 1
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within the given countable torsion-free soluble Q-linear group G do have a

bound on gdK.

Proposition 4.34. Let G be a torsion-free soluble group with hG <∞. Let

N := Fit(G). Assume there exists an integer k ≥ 0 such that gdK ≤ k for

every infinite cyclic extension K of ζ(N) within G. Then the assumption 4.31

is satisfied.

In order to prove this proposition we need three auxillary results.

Lemma 4.35. Let G ge a torsion-free soluble group with hG < ∞. Let

N := Fit(G). Then G/N has a bound on the order of its finite subgroups.

Proof. Let Q := G/N . By [BK01, pp. 29f.] we have that Λ(Q) is

finite and Q/Λ(Q) is an Euclidean crystallographic group. Since Q/Λ(Q) is

crystallographic it follows that Q/Λ(Q) has a bound on the order of its finite

subgroup, say |K| ≤ k for any finite K ≤ Q/Λ(Q).

Now let H be an arbitrary finite subgroup of Q. Then

|H| = |H : H ∩ Λ(Q)| · |H ∩ Λ(Q)|

= |HΛ(Q) : Λ(Q)|︸ ︷︷ ︸
≤k

· |H ∩ Λ(Q)|︸ ︷︷ ︸
≤|Λ(Q)|

≤ k · |Λ(Q)| <∞

which is a bound independent of H. �

Lemma 4.36. Let G and N as in the previous lemma. Then G/ζ(N) has a

bound on the orders of its finite subgroups.

Proof. The group G is linear (Proposition 4.29) and therefore N is

nilpotent (Proposition 4.30).

Now ζ(N) is torsion-free and therefore each upper central factor of N is

torsion-free by a result of Mal’cev [Rob96, p. 137]. In particular ζ(N/ζ(N))

is torsion-free. Thus every upper central factor of N/ζ(N) is torsion-free.

Since N/ζ(N) is nilpotent its upper central series reaches N/ζ(N). it follows

that N/ζ(N) is torsion-free, too.

Consider the short exact sequence

1→ N/ζ(N)→ G/ζ(N)→ Q→ 1.
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Since (G/ζ(N))/(N/ζ(N) ∼= G/N ∼= Q there exists a upper bound k ≥ 1

on the order of the finite subgroups of Q by Lemma 4.35. Let H be a

finite subgroup of G/ζ(N). Since N/ζ(N) is torsion-free it follows that

|H ∩N/ζ(N)| = 1. Then

|H| = |H : H ∩N/ζ(N)| · |H ∩N/ζ(N)|︸ ︷︷ ︸
=1

= |H(N/ζ(N)) : N/ζ(N)| ≤ k �

Lemma 4.37. Let G be group and assume that there exists a r ≥ 1 such

that |H| ≤ r for every finite subgroup H of G. Then every infinite virtually

cyclic subgroup K of G has a infinite cyclic subgroup C with |K : C| ≤ 2r.

Proof. Let N be the unique maximal normal finite subgroup of K such

that K/N is either infinite cyclic or infinite dihedral.

If K/N is infinite cyclic, then K ∼= N o C with C infinite cyclic and

|K : C| = |N | ≤ r. On the other hand, if K/N is infinite dihedral, then

there exists k ∈ K such that kN generates an infinite cyclic subgroup of

K/N of index 2. Then C := 〈k〉 is an infinite cyclic subgroup of K with

|K : C| = 2|N | ≤ 2r. �

Proof of Proposition 4.34. By Lemma 4.36 we know that there ex-

ists r ≥ 0 such that |H| ≤ r for every finite subgroup H of G/ζ(N)

Let K be an extension of ζ(N) within G such that K/ζ(N) is virtually

cyclic.

If K/ζ(N) is finite, then

gdK ≤ |K : ζ(N)| · gd ζ(N) (Lemma 4.28)

≤ r · (h(ζ(N)) + 2) (Proposition 4.18)

If K/ζ(N) is infinite, then K has a subgroup C containing ζ(N) as a

subgroup such that C/ζ(N) is infinite cyclic and

|K : C| = |K/ζ(N) : C/ζ(N)| ≤ 2r

by Lemma 4.37. By assumption gdC ≤ k and thus

gdK ≤ |K : C| · gdC (Lemma 4.28)

≤ 2rk
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Therefore

gdK ≤ r ·max(h(ζ(N)) + 2, 2k)

for any ζ(N) ≤ K ≤ G with K/ζ(N) virtually cyclic. That is, the assump-

tion 4.31 is satisfied. �

The consequence of Proposition 4.34 is that the assumption 4.31 is

equivalent to the following assumption.

4.38. Let G be a countable torsion-free soluble group with hG < ∞. Let

N := Fit(G) and denote by ζ(N) the centre of N . Then there exists an

integer k ≥ 0 such that gdK ≤ k for every ζ(N) ≤ K ≤ G with K/ζ(N)

infinite cyclic.

If K is nilpotent, then gdK ≤ h(ζ(N)) + 3 by Proposition 4.18. In

particular this bound is satisfied whenever K ≤ N . If ζ(N) is finitely

generated then ζ(N) and therefore also any infinite cyclic extension K of

ζ(N) is polycyclic. In this case gdK ≤ hK + 1 = h(ζ(N)) + 2 by [LW07].

In the next chapter we show that under certain conditions we can ensure

gdK ≤ gd ζ(N) + 1, see Proposition 5.16. However, these estimates do not

cover all possibilities yet. But one may hope that one has enough constraints

to be able to answer all possibilities. After all the extension K has a structure

which is well understood.

Another open question is whether the assumption 4.32 does hold. The

validity of this assumption is essential in the induction step which appears in

the proof of Proposition 4.33. Whether or whether not the assumption holds

in this form is open at the moment. However, one may relax the assumption

in case one wants to restrict the attention to torsion-free soluble groups. In

this case the following assumption is enough.

4.39. Let G be a torsion-free soluble group with finite Hirsch length. Set

H := G/ζ(Fit(G)). Then gd(H/Λ(H)) <∞ implies gdH <∞.

In the assumption 4.32 the subgroup Λ(G) was allowed to be any countable

soluble locally finite group. However, in the above assumption Λ(H) may not

be anymore as arbitrary.

Finally, since an elementary amenable group G with finite Hirsch length

is, modulo Λ(G), a finite extension of a countable torsion-free soluble group
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(Proposition 4.27) one may consider for a fixed n ∈ N the following variation

of the assumption 4.32.

4.40. For any elementary amenable group G with |G| ≤ ℵn and hG <∞ the

condition gd(G/Λ(G)) <∞ implies gdG <∞.

Lemma 4.23 implies that the above assumption must be satisfied for all

n ∈ N if gdG < ∞ for every elementary amenable group G with |G| < ℵω
and hG <∞. Moreover we have already noted that the assumption 4.38 is a

necessity, too. On the other hand, the next result says that this also suffices.

Theorem 4.41. Suppose that the assumptions 4.40 is satisfied for all n ∈ N
and that the assumption 4.38 is satisfied. Then for any elementary amenable

group G holds

gdG <∞ ⇐⇒ |G| < ℵω and hG <∞.

Proof. “⇒”: This is Lemma 4.26.

“⇐”: There exists a finite index countable torsion-free soluble subgroup

H of G/Λ(G). Since hH = hG < ∞ it follows by Proposition 4.34 and

Proposition 4.33 that gdH <∞. Now Lemma 4.28 and the assumption 4.40

implies that gdG is finite, too. �
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CHAPTER 5

A Geometric Interlude

1. A Class of Infinite Cyclic Extensions

The spectral sequence developed by Martínez-Pérez [MP02] suggests

that virtually cyclic extensions are the main obstruction to understand the

behaviour of Bredon dimensions under general extensions for the family of

virtually cyclic subgroups. A first general answer for finite extensions has

been given in [Lüc00, p. 191], see Lemma 4.28 in the previous chapter. Yet

effectively nothing is known for the general case. The main objective in this

chapter is to construct a model for EG in the case that G belongs to a certain

class of infinite cyclic extensions.

Infinite cyclic extensions are always split. Therefore such kind of exten-

sions are always semidirect products. Let B be a group and let ϕ ∈ Aut(B).

Recall that the semidirect product

G := B o Z,

where Z acts on B via the automorphism ϕ, is the set B × Z with the

multiplication given by

(x, r) · (y, s) = (xϕr(y), r + s).

The identity is (1, 0) and the inverse of any element (x, r) is given by (x, r)−1 =

(ϕ−r(x−1),−r). The group B is embedded via x 7→ (x, 0) as a normal

subgroup of G and we consider Z embedded as a subgroup of G via r 7→ (1, r).

Up to and including Section 7 of this chapter we will assume that G =

B o Z and that that this extension satisfy the following condition:

The subgroup Z acts via conjugation freely on the set of

conjugacy classes of nontrivial elements of B.

Under this condition we can show that there exists a suitable set of unique

maximal virtually cyclic subgroups to apply a variation of Juan-Pineda and
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Leary’s construction (see Proposition 4.8) in order to construct a model for

EG from a model for EB.

2. Technical Preparations

Lemma 5.1. Assume that B is torsion-free and does not contain a subgroup

isomorphic to Z2. Then Z acts freely by conjugation on the set of conjugacy

classes of the non-trivial elements of B if and only if G does not contain a

subgroup isomorphic to Z2.

Proof. “⇐”: Suppose that H is a subgroup of G which is isomorphic

to Z2. It must have a non-trivial intersection with the kernel of the canonical

projection B oZ→ Z. Therefore there exists (y, 0) ∈ B ∩H with y 6= 1. On

the other hand, H is not contained in B and thus there exists (x, r) ∈ H \B.

Then, as H is abelian, the commutator

[(x, r), (y, 0)] = (xϕr(y)x−1y−1, 0)

must be trivial which is the case if and only if xϕr(y)x−1y−1 = 1. This

implies that ϕr(y) and y belong to the same conjugacy class in B. Since

r 6= 0 and y 6= 1 this implies that Z does not act freely on the set of conjugacy

classes of non-trivial elements of B.

“⇒”: Suppose that Z does not act freely on the set of conjugacy classes

of non-trivial elements of B. Then there exists 1 6= y ∈ B and 0 6= r ∈ Z
such that ϕr(y) = x−1yx for some x ∈ B. This implies that the non-trivial

elements (x, r) and (y, 0) commute. In general (x, r) has infinite order and

since B is assumed to be torsion-free it follows that the order of (y, 0) is

also infinite. Therefore (x, r) and (y, 0) generate a subgroup of G which is

isomorphic to Z2. �

Lemma 5.2. Let B be a non-trivial virtually cyclic group. Then Z cannot

act freely by conjugation on the set of conjugacy classes of the non-trivial

elements of B.

Proof. We proof the stronger result: Z cannot act freely by conjugation

on the non-trivial elements of B.

Let N be the unique maximal normal finite subgroup of B. Assume

towards a contradiction that ϕ ∈ Aut(B) such that ϕk(b) 6= b for all k ∈
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Z \ {0} and b ∈ B \ {1}. Then X := {ϕk(b) : k ∈ Z} is a infinite subset of B.

If b ∈ N then X ⊂ N since N is a characteristic subgroup of B. But this is

absurd since N is finite. Therefore N = 1 and B ∼= Z or B ∼= D∞. Then B

contains a unique maximal infinite cyclic subgroup C which is characteristic

in B. Then ϕ restricted to C has order at most 2. But then ϕ2(b) = b which

contradicts the assumption. Therefore Z cannot act freely by conjugation on

the set of non-trivial elements of B. �

The statement of the next lemma is only non-trivial if B has torsion.

Lemma 5.3. Assume that Z acts freely via conjugation on the set of conju-

gacy classes of non-trivial elements of B. If H is a virtually cyclic subgroup

of G which is not a subgroup of B then H is infinite cyclic.

Proof. First we note that all x ∈ G \B have infinite order. Hence the

subgroup τ(H) of H which is generated by all the elements of H which have

finite order is a subgroup of B.

By assumption there exists (x, r) ∈ H with r 6= 0. Then the infinite cyclic

subgroup of H generated by this element has trivial intersection with B and

therefore it also has trivial intersection with τ(H). Since H is virtually cyclic

this can happen only if τ(H) is finite.

Assume towards a contradiction that there exists a non-trivial (y, 0) ∈
τ(H). Then (zk, 0) := (y, 0)(x,r)k , k ∈ N, is a sequence of elements in τ(H)

such that for each k ∈ N the element zk is conjugate in B to ϕ−rk(y). This

claim is verified by induction. The case k = 0 is trivial. Thus assume that

(zk, 0) ∈ τ(H) and that there exists u ∈ B such that zk = u−1ϕ−rk(y)u.

Since τ(H) is a characteristic subgroup of H and (x, r) ∈ H, it follows that

(zk+1, 0) = (zk, 0)(x,r) ∈ τ(H). Furthermore we have that

(zk+1, 0) = (zk, 0)(x,r) = (ϕ−r(x−1zkx), 0)

and hence zk+1 = ϕ−r(x−1u−1ϕ−rk(y)ux) = v−1ϕ−r(k+1)(y)v with v :=

ϕ−r(gx). That is that zk+1 is conjugate in B to ϕ−r(k+1)(y). By assumption

Z acts freely via conjugation on the conjugacy classes of non-trivial elements

of B and hence all zk belong to different conjugacy classes. In particular they

are all pairwise different. Thus {(zk, 0) : k ∈ N} forms an infinite subset of

τ(H). But this is a contradiction as we have shown above that τ(H) is finite!
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Therefore τ(H) must be trivial. It follows that the virtually cyclic group H

does not have any torsion and thus it must be infinite cyclic. �

Lemma 5.4. Assume that Z acts freely via conjugation on the set of conju-

gacy classes of non-trivial elements of B. Then for any (x, r) ∈ G \B and

y ∈ B we have

(x, r)y = (x, r) ⇐⇒ y = 1.

Proof. (x, r)y = (x, r) is equivalent to ϕ(y) = xyx−1, which is by

assumption on the action of Z on B equivalent to y = 1. �

Lemma 5.5. Under the assumptions of the previous lemma, if H is an

infinite cyclic subgroup of G that is not a subgroup of B, and y ∈ B, then
|H ∩Hy| =∞ if and only if y = 1.

Proof. The “if” statement is trivial. Therefore assume that y 6= 1 and

let (x, r) be a generator of H. Then r 6= 0 and

(z, r) := (x, r)y 6= (x, r)

is a generator of Hy where the inequality is due to Lemma 5.4. Suppose, for

a contradiction, that |H ∩Hy| = ∞. Then there must exist k, l ∈ Z \ {0}
such that (x, r)k = (z, r)l. In particular this implies that k = l. But then we

get

(z, r)l = (z, r)k =
(
(x, r)y

)k
=
(
(x, r)k

)y 6= (x, r)k,

where the last inequality is again due to Lemma 5.4, and so we achieve our

desired contradiction. Hence we must have |H ∩Hy| 6=∞. �

As in [LW07, p. 5] we define an equivalence relation “∼” on the set

Fvc(G) \ Ffin(G) by

H ∼ K :⇐⇒ |H ∩K| =∞.

We denote by [H] the equivalence class of the group H. If K is not finite then

K ≤ H implies that K ∼ H. Furthermore the equivalence relation satisfies

H ∼ K if and only Hg ∼ Kg. Therefore the action of G by conjugation on

the set Fvc(G) \ Ffin(G) gives an action of G on the set of equivalence classes.

If [H] is an equivalence class, then we denote by G[H] the stabiliser of [H].
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Given subgroup H of G, the commensurator CommG(H) of H in G is

defined as the subgroup

CommG(H) := {g ∈ G : |H : H ∩Hg| and |Hg : H ∩Hg| are finite}.

This subgroup is also known as the virtual normaliser V NG(H) of the

subgroup H in G. In general it contains the normaliser NG(H) of H in G as

its subgroup. In the case that H is a virtually cyclic subgroup of G which is

not finite we have

CommG(H) = {g ∈ G : |H ∩Hg| =∞}.

In particular we have that CommG(H) = G[H] in this case.

Lemma 5.6. Assume that Z acts freely by conjugation on the set of non-

trivial conjugacy classes of non-trivial elements of B. Then the commensu-

rator CommG(H) is infinite cyclic for any virtually cyclic subgroup H of G

that is not a subgroup of B.

Proof. Any such virtually cyclic subgroup H of G is infinite cyclic

by Lemma 5.3. Therefore G[H] = CommG(H). Suppose that G[H] is not

infinite cyclic. Then the canonical projection π: B o Z → Z cannot map

G[H] isomorphically onto its image. Hence there exists a non-trivial y ∈
G[H] ∩ ker(π) = G[H] ∩ B. Since H is infinite cyclic we get |H ∩Hy| 6= ∞
by Lemma 5.5 which is equivalent to [H] 6= [Hy], and this is a contradiction

to the assumption that y ∈ G[H]. Therefore G[H] = CommG(H) must be

infinite cyclic. �

Proposition 5.7. Let G be an arbitrary group and let F and G be families

of subgroups of G such that

Ffin(G) ⊂ F ⊂ G ⊂ Fvc(G).

Assume that the commensurator CommG(H) ∈ G for any H ∈ G \ F, then
every H ∈ G \ F is contained in a unique maximal element Hmax ∈ G and

NG(Hmax) = Hmax.

Proof. Since H is an infinite virtually cyclic subgroup of G it follows

that G[H] = CommG(H) and thus G[H] ∈ G by assumption.

Trivially we have that H ≤ G[H]. If K ∈ G with H ≤ K, then H ∼ K

since H is not finite, and for any k ∈ K we get [Hk] = [Kk] = [K] = [H].
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Therefore any k ∈ K stabilises [H]. This implies K ≤ G[H] and thus G[H] is

maximal and unique in G \ F, that is Hmax = G[H].

Finally, Hmax ≤ NG(Hmax) ≤ CommG(Hmax) = G[Hmax] = Hmax and

hence Hmax = NG(Hmax). �

Together with Lemma 5.3, we get the following result:

Corollary 5.8. Let G = BoZ and assume that Z acts freely by conjugation

on the set of conjugacy classes of non-trivial elements of B. Then every

H ∈ Fvc(G) \ Fvc(B) is contained in a unique maximal element Hmax ∈
Fvc(G) \ Fvc(B) and NG(Hmax) = Hmax. Furthermore Fvc(B) ∩H = {1} for
any H ∈ Fvc(G) \ Fvc(B). �

3. A Generalisation of Juan-Pineda and Leary’s Construction

Let G be an arbitrary group and assume that F and G are two families

of subgroups of G which satisfy the conditions of Proposition 5.7. Then we

have the following generalisation of Proposition 4.8.

Proposition 5.9. Let F be a full family and G a semi-full family of subgroups

of G with Ffin(G) ⊂ F ⊂ G ⊂ Fvc(G). Assume that every H ∈ G \ F is

contained in a unique maximal element Hmax ∈ G and NG(Hmax) = Hmax.

Moreover, assume that F ∩ H ⊂ Ffin(H) for every H ∈ G \ F. Let C be

a complete set of representatives of conjugacy classes of maximal elements

in G \ F. Denote by Co and the set of orientable elements of C and denote

by Cn the set of non-orientable elements of C. Then a model for EGG can be

obtained from model for EFG by attaching

(1) orbits of 0-cells indexed by C;
(2) orbits of 1-cells indexed by Co ∪ {1, 2} × Cn;
(3) orbits of 2-cells indexed by C.

Furthermore, a model for BGG can be obtained from a model for BFG by

attaching 2-cells indexed by Co.

Proof. We only need to verify that Juan-Pineda and Leary’s construc-

tion works unchanged in the more general setting. We fix a model E for

EFG.

Let H ∈ C. By [JPL06, p. 137] we can choose a 1-dimensional model

EH for EH which homeomorphic to the real line and such that EH/H is a
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loop if H ∈ Co or a line segment if H ∈ Cn. Denote by

ZH := G×H EH

the G space which is induced from the H-space EH [Kaw91, pp. 52ff.]. If

[g, x] ∈ ZH , then G[g,x] = Gg[1,x] = (G[1,x])
g−1 . Since G[1,x] = Hx and Hx is

a finite subgroup of H it follows that G[g,x] ∈ Ffin(G). Therefore it follows

that F(ZH) ⊂ Ffin(G) ⊂ F and there exists a G-map fH : ZH → E by the

universal property of E.

Furthermore, we set

XH := G/H,

which is a discrete transitive G-set. There exists a G-equivariant projection

πH : ZH → XH which maps [g, x] to gH and an H-equivariant inclusion

iH : EH → ZH given by iH(x) := [1, x]. Denote by VgH := π−1
H (gH). Clearly

iH(EH) ⊂ VH . On the other hand, if [h, x] ∈ VH , then hx ∈ EH such that

iH(hx) = [1, hx] = [h, x]. That is iH(EH) ⊂ VH and we have the equality

iH(EH) = VH . Since G is discrete, it follows that iH is an open map and in

particular it maps EH homeomorphically onto VH . Let RH be a complete

system of representatives of the left cosets G/H. Since G/H is discrete we

have that ZH is the disjoint union

ZH =
∐
g∈RH

VgH =
∐
g∈RH

gVH

of contractible subspaces gVH , g ∈ RH , which are permuted by the action

of G.

Claim 1. Let K be a finite subgroup of G. Then the projection πH induces

a homotopy equivalence

πH : (ZH)K → (XH)K .

Let [g, x] ∈ (ZH)K . Without any loss of generality we may assume that

g ∈ RH . Now [g, x] ∈ (ZH)K implies

∀k ∈ K: k[g, x] = [g, x]

⇐⇒ ∀k ∈ K: [g−1kg, x] = [1, x]

⇐⇒ ∀k ∈ K: ∃h ∈ H: g−1kgh−1 = 1 and hx = x

⇐⇒ ∀k ∈ K: ∃h ∈ Hx: g−1kg = h

⇐⇒ Kg ≤ Hx
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⇒ x ∈ {y ∈ EH : Kg ≤ Hy} = (EH)K
g
and K is finite.

Thus [1, x] ∈ (VH)K
g

= {[1, x] : x ∈ (EH)K
g
)} and therefore [g, x] = g[1, x] ∈

g
(
(VH)K

g). On the other hand, let [1, x] ∈ (VH)K
g . Then

k[g, x] = g(g−1kg)[1, x] = g[1, x] = [g, x]

for all k ∈ K. Therefore [g, x] ∈ (ZH)K (and K is finite as before).

Altogether this shows

(ZH)K =
∐
g∈RH

g
(
(VH)K

g)
is the disjoint union of the subspaces g

(
(VH)K

g). Since K is assumed to be

finite we have that

(1) (VH)K
g is contractible if Kg ≤ H;

(2) (VH)K
g

= ∅ otherwise.

On the other hand gH ∈ (G/H)K if and only if Kg ≤ H. It follows that πH
induces map

πH : (ZH)K → (XH)K

which maps the contractible components g
(
(VH)K

g
) of ZH in an one-to-one

way onto the discrete space (XH)K = (G/H)K . It follows that πH induces a

homotopy equivalence (ZH)K → (XH)K and the claim follows.

We set

Z :=
∐
H∈C

ZH

and theG-maps fH and πH give rise toG-maps f : Z → E and π: Z → X with

X :=
∐
H∈C XH . Note that π induces a homotopy equivalence ZK → XK

for every finite subgroup K of G.

Claim 2. The G-map

(f, π): Z → E ×X

given by [g, x] 7→
(
f([g, x]), π([g, x])

)
is a G-homotopy equivalence.

Let K be a subgroup of G such that (E ×X)K = EK ×XK 6= ∅. Then
EK 6= ∅ and XK 6= ∅. The condition EK 6= ∅ implies that K ∈ F and

XK 6= ∅ implies that there exists a H ∈ C and a g ∈ G such that Kg ≤ H.

Thus Kg = Kg∩H ∈ F∩H ≤ Ffin(H). Therefore K is a finite subgroup of G.

Since Ffin(G) ⊂ F it follows that EK is contractible by the universal property
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of E. Moreover, since K is finite, it follows that π induces a homotopy

equivalence ZK → XK .

It follows that (f, π) induces a homotopy equivalence ZK → EK ×XK =

(E ×X)K . To see this, denote by θ the homotopy inverse of π restricted to

XK , and denote by p the projection EK ×XK → XK . Let

f̃ : EK ×XK → ZK

be the composite map f̃ := θ ◦ p. Then f̃ ◦ (f, π) = θ ◦ p ◦ (f, π) = θ ◦ π ' id.

On the other hand we have that π ◦ θ = id since X is discrete. Therefore

(f, π) ◦ f̃ = (f ◦ θ ◦ p, π ◦ θ ◦ p) = (f ◦ θ ◦ p, p)

maps (x, gH) 7→ ((f ◦ θ)(gH), gH) for all (x, gH) ∈ EK ×XK . Since EK is

contractible it follows that (f, π) ◦ f̃ ' id. Altogether this shows that (f, π)

has a homotopy inverse and therefore it is a homotopy equivalence.

Since (f, π) is a G-map and K has been an arbitrary subgroup of G such

that (E×X)K 6= ∅ we can apply the Equivariant Whitehead Theorem [Lüc89,

p. 36] and we get that (f, π) is a G-homotopy equivalence and this proves

Claim 2.

As in [JPL06, p. 140] we can attach Z × [0, 1] to the disjoint union

of E and X, identifying (z, 0) with f(z) ∈ E and (z, 1) with π(z) ∈ X.

Denote this space by Ẽ. Since Z 'G E ×X it follows that Ẽ is G-homotopy

equivalent to the join E ∗X of E and X. Note that the join inherits a natural

G-CW-complex structure from E and X.

Claim 3. The join E ∗X is a model for EGG.

If K ∈ F(E ∗X), then at least one of the following cases does hold:

(1) K ∈ F(E) ⊂ F ⊂ G;

(2) K ∈ F(X) ⊂ G;

(3) K = K1 ∩K2 with K1 ∈ F ⊂ G and K2 ∈ G.

SinceG is semi-full it follows that also in the last caseK ∈ G holds. Altogether

F(E ∗X) ⊂ G.

If K ∈ F then EK is contractible and if K ∈ G \ F, then XK consists

of a single point and is therefore contractible. It follows that (E ∗X)K is

contractible in both cases, that is for every K ∈ G.

114



Altogether E ∗X is a model for EGG by Proposition 2.4 and this proves

the claim.

Since E ∗X 'G Ẽ it follows that Ẽ is a model for EGG, too. It follows

that Ẽ is obtained from E by attaching orbits of 0-, 1- and 2-cells as described

in the proposition.

The remaining claim about the construction of a model for BGG from

a model for BFG follows from the argument which proved Corollary 10

in [JPL06, p. 141]. This concludes the proof of Proposition 5.9. �

Note that in the case G = Fvc(G) and F = Ffin(G) we recover the original

statement of Proposition 4.8. However we apply it to the case that G = BoZ,
F = Fvc(B) and G = Fvc(G). If Z acts freely by conjugation on the set of

conjugacy classes of non-trivial elements of B, then Corollary 5.8 tells us

that we can use Proposition 5.9 in order to construct a model for EG from a

model for EFvc(B)G. However, in order to obtain this way a nice model for

EG we need to have a nice model for EFvc(B)G to start with. In the next

section we will give a general construction for such a model if a nice model

for EB is given.

4. Constructing a Model for EFG from a Model for EFB

We carry out the construction in a setting that is more general than in

the previous section. Let G := BoZ be an arbitrary infinite cyclic extension,

where Z acts on B via an automorphism ϕ ∈ Aut(B). Let F be a family of

subgroups of B. We assume that F is invariant under the automorphism ϕ,

that is ϕk(H) ∈ F for every H ∈ F and k ∈ Z. This implies that H ∈ F if

and only if ϕ(H) ∈ F for any subgroup H of B. Furthermore this implies

that F is not just a family of subgroups of B but also a family of subgroups

of G.

We begin our construction with the assumption that we are given a model

X for EFB. For each k ∈ Z let Xk be a copy of X seen as a set. We define a

B-action

Φk: B ×Xk → Xk

on Xk by Φk(g, x) := ϕ−k(g)x.
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Xk−1 Xk Xk+1 Xk+2

Figure 5. A schematic picture of the B-CW-complex Y .

Since X0 and X1 are models for EB there exists a B-map f : X0 →
X1. In other words f is a continuous map f : X → X which satisfies

f(gx) = ϕ−1(g)f(x) for every x ∈ X and g ∈ B. By the equivariant Cellular

Approximation Theorem [Lüc89, p. 32] we may assume without loss of

generality that f is cellular. Denote by X∞ the disjoint union of B-spaces

X∞ :=
∐
k∈Z

(Xk × [0, 1])

and let Y be the quotient space

Y := X∞/ ∼

under the equivalence relation generated by (x, 1) ∼ (f(x), 0) whenever

x ∈ Xk and f(x) ∈ Xk+1 for some k ∈ Z. Since f is a cellular B-map it

follows that Y is a B-CW-complex. Essentially, it is a mapping telescope

which extends to infinity in both directions, see Figure 5. Note that if X is an

n-dimensional B-CW-complex, then Y is (n+1) dimensional B-CW-complex.

Lemma 5.10. The B-CW-complex Y is a model for EFB.

Proof. Let H be a subgroup of B such that H /∈ F and let x ∈ Xk for

some k ∈ Z. Since F is assumed to be invariant under the automorphism ϕ

we have ϕ−k(H) /∈ F. Therefore there exists a h ∈ H such that ϕ−k(h)x 6= x.

But then

Φk(h, x) = ϕ−k(h)x 6= x,

which implies that x /∈ XH
k . It follows that XH

k = ∅ and therefore also

Y H
k = ∅ for all k ∈ Z. Hence Y H = ∅.

On the other hand, consider the case that H ∈ F. Since the family

F is assumed to be invariant under the automorphism ϕ it follows that
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ϕk(H) ∈ F for every k ∈ Z. Then XH
k = Xϕk(H) is contractible for every

k ∈ Z. Choose for every k ∈ Z an element xk ∈ XH
k and a contracting

homotopy hk: XH
k ' {xk}. This induces a contracting homotopy h: Y H ' L

where L is a subspace of Y H which is homeomorphic to the real line R. Since
L is contractible it follows that Y H is contractible. �

For every (x, t) ∈ Xk × [0, 1] and (g, r) ∈ G set

Ψ(g, r) := (Φk+r(g, x), t) ∈ Xk+r × [0, 1].

Straight forward calculation shows that this induces a well defined action

Ψ: G× Y → Y

of G on Y , which extends the already existing B-action on Y . If (g, r) ∈ G\B,

then r 6= 0 and therefore clearly Ψ((g, r), x) 6= x for any x ∈ Y . Then together

with Lemma 5.10 this implies that Y is an (n + 1)-dimensional model for

EFG. Altogether we have then shown the following result.

Proposition 5.11. Let G = B o Z be an arbitrary infinite cyclic extension

where Z acts on B via an automorphism ϕ ∈ Aut(B). Let F be a family of

subgroups of B which is invariant under the automorphism ϕ. If there exists

an n-dimensional model for EFB then there exists an (n + 1)-dimensional

model for EFG. �

5. Examples

Strictly descending HNN-extensions are a natural source for candidates

for infinite cyclic extensions G = B o Z where Z acts freely by conjugation

on the set of conjugacy classes of the non-trivial elements of B.

The general setup is the following. Let B0 be a group and let ϕ: B0 → B0

a monomorphism. Recall that the descending HNN-extension determined by

this data is the group G given by the presentation

G := 〈B0, t | t−1xt = ϕ(x) for all x ∈ B0〉

and this group is usually denoted by B0∗ϕ in the literature. The group

B0 is called the base group of the HNN-extension. The HNN-extension is

called strictly descending if the monomorphism ϕ is not an isomorphism. We

consider B0 as a subgroup of G in the obvious way.

117



Conjugation by t ∈ G defines an automorphism of G which agrees on B0

with ϕ which we will therefore denote by the same symbol. In other words,

the monomorphism ϕ: B0 → B0 extends to the whole group G if we set

ϕ: G→ G, x 7→ ϕ(x) := t−1xt.

For each k ∈ Z we set Bk := ϕk(B0). In this way we obtain a descending

sequence

. . . ⊃ B−2 ⊃ B−1 ⊃ B0 ⊃ B1 ⊃ B2 ⊃ . . .

of subgroups of G. This sequence of subgroups is strictly descending if and

only if the HNN-extension is strictly descending. We denote the directed

union of all these Bk by B. The automorphism ϕ restricts to an automorphism

of B which is therefore a normal subgroup of G. It is standard fact that we

can write G as the semidirect product G = B oZ where Z acts on B via the

automorphism ϕ restricted to B.

Lemma 5.12. Assume that for every non-trivial x ∈ B0 there exists a k ∈ N
such that x /∈ ϕk(B0). Given x ∈ B0, denote by [x] the set of all elements in

B0 which are conjugate in B0 to x. Assume that for each x ∈ B we are given

a finite subset [x]′ ⊂ [x] such that ϕ([x]′) ⊂ [ϕ(x)]′ for every x ∈ B0. Then Z
acts freely on the set of conjugacy classes of non-trivial elements of B.

Proof. We suppose that Z does not act freely on the set of conjugacy

classes of non-trivial elements of B. Then there exists x ∈ B and n ≥ 1 such

that ϕn(x) is conjugate in B to x. Without any loss of generality we may

assume that x ∈ B0 (otherwise replace x by ϕk(x) for a suitable k ∈ N).
Furthermore, without any loss of generality we may assume that x ∈ [x]′.

Finally we may assume without any loss of generality that ϕn(x) is actually

conjugate in B0 to x (otherwise, again, replace x by ϕk(x) for a suitable

k ∈ N).
Now ϕrn(x) ∈ [x]′ for any r ≥ 1. Since [x]′ is finite this implies that

ϕrn(x) = ϕsn(x) for some s > r. Therefore ϕ(s−r)n(x) = x and since

(s − r)n > 0 it follows that x ∈ ϕk(B0) for any k ∈ N. However, this is

a contradiction on the hypothesis that Z does not act freely on the set of

conjugacy classes of non-trivial elements of B. Therefore the opposite must

be true. �
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Note that the requirement that for every non-trivial element x ∈ B0

there exists a k ∈ N such that x /∈ ϕk(B0) implies that the descending

HNN-extension G = B0∗ϕ is actually strictly descending. Furthermore, we

can conclude from it that the intersection of the groups Bk, k ∈ Z, is trivial.

Example 5.13. Let B0 be an abelian group and ϕ: B0 → B0 a monomor-

phism such that for every non-trivial x ∈ B0 there exists a k ∈ N such that

x /∈ ϕk(B0). Since B0 is abelian, each conjugacy class [x] of elements in B0

contains precisely one element. Therefore Lemma 5.12 states that Z acts

freely by conjugation on the set of non-trivial elements of B. In particular we

can use Proposition 5.9 to obtain a model for EG from a model for EFvc(B)G.

Let B0 be a free group. An element x ∈ B0 is called cyclically reduced

if it cannot be written as x = u−1yu for some non-trivial u, y ∈ B0. It

follows from [MKS76, pp. 33ff.] that every element x ∈ B0 is conjugate to a

cyclically reduced element x′ and that there are only finitely many cyclically

reduced elements in B0 which are conjugate to x. Therefore

[x]′ := {x′ ∈ [x] : x′ is cyclically reduced}

is a finite subset of [x] for every x ∈ B0. Then the following two assump-

tions on the monomorphism ϕ: B0 → B0 are necessary in order to apply

Lemma 5.12:

(1) For every non-trivial x ∈ B0 there exists a k ∈ N such that x /∈
ϕk(B0);

(2) If x is a cyclically reduced element in B0, then so ϕ(x).

Example 5.14. Let X be an arbitrary non-empty set and let B0 := F (X)

be the free group on the basis X. Let {αx}x∈X be a collection of integers

such that |αx| ≥ 2 for every x ∈ X. Consider the endomorphism ϕ: B0 → B0

that maps any basis element x to xαx . Then ϕ is a monomorphism which

satisfies the assumptions (1) and (2) above. Lemma 5.12 tells us then that

we can use Proposition 5.9 to construct a model for EG from a model for

EFvc(B)G.

Example 5.15. Another example of a strictly descending HNN-extension

(in disguise) is the restricted wreath product A o Z of an arbitrary group A

by Z which is defined as follows. Let Ak be a copy of A for each k ∈ Z. Let
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B be the coproduct of all these Ak and let Z act on B via ϕ which maps Ak
identically onto Ak+1 for all k ∈ Z. Then

A o Z := B o Z.

Since each Ak is normal in B the above definition of ϕ forces the action

of Z on the set of conjugacy classes of non-trivial elements of B to be free.

Therefore we can apply Proposition 5.9 in this case, too.

6. Dimensions

Given a family F of subgroups of G, a model for EFG is only defined

uniquely up to G-homotopy. Consider a model for EFG. One particular

invariant of the group G is called the geometric dimension of G with respect

to the family F, and this is defined as being the least possible dimension of a

model for EFG. It is denoted by gdFG and may be infinite. In the case that

F = {1} we recover the classical geometric dimension of the group G. In the

case that F = Fvc(G) we denote the geometric dimension by gdG.

Proposition 5.16. Let G = B o Z and assume that Z acts freely via conju-

gation on the conjugacy classes of non-trivial elements of B. Then B is not

virtually cyclic and

gdB ≤ gdG ≤ gdB + 1.

Proof. Since (in general) a model for EG is always a model for EB via

restriction, we have that the second inequality is the only non-trivial one.

If X is an n-dimensional model for EB, then the telescope construction in

Section 4 gives an (n+ 1)-dimensional model for EFvc(B)G.

By Lemma 5.2 the group B cannot be virtually cyclic. Therefore n+1 ≥ 2

and attaching cells of dimension at most 2 does not increase the dimension

of the resulting space. Hence Proposition 5.9 yields an (n+ 1)-dimensional

model for EG and this concludes the proof. �

Corollary 5.17. Let G = B0∗ϕ be a descending HNN-extension as in Sec-

tion 5. If G = B o Z satisfies the conditions of the previous proposition

then

gdB0 ≤ gdG ≤ gdB0 + 2.
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Proof. As exploited previously, since B0 is a subgroup of G, the second

inequality is the only non-trivial part of the statement. The group B is

the countable direct union of the conjugates of B0 in G. Therefore an n-

dimensional model for EB0 gives rise to an (n + 1)-dimensional model for

EB by a construction of Lück and Weiermann [LW07, pp. 11ff.]. Now the

claim follows from the previous proposition. �

Example 5.18. Let G = B0∗ϕ be a descending HNN-extension with B0 a

free group. If B0 has rank 1, then G is a soluble Baumslag–Solitar group

and this case is treated below in Theorem 5.20. Thus we may assume that

B0 has rank at least 2. Free groups are torsion-free and act freely on a tree

which is therefore a 1-dimensional model for EB0. Free groups are word

hyperbolic and therefore Proposition 9 in [JPL06] states the existence of a

2-dimensional model for EB0. On the other hand by Remark 16 in [JPL06]

there cannot exist a model for EB0 less than 2. Therefore gdB0 = 2. Now

the direct union B of all conjugates of B0 in G is locally free and therefore

does not contain a subgroup of isomorphic to Z2. Then Lemma 5.1 states

that we can apply Corollary 5.17 if and only if G does not contain a subgroup

isomorphic to Z2. Therefore we get in this case the estimation 2 ≤ gdG ≤ 4.

Example 5.19. Consider the restricted wreath product G = A o Z where A

is a countable locally finite group. Then

B :=
∐
k∈Z

A

is also a countable locally finite group. Since B is not finite it follows that

gdB = 1 by Lemma 4.28. We have seen that G does satisfy the requirements

of Proposition 5.16. Therefore we get the estimate 1 ≤ gdG ≤ 2. We will

see in the next chapter with Corollary 6.3, that gdG = 1 implies that G is

locally virtually cyclic. However G is not locally virtually cyclic and therefore

we gdG 6= 1. Thus we have altogether

gdG = 2.

Note that the smallest concrete example of a group of this type is the

Lamplighter group L = Z2 o Z where Z2 is the cyclic group of the integers

modulo 2.
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7. Soluble Baumslag–Solitar Groups

We conclude this chapter with a complete answer to the geometric di-

mension of the soluble Baumslag–Solitar groups with respect to the family of

virtually cyclic subgroups. These groups belong to a class of two-generator

and one-relator groups introduced by Baumslag and Solitar in [BS62]. Their

class contains all the groups

BS(m,n) = 〈x, t | t−1xmt = xn〉.

where m and n are non-zero integers. The soluble Baumslag–Solitar groups

are the groups of the form BS(1,m), m 6= 0 and these groups can also be

written as

BS(1,m) = Z[1/m] o Z,

where Z[1/m] is the subgroup of the rational numbers Q generated by all

powers of 1/m and where Z acts on Z[1/m] by multiplication with m. The

group BS(1, 1) is Z2 and BS(1,−1) is the Klein bottle group Z o Z. If

|m| ≥ 2, then BS(1,m) belongs to the case described in Example 5.13, as

well as to the case described in Example 5.14.

Theorem 5.20. Let G = Z[1/m] o Z be a soluble Baumslag–Solitar group.

Then

hdG = cdG = gdG =

{
3 if |m| = 1,

2 if |m| ≥ 2.

Proof. The case |m| = 1 has been answered in the previous chapter.

Thus we assume that |m| ≥ 2. In this case G is the fundamental group

of a graph (G, Y ) of groups in the sense of [Ser80] where Y is a loop and

where the vertex groups are all infinite cyclic. Let X be the Bass–Serre

tree associated with this graph of groups. Then T is not only a model for

EZ[1/m] but also a model for EFvc(Z[1/m])G. We can apply Proposition 5.9

and obtain a model X for EG by attaching cells of dimension less or equal

to 2 to T . Therefore we get gdG ≤ 2.

In order to see that hdG ≥ 2 we calculate H2(BG). Note that Y = X/G

is a model for BFvc(B)G and Y consists of one 0-cell and one 1-cell. The second

part of Proposition 5.9 states that we can obtain a model for BG by attaching

2-cells to Y indexed by the conjugacy classes of maximal virtually cyclic
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subgroups of G that are not contained in Z[1/m]. But there are infinitely

many of them. Therefore H2(BG) 6= 0 which implies that hdG ≥ 2.

Altogether we get 2 ≤ hdG ≤ cdG ≤ gdG ≤ 2 and thus equality

holds. �

8. Relative Hyperbolic Groups and Free Products

In the literature a common strategy to construct a model for EG is to

begin with a known model for EG and attach cells in order to obtain the a

model for EG. One key idea in the construction of models for EG in this

chapter has been to begin with a model for EFG with Ffin(G) ⊂ F ⊂ Fvc(G)

where F is a family of subgroups of G which in general is larger than Ffin(G).

In what follows we give another example for a fruitful application of this idea.

Let G be a group and Hλ, λ ∈ Λ, a collection of subgroups of G. Assume

that G is relatively hyperbolic with respect to the subgroups Hλ in the sense

of [Osi06]. The subgroups Hλ are called the peripheral subgroups of G.

Consider the set

F := {Hg : H ∈ Fvc(Hλ), λ ∈ Λ, g ∈ G} ∪ Ffin(G), (5.1)

that is, F consists of all virtually cyclic subgroups which are subconjugate to

one of the peripheral subgroups of G together with all finite subgroups of G.

This is clearly a full family of subgroups of G.

Lafont and Ortiz have shown in [LO07, p. 532f.] using results of Osin

that if G is relative hyperbolic in the sense of Bowditch [Bow99] that the

following is true:

(1) F ∩H ⊂ Ffin(H) for every H ∈ Fvc(G) \ F;
(2) every H ∈ Fvc(G) \ F is contained in a unique maximal Hmax ∈

Fvc(G);

(3) NG(Hmax) = Hmax for every H ∈ Fvc(G) \ F.

The definition of relative hyperbolicity in [Osi06] extends the definition of

relative hyperbolicity in [Bow99]. Furthermore, the proof in [LO07] of

the above result is also correct for relative hyperbolic groups in the sense

of [Osi06]. Therefore we can apply Proposition 5.9 in the current setting.

That is, one can obtain a model for EG by attaching orbits of at most

2-dimensional cells to any model for EFG.

123



Lafont and Ortiz have constructed in [LO07] a model for EG for relative

hyperbolic groups in the sense [Bow99] by forming the join X ∗ Y where

X is a model for EG and Y is the disjoint union of models for EHλ, λ ∈ Λ,

and a set of discrete points. Their construction is also valid for relatively

hyperbolic groups in the sense of [Osi06] and from the join construction one

obtains

dim(X ∗ Y ) = dim(X) + dim(Y ) + 1

= gdG+ sup{gdHλ : λ ∈ Λ}+ 1

This is the lowest dimension one can achieve with Lafont and Ortiz’s con-

struction. There is no example known where gdG > gdG+ 1 and this has

raised the question whether the bound gdG ≤ gdG+ 1 for every group G,

see [LW07, p. 3]. Thus, if the peripheral subgroups contain groups which

are not virtually cyclic, then the dimension of X ∗ Y is strictly larger than

gdG + 1 and suggests that in this case X ∗ Y is not a model of minimal

dimension.

However, if a nice model is known for EFG, where F is as in (5.1), then

Proposition 5.9 can give a model of minimal dimension for EG. We conclude

with an example where we can construct a nice model for EFG such that we

obtain a model for EG of minimal dimension.

Let G be a free product

G := H1 ∗ · · · ∗Hn

of finitely many groups Hi. It follows straight from the definition in [Osi06]

that G is relatively hyperbolic with respect to the factors Hi, i = 1, . . . , n.

For simplicity we assume in the following that n = 2 and in order to avoid

triviality we assume that G is not virtually cyclic.

Since G is not virtually cyclic it follows that G has free subgroup of

rank 2. Thus gdG ≥ 2 and since also G contains H1 and H2 as subgroups

we get altogether

gdG ≥ max(gdH1, gdH2, 2).

Similarly to Example 4.10 in [Lüc05, p. 290] we construct a G-CW-

complex X which is obtained from the Bass–Serre tree T associated with

the free product H1 ∗H2 by replacing the vertices v of T equivariantly by
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models for EH1 and EH2. More precisely, for i = 1, 2 choose once and for

all xi ∈ Xi where Xi is a model for EHi and define G-equivariant maps

Fi: G→ G×Hi Xi,

g 7→ [g, xi],

where G ×Hi Xi denotes the G-space induced from the Hi-space Xi. We

obtain X as a G-equivariant cellular pushout

G× {0, 1}
(
G×H1 X1

)∐(
G×H2 X2

)

G× [0, 1] X

-
F1

∐
F2

? ?
-

It follows that X is a model for EFG where

F := {Hg : H ∈ Fvc(H1) ∪ Fvc(H2) and g ∈ G},

that is F is the family of all virtually cyclic subgroups of G which are

subconjugate to one of the on of the factors H1 or H2. Since any finite

subgroup of G is conjugate to one of the factors H1 or H2 we have that F

includes all finite subgroups of G [Ser80, p. 36]. Thus this family agrees

with the family defined in (5.1). By construction we have

dimX = max(gdH1, gdH2, 1).

Now we can apply Proposition 5.9 to obtain a model Z for EG by attaching

to X orbits of cells in dimension 2 and less. Thus

gdG ≤ dimZ = max(gdH1, gdH2, 2).

Theorem 5.21. Let G := H1 ∗ · · · ∗Hn be a free product of finitely many

groups. If G is not virtually cyclic then

gdG = max(gdH1, . . . , gdHn, 2)

Proof. This statement follows either by adapting the above construction

to general values of n. Alternatively on can proof it by induction on n and

using the fact H1 ∗ · · · ∗Hn
∼= (H1 ∗ · · · ∗Hn−1) ∗Hn. �
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CHAPTER 6

Groups with Low Bredon Dimension
for the Family Fvc

1. Groups G with gdG = 0

The classification of groups with gdG = 0 is a straight forward con-

sequence of Proposition 3.19 and Proposition 3.20 applied to the family

F = Fvc(G).

Proposition 6.1. Let G be a group. Then gdG = 0 if and only if cdG = 0

if and only if G is virtually cyclic. �

2. Groups G with gdG = 1

Proposition 6.2. Let G be a group with gdG = 1. Then G is not finitely

generated.

Proof. By assumption G has a tree T as a model for EG. Assume

towards a contradiction that G is finitely generated. For every cyclic subgroup

〈g〉 of G the fixed point set T 〈g〉 6= ∅ since T is a model for EG. Hence every

element of G has fixed points and Corollary 3 to Proposition 25 in [Ser80,

pp. 64f.] implies that TG 6= ∅. This can only happen if G is virtually cyclic.

Then Proposition 6.1 implies that gdG = 0, which is a contradiction to the

assumption that gdG = 1. Therefore G cannot be finitely generated. �

Corollary 6.3. A group G with gdG = 1 is locally virtually cyclic.

Proof. If H is a finitely generated subgroup of G then gdH ≤ gdG = 1.

Then Proposition 6.2 implies gdH 6= 1 and therefore we must have gdH = 0.

Hence H is virtually cyclic by Proposition 6.1. �

Corollary 6.4. If G is a group with gdG = 1, then cdG = 1 and hdG = 0.

Proof. This is true for every locally virtually cyclic group by Corol-

lary 3.48. �
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Using a result of Lück and Weiermann, we can now prove the following

classification of countable groups G with gdG = 1.

Proposition 6.5. Let G be a countable group. Then gdG = 1 if and only

if G is locally virtually cyclic but not virtually cyclic.

Proof. The “only if” part is covered by Corollary 6.3.

Conversely, assume that G is locally virtually cyclic. Since G is countable,

it has only countably many virtually cyclic subgroups and the claim follows

from Lemma 4.2 and Theorem 4.3 in [LW07, pp. 12ff.] together with

Proposition 6.1. �

A natural question which arises is the following: does cdG = 1 imply

gdG = 1? If not, under which conditions on the group G does this implication

hold?

Theorem 6.6. Let G be a countable, torsion-free, soluble group. Then

cdG = 1 ⇐⇒ gdG = 1.

Proof. “⇐”: This is Corollary 6.4.

“⇒”: Theorem 3.37 implies that cdG ≤ cdG+1 = 2. Since G is assumed

to be torsion free, we have that cdG = cdG and thus cdG ≤ 2.

Now cdG = 0 if and only if G is trivial, and in this case cdG = 0 which

is a contradiction. Furthermore cdG = 1 if and only if G is a free group.

Since free groups of rank greater or equal to two are not soluble, G must

necessarily be cyclic and in this case we obtain the contradiction cdG = 0.

Thus we must have that cdG = 2.

By the classification of soluble groups of cohomological dimension 2 due

to Gildenhuys [Gil79] lists the following possibilities for G:

(1) G ∼= BS(1,m) for some integer m 6= 0;

(2) G is isomorphic to a non-cyclic subgroup of Q.

In the first case we have cdG ≥ 2 by Theorem 5.20. However, this

contradict the assumption cdG = 1. Thus G must be isomorphic to a non-

cyclic subgroup of Q. In this case G is locally virtually cyclic but not virtually

cyclic. Thus gdG = 1 by Proposition 6.5. �
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3. Groups G with gdG = 2 or gdG = 3

There is not much known about which groups G have gdG = 2, and even

less about which groups G have gdG = 3. We conclude with a summary of

the results obtained in this thesis for groups which belong to this class of

groups:

(1) Let G be a Gromov-hyperbolic group with gdG ≤ 2. If G is not

virtually cyclic, then

hdG = cdG = gdG = 2

by Proposition 4.9. In particular this includes the cases where G

is a free group of rank at least 2 (Corollary 4.10) and where G is

the fundamental group of a finite graph of finite groups (Proposi-

tion 4.12).

(2) If G ∼= Z[1/m] o Z is a soluble Baumslag–Solitar group, |m| 6= 1,

then we have by Theorem 5.20

hdG = cdG = gdG = 2.

(3) For any virtually polycyclic group G with vcdG = 2 we have

hdG = cdG = gdG = 3

by Proposition 4.7. In particular this holds for Z2 and Z o Z.

In particular the above cases are not counter examples for the Eilenberg–

Ganea Conjecture for Bredon cohomology with respect to the family of

virtually cyclic subgroups (cf. Section 4 in Chapter 3).

Furthermore, if G is the restricted wreath product A o Z where A is a

non-trivial, countable, locally finite group, then we have seen in Example 5.19

in the previous chapter that

gdG = 2.

In particular this is true for the Lamplighter group L = Z2 o Z.
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