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This article consists of an approach to the calculation of the density of valence states in tet-
rahedrally bonded amorphous semiconductors and, on the other hand, the paper contains theo-
retical considerations on electronic spectra related to the results obtained by the authors con-
cerning cluster calculation. The exposition is centered on III-V compounds. Moreover,
operational methods are used to perform certain computations related to the previous subjects.

1. INTRODUCTION

For III-V compounds, it is well-known that the results of photoemission
experiments involving the energy margin within a few eV of the band gap
are related to the optical properties. In particular, the &,-spectra of amor-
phous InSb cannot be obtained by broadening that of the crystal [1]. Other
III-V compounds such as GaAs, GaP and GaSb constitute well known
examples within the above context.

On the other hand, we can claim that photoemission experiments have
provided much information on the electronic spectra of amorphous tetra-
hedrally bonded semiconductors [2], [3], [4]. In this context, the density of
valence states plays an important role. This density can be obtained ex-
perimentally with monochromatized X-rays.
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2. CALCULATIONS

By using extended Hiickel theory, the local electronic density of states in
terms of the local Green’s function is given by the following expression

[51:

¢(F.E) = ——11; Im G(7, E) )

where E denotes energy and 7 is the position vector. From (1) and other
considerations it is deduced:

g(7, E) = 3 W, (AP 3E — E,) )

where the eigenfunctions s, are associated with the energy eigenvalues
E,, and 8 denotes Dirac function.

It is well-known that the materials with spatial disorder require a special
treatment. In order to calculate the density of states in such materials, the
“cluster calculation” is feasible. The electronic properties of a bulk mate-
rial are basically related to the characteristics of the corresponding atoms
and their local environment within a distance that is of the order of the
mean free path or the thermal wavelength. In the following, we will as-
sume that the clusters considered are isolated in vacuum.

The density of states of a cluster is given by:

s® = [ [ [ sty 2B duyee ®
D

referring to cartesian coordinates. D denotes the domain corresponding to
the cluster. Now, we establish the following approximation by means of a
Taylor’s expansion:

g(F,E) = g(0,E) + 7[V;gl, @)

where Vg refers to the spatial coordinates, that is:
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By substituting (4) into (3) we obtain:
§® =008+ [ [ [ 719, g drayaz )
D

where () is the volume of the cluster. Introducing the wave-functions y,,,
from (2) we find:

8(0,E) = 3 s, (OF 3(E —~ E,) ©®)
V8 =22 {[Re ]V [Re ¥,] + [Im ¥, ]V[Im 1} X 3E — E,).
! 7
Remark: 1In the previous exposition, the point 0 = (0, 0, 0) is the origin

of the cluster.
By substituting (6) and (7) into (5), we obtain:

8® = = (s, OF + 2 [ [ [ #IRe)(TRew, ), +
" D
(i, )y (VIm())oldxdyde) B(E — E,) ®

Now, it is interesting to determine the &,-spectrum [6]:

_ C fo . -
& @ == [ Bt - ExE )

where C is a constant (Aw > 2E_; (c) — conduction band).

From the expression (8), it is trivial to calculate §(Aw — E). However,
the calculation of &, is tedious if we substitute (8) directly into (9); in
contrast, if we apply an operational method (e.g., the Laplace transform),
the problem in question is solved.

Expression (9) can be expressed as a convolution, namely:
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& @) =S [§0o)] * [§0)] (10)
[O)

and applying Borel’s convolution theorem for the Laplace’s transform, we
can write:

i;L [(hw)’ & (hw)] = C {L [§(fw)])? an

On the other hand, it is easy to calculate the left-hand side of (11). The
result is:

d2

172 L [(hw)’ & (hw)] = o E& G0N (12)
S
From (11) and (12) it is deduced:
d2
ghow) = C'L™' {— [L(E, (ho)]}" (13)
ds*

with C'= C™'?
Expression (13) permits to calculate the density of states when the
&,-spectrum is known from experiments.

3. CONCLUDING REMARKS

The approach realized by us in order to compute the density of states of a
cluster is in good agreement with the experimental works related to amor-
phous tetrahedrally bonded semiconductors. In particular, this agreement
occurs in amorphous III-V compounds [4]. The theory exposed in this
paper is suitable for the study of several devices based on amorphous
semiconductors. In particular, we refer to thin-film devices [7]. Moreover,
the theoretical procedure established to calculate the density of states from
spectrum constitutes an example of the Laplace’s transform to solve prob-
lems related to spectral analysis. This procedure is consistent with refer-
ences [8] [9] [10].
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On the other hand, by changing % by E in (13), it is feasible to equate
(8) and (13), and from this equality, to derive various conclusions.

References

(1]
(2]
[3]
(4]
[5]
(6]
(7

[8]
[9]
(10]

C. Ribbing, D.T. Pierce, and W.E. Spicer (1972) Phys. Rev. B 4, 4417.

D. E. Eastman and J. Freeouf. (1973) Solid State Commun. 13, 1815 .

W. D. Grobman and D. E. Eastman. (1972) Phys. Rev. Lett. 29, 1508 .

N. J. Shevchik. (1974) AIP Conf. Proc. 20, 72-80

B. Y. Tong. (1974) AIP Conf. Proc. 20, 148 .

N. K. Hindley. (1970) J. Non-cryst. Solids §, 17 .

Amorphous semiconductor technologies and devices (Ed. Y. Hamakawa, North-
Holland, 1986).

M. A. Grado-Caffaro and M. Grado-Caffaro. (1993) Act. Pass. Electronic Comp. 16,
49-53 .

M. A. Grado-Caffaro and M. Grado-Caffaro. (1993) Mod. Phys. Lett. B 7, 1201-1207

M. A. Grado-Caffaro and M. Grado-Caffaro. (1992) Phys. Lett. A 169, 399-400 ).



