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MAXIMAL FILLINGS OF MOON POLYOMINOES, SIMPLICIAL

COMPLEXES, AND SCHUBERT POLYNOMIALS

LUIS SERRANO AND CHRISTIAN STUMP

Abstract. We exhibit a canonical connection between maximal (0, 1)-fillings
of a moon polyomino avoiding north-east chains of a given length and reduced

pipe dreams of a certain permutation. Following this approach we show that
the simplicial complex of such maximal fillings is a vertex-decomposable, and
thus shellable, sphere. In particular, this implies a positivity result for Schu-
bert polynomials. For Ferrers shapes, we moreover construct a bijection to
maximal fillings avoiding south-east chains of the same length which special-
izes to a bijection between k-triangulations of the n-gon and k-fans of Dyck
paths. Using this, we translate a conjectured cyclic sieving phenomenon for
k-triangulations with rotation to the language of k-flagged tableaux with pro-
motion.

1. Introduction

Fix positive integers n and k such that 2k < n. A k-triangulation of a convex
n-gon is a maximal collection of diagonals in the n-gon such that no k+1 diagonals
mutually cross. A k-fan of Dyck paths of length 2ℓ is a collection of k Dyck paths
from (0, 0) to (ℓ, ℓ) which do not cross (although they may share edges).

The following theorem is the first main result in this article. It extends results
by S. Elizalde [Eli07] and C. Nicolás [Nic09].

Theorem 1.1. There is an explicit bijection between k-triangulations of a convex
n-gon and k-fans of Dyck paths of length 2(n− 2k).

A north-east chain of length ℓ in a Ferrers shape λ is a sequence of ℓ boxes in
λ such that every box in the sequence is strictly north and strictly east of the
preceding one, and for which the smallest rectangle containing all boxes in the
sequence is also contained in λ. A k-north-east filling of λ is a (0, 1)-filling which
does not contain any north-east chain of 1’s of length k + 1, and in which the
number of 1’s is maximal. As usual, we identify a (0, 1)-filling with its set of boxes
filled with 1’s and draw them by marking its set of boxes by +’s. See Figure 1(a)
for an example. The set of all k-north-east fillings of λ is denoted by FNE(λ, k).
South-east chains, k-south-east fillings and FSE(λ, k) are defined similarly.

It is well known that k-triangulations of the n-gon can be seen as k-north-east
fillings of the staircase shape (n−1, . . . , 2, 1), and furthermore, k-fans of Dyck paths
of length 2(n − 2k) can be seen as k-south-east fillings of the same staircase (see
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2 LUIS SERRANO AND CHRISTIAN STUMP

e.g. [Kra06a, Rub06]). Thus, the second main theorem is a clear extension of the
first. It answers a questions raised by C. Krattenthaler in [Kra06a].

Theorem 1.2. Let λ be a Ferrers shape and let k be a positive integer. There is
an explicit bijection between k-north-east and k-south-east fillings of λ.

The constructed bijection goes through two intermediate objects, namely through
pipe dreams and flagged tableaux, both arising in the theory of Schubert polyno-
mials. The third main theorem is a central step in the proof of Theorem 1.2 and it
concerns the connection between north-east chains and reduced pipe dreams.

Theorem 1.3. Let λ be a Ferrers shape and let k be a positive integer. There exists
a canonical bijection between k-north-east fillings of λ and reduced pipe dreams of
a permutation depending on λ and k.

This bijection will be described in Section 2. A variation of the argument gives
the following generalization to moon polyominoes as defined in Section 2.2.

Theorem 1.4. Let M be a moon polyomino and let k be a positive integer. Then
there exists a canonical bijection between k-north-east fillings of M and reduced pipe
dreams (of a given permutation) living inside M .

We will use the construction to obtain new properties and simple proofs for
known properties of k-north-east fillings and of k-triangulations. In particular, we
obtain the following corollaries.

Corollary 1.5. The simplicial complex with facets being k-north-east fillings of a
moon polyomino M is the join of a vertex-decomposable, triangulated sphere with a
full simplex. In particular, it is shellable and Cohen-Macaulay.

Corollary 1.6. Let S be a stack polyomino and λ the Ferrers shape obtained from
S be properly rearranging its columns. Let σ and τ be the associated permutations.
Then the difference

Sσ(x1, x2, . . .)−Sτ (x1, x2, . . .)

of Schubert polynomials is monomial positive.

The bijection for k-triangulations has the additional property that the cyclic
action given by rotation of the n-gon corresponds to a promotion-like operation
on flagged tableaux and thus transforms a conjectured cyclic sieving phenomenon
(CSP) into the context of k-flagged tableaux.

Conjecture 1.7. Let FT (λ, k) be the set of k-flagged tableaux and let ρ be the
promotion-like cyclic action on FT (λ, k). The triple

(

FT (λ, k), 〈ρ〉, F (q)
)

,

exhibits the CSP, where

F (q) :=
∏

1≤i≤j<n−2k

[i+ j + 2k]q
[i+ j]q

is a natural q-analogue of the cardinality of FNE(λ, k).
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Figure 1. A 2-north-east filling of λ = (8, 6, 6, 5, 4, 4, 1) and its
associated reduced pipe dream.

2. From north-east fillings to pipe dreams

In this section we exhibit a connection between k-north-east fillings of Ferrers
shapes as well as of stack and moon polyominoes on the one hand and reduced
pipe dreams on the other. This generalizes a construction by the second author for
k-triangulations [Stu10].

Reduced pipe dreams (or rc-graphs) were introduced by S. Fomin and A. Kirillov
in [FK96] (see also [BB93] and [KM05, Section 1.4]). They play a central role in the
combinatorics of Schubert polynomials of A. Lascoux and M.-P. Schützenberger. A
pipe dream of size n is a filling of the staircase shape (n − 1, . . . , 2, 1) where each
box contains two crossing pipes or two turning pipes . See Figure 1(b) for an
example. A pipe dream is identified with its set of boxes containing two crossing
pipes . The permutation π(D) of a pipe dream D is obtained by following the
pipes starting from the top and going all the way to the left, and then reading π(D)
on the left from top to bottom in one line notation. For example, the permutation
of the pipe dream in Figure 1(b) is [1, 2, 7, 6, 5, 8, 3, 4, 9, 10]. A pipe dream is reduced
if two pipes cross at most once. We say that a pipe dream lives inside a set M
of boxes in the staircase shape if all its crossings are contained in M . For a given
permutation π and a set M of boxes, denote the set of reduced pipe dreams for π by
RP(π) and the set of reduced pipe dreams for π which live inside M by RP(π,M).

2.1. A bijection between north-east fillings and reduced pipe dreams.

Starting with a k-north-east filling of λ, one obtains a pipe dream by replacing
every 1 by two turning pipes and every 0 by two crossing pipes. Afterwards, λ is
embedded into the smallest staircase containing it, and all boxes in the staircase
outside of λ are replaced by turning pipes. In other words, a k-north-east filling of
λ and its associated pipe dream are complementary (0, 1)-fillings of λ when both
are identified with their sets of boxes. For example, the ’s in the pipe dream
in Figure 1(b) and the marked boxes in (a) are complementary (0, 1)-fillings of λ.
The pieces in boxes outside of λ are drawn in the pipe dream in red whereas pieces
within λ are drawn in green. We call this identification between k-north-east fillings
of λ and reduced pipe dreams complementary map.
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Figure 2. σ2(λ) = [1, 2, 7, 6, 5, 8, 3, 4, 9, 10] for λ = (8, 6, 6, 5, 4, 4, 1).

For a permutation σ ∈ Sn, define its (Rothe) diagram (see [Man01, Section 2.1])
to be the set of boxes in the staircase shape given by

D(σ) :=
{

(i, σj) : i < j, σi > σj

}

.

For example, the diagram of σ2(λ) in Figure 2 is given by the shaded area. Clearly,
the number of boxes in D(σ) equals the length of σ, i.e., the minimal number of
simple transpositions needed to write σ. A permutation is called dominant if its
diagram is a Ferrers shape containing the box (1, 1). By construction, different
permutations in Sn have different shapes and one can obtain every Ferrers shape in
this way for some n. Thus, starting with a Ferrers shape λ, let σ(λ) be the unique
dominant permutation σ ∈ Sn for which D(σ) = λ, where n is given by the smallest
staircase shape containing λ. Moreover, define σk(λ) to be

1k ×τ := [1, 2, . . . , k, τ1 + k, . . . , τn + k] ∈ Sn+k

where τ = σ(µ) and µ is obtained from λ by removing its first k rows and columns.
Graphically, this means that σk(λ) is obtained by removing the first k columns
and rows from σ(λ). Note that the north-west corner of σk(λ) remains in box
(k+1, k+ 1). See Figure 2 for σ2(λ) with λ as in Figure 1. The following theorem
is a more precise reformulation of Theorem 1.3.

Theorem 2.1. Let λ be a Ferrers shape and let σ = σk(λ). The complemen-
tary map from k-north-east fillings to pipe dreams is a bijection between FNE(λ, k)
and RP(σ).

For the proof of this theorem we use an alternative description of pipe dreams as
given by A. Knutson and E. Miller in [KM05, Theorem B], or, in a more combinato-
rial language, by N. Jia and E. Miller in [JM08, Theorem 3]. First, we observe that
the definition of antidiagonals in [JM08, Definition 2] is equivalent to the definition
of a north-east chain inside [n]× [n]. Following the notion in the latter, define Aσ

for σ ∈ Sn to be the collection over all 1 ≤ p, q ≤ n of all minimal north-east chains
of length rσ(p, q) + 1 lying inside the rectangle [p]× [q] where

rσ(p, q) := #
{

(i, j) : i ≤ p, j ≤ q, σ(i) = j
}

.
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As it can be seen in Figure 2, rσ(p, q) equals the number of stars in the matrix
presentation of σ lying inside the rectangle [p]× [q].

The set RP(σ) of reduced pipe dreams for σ can be described in terms of Aσ

as follows. A subset of the staircase (n − 1, . . . , 2, 1) is a reduced pipe dream for
σ if and only if it intersects every north-east chain in Aσ, and it is minimal in
this sense. Looking at this observation in a slightly different way, we obtain the
following proposition describing pipe dreams in terms of maximal fillings of the
staircase shape.

Proposition 2.2. Let σ ∈ Sn. A subset of the staircase (n−1, . . . , 2, 1) is a reduced
pipe dream of σ if and only if its complement is a maximal filling not containing
any north-east chain in Aσ.

Proof. From the description of reduced pipe dreams above, it follows that a subset
R of the staircase shape is a reduced pipe dream for σk(λ) if and only if it intersects
every north-east chain in Aσ, and it is minimal with respect to this property. Thus,
R is a reduced pipe dream if and only if its complement Rc in the staircase shape
does not contain any north-east chain in Aσ, and Rc is maximal with respect to
this property. The latter is precisely a maximal filling of the staircase shape not
containing any north-east chain in Aσ. �

However, we do not need to consider all rectangles [p] × [q] to define Aσ. It
is enough to consider the collection of all south-east corner boxes (p, q) of D(σ),
each labelled by rσ(p, q). This labelled collection is called the essential set of σ in
[Man01, Section 2.2]. See Figure 4 for an example.

Proposition 2.3. Aσ is given by the collection of north-east chains of length
rσ(p, q) + 1 lying inside rectangles [p]× [q] for boxes (p, q) in the essential set of σ.

Proof. Every [i]× [i] rectangle for i ≤ k, where k is the smallest label of an element
in the essential set of σ, contains i stars. Therefore, Aσ does not contain any
north-east chains of length smaller or equal to k. Moreover, observe that rσ(p, q) is
constant inside a component of D(σ) and thus, among those it is enough to consider
boxes (p, q) in the essential set. As rσ(p+ a, q+ b) = rσ(p, q) + a+ b for such a box
(p, q), the lemma follows from the minimality condition in the definition of Aσ. �

Using this proposition, we also obtain the following description of Aσ coming
from Ferrers shapes.

Proposition 2.4. Let λ be a Ferrers shape and let σ := σk(λ). Aσ is given by the
collection of all north-east chains of length k + 1 in λ.

Proof. We have already seen that the essential set of σ is given by the south-east
corner boxes of maximal rectangles in λ of width and height strictly larger than k.
As all those maximal rectangles are of the form [p]× [q], the result follows with the
observation that rσ(q, p) = k for such (p, q). �

This proposition implies the following well known corollary.

Corollary 2.5. Every reduced pipe dream for σ = σk(λ) lives inside λ, namely

RP(σ) = RP(σ, λ).

Putting the arguments together, we can now prove Theorem 2.1.

Proof of Theorem 2.1. The result follows from Propositions 2.2 and 2.4. �



6 LUIS SERRANO AND CHRISTIAN STUMP

+ +

+ + +

+ +

+ + +

+

+

1 2 3 4 5 6 7 8 9 10 11

1

2

8

10

3

7

6

5

4

9

11

Figure 3. A 1-north-east filling of a moon polyomino and its as-
sociated pipe dream.

2.2. Generalizations to moon polyominoes. The results in the previous section
can be partially generalized to moon polyominoes which were studied by J. Jonsson
in [Jon05]. A polyomino M (i.e., a set of boxes in the positive integer quadrant) is
called convex if for any two boxes in M lying in the same row or column, all boxes
in between are also contained in M . Moreover, M is called intersection-free if for
any two columns (or equivalently, rows) of M , one is contained in the other. A
polyomino is called a moon polyomino if it is convex and intersection-free.

Without loss of generality we consider always moon polyominoes which are north-
west justified, namely, they contain boxes both in the first row and in the first
column. Observe that Ferrers shapes are special types of moon polyominoes. A
k-filling of a moon polyomino is defined exactly in the same way as for a Ferrers
shape. See Figure 3 for an example.

To connect k-north-east fillings of a moon polyomino M and pipe dreams of a
certain permutation σ = σk(M), we must relate maximal fillings of M which do not
contain a (k + 1)-north-east chain in one of its maximal rectangles and maximal
fillings of the staircase (n − 1, . . . , 2, 1) which do not contain a north-east chain
of length rσ(p, q) + 1 in any rectangle [p] × [q]. Define σk(M) as follows: for a
maximal rectangle R in M of width and height both strictly larger than k, let
(a + 1, b + 1) and (i, j) be its north-west and south-east corner boxes. Mark the
box (i + b, j + a) with a + b + k. σk(M) is the permutation with this collection
as its essential set. This means that the diagram D(σ) of σ has (i + b, j + a) as a
south-east corner with labels rσ(i+ b, j+ a) = a+ b+ k. Using [Man01, 2.2.8], it is
easy to see that this construction is well defined. Note that maximal rectangles of
width or height less than or equal to k cannot contain any north-east chain of length
larger than k and thus do not contribute to the essential set of the corresponding
permutation. For example, the moon polyomino M in Figure 3(a) has maximal
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Figure 4. The essential set and the diagram D(σ) for σ = [1, 2, 8, 10, 3, 7, 6, 5, 4, 9].

rectangles (a+ 1, b+ 1)− (i, j) given by

(1, 3)− (5, 5), (1, 3)− (6, 4),

(3, 1)− (4, 7), (2, 2)− (5, 5),

(2, 1)− (4, 6),

where the first maximal rectangle is highlighted. Thus, for k = 1, the resulting
essential set and the associated diagram can be seen in Figure 4 and the associated
permutation is σ1(M) = [1, 2, 8, 10, 3, 7, 6, 5, 4, 9]. As all maximal rectangles in a
Ferrers shape are of the form [p] × [q], the definition of σk(λ) reduces in this case
to the definition given in the previous section. Moreover observe that in the more
general context of moon polyominoes which are not Ferrers shapes, Corollary 2.5
does not hold.

The following theorem is a more precise reformulation of Theorem 1.4.

Theorem 2.6. The complementary map from k-north-east fillings of a moon poly-
omino M to pipe dreams of σ = σk(M) is a bijection between FNE(M,k) and
RP(σ,M).

Proof. Recall that the set Aσ is the collection over all (p, q) in the essential set of σ
of all minimal north-east chains in [p]× [q] of length rσ(p, q) + 1. By construction,
every such (p, q) comes from a maximal rectangle R in M with north-west corner
(a+1, b+1) and south-east corner (i, j). Thus, (p, q) = (i+ b, j+a) and rσ(p, q) =
a+ b+ k.

As M is intersection-free by definition, no box strictly south-west or strictly
north-east of R is contained in M . Therefore, any (k + 1)-north-east chain inside
R can be extended to a (a+ b+k+1)-north-east chain inside [p]× [q], compare the
maximal rectangle highlighted in Figure 3. This implies that a (k + 1)-north-east
chain inside R cannot be contained in the complement of a pipe dream for σ living
inside M . In total, we obtain that the set of complements of pipe dreams for σ
living inside M are exactly maximal fillings of M not containing a north-east chain
of length k + 1. This completes the proof. �

We now use this theorem together with the main theorem in [Jon05] to get
new insights on pipe dreams. A stack polyomino is a moon polyomino where every
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column starts in the first row. Let S be a stack polyomino and let λ be the Ferrers
shape obtained from S by properly rearranging the columns. J. Jonsson proved
in [Jon05, Theorem 14] that the number of k-north-east fillings of S with a given
number of +’s in every row equals the number of k-north-east fillings in λ with the
same number of +’s in every row. Moreover, he conjectured that this property still
holds if the stack polyomino S is replaced by a moon polyomino. Therefore, we
obtain the following corollary and the conjecture for the analogous statement for
moon polyominoes.

Corollary 2.7. Let S be a stack polyomino and let λ be the associated Ferrers
shape. The number of pipe dreams in RP(σk(S), S) with a given number of cross-
ings in every row is equal to the number of pipe dreams in RP(σk(λ)) with the same
number of crossings in every row.

2.3. The simplicial complex of north-east-fillings. We are now in position
to prove Corollary 1.5. The canonical connection between k-north-east fillings and
reduced pipe dreams can be used in the same way as described in the proof of [Stu10,
Corollary 1.3] for k-triangulations in this more general setting. For the necessary
background on simplicial complexes and in particular on subword complexes, we
refer to [KM04]. A box in a moon polyominoM is called passive if it is not contained
in any north-east chain in M of length k+1. Let ∆(M,k) be the simplicial complex
with vertices being the collection of boxes in M , and with facets being k-north-east
fillings of M .

Corollary 2.8. ∆(M,k) is the join of a vertex-decomposable, triangulated sphere
and a full simplex of dimension i − 1, where i equals the number of passive boxes
in M . In particular, it is shellable and Cohen-Macauley.

Proof. Label the box (i, j) by i+ j−1. The simplicial complex ∆(M,k) is precisely
the subword complex for the permutation σk(M) and the word given by the labels
of all boxes in M (where i and the simple transposition si are identified) read row by
row from east to west and from north to south. Observe that the passive boxes are
exactly those boxes which are contained in all facets of ∆(M,k). Thus, the corollary
follows from Theorem 2.1 together with Theorems 2.5 and 3.7 in [KM04]. �

2.4. A mutation-like operation on pipe dreams. Generalizing the notion in
the previous section, one can define a pure simplicial complex ∆(σ) for any σ ∈ Sn

by defining the facets as the complements in the staircase of reduced pipe dreams
in RP(σ) (see [KM04]). Using the property that two pipes in a reduced pipe dream
D cross at most once, one can define a mutation-like operation on facets of ∆(σ)
as follows. One can mutate the facet F (D) of ∆(σ) associated to D at a vertex b if
the two pipes in D which touch in b cross somewhere else. In other words, one can
mutate F (D) at a vertex b if the starting points i < j of the two pipes in D which
touch in b form an inversion of σ. The mutation of F (D) at such a vertex b is then
defined to be the facet F (D′) for the reduced pipe dream D′ such that

(i) the two turning pipes in b are replaced in D′ by two crossing pipes,
(ii) the unique crossing b′ of those two pipes is replaced in D′ by two turning

pipes.

By construction, the pipe dream D′ = (D ∪ b) \ b′ is again in RP(σ) and thus its
complement F (D′) = (F (D) \ b) ∪ b′ forms another facet of ∆(σ).
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Figure 5. Labelling of the crossing boxes in the pipe dream in
Figure 1(b), the corresponding compatible sequence, and its inser-
tion and recording tableau.

3. From pipe dreams to south-east fillings

In this section we describe a bijection between pipe dreams for σk(λ) and k-
south east fillings of λ, for a Ferrers shape λ. For the sake of readability, we do this
construction in several steps.

3.1. From pipe dreams to flagged tableaux. Define a k-flagged tableau as a
semistandard tableau in which the entries in the i-th row are smaller than or equal
to i + k, and denote the set of k-flagged tableaux of shape λ by FT (λ, k). These
were introduced by M. Wachs [Wac85] in the study of flagged Schur functions, thus
the choice of terminology. We now present a bijection between the set RP(σ) of
reduced pipe dreams of σ = σk(λ) and the set FT (µ, k) of k-flagged tableaux of
shape µ = D(σ).

For a reduced pipe dream D ∈ RP(σ) with σ being of length ℓ, define the reading

biword to be the 2×ℓ array by reading
(

i
i+j−1

)

for every crossing box (i, j) in D row

by row from east to west and from north to south. See Figure 5 for an example.
It is known (and easy to check) that this gives a bijection between RP(σ) and the
set of compatible sequences CS(σ), defined by S. Billey, W. Jockush and R. Stanley
in [BJS93] as the set of all 2× ℓ arrays of the form

(

a1,...,aℓ

b1,...,bℓ

)

satisfying the following

properties:

(1) a1 ≤ a2 ≤ · · · ≤ aℓ,
(2) if ai = ai+1, then bi > bi+1,
(3) b1b2 · · · bℓ is a reduced word for σ, where i denotes the simple transposition

si = (i, i+ 1), and
(4) ai ≤ bi.

One can see from the definition that a compatible sequence t for σ can be written

as the concatenation t = t1 · · · tm, where ti =
(

i|wi|

wi

)

, and wi is decreasing. Observe

that σ fixes all j ≤ k and thus, every letter in wi is larger than or equal to max(i, k).
Define a map CS(σ) → FT (µ, k) as follows. Let t ∈ CS(σ) be a compatible

sequence for σ. Insert the letters of the word formed by the bottom row of t
using column Edelman–Greene insertion [EG87] into a tableau, while recording the
corresponding letters from the first row. This produces an insertion tableau P (t)
and a recording tableau Q(t). The image in FT (µ, k) is now defined to be Q(t).
To prove that this is a well defined bijection, we need two preliminary lemmas.
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Lemma 3.1. All insertion tableaux P (w) for reduced words w of σ = σk(λ) are
equal. The shapes of P (t) and Q(t) are given by µ = D(σ).

Proof. Since µ is a Ferrers shape where the north-west corner is located in box
(k + 1, k + 1), P (t) only depends on σ and not on the actual compatible sequence
(see [Man01, Section 2.8.3]). Moreover, the labelling i + j − k − 1 for (i, j) ∈
µ gives a reduced expression for σ which column inserts into itself (see [Man01,
Remark 2.1.9]). Therefore, the shapes of P (t) and Q(t) are both given by µ. �

Lemma 3.2. Let σ = σk(λ) for a Ferrers shape λ and let t = t1t2 · · · tm be a
compatible sequence for σ. Every letter in wi · · ·wm is strictly larger than j if and
only if every letter in the first j − k rows of Q(t) is strictly less than i.

Proof. Every letter in wi · · ·wm is strictly larger than j if and only if all of the oc-
currences of 1, 2, . . . , j in w = w1 · · ·wm appear in w1 · · ·wi−1. Since w is a reduced
word for σ, this is equivalent to saying that the first j letters of the permutation
given by w1 · · ·wi−1 are the same as those in σ, when written in one line notation.
Since µ = D(σ) is a Ferrers shape where the north-west corner is located at the box
(k + 1, k + 1), this is equivalent to saying that every entry on the first j − k rows
of Q(t) and of Q(t1 · · · ti−1) coincide. As Q(t1 · · · ti−1) contains only letters strictly
smaller than i, the result follows. �

Putting the connections between reduced pipe dreams, compatible sequences and
flagged tableaux together, we obtain the following theorem.

Theorem 3.3. Let σ = σk(λ) for a Ferrers shape λ, and let µ = D(σ). The
map sending D in RP(σ) to the recording tableau of the reading biword of D is a
bijection between RP(σ) and FT (µ, k).

Proof. It is left to show that the map sending a compatible sequence t to Q(t) is a
well defined bijection between CS(σ) and FT (µ, k). Let t ∈ CS(σ). By Lemma 3.1,
Q(t) has shape µ, and by Lemma 3.2 with i = ℓ+k+1 and j = ℓ+k, every letter in
row ℓ in Q(t) is less than or equal to ℓ+k. Thus, Q(t) is indeed a k-flagged tableau.
Furthermore, the construction is bijective, since Edelman–Greene insertion can be
inverted to obtain t. �

An example of the bijection can be seen in Figure 5.

3.2. A cyclic action on flagged tableaux. In this subsection we define a cyclic
action on k-flagged tableaux. The flagged promotion ρ(Q) of a k-flagged tableau Q
is defined as follows.

(i) Delete all the instances of the letter 1,
(ii) apply jeu de taquin to the remaining entries,
(iii) subtract 1 from all the entries,
(iv) label each empty box on row i with i+ k.

One can easily see that ρ(Q) is indeed a k-flagged tableau, since the empty boxes
after step (iii) must form a horizontal strip, which means there is at most one empty
box per column. Furthermore, as every box gets moved at most up by one row,
and at the end one subtracts 1 from all the entries, the tableau obtained after step
(iii) is k-flagged as well. The argument is finalized with the observation that if one
adds a horizontal strip in which every box gets added its maximum possible value,
the tableau is still k-flagged, since the row-weakness is assured by the maximality
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Figure 6. Reverse plane partition corresponding to Figure 5 and
its corresponding 2-fan of paths.

of the value of the entries on each row, and the column-strictness is assured by the
fact that the entries in row i − 1 are all strictly less than the maximal value on
row i.

3.3. From flagged tableaux to fans of paths and south-east fillings. We
proceed as in [FK97] to obtain a reverse plane partition of height k from a k-
flagged tableau. Let λ be a Ferrers shape and let µ = D(σk(λ)). Since every entry
in row i of a k-flagged tableau of shape µ is less than or equal to i+ k and greater
than or equal to i (as the tableau is semistandard), one can subtract i from all
the entries in row i, for all rows, and obtain a reverse plane partition of height
k and shape µ, or equivalently, a k-fan of noncrossing north-east paths inside µ.
To obtain a bijection between k-flagged tableaux of shape µ and the set FSE(λ, k)
of k-south-east fillings of the shape λ, one lifts the i-th path from the bottom by
i − 1 and turns it into a path of +’s inside λ. See Figure 6 for an example; the
red marks come from the red path, the blue from the blue path, and the additional
black marks are contained in any 2-south-east filling.

Putting the described bijections together, we obtain Theorem 1.2.

Theorem 3.4. Let λ be a Ferrers shape. The composition of the described maps
is a bijection between FNE(λ) and FSE(λ).

As mentioned in the introduction, k-triangulations of the n-gon can be seen as
k-north-east fillings of the staircase shape (n−1, . . . , 2, 1), and k-fans of Dyck paths
of length 2(n − 2k) can be seen as k-south-east fillings of the same staircase (see
e.g. [Kra06a, Rub06]). Thus, we obtain Theorem 1.1. See Figure 7 for an example.

Corollary 3.5. In the case where λ is the staircase shape (n − 1, . . . , 2, 1), the
described map is a bijection between k-triangulations of the n-gon and k-fans of
noncrossing Dyck paths of length 2(n− 2k).

4. Properties of north-east fillings and k-triangulations

Using Theorem 2.6, we obtain several properties of k-north-east fillings of moon
polyominoes and of Ferrers shapes and k-triangulations in particular. Some of them
where already known while others where only conjectured.

The first property was proved in the case of stack polyominoes by J. Jonsson in
[Jon05, Theorem 10]. It follows immediately from Theorem 2.1.
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Figure 7. An example of all the steps in the bijection: a 2-
triangulation of the 8-gon, the 2-north-east filling of (7, . . . , 1),
the pipe dream for [1, 2, 6, 5, 4, 3], the 2-flagged tableau of shape
(3, 2, 1), the 2-fan of Dyck paths of length 8, and finally the 2-
south-east filling of (7, . . . , 1).

Corollary 4.1. Every k-north-east filling of a moon polyomino M contains i many
boxes where i equals the total number of boxes in M minus the length of σk(M). In
particular i equals the number of boxes in the first k rows and columns in the case
of Ferrers shapes.

The second property is part of the main theorem in [PS09, Theorem 1.4(i)] and
concerns the star property as described as well in [Stu10]; for the notion used here,
we refer as well to the latter.

Corollary 4.2. Every k-triangulation of the n-gon consists of exactly n − 2k k-
stars.

Proof. This follows from the description of k-triangulations in terms of k-north-
east fillings of the staircase shape. As in this case σ is given by 1k ×[n− 2k, . . . , 1],
we obtain 2k outer pipe, as well as n − 2k inner pipes connecting i with i for
k < i ≤ n−k, and which contains exactly 2k+1 turns. See Figure 7 for an example.
This is exactly the star property in [Stu10] and thus completes the proof. �

Using the description of mutations for k-triangulations in Section 2.4, one can
also describe the mutation of a facet in the simplicial complex

∆n,k := ∆(1k ×[n− 2k, . . . , 1]).

This mutation corresponds to removing a diagonal in a k-triangulation and replac-
ing it by the unique other diagonal which gives a k-triangulation. This operation
is called flip in [PS09, Theorem 1.4(iii)].
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Corollary 4.3. A facet F in the simplicial complex ∆n,k can be mutated at any
vertex d = (i, j) ∈ F for which k < |i− j| < n− k.

Proof. The inversions of σ = 1k ×[n − 2k, . . . , 1] are given by all (i, j) for which
k < i < j ≤ n− k. Thus, all n− 2k inner pipes in D ∈ RP(σ) mutually cross. It
follows from Section 2.4 that the facet corresponding to D can be mutated at any
vertex (i, j) for which k < |i− j| < n− k. �

The next property of the constructed bijection will allow us to obtain a refined
counting of k-triangulations, as conjectured by C. Nicolas [Nic09]. Note that a
diagonal (i, j) for which |i − j| ≤ k or |i − j| ≥ n − k is contained in every k-
triangulation of the n-gon. Thus, we define the degree of a vertex i as the number
of vertices j adjacent to i for which k < |i− j| < n− k.

Theorem 4.4. The degree of vertex 1 in a k-triangulation is equal to the number of
touching points of the lowermost Dyck path of its corresponding k-fan of Dyck paths
with the main diagonal. Furthermore, each edge (1, j) corresponds to the touching
point with coordinates (j − k − 1, j − k − 1).

Proof. Let t be the compatible sequence corresponding to a k-triangulation T ,

decomposed into t1 · · · tm, where ti =
(

i|wi|

wi

)

as in the definition. By construction,

there is a diagonal (1, j) if and only if the column
(

n+1−j

n+1−j

)

does not appear in t. By

virtue of this, and the fact that each letter in wi is larger than or equal to i, we have
that every letter in wn+1−j · · ·wm is strictly larger than n+ 1− j. By Lemma 3.2
with i = n− j+1, every letter in the first n+1− j−k rows of Q(T ) is smaller than
or equal to n−j. In particular, every letter in row n+1−j−k of the corresponding
reverse plane partition is strictly smaller than k. By construction, this implies that
the lowermost path touches the diagonal at the point (j − k − 1, j − k − 1). The
converse follows clearly from the argument. �

Figure 7 shows an example for k = 2, where vertex 1 is connected to vertices 4
and 6, and the (red) lowermost Dyck path touches the diagonal at positions

(1, 1) = (4− 2− 1, 4− 2− 1) and

(3, 3) = (6− 2− 1, 6− 2− 1).

As described in [Nic09], we use this theorem to prove Conjecture 2 therein. For an
explicit expression for the determinant, we refer to [Kra06b, Theorem 4].

Corollary 4.5. The number of k-triangulations of a convex n-gon having degree d
in a given vertex is given by the determinantal expression

det







Catn−2k · · · Catn−k−2 Bk
n−k−1(d)

...
. . .

...
...

Catn−k−1 · · · Catn−3 Bk
n−2(d)






,

where Catℓ is the usual Catalan number, and where Bk
ℓ (d) =

2k+d−3
ℓ

(

2ℓ−2k−d+2
ℓ−1

)

.

4.1. Rotation of the n-gon and a CSP for flagged tableaux. There is a
natural cyclic action ρ on k-triangulations given by rotating the vertex labels in
the n-gon counterclockwise. The following conjecture is due to V. Reiner [Rei09].
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Conjecture 4.6 (V. Reiner). Let λ be the staircase shape (n− 1, . . . , 2, 1) and let
k be a positive integer. The triple

(

FNE(λ, k), 〈ρ〉, F (q)
)

exhibits the cyclic sieving phenomenon (CSP) as described in [RSW04].

We can describe the cyclic action on k-triangulations induced by rotation in
terms of the cyclic action on flagged tableaux as defined in Section 3.2.

Theorem 4.7. The constructed bijection maps the cyclic action on k-triangulations
to the cyclic action given by flagged promotion on flagged tableaux.

Proof. Let T be a triangulation with compatible sequence t, and recording tableau
Q = Q(t). First, we describe the compatible sequence ρ(t) of ρ(T ), then we describe
the compatible sequence for the flagged promotion ρ(Q), and finally we show that
they are the same.

Note that any non-edge (i, j) in T , with i < j, gets encoded in the compatible

sequence as a column
(

n+1−j
n+i−j

)

. In particular, the non-edges (i, n) get encoded as
(

1
i

)

. For j < n, the switch from the non-edge (i, j) in T to (i + 1, j + 1) in ρ(T )

corresponds to turning the column
(

n+1−j
n+i−j

)

in t into the column
(

n−j
n+i−j

)

in ρ(t).

Likewise, the switch from the non-edge (i, n) in T to (1, i+ 1) in ρ(T ) corresponds

to turning the column
(

1
i

)

into the column
(

n−i
n−i

)

, and placing it in the right place

to make sure ρ(t) is a compatible sequence.

Let Q̃ be the ordinary promotion of Q. It is well known by the relationship
between promotion and Edelman–Greene insertion, that Q̃ is the recording tableau
of the biword obtained by turning each column of the form

(

i

j

)

into the column
(

i−1
j

)

, for 2 ≤ i ≤ n, and turning each column of the form
(

1
j

)

into one of the form
(

n

n−j

)

, and placing them at the end of the compatible sequence in reverse order.

This is the same transformation as described in the above paragraph, except for
columns

(

1
j

)

which got mapped into columns
(

n−j

n−j

)

instead. We now proceed to slide

these columns of the form
(

n
n−j

)

towards the position of the column
(

n−j
n−j

)

one by

one, starting from the left while adjusting the element in the top row accordingly,
and show that this transforms Q̃ into ρ(Q). Notice that every letter in the bottom
row between these two columns is greater than or equal to n− j + 2, which means
they all commute with n− j. Thus, the bottom row is still a reduced word for σ.
Lemma 3.1 implies that that all reduced expressions for σ have the same insertion
tableau. Since we now record n− j instead of n for those columns, this procedure
transforms Q̃ into ρ(Q). �

Using this connection, we obtain the following corollary.

Corollary 4.8. Conjecture 1.7 is equivalent to Conjecture 4.6.

5. Schubert polynomials and geometry of Schubert varieties

In this section we use the results about moon polyominoes in Section 2.2 to ob-
tain new properties of Schubert polynomials. It was shown in [FK96] that Schubert
polynomials are a generating series for pipe dreams, more precisely, for a permuta-
tion σ,

Sσ(x1, . . . , xn) =
∑

D∈RP(σ)

∏

(i,j)∈D

xi.
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We obtain the following theorem and thus Corollary 1.6.

Theorem 5.1. Let S be a stack polyomino, let λ be the associated Ferrers shape
and let k be a positive integer. Then

Sσk(S)(x1, x2, . . .)−Sσk(λ)(x1, x2, . . .)

is monomial positive. In particular, Sσk(S)(1, 1, . . .) is greater than or equal to the
number of k-flagged tableaux of shape λ.

Proof. This follows from Corollary 2.7. �

LetB be the subgroup ofGL(n) consisting of upper triangular matrices. For each
σ ∈ Sn there is a subvariety Xσ of GL(n)/B known as the Schubert variety (see,
e.g., [Man01, Chapter 3]). A. Knutson and E. Miller showed in [KM05] that the
multiplicity of the point Xe at the Schubert varietyXσ is given by the specialization
Sσ(1, 1, . . .). Thus, from the previous theorem, one obtains the following corollary.

Corollary 5.2. The multiplicity of the point Xe at the Schubert variety Xσk(S)

is greater than or equal to the multiplicity of the point Xe at the Schubert vari-
ety Sσk(λ).
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[KM05] , Gröbner geometry of Schubert polynomials, Ann. of Math. 161 (2005), no. 3,

1245–1318.
[Kra06a] C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of

Ferrers shapes, Adv. in Appl. Math. 37 (2006), 404–431.
[Kra06b] , Watermelon configurations with wall interaction: exact and asymptotic results,

J. Physics Conf. Series 42 (2006), 179–212.

[Man01] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS
Texts and Monographs 6 (2001).

[Nic09] C. Nicolás, Another bijection between 2-triangulations and pairs of non-crossing Dyck

paths, in DMTCS as part of the FPSAC 2009 conference proceedings (2009).



16 LUIS SERRANO AND CHRISTIAN STUMP

[PS09] V. Pilaud and F. Santos, Multitriangulations as complexes of star polygons, Discrete
Comput. Geom. 41 (2009), no. 2, 284–317.

[Rei09] V. Reiner, personal communication.
[RSW04] V. Reiner, D. Stanton, and D. White, The cyclic sieving phenomenon, J. Combin.

Theory Ser. A 108 (2004), 17–50.
[Rub06] M. Rubey, Increasing and decreasing sequences in fillings of moon polyominoes, to

appear in Adv. in Appl. Math., available at arXiv:math/0604140 (2006).
[Stu10] C. Stump, A new perspective on k-triangulations, preprint, available at arXiv:1009.4101

(2010).
[Wac85] M. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators,

J. Combin. Theory Ser. A 40 (1985), no. 2, 276–289.
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