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Electronic energy is calculated explicitly for itinerant-electron metamagnetic materials at
very low temperature. This calculation involves bandwidth and consequently volume, and it
has been performed by means of an elliptic density of states. Moreover, total energy is
considered.

1. INTRODUCTION

Problems associated with itinerant-electron-metamagnetism offer a wide

research field with a number of unsolved questions; in fact, both theoreti-
cal and experimental work in the above field seems to be scant. One of the
subjects involved in the mentioned phenomenon is the electronic energy;
this energy plus the lattice energy gives the total energy. Electronic energy
depends on the volume through the bandwidth [1][2][3][4], and the lattice

energy depends also on volume [1 ][3]. In the following, we shall derive an

expression for the electronic energy of itinerant-electron metamagnetic
materials at T 0K in the context of the Stoner approach; this relation-

ship will be expressed in terms of volume, and it is particularly useful to

study vanadium oxide in which a transition between the metallic and the
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antiferromagnetic insulating phases occurs with volume discontinuity
[1][5]. With respect to this, we recall that magnetic field, pressure, and

temperature may be varied to originate a first-order transition between a

non-magnetic state and a ferromagnetic one [2][6]; this transition charac-
terizes itinerant-electron metamagnetism. This phenomenon has been ob-
served in several rare-earth intermetallic compounds [7][8].

2. THEORY

Now, in accordance with the Stoner model, the electronic energy at T
0K reads [3 ]:

Ee o-w
E g(E) dE + E g(E) dE JM2

Pq3 MH (1)

where E denotes energy, 2W is the involved bandwidth, g(E) is the density
of states, EF1 and EF2 are the Fermi levels for the up and down spin bands
respectively, J is the exchange energy between up and down spin elec-
trons, a, is the Bohr magneton, M denotes magnetization, and H is the

strength of an applied magnetic field. With an elliptic density of states

g(E) 3(W2 Ez)J/Z/w2 [1][2][3], expression (1) becomes:

w2- EI)3/2 -}-(w2- E2)3/2

jM2_ P3 MH (2)E (W)
W2 4

Note that (since J > 0) E < 0 by simple inspection of eq. (2). On the
other hand, if EFI << W and EF2 << W, from eq. (2) it is deduced that

Ee (W) 2W 1_ jM2
3 MH; this situation is interesting in certain

4
cases. Now, let us consider the well-known Slater-Koster formula, namely
[4]:

W W expE-ot(V- Vo)/Vo] (3)

where V denotes volume, Wo is the value of W for V Vo, and e is a

parameter such that 1 <- ot <- 5/3; formula (3) was obtained by using a

tight-binding approach for 3d-electrons. For very small volume change,



ITINERANT-ELECTRON METAMAGNETISM 93

that is, for V- V << Vo, eq. (3) becomes (by considering a first-order
McLaurin expansion):

W-W (4)

Putting o 3/2 into (4), it follows:

Expression (5) is the Grado-Grado formula [2][3] which has been ob-
tained by means of a quantum-mechanical treatment involving a tight-
binding hamiltonian and a perturbation method. By replacing (5) into (2),
we get:

E (V)
[-(5 3V/2 E2F1 [-(5-o) E2F2No] ]3/2nt_ __372]3/2

1 jM2_ BMH (6)
4

_1 jM2
lxB MH when EFI << WWe have deduced E (W) -2W

4
and EF2 << W. Inserting (5) into the preceding formula, it follows:

JM2 tx3MH (7)

In order to preserve the negative sign of the first term in the right-hand
side of eq. (7) (E must be negative), the following condition is obtained:

V 5<- (8)
V 3
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Thus, it is feasible to formulate the Grado-Grado theorem of itinerant-
electron metamagnetism as follows: at T 0K, for itinerant-electron

metamagnetic materials with EF1 EF2 << W and very small volume
change, the approximate inequality (8) is satisfied.

Finally, we shall refer to lattice energy Ee. We have E E + Ee where
E stands for total energy; since Ee depends on volume variation, we can

claim that Ee << Ee for transitions with very small volume change [1][3]
so that one has E E.

3. CONCLUSION

In conclusion, we can claim that although analytic treatments based on an

elliptic density of states lead to results that are not exactly valid for inter-

metallic compounds, these treatments agree qualitatively with experiment
[1][3][9]. We have performed various calculations in order to establish

negativeness of the electronic energy studying the situation in which vol-
ume variation is very small as a relevant case. Furthermore, EF1 << W and

EF2 << W have been considered so that inequality (8) has been obtained.

Expression (8) is valid for, say, a typical itinerant-electron metamagnetic
material.
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