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THE QUANTUM PERMUTATION GROUP OF AN INFINITE

COUNTABLE SET

DEBASHISH GOSWAMI AND ADAM SKALSKI

Abstract. Two different models for a Hopf–von Neumann algebra of bounded
functions on the quantum permutation group on infinitely many elements are
proposed, one based on projective limits of enveloping von Neumann algebras
related to finite quantum permutation groups, and the second on universal
properties with respect to infinite magic unitaries.

Classical groups first entered mathematics as collections of all symmetries of a
given object, be it a finite set, a polygon, a metric space or a manifold. Origi-
nal definitions of quantum groups (also in the topological context, see [Wor] and
[KuV]) had rather algebraic character. Recent years however have brought many
developments in the theory of quantum symmetry groups, i.e. quantum groups de-
fined as universal objects acting (in the sense of quantum group actions) on a given
structure. The first examples of that type were introduced in [Wan], where S.Wang
defined the quantum group of permutations of a finite set, Sn. It turns out that the
algebra of ‘continuous functions on a quantum permutation group of n elements’,
C(Sn), is generated by entries of a universal n by n magic unitary, i.e. a unitary
matrix whose entries are orthogonal projections. Later the theory was extended
to quantum symmetry groups of finite graphs ([Bic]), finite metric spaces ([Ban2]),
and to quantum isometry spaces of compact noncommutative manifolds ([Gos]). In
all these cases the structure whose (quantum) symmetries are studied has finite or
compact flavour, so that the resulting quantum symmetry group is compact.

In this paper we study possible definitions of the quantum permutation group
of an infinite countable set. Even in the classical context there is a natural choice
here – we can either consider the group of all permutations of N, Perm(N), or the
group of all finite permutations of N, usually denoted by S∞. From the analytic
point of view the second group arises more naturally, as it is a direct limit of finite
permutation groups Sn. Hence this will be the group whose quantum version we
want to discuss here. As on the level of groups we have embeddings Sn →֒ Sn+1, on
the level of the algebras we obtain surjective morphisms C(Sn+1) ։ C(Sn). Hence
it is natural to expect that the algebra of continuous functions on the quantum
version of S∞ will arise as the inverse (projective) limit of algebras C(Sn). As
projective limits of C∗-algebras do not behave well (which is easy to understand
even in the commutative setting: a direct limit of locally compact spaces need not be
locally compact), we work with von Neumann algebras. This allows us to construct
in this note the algebraW∞, a candidate for (some version of) L∞(S∞) as a limit of
enveloping von Neumann algebras of C(Sn) and to study its universal properties.
Another possible approach to infinite quantum permutation groups exploits the
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fact that the algebras C(Sn) are defined in terms of universal magic unitaries, so by
analogy one can investigate a universal von Neumann algebra generated by entries
of an infinite magic unitary. We show that such an algebra exists and is a proper
subalgebra of W∞. We do not know if either of these Hopf–von Neumann algebras
fits into the theory of locally compact quantum groups developed in [KuV].

The detailed plan of the paper is as follows: in Section 1 we discuss projective
limits of von Neumann algebras; although these results are not difficult and may be
well-known, we could not locate a suitable reference. We also include several tech-
nical lemmas on extending maps to the projective limits. A short Section 2 contains
applications of these results to projective limits of Hopf von Neumann algebras. In
Section 3 we recall basic facts on Wang’s quantum permutation groups and de-
scribe the first of two possible candidates for the algebra L∞(S∞), constructed as
the projective limit of the enveloping von Neumann algebras of C(Sn). In Section 4
we propose an alternative approach in terms of a universal ‘infinite magic unitary’
and explain why this leads to a different Hopf–von Neumann algebra.

The spatial tensor of C∗-algebras will be denoted ⊗, and the ultraweak tensor
product of von Neumann algebras ⊗. For a projection a von Neumann algebra M

its lattice of projections will be denoted P(M) and the central carrier of p ∈ P(M)
(i.e. the smallest projection in Z(M) dominating p) will be denoted z(p).

1. Projective limits of von Neumann algebras

In this section we define, establish existence and prove basic properties of in-
ductive limits of von Neumann algebras. Although most results remain valid for
general directed index sets, we consider only projective systems indexed by N.

Definition 1.1. A sequence (Mn)n∈N is a projective system of von Neumann alge-
bras if it is a sequence of von Neumann algebras equipped with surjective normal
∗-homomorphisms φn : Mn+1 → Mn (the maps φn form a part of the definition, but
we omit them from the notation). Define the following class of von Neumann alge-
bras: M = {M : ∀n∈N ∃ ψn : M → Mn, a surjective normal ∗-homomorphism such
that ψn = φn ◦ψn+1}. We say that M ∈ M is a final object for M if for each N ∈ M

there exists a surjective normal morphism ψ : N → M such that ψ
(M)
n ◦ψ = ψ

(N)
n for

all n ∈ N.

Note that it is not clear at the moment whether even if a final object for M

exists, it is unique.

Theorem 1.2. Let (Mn)n∈N be a projective system of von Neumann algebras. Then
the class M admits a (unique) final object.

Proof. The construction is based on the properties of weak∗-closed two-sided ideals
in von Neumann algebras. Let n ≥ 2 and In = Ker(φn−1). Let rn ∈ P(Z(Mn))
be the projection such that In = rnMn (recall that rn := sup{p ∈ P(Mn−1) :
φn(p) = 0}). A well-known (and easy to check) fact states that the map φn−1|r⊥

n
Mn

:

r⊥nMn → Mn−1 is an isomorphism. Let Bn = rnMn and define additionally B1 =
M1. Then each Mn has a natural decomposition of the form Mn = ⊕n

k=1Bk, and
additionally this decomposition is ‘well behaved’ with respect to the maps φn. Not
surprisingly, the final object in M will be isomorphic to

∏∞

n=1 Bn. Below we give a
detailed proof of this fact.
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Observe first that the class M is non-empty. Indeed, define M∞ = {(mn)
∞
n=1 ∈∏∞

n=1 Mn : φn(mn+1) = mn}. Then M∞ is a weak∗-closed subalgebra of
∏∞

n=1 Mn,
hence a von Neumann algebra. It is clear that the projections on the individual
coordinates are normal ∗-homomorphisms; they satisfy the intertwining relation
with φn by construction. Surjectivity follows from the existence of isometric lifts
for selfadjoint elements in C∗-algebras (hence bounded lifts for arbitrary elements
of Mn to elements in M∞). In fact M∞ will be (isomorphic to) the final object for
M.

Let N ∈ M and denote by Jn the kernel of the corresponding map ψn : N → Mn.
Let wn ∈ P(Z(N))) be the projection such that Jn = wnN. As in the first part of the
proof, ψn|w⊥

n
N : w⊥

nN → Mn is an isomorphism. Write zn := w⊥
n . As Jn+1 ⊂ Jn, the

sequence (zn)
∞
n=1 is increasing. Define additionally z∞ = limn→∞ zn, p1 = z1 and

pn = zn− zn−1 for n ≥ 2, so that z∞ =
∑∞

n=1 pn. As all projections pn are central,
we obtain a natural increasing sequence of von Neumann algebras ⊕n

k=1pkN whose
union is weak∗-dense in z∞N. It is easy to see that this yields a natural isomorphism
z∞N ≈

∏∞

n=1 pnN.
Note that z∞N ∈ M - indeed, the only thing to check is that the maps ψn|z∞N :

Mn are surjections, and this follows from the stated above surjectivity of ψn|znN.
Our claim is that z∞N is the final object of M. Indeed, it suffices to show that if W

is another von Neumann algebra in M, then z
(W)
∞ W is isomorphic to z∞N and the

isomorphism intertwines the corresponding maps into Mn. For the first statement
it suffices to describe the algebras pnN in terms of the projective sequence with
which we started. Let n ≥ 2. Consider the diagram

zn−1N⊕ pnN = znN

Mn−1

ψn−1|zn−1N<

r⊥n Mn ⊕ Bn

φn−1|r⊥
n
Mn

<

= Mn

ψn|znN

∨

in which all arrows are isomorphisms. It immediately implies that pnN is isomorphic
to Bn (note that for n = 1 this also holds). Moreover looking at the diagram above
we see that if we denote the corresponding isomorphism between pnN and Bn by
γn, we can check inductively that γ1 ⊕ · · · ⊕ γn : znN → Mn coincides with ψn,

which assures that the natural isomorphism between z
(W)
∞ W and z∞N intertwines

the respective ψn and ψ
(W)
n maps.

We can check that for N := M∞ we have z∞ = 1M∞
. Indeed, if (mn)

∞
n=1 ∈

w∞M∞ then (mn)
∞
n=1 ∈ Ker(ψn) for each n ∈ N, so (mn)

∞
n=1 = 0.

It remains to prove uniqueness. Suppose then that N is a final object in M and

let W be a final object in M constructed above. Note that if ψ
(W)
n : W → Mn denote

the usual surjections, the construction above implies that
⋂∞

n=1 Ker(ψ
(W)
n ) = {0}.

There is a surjective map ψ : W → N such that ψn = ψ
(W)
n ◦ ψ for all n ∈ N.

Thus we must have
⋂∞

n=1 Ker(ψn) = {0}, or equivalently z∞ = 1N, where z∞ is
constructed for N as above. Then N = Nz∞ and the arguments above show that
N ≈ W. �

3



Definition 1.3. Let (Mn)n∈N be a projective system of von Neumann algebras.
The final object in the class M will be called the projective limit of (Mn)n∈N and
denoted M∞.

In the next section we will show that if (Mn)n∈N is a projective system of Hopf–
von Neumann algebras, with the normal surjections φn intertwining the respec-
tive coproducts, then M∞ has a natural Hopf–von Neumann algebra structure.
To this end we present here several lemmas related to constructing maps acting
on/to/between projective limits.

Lemma 1.4. Let (Mn)n∈N be as in Theorem 1.2 and let us adopt the notations in
the proof that theorem. Define additionally for each n ∈ N the map ιn : Mn → M∞

to be the inverse of ψn|znM∞
(or more precisely the composition of that inverse with

the embedding of znM∞ into M∞)). Then we have the following: for each n ∈ N,
x ∈ Mn+1

ιn(φn(x)) = znιn+1(x)

Proof. It is a direct consequence of the diagram above, this time interpreted as
follows:

znM∞ <
zn·

M∞

Mn

ιn

>

φn
<

Mn+1

ιn+1

∧

- note that now the maps are not necessarily isomorphisms. �

Lemma 1.5. Suppose that (Nn)
∞
n=1, W are von Neumann algebras and that N =∏

n∈N
Nn. For each n ∈ N denote the central projection in N corresponding to Nn

by pn. Let (for each n ∈ N) κn : W →
∏n

k=1 Nk be a normal contractive map and
suppose that (for each w ∈ W, n ∈ N)

(1.1) κn(w) =

n∑

k=1

pkκn+1(w).

Then there exists a unique normal contraction κ : W → N such that

κn(w) =

n∑

k=1

pkκ(w).

If each κn is a ∗-homomorphism (respectively, a ∗-antihomomorphism), κ is also
∗-homomorphic (respectively, ∗-antihomomorphic).

Proof. Let w ∈ W. Define

κ(w) =

∞∑

n=1

pnκn(w) = lim
n→∞

κn(w).

The equality of both expressions follows from the formula (1.1) and the properties
of weak∗ topology in N (recall that we have a natural Banach space isomorphism
N∗ ≈

⊕∞

n=1(Nn)∗, where the last sum is of the l1-type). Similarly, normality of κ
4



follows from the explicit description of the predual of N and normality of each κn.
The statement on algebraic properties of κ is easy to check, and the uniqueness is
clear. �

The last two results have a following consequence.

Proposition 1.6. Suppose that (Mn)n∈N and (Nn)n∈N are projective systems of

von Neumann algebras, with connecting maps respectively denoted by (φ
(M)
n )n∈N

and (φ
(N)
n )n∈N and the maps from the final objects M∞ and N∞ respectively denoted

by (ψ
(M)
n )n∈N and (ψ

(N)
n )n∈N. Let λn : Mn → Nn (n ∈ N) be normal contractive

maps such that

λn ◦ φ(M)
n = φ(N)

n ◦ λn+1, n ∈ N.

Then there exists a unique map λ∞ : M∞ → N∞ such that

λn ◦ ψ(M)
n = ψ(N)

n ◦ λ∞, n ∈ N.

If each λn is a ∗-homomorphism (respectively, a ∗-antihomomorphism, a unital
map), λ is also ∗-homomorphic (respectively, ∗-antihomomorphic, unital).

Proof. Use the notation of Theorem 1.2 and Lemma 1.4, adorning respective maps

with (M) and (N). Define λ̃n : M∞ → z
(N)
n N∞ (n ∈ N) as λ̃n = ι

(M)
n ◦λn ◦ψ

(N)
n . Then

z(N)
n λ̃n+1(·) = z(N)

n (ι
(N)
n+1 ◦ λn+1 ◦ ψ

(M)
n+1)(·) = ι(N)

n ◦ φ(N)
n ◦ λn+1 ◦ ψ

(M)
n+1

= ι(N)
n ◦ λn ◦ φ(M)

n ◦ ψ
(M)
n+1 = ι(N)

n ◦ λn ◦ ψ(M)
n = λ̃n,

where in the second equality we used Lemma 1.4. Apply now Lemma 1.5 for

κn := λn, W := M∞ and Nn := p
(N)
n N∞. This yields a map λ∞ : M∞ → N∞ such

that

λ̃n = z(N)
n λ∞(·).

Straightforward identifications using the commuting diagrams presented earlier end
the proof of the main statement. As before, uniqueness and algebraic properties of
λ∞ follow easily. �

The above lemma provides a simple corollary describing a construction of maps
acting from M∞ into some other von Neumann algebra.

Corollary 1.7. Let (Mn)n∈N be a projective system of von Neumann algebras;
adopt the notations of Theorem 1.2. Let (for each n ∈ N) µn : Mn → W be a
normal ∗-homomorphism and suppose that (for each n ∈ N)

µn ◦ φn = µn+1.

Then there exists a unique normal ∗-homomorphism µ : M∞ → W such that

µ = µn ◦ ψn.

Proof. It suffices to apply Proposition 1.6 to the projective systems (Mn)n∈N and
(Nn)n∈N, where Nn := W and φn = idW for all n ∈ N . �
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2. Projective limits of Hopf–von Neumann algebras

Here we apply the results of Section 1 to construct the projective limit of a
projective sequence of Hopf–von Neumann algebras.

Definition 2.1. A Hopf–von Neumann algebra is a von Neumann algebra equipped
with a coproduct, i.e. a unital normal ∗-homomorphism ∆ : M → M⊗M which is
coassociative:

(idM ⊗∆)∆ = (∆⊗ idM)∆.

Definition 2.2. A sequence (Mn)n∈N is called a projective system of Hopf–von
Neumann algebras if it is a projective system of von Neumann algebras, each Mn is
a Hopf–von Neumann algebra (with the coproduct ∆n : Mn → Mn ⊗Mn) and the
surjective normal homomorphisms φn : Mn+1 → Mn satisfy the conditions

(φn ⊗ φn)∆n+1 = ∆nφn.

Theorem 2.3. Let (Mn)n∈N be a projective system of Hopf–von Neumann algebras.
Then M∞ is also a Hopf–von Neumann algebra: there exists a unique coproduct
∆ : M∞ → M∞⊗M∞ such that

(2.1) ∆nψn = (ψn ⊗ ψn)∆, n ∈ N.

In addition if each ∆n is injective, so is ∆.

Proof. Observe that the sequence (Mn⊗Mn)n∈N, together with surjective connect-
ing maps φn ⊗ φn : Mn+1⊗Mn+1 → Mn⊗Mn forms a projective limit of von Neu-
mann algebras; moreover a projective limit of this sequence can be easily identified
with M∞⊗M∞. Hence an application of Proposition 1.6 yields the existence and
uniqueness of a unital normal ∗-homomorphism ∆ : M∞ → M∞⊗M∞ satisfying
(2.1).

Coassociativity of ∆ can be proved in an analogous way, exploiting the unique-
ness part of Proposition 1.6.

If each ∆n is injective, x ∈ M∞ and ∆(x) = 0, then by (2.1) we have (for each
n ∈ N) ψn(x) = 0. Via identifications in Theorem 1.2 we see that znx = 0 for all
n ∈ N, which implies that x = 0. �

We could also consider Hopf–von Neumann algebras with a counit, i.e. a normal
character ǫ : M → C such that

(ǫ⊗ idM)∆ = (idM ⊗ ǫ)∆ = idM

Then for (Mn)n∈N to be a projective system of Hopf–von Neumann algebras we
additionally require that

ǫn ◦ φn = ǫn+1, n ∈ N.

Lemma 1.7 and a simple calculation imply that if the above conditions are satisfied,
then M∞ admits a natural counit.

We finish this section with a short discussion of projective limits of actions of
Hopf–von Neumann algebras.

Definition 2.4. Let W be a von Neumann algebra and (M,∆) be a Hopf–von
Neumann algebra. We say that α : W → W⊗M is a (Hopf–von Neumann algebraic)
action of M on W if it is a normal unital injective ∗-homomorphism such that

(idW ⊗∆)α = (α ⊗ idM)α.
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A combination of Theorem 2.3 and Lemma 1.5 yields the following result, which
says that the Hopf–von Neumann algebraic actions behave well under passing to
projective limits.

Theorem 2.5. Let W be a von Neumann algebra and let (Mn)n∈N be a projective
system of Hopf–von Neumann algebras. Denote by M∞ the Hopf–von Neumann
algebra arising as the projective limit in the sense of Theorem 2.3. Let (αn)n∈N be
a sequence of actions of Mn on W such that for each n ∈ N

(idW ⊗ φn)αn+1 = αn,

where φn are connecting maps defining the system (Mn)n∈N. Then there exists a
unique action α of M∞ on W such that for each n ∈ N

(idW ⊗ ψn)α = αn.

Proof. Similar to that of Theorem 2.3, using the fact that the von Neumann algebra
W⊗M∞ is the projective limit of the system (W⊗Mn)n∈N, with the connecting maps
idW ⊗ φn, and then applying Proposition 1.6. �

3. The Hopf–von Neumann algebra of ‘all finite quantum

permutations of an infinite set’ as a projective limit

Let C(Sn) denote the algebra of continuous functions on the quantum permu-
tation group of the n-point set. Recall ([Wan]) that it is the universal C∗-algebra
generated by the collection of orthogonal projections {pij : i, j = 1, . . . , n} such
that for each i = 1, . . . , n there is

∑n

j=1 pij =
∑n

j=1 pji = 1. The coproduct, counit

and (bounded, ∗-antihomomorphic) antipode are defined on C(Sn) by the formulas
(i, j = 1, . . . , n)

∆n(pij) =
n∑

k=1

pik ⊗ pkj ,

ǫn(pij) = δij , κn(pij) = pji.

Denote the enveloping von Neumann algebra of C(Sn) by Wn. Standard arguments
show that maps ∆n, ǫn and κn have unique normal extensions to Wn, which will
be denoted by the same symbols – so that for example ∆n : Wn → Wn⊗Wn.

For each n ∈ N we denote by ωn the natural surjection (and a compact quan-
tum group morphism) from C(Sn+1) to C(Sn), which corresponds to mapping[
P 0
0 1

]
→ P and whose existence follows from the universal properties. This

induces in a standard way the surjection on the level of universal enveloping von
Neumann algebras (it is enough to define φn = ω∗∗

n : C(Sn+1)
∗∗ → C(Sn)

∗∗ - the
fact that φn is multiplicative is the standard consequence of the definition of the
Arens multiplication, surjectivity follows from the fact that images of normal rep-
resentations of von Neumann algebras are ultraweakly closed). Hence the sequence
of algebras (Wn)

∞
n=1 forms a projective system of von Neumann algebras. As ωn

intertwined the respective coproducts on the level of C∗-algebras, so does φn on
the level of von Neumann algebras; similarly ǫn+1 ◦ φn = ǫn for all n ∈ N. Hence
Theorem 2.3 implies that the projective limit of (Wn)n∈N is a Hopf–von Neumann
algebra, denoted further by W∞. We formulate it as a theorem:

7



Theorem 3.1. The sequence (Wn := C(Sn)
∗∗)∞n=1 is a projective system of Hopf–

von Neumann algebras with counits. Hence its projective limit denoted by W∞ is
also a Hopf–von Neumann algebra with a counit.

Proof. A direct consequence of Theorem 2.3 and the discussion before the theorem.
�

In general we cannot expect Hopf–von Neumann algebras to possess antipodes.
Here we have however the following fact.

Theorem 3.2. The Hopf–von Neumann algebra W∞ admits a unique ∗-antihomo-
morphic involutive map κ : W∞ → W∞ such that

κn ◦ ψn = ψn ◦ κ, n ∈ N,

where ψn : W∞ → Wn are the canonical surjections.

Proof. As ωn ◦ κn+1|C(Sn+1) = κn ◦ ωn|C(Sn+1), we also have a similar relation on
the level of maps between the enveloping von Neumann algebras, with ωn replaced
by φn. Hence Proposition 1.6 implies the existence of the map κ as above; the fact
it is involutive is a consequence of the analogous property of all κn. �

It would be of course more natural to use for the projective limit construction
instead of C(Sn)

∗∗ the algebras L∞(Sn), the von Neumann completions of C(Sn)
in the GNS representation with respect to the respective Haar states. The problem
lies in the fact that the maps ωn cannot extend to ‘reduced’ versions of the algebras
of C(Sn), so also not to continuous maps L∞(Sn+1) → L∞(Sn). The first statement
is a consequence of the fact that C(Sn) is not coamenable for n ≥ 5, as follows from
the quantum version of the Kesten criterion for amenability ([Ban1]).

The fact that we can only construct the projective limit using the universal
completions is related to the problem described in the next remark.

Remark 3.3. Recently C.Köstler and R. Speicher introduced a notion of quantum
exchangeability or invariance under quantum permutations for a family of quantum
random variables (see Definition 2.4 in [KSp]). This notion was later studied by
S.Curran in [Cur] and extended to finite sequences; the basic idea is that a sequence
of random variables is quantum exchangeable if its distribution (understood as a
state on a von Neumann algebra generated by the variables in question) is invariant
under natural actions of all Wang’s quantum permutation groups Sn. Classically
exchangeability can be defined as the invariance of the distribution under the action
of the infinite permutation group; it would be natural to expect a similar result
in the quantum context. It is not clear whether our definition would allow such
a formulation; although Theorem 2.5 offers a way of constructing actions of the
projective limit, the natural actions of quantum permutation groups considered in
[KSp] are defined only on the Hopf algebraic level. As shown in Theorem 3.3 of [Cur]
(see also Section 5.6 of that paper), in the presence of quantum exchangeability
the actions can be extended to the reduced von Neumann algebraic completions
L∞(Sn), but to apply Theorem 2.5 to obtain the action ofW∞ on the von Neumann
algebra in question we would need to be able to extend the original actions to
C(Sn)

∗∗.
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4. Universal von Neumann algebra generated by an infinite magic

unitary

In this section we shall define a quantum analogue of the algebra of functions
on the permutation group of a countably infinite set as the universal von Neumann
algebra generated by the entries of an ‘infinite magic unitary’.

We begin with a C∗-algebraic construction.

Definition 4.1. Let C denote the category with objects (C, {qij , i, j = 1, ...,∞}),
where C is a (possibly nonunital) C∗-algebra generated by a family of orthogonal
projections {qij : i, j ∈ N} and such that there exists a faithful (and nondegenerate)
representation (π,H) of C such that for each i ∈ N

(4.1)
∞∑

j=1

π(qij) =
∞∑

j=1

π(qji) = 1B(H),

with the convergence understood in the strong operator topology. A morphism from
(C, {qij}) to (C′, {q′ij}) is given by a (necessarily nondegenerate) C∗-homomorphism

from C to C′ which maps qij to q′ij for all i, j ∈ N.

Theorem 4.2. The category C has a universal (initial) object.

Proof. Consider the (formal) ∗-algebra B generated by symbols {bij : i, j ∈ N}
which are selfadjoint idempotents

(4.2) bij = b∗ij = b2ij ,

and satisfy the orthogonality relations

(4.3) bijbik = 0, bjibki = 0 for k ∈ N such that j 6= k.

It is easy to see that this ∗-algebra admits many nontrivial representations on
Hilbert spaces. For example, for any n ∈ N, we can denote the canonical generators

of C(Sn) by {q
(n)
ij : i, j = 1, . . . , n} and put b

(n)
ij = q

(n)
ij for i, j ≤ n, b

(n)
ij = 0 other-

wise. Clearly, b
(n)
ij satisfy the required relations, so that we get a ∗-homomorphism

ρn : B → C(Sn) sending bij to b
(n)
ij and we can compose it with any faithful rep-

resentation of C(Sn). Since each bij is a self-adjoint projection, the norm of its
image under any representation on a Hilbert space must be less than or equal to
1. This implies that the universal norm defined by ‖b‖ := supπ ‖π(b)‖, where π
varies over all representations of B on a Hilbert space, is finite. The completion of
B under this norm will be denoted by B. It is the universal C∗-algebra generated
by {bij : i, j ∈ N} satisfying relations (4.2)-(4.3). We shall denote the universal
enveloping von Neumann algebra of B by B

∗∗ and identify B as a C∗-subalgebra of
B∗∗.

Observe that for fixed i ∈ N, p
(n)
i :=

∑n

j=1 bij is an increasing family of pro-
jections in B ⊂ B∗∗, so it will converge in the ultraweak topology of B∗∗ to some
projection, say, pi. Similarly, for fixed j ∈ N, we write pj := limn→∞

∑n

i=1 bij in
B∗∗. Let w be the smallest central projection in B∗∗ which dominates 1− pi, 1− pj

for all i, j ∈ N and let z = 1−w. Consider the C∗-algebra A := zB ⊂ B∗∗. Clearly,
A is generated as a C∗-algebra by projections {qij := zbij : i, j ∈ N}. We claim that
(A, {qij : i, j ∈ N}) is in C and is indeed the universal C∗-algebra in this category.

First of all, it follows from the definition of z that for each i ∈ N we have∑∞

j=1 qij = 1 =
∑∞

j=1 qji in the ultraweak topology inherited from the inclusion
9



zB∗∗ ⊆ B∗∗, i.e. the ultraweak topology of B(zHu) where Hu denotes the universal
Hilbert space on which B∗∗ acts. We complete the proof of the lemma by showing
the universality of A. To this end, let D be a C∗-algebra generated by elements
{tij : i, j ∈ N} satisfying the relations (4.1), where the infinite series in (4.1)

converge in the ultraweak topology of the von Neumann algebra π(D)
′′
for a fixed

faithful representation (π,H) of D. By the definition of B, we get a ∗-homomorphism
from B onto D which sends bij to tij (for each i, j ∈ N). This composed with π

extends to a unital, normal ∗-homomorphism, say ρ, from B∗∗ onto π(D)′′. In
particular, ρ(pi) =

∑∞

j=1 tij = 1, and ρ(pi) =
∑∞

j=1 tji = 1 for all i ∈ N, so

1 − pi, 1 − pi belong to the ultraweakly closed two-sided ideal I := Kerρ of B∗∗.
Thus, if we denote by w0 the central projection in B∗∗ such that I = w0B

∗∗, then
w0 dominates 1 − pi and 1 − pi for all i ∈ N, and hence by the definition of w, we
have w0 ≥ w. It follows that w ∈ I, i.e. ρ(w) = 0, or in other words, ρ(z) = 1. This
implies ρ(b) = ρ(zb) for all b ∈ B, so that we get a ∗-homomorphism ρ1 := ρ|A from
A to D which satisfies ρ1(qij) = tij for all i, j ∈ N. This completes the proof of the
universality of A. �

Denote the von Neumann algebra zB∗∗ by A∞, and note that it should not be
confused with the universal enveloping von Neumann algebra of A, which may be
bigger. Note that the proof of the above theorem indeed provides also universal
property of the von Neumann algebra A∞, as stated in the next corollary.

Corollary 4.3. The von Neumann algebra A∞ is the (unique up to an isomorphism
of von Neumann algebras) universal object in the category of all von Neumann
algebras N which are generated (in the ultraweak topology) by projections {nij : i, j ∈
N} satisfying

∑∞

j=1 nij =
∑∞

j=1 nji = 1N (convergence in the ultraweak topology).

Using the von Neumann algebraic universality we have the following result.

Proposition 4.4. The von Neumann algebra A∞ admits a natural coproduct ∆A :
A∞ → A∞⊗A∞ and a counit ǫA : A∞ → C.

Proof. Consider for each i, j ∈ N

xij :=

∞∑

k=1

qik ⊗ qkj

as an element of A∞⊗A∞. We note that the series converges in the ultraweak
topology of the von Neumann algebra A∞⊗A∞, the summands being mutually
orthogonal projections. It is easy to check using the defining properties of qij
that for each i, j ∈ N there is x2ij = xij = x∗ij , and

∑∞

k=1 xik =
∑∞

k=1 xki =
1
A∞⊗A∞

. By the universality of the von Neumann algebra stated in Corollary

4.3, we obtain a normal unital ∗-homomorphism ∆A : A∞ → A∞⊗A∞ given by
∆A(qij) = xij , i, j ∈ N, which is easily seen to be coassociative. Similarly, we
have a normal ∗-homomorphism ǫA : A∞ → C given on generators by ǫA(qij) = δij .
Note that the existence of the counit implies in particular that ∆A is injective. �

The algebra A∞ is also equipped with a kind of an antipode.

Proposition 4.5. The prescription

κA(qij) = qji, i, j ∈ N

extends to a normal involutive ∗-antihomomorphism of A∞.

10



Proof. View generators qij as the elements of the opposite von Neumann algebra
A∞

op and denote them by {qoij : i, j ∈ N}. Once again using the universality as
in Corollary 4.3, it is easy to see that the map qij 7→ qoji canonically induces a

normal unital ∗-homomorphism from A∞ to A∞
op, which can be viewed as a ∗-

antihomomorphism on A∞. �

Let us now compare the construction above with that from the previous section.
Recall the projective system (Wn)

∞
n=1 of Hopf - von Neumann algebras introduced

in Section 3. Let W denote the corresponding category of von Neumann algebras
(as in Definition 1.1).

Proposition 4.6. The algebra A∞ of Corollary 4.3 is an element of W. Therefore
W∞ is a direct summand of A∞.

Proof. Recall that A∞ ≈ zB∗∗ in the notation of Theorem 4.2. The universal
property of B implies that for each n ∈ N there is a surjection γn : B → C(Sn)
defined by the formula

γn(bij) =

{
q
(n)
ij i, j ≤ n

0 otherwise
.

Let ψn = γ∗∗n - it again becomes a surjection, this time onto Wn = C(Sn)
∗∗, and

it is easy to check that ψn = φn ◦ ψn+1 for all n ∈ N. Hence B∗∗ is in the class W
associated with the sequence (Wn)n∈N according to Definition 1.1.

Define wn to be the smallest central projection in B
∗∗ dominating all projections

(p
(n)
j )⊥ and (q

(n)
j )⊥, where

p
(n)
j =

n∑

i=1

bij , q
(n)
j =

n∑

i=1

bji.

Note that we can describe wn in terms of the central supports of (p
(n)
j )⊥ and (q

(n)
j )⊥:

(4.4) wn =
∨

j∈N

z((p
(n)
j )⊥) ∨

∨

j∈N

z((q
(n)
j )⊥).

For that it suffices to note that a central projection dominates another, not neces-
sarily central, projection if and only if it dominates its central carrier.

The argument similar to that of the proof of Theorem 4.2, exploiting the fact that
C(Sn)

∗∗ can be described as the universal von Neumann algebra generated by an n
by n magic unitary implies that ψn : w⊥

n B
∗∗ → C(Sn)

∗∗ is an isomorphism. Indeed,

it is easy to see that for each j ∈ N there is ψn(p
(n)
j ) = ψn(q

(n)
j ) = 1C(Sn)∗∗ , so

that the projection determining the kernel of ψn dominates zn := w⊥
n and ψn(x) =

ψn(znx) for all x ∈ B∗∗. Thus we obtain a surjective map ψn|znB∗∗ → C(Sn)
∗∗ which

preserves the natural magic unitaries in both algebras (observe that
∑n

i=1 znbij =∑n

i=1 znbji = zn). The afore-mentioned universality of C(Sn)
∗∗ implies that it is

an isomorphism.
Hence Ker(ψn) is equal to wnB

∗∗ and the intersection
⋂

n∈N
Ker(ψn) is equal to

w∞B∗∗, where w∞ = limn∈N wn.
Recall that the central projection w = z⊥ ∈ B

∗∗ was defined in the proof of
Theorem 4.2 as the smallest central projection in B∗∗ dominating all projections

p⊥j and q⊥j , where pj = limn∈N p
(n)
j and qj = limn∈N q

(n)
j . Hence it is easy to check

that z ≥ z∞ := w⊥
∞ and in particular we can view zB∗∗ as an element of W. �
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The inclusion W∞ ⊂ A∞ is close to being an inclusion of Hopf - von Neumann
algebras. This is formulated in the next proposition.

Proposition 4.7. View W∞ as a subalgebra of A∞, so that W∞ = z∞A∞. The
normal ∗-homomorphism ∆̂ : W∞ → W∞⊗W∞ defined by: ∆̂(x) = (z∞⊗z∞)(∆A(x))
(x ∈ W∞) is unital and coassociative. It in fact coincides with the coproduct on
W∞ constructed as a projective limit in Theorem 2.3.

Proof. We use the notation of the last proposition. As W∞ = z∞A∞, it is enough to
show that ∆A(z∞) ≥ z∞ ⊗ z∞, so that ∆̂ : W∞ → W∞⊗W∞ satisfies the required
conditions.

Note first that as Ker(ψn) = wnA∞, we can check that

Ker(ψn ⊗ ψn) = (zn ⊗ zn)
⊥(A∞⊗A∞).

The construction of the coproduct on A∞ implies that the maps ψn : A∞ → C(Sn)
∗∗

intertwine the respective coproducts (recall that C(Sn)
∗∗ has a canonical Hopf–von

Neumann algebra structure induced from C(Sn)). As we have (ψn⊗ψn)(∆A(wn)) =
∆n(ψn(wn)) = 0, the formula displayed above implies that the projection ∆A(wn)
is dominated by (zn ⊗ zn)

⊥. Passing to the limit (exploiting normality of the
coproduct) we obtain that

∆A(w∞) ≤ (z∞ ⊗ z∞)⊥,

so the proof of the first statement of the lemma is finished.
To show the second part, by the uniqueness in Theorem 2.3 it suffices to show

that for each n ∈ N we have

∆nψn|W∞
= (ψn|W∞

⊗ ψn|W∞
)∆̂.

In fact we can even show that

(4.5) ∆nψn = (ψn ⊗ ψn)∆A.

Indeed, as maps on both sides of the last equation are normal, it suffices to check
they take the same values on each zbij (where z is now a central projection in B∗∗

defined in Theorem 4.2). Fix then i, j ∈ N:

(ψn ⊗ ψn)(∆A(zbij)) = (ψn ⊗ ψn)( lim
k→∞

k∑

l=1

zbil ⊗ zblj)

= lim
k→∞

(ψn ⊗ ψn)(
k∑

l=1

zbil ⊗ zblj) =
n∑

l=1

ψn(zbil)⊗ ψn(zblj).

Now it is easy to check that ∆n(ψn(zbij)) = (ψn ⊗ ψn)(∆(zbij)), considering sepa-
rately two cases: first i, j ≤ n and then max{i, j} > n. Thus (4.5) is proved. �

Proposition 4.6 does not exclude the possibility of A∞ actually coinciding with
W∞, i.e. z = z∞. Below we show that this is not the case.

Lemma 4.8. Let z, z∞ ∈ P(B∗∗) be projections discussed in Proposition 4.6. Then
z 6= z∞.

Proof. Observe that another application of the argument used in Proposition 4.6
implies that

(4.6) z⊥ =
∨

j∈N

z(p⊥j ) ∨
∨

j∈N

z(q⊥j ),

12



so the comparison of the formulas (4.4) and (4.6) shows that the problem of deciding
whether z = z∞ is related to the fact that for a decreasing sequence of projections
in a von Neumann algebra, say (rn)

∞
n=1 we can have z(limn∈N rn) 6= limn∈N z(rn).

Suppose for the moment that there exists a non-zero normal representation π :
B
∗∗ → B(h) such that π(z) = 1B(h), N := π(B∗∗) is a factor, and if we write

dij = π(bij) (i, j ∈ N) then we have rk :=
∑k

j=1 d1j 6= 1B(h) for all k ∈ N. Then

z(r⊥k ) = 1N = 1B(h) (central carrier understood in N). As π : B∗∗ → N is onto (so in
particular it maps Z(B∗∗) into Z(N)), we have for each p ∈ P(B∗∗) the inequality

z(π(p)) ≤ π(z(p)). As r⊥k = π((p
(k)
1 )⊥), we have therefore (recall ((4.4))

π(z⊥k ) ≥ π(z((p
(k)
1 )⊥)) ≥ z(r⊥k ) = 1B(h).

Hence π(zk) = 0 and thus also π(z∞) = 0, so z cannot be equal to z∞.
It remains to show that such a representation exists. It suffices to exhibit a

concrete magic unitary (dij)
∞
i,j=1 built of projections on a Hilbert space h such that

each row and column sum to 1B(h),
∑k

j=1 d1j < 1B(h) for each k ∈ N (in other

words the first row is not ‘finitely supported’) and the entries generate B(h) as
a von Neumann algebra. Let then (dn)

∞
n=1 be a sequence of non-zero mutually

orthogonal projections summing to 1B(h) and consider the matrix:



d1 0 d2 d3 d4 · · ·
d⊥1 d1 0 0 0 · · ·
0 d2 d⊥2 0 0 · · ·
0 d3 0 d⊥3 0 · · ·
0 d4 0 0 d⊥4 · · ·
...

...
...

...
...

...




.

It is easy to see it gives a magic unitary with the first row ‘infinitely supported’. The
generation condition can be achieved by considering a finite sequence of projections
(tn)

k
n=1 generating the whole B(h) and adding to a given magic unitary two by

two blocks of the form

[
tn t⊥n
t⊥n tn

]
(with respective rows and columns completed by

zeros). �

Corollary 4.9. W∞ is a proper von Neumann subalgebra of A∞.
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