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RATIONAL EQUIVARIANT RIGIDITY

DAVID BARNES AND CONSTANZE ROITZHEIM

Abstract. We prove that for a finite or profinite group G, the homotopy infor-
mation of rational G-spectra is entirely determined by the triangulated structure
of their homotopy category.

Introduction

Quillen equivalences between stable model categories give rise to triangulated
equivalences of their homotopy categories. The converse is not necessarily true -
there are numerous examples of model categories that have equivalent homotopy
categories but completely different homotopical behaviour. One example, see [SS02,
2.6], is module spectra over the Morava K-theories K(n) and differential graded
K(n)∗-modules. Their homotopy categories are equivalent triangulated categories,
yet they cannot be Quillen equivalent as they have different mapping spaces.

As this converse statement is a very strong formality property, it is of great
interest to find stable model categories C whose homotopical information is entirely
determined by the triangulated structure of the homotopy category Ho(C). Such
homotopy categories are called rigid.

The first major result was found by Stefan Schwede who proved the rigidity of
the stable homotopy category Ho(Sp): any stable model category whose homotopy
category is triangulated equivalent to Ho(Sp) is Quillen equivalent to the model
category of spectra [Sch07a]. To investigate further into the internal structure of the
stable homotopy category, Bousfield localisations of the stable homotopy category
have subsequently been considered. The second author showed in [Roi07] that the
K-local stable homotopy category at the prime 2 is rigid. Astonishingly, this is not
true for odd primes, as a counterexample by Jens Franke shows in [Fra96], see also
[Roi08].

The main focus of the proofs of the above results is the respective sphere spectra
and their endomorphisms. For both the stable homotopy category and its p-local
K-theory localisation, the sphere is a compact generator, meaning that it “gener-
ates” the entire homotopy category under exact triangles and coproducts. Studying
the endomorphisms of a generator is essentially Morita theory. The idea is that all
homotopical information of a model category can be deduced from a certain endo-
morphism ring object of its compact generators [SS03]. In the case of a category
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with one compact generator, this endomorphism ring object is a symmetric ring
spectrum.

The cases mentioned above all monogenic, that is, they have a single compact
generator (the sphere spectrum). In this paper we are working with homotopy cat-
egories that have multiple generators. The examples we study are model categories
of rational G-equivariant spectra G SpQ for either a finite group or a profinite group
G. Recall that a profinite group is an inverse limit of an inverse system of finite
groups, with the p-adic numbers being the canonical example. Any finite group is,
of course, profinite, but whenever we talk of a profinite group we assume that the
group is infinite. In the case of a finite group the category G SpQ has been exten-
sively studied by Greenlees, May and the first author. For a profinite group the
non-rationalised category is introduced and examined in [Fau08]. Equivariant sta-
ble homotopy theory is of great general interest because of the prevalence of group
actions in mathematics, so it makes good sense to use this as our example of a
non-monogenic example of rigidity. The goal of this paper is to prove the following
for G finite or profinite.

Theorem (Rational G-equivariant Rigidity Theorem). Let C be a proper,
cofibrantly generated, simplicial, stable model category and let

Φ : Ho(G SpQ) −→ Ho(C)

be an equivalence of triangulated categories. Then C and G SpQ are Quillen equiva-
lent.

The homotopy category Ho(G SpQ) is not monogenic, a set of compact generators
is, in the finite case, given by Gtop = {Σ∞G/H+}, the suspension spectra of the
homogeneous spaces G/H forH a subgroup of G. In the profinite case the generators
are Gtop = {Σ∞G/H+} as H runs over the open subgroups of G. Hence, instead of
studying an endomorphism ring object, we consider a “ring spectrum with several
objects”, a small spectral category. Via the above equivalence Φ, Gtop also provides
a set of compact generators X = Φ(Etop) for the homotopy category of C, from which
we can form its endomorphism category E(X ). Generally, a triangulated equivalence
on homotopy category would not be sufficient to extract enough information from
E(X ). However, in our case computations by Greenlees and May (for finite groups)
and the first author (for profinite groups) allow us to construct a Quillen equivalence.

This theorem is particularly notable as it provides an example of rigidity in the
case of multiple generators rather than just a monogenic homotopy category. We
note that in the finite case, the coproduct of all the generators is also a compact
generator, so technically speaking, G SpQ can be thought of as monogenic in the
finite case. In the profinite setting (where we have assumed the group to be infinite)
there are countably many generators and no finite subset will suffice, furthermore
the coproduct of this infinite collection of generators will not be compact, so in the
profinite case G SpQ cannot be monogenic.
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Organisation. In Section 1 we establish some notations and conventions before
discussing the notions of generators and compactness.

Section 2 provides a summary of Schwede’s and Shipley’s Morita theory result
which relates model categories to categories of modules over an endomorphism cate-
gory of generators. More precisely, assume that C is a model category which satisfies
some further minor technical assumptions and which has a set of generators X . Then
one can define the endomorphism category E(X ) and the model category of modules
over it. Schwede and Shipley then give a sequence of Quillen equivalences

C ≃Q mod-E(X ).

In Section 3 we recover some definitions and properties about rational G-spectra
and describe its endomorphism category E(Gtop).

These three sections provide enough information to produce a Quillen equivalence
between the given model category C and G SpQ, which we describe in in Section 4.
In detail, we use the Morita theory of Section 2 to obtain a Quillen equivalence

mod-E(Gtop) −−→←− G SpQ

and a zig-zag of Quillen equivalences C ≃Q mod-E(X ). We then use the computa-
tions of Section 3 to produce a series of Quillen equivalences relating mod-E(Gtop)
and mod-E(X ).

1. Stable model categories and generators

We assume that the reader is familiar with the basics of Quillen model categories.
We provide only a brief summary of the main notions in order to establish notation
and other conventions.

A model category C is a category with three distinguished classes of morphisms

denoted weak equivalences
∼

// , fibrations // // and cofibrations // // sat-
isfying some strong but rather natural axioms. A good reference is [DS95]. The
main purpose of a model structure is enabling us to define a reasonable notion of
homotopy between morphisms. One can then form the homotopy category Ho(C) of
a model category C using homotopy classes of morphisms.

For a pointed model category C one can define a suspension functor and loop
functor as follows. Let X be an object in C, without loss of generality let X be
fibrant and cofibrant. We then choose a factorisation

X // // C
∼

// ∗

of the map X −→ ∗. The suspension ΣX is now defined as the pushout of the
diagram

∗ Xoo // // C .

The loop functor Ω is defined dually. Suspension and loop functors form an adjunc-
tion

Σ : Ho(C) −−→←− Ho(C) : Ω.

Note that when we write down an adjunction of functors the top arrow always
denotes the left adjoint.
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In the case of pointed topological spaces this recovers the usual suspension and
loop functors. For the derived category of an abelian category the suspension functor
is the shift functor of degree +1 and the loop functor the shift functor of degree -
1. So in the latter case suspension and loop functors are inverse equivalences of
categories, which is not the case for topological spaces.

Definition 1.1. A pointed model category C is called stable if

Σ : Ho(C) −−→←− Ho(C) : Ω

are inverse equivalences of categories.

One reason why stable model categories are of interest is because their homotopy
categories are triangulated, which gives us a wealth of additional structure to make
use of. Examples of stable model categories are chain complexes of modules over
a ring R with either the projective or injective model structure [Hov99, 2.3] or
symmetric spectra Sp in the sense of [HSS00].

We also need to consider functors respecting the model structures on categories.

Definition 1.2. Let F : C −−→←− D : G be an adjoint functor pair. Then (F,G) is
called a Quillen adjunction if F preserves cofibrations and acyclic cofibrations, or
equivalently, G preserves fibrations and acyclic fibrations.

Note that a Quillen functor pair induces an adjunction

LF : Ho(C) −−→←− Ho(D) : RG

[Hov99, 1.3.10]. The functors LF and RG are called the derived functors of the
Quillen functors F and G. If the adjunction (LF,RG) provides an equivalence of
categories, then (F,G) is called Quillen equivalence. But Quillen equivalences do
not only induce equivalences of homotopy categories, they also give rise to equiva-
lences on all ‘higher homotopy constructions’ on C and D. To summarise, Quillen
equivalent model categories have the same homotopy theory.

In the case of C and D being stable model categories, the derived functors LF and
RG are exact functors. This means that they respect the triangulated structures.
For a triangulated category T , we denote the morphisms in T by [−,−]T∗ . In the
case of T = Ho(C), we abbreviate this to [−,−]C∗ .

Definition 1.3. Let T be a triangulated category. A set X ⊆ T is called a set
of generators if it detects isomorphisms, i.e. a morphism f : A −→ B in T is an
isomorphism if and only if

f∗ : [X,A]T∗ −→ [X,B]T∗

is an isomorphism for all X ∈ X .

Definition 1.4. If T is a triangulated category that has infinite coproducts, then an
object Y ∈ T is called compact (or small) if [Y,−]T∗ commutes with coproducts.

The importance of those definitions can be seen in the following: if T has a set
of compact generators X , then any triangulated subcategory of T that contains X
that is closed under coproducts must already be T itself, [Kel94, 4.2]. Note that
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if Φ : T −→ T ′ is an equivalence of triangulated categories and X ⊆ T a set of
generators, it is immediate that Φ(X ) is a set of generators in T ′.

Examples of compact generators include the following.

• The sphere spectrum S0 is a compact generator for the stable homotopy
category Ho(Sp).
• Consider a smashing Bousfield localisation with respect to a homology theory
E∗. Then the E-local sphere LES

0 is a compact generator of the E-local
stable homotopy category Ho(LESp). However, if the localisation is not
smashing, then LES

0 is a generator but not compact [HPS97, 3.5.2].
• Let R be a commutative ring. Then the free R-module of rank one is a
compact generator of the derived category D(R-mod).

For a more detailed list of examples, [SS03] is an excellent source, which also gives
examples of non-monogenic triangulated categories such as G-spectra. The category
of G-spectra will be discussed in detail in Section 3.

2. Morita theory for stable model categories

We are going to summarize some results and techniques of [SS03] in this sec-
tion. Schwede and Shipley show that, given a few minor technical assumptions,
any stable model category is Quillen equivalent to a category of modules over an
endomorphism ring object. In the case of a model category with a single generator
X , this endomorphism object is a symmetric ring spectrum. However, in the case of
a stable model category with a set of several generators such as rational G-spectra,
the endomorphism object is a small category enriched over ring spectra, or a “ring
spectrum with several objects”.

We are going to assume that our stable model category C is a simplicial model
category [Hov99, 4.3] which is also proper and cofibrantly generated. As mentioned,
being proper and cofibrantly generated are only minor technical assumptions which
hold in most examples of reasonable model categories and being simplicial is less
of a restriction than it may seem, via [RSS01] or [Dug06]. In the latter reference,
Dugger shows that any stable model category which is also “presentable” is Quillen
equivalent to a spectral model category as defined below. The conditions of being
cofibrantly generated, proper and simplicial will also be the assumptions of our main
theorem in Section 4 later.

A spectral category is a category O enriched, tensored and cotensored over sym-
metric spectra, see e.g. [SS03, 3.3.1] or [Hov99, 4.1.6]. A spectral model category is a
model category which is also a spectral category and further, the spectral structure
is compatible with the model structure via the axiom (SP). The axiom (SP) is anal-
ogous to the axiom (SM7) that makes a simplicial category into a simplicial model
category, see [SS03, 3.5.1] or [Hov99, 4.2.18]. A module over the spectral category O
is a spectral functor

M : Oop −→ Sp.
5



A spectral functor consists of a symmetric spectrum M(X) for each X ∈ O together
with maps

M(X) ∧O(Y,X) −→ M(Y )

satisfying associativity and unit conditions, see [SS03, 3.3.1]. The category mod-O
of modules over the spectral category O can be given a model structure such that
the weak equivalences are element-wise stable equivalences of symmetric spectra and
fibrations are element-wise stable fibrations [SS03, Theorem A.1.1].

To define the endomorphism category of a cofibrantly generated, simplicial, proper
stable model category C, we first have to replace C by a spectral category. In [SS03,
3.6] Schwede and Shipley describe the category Sp(C) of symmetric spectra over C,
i.e. symmetric spectra with values in C rather than pointed simplicial sets. Theorem
3.8.2 of [SS03] states how C can be replaced by Sp(C).

Theorem 2.1 (Schwede-Shipley). The category Sp(C) can be given a model struc-
ture, the stable model structure, which makes Sp(C) into a spectral model category
that is Quillen equivalent to C via the adjunction

Σ∞ : C −−→←− Sp(C) : Ev0.

Now let D be a spectral model category with a set of compact generators X . We
define the endomorphism category E(X ) as having objects X ∈ X and morphisms

E(X )(X1, X2) = HomD(X1, X2).

Here HomD(−,−) denotes the homomorphism spectrum. This is an object in the
category of symmetric spectra and comes as a part of the spectral enrichment of D.
The category E(X ) is obviously a small spectral category. In the case of X = {X},
E(X )(X,X) is a symmetric ring spectrum, the endomorphism ring spectrum of X .

Without loss of generality we assume our generators to be both fibrant and cofi-
brant. One can now define an adjunction

− ∧E(X ) X : mod-E(X ) −−→←− D : Hom(X ,−)

where the right adjoint is given by Hom(X , Y )(X) = HomD(X, Y ), [SS03, 3.9.1].
The left adjoint is given via

M ∧E(X ) X = coeq
(

∨

X1,X2∈X

M(X2) ∧ E(X )(X1, X2) ∧X1 ⇉
∨

X∈X

M(X) ∧X
)

.

One map in the coequaliser is induced by the module structure, the other one comes
from the evaluation map

E(X )(X1, X2) ∧X1 −→ X2.

Schwede and Shipley then continue to prove [SS03, Theorem 3.9.3] which says that
in the case of all generators being compact, the above adjunction forms a Quillen
equivalence. Combining this with Theorem 2.1 one arrives at the following.

Theorem 2.2 (Schwede-Shipley). Let C be a cofibrantly generated, simplicial proper
stable model category with a set of compact generators X . Then there is a zig-zag of
simplicial Quillen equivalences

C ≃Q mod-E(X ).

6



3. Rational G-spectra and their endomorphism category

For a finite group G, there are several Quillen equivalent constructions of G-
spectra. We prefer to use equivariant orthogonal spectra from [MM02] as they can
be generalised to the profinite case [Fau08]. Recall that when we talk of a profinite
group, we have assumed that group to be infinite.

Briefly, a G-spectrum X consists of a collection of G-spaces X(U), one for each
finite dimensional real representation U of G, with G-equivariant suspension maps

SV ∧X(U)→ X(U ⊕ V ).

Here, SV is the one-point-compactification of the vector space V . A map of G-
spectra is then a collection of G-maps

f(U) : X(U)→ Y (U)

commuting with the suspension structure maps. An orthogonal G-spectrum has
more structure still, but the underlying idea is the same. We denote the category
of orthogonal G-spectra by G Sp.

There are several model structures on G Sp, which vary according to what sub-
groups of G are of interest. We are concerned with the case of all subgroups for
a finite group and the open subgroups for a profinite groups. These cases are the
ones of most interest to topologists as they contain the most information about the
G-behaviour of spaces and spectra. From now on we only talk of open subgroups,
as all subgroups of a finite group are open. Following [Bar09] these model categories
can be rationalised, to form LQG Sp which we denote as G SpQ.

Theorem 3.1. There is a model structure on G SpQ such that the weak equivalences
are those maps f such that πH

∗ (f)⊗Q is an isomorphism for all open subgroups H
of G. This model category is proper, cofibrantly generated, monoidal and spectral.

The homotopy category Ho(G SpQ) has a finite set of compact generators in the
case of a finite groups and a countable collection in the case of a profinite group.

Lemma 3.2. The fibrant replacements of the spectra Σ∞G/H+ for H an open sub-
group form a set of compact generators denoted Gtop for Ho(G SpQ).

For a proof of this, see e.g. [Fau08, 4.6].

The spectra Σ∞G/H+ themselves are usually chosen to form Gtop, but for technical
reasons we would like the generators to be fibrant and cofibrant. They are cofibrant
to begin with and taking the fibrant replacement obviously does not change their
property as generators. We denote these replacements by {Σ∞

f G/H+}.

We now take a closer look at the endomorphism category Etop := E(Gtop) of G SpQ.
We remember from Theorem 2.2 that G SpQ is Quillen equivalent to the category
of modules mod-Etop over a spectral category Etop. The category Etop has objects
Gtop = {Σ

∞
f G/H+}. For σ1, σ2 ∈ Gtop, the morphisms are defined as

Etop(σ1, σ2) = HomG SpQ(σ1, σ2).
7



We now introduce another bit of notation. Let σ1, σ2 ∈ Gtop be two generators.
Let A(σ1, σ2) denote π0(Etop(σ1, σ2)). Using the composition

Etop(σ2, σ3) ∧ Etop(σ1, σ2) −→ Etop(σ1, σ3)

we see that A forms a ringoid or ring with several objects, i.e. a category with
objects Gtop and morphisms A(σ1, σ2) together with composition maps

A(σ2, σ3)⊗A(σ1, σ2) −→ A(σ1, σ3)

satisfying associativity and unital conditions.

Applying the Eilenberg-MacLane functor H (see e.g. [HSS00] or [Sch08]) then
yields another spectral category HA.

Let us return to Etop, in [GM95, Appendix A], Greenlees and May computed the
groups

[Σ∞G/H+,Σ
∞G/K+]

G Sp
∗ ⊗Q

for subgroups H and K of a finite group G. Using the Segal-tom Dieck splitting
result [Fau08, 7.10] one can similarly compute these groups in the case of a profinite
group.

Theorem 3.3. In degrees away from zero, [Σ∞G/H+,Σ
∞G/K+]

G Sp
∗ is torsion.

Hence, the homotopy groups of the spectrum Etop(σ1, σ2) are concentrated in degree
zero.

It is not too surprising that a symmetric spectrum with homotopy groups con-
centrated in degree zero is weakly equivalent to an Eilenberg-MacLane spectrum.
For a statement like this, see [Sch07b, Theorem 4.22]. However, we are also after a
statement about the category of modules over this spectral category. Schwede and
Shipley prove the following in [SS03, Theorem A.1.1 and Proposition B.2.1]

Theorem 3.4 (Schwede-Shipley). Let R be a spectral category whose morphism
spectra are fibrant in Sp and have homotopy groups concentrated in degree zero.
Then the module categories mod-R and mod-Hπ0R are related by a chain of Quillen
equivalences.

We can apply this theorem to our case, we have chosen our generators Gtop to
be fibrant and cofibrant. Hence Etop(σ1, σ2) = HomG SpQ(σ1, σ2) is fibrant as for
cofibrant σ1, HomG SpQ(σ1,−) is a right Quillen functor by definition.

Corollary 3.5. The categories mod-Etop and mod-HA are Quillen equivalent.

Combining this with Theorem 2.2 yields the following corollary which, in the
finite case, is [SS03, 5.1.2] A more detailed version for finite groups that considers
the monoidal structure appears in [Bar09].

Corollary 3.6. There is a chain of Quillen equivalences between rational G-spectra
G SpQ and mod-HA.
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4. The Quillen equivalence

We are finally going to put together the results from the previous section to obtain
our main theorem.

Theorem 4.1. Let G be either a finite group or a profinite group. Let C be a cofi-
brantly generated, proper, simplicial, stable model category together with an equiva-
lence of triangulated categories

Φ : Ho(G SpQ) −→ Ho(C).

Then G SpQ and C are Quillen equivalent.

Proof. We showed in Corollary 3.6 at the end of Section 3 how G SpQ is Quillen
equivalent to the category of modules over the Eilenberg-MacLane “ring spectrum
of several objects” mod-HA.

Let X consist of fibrant and cofibrant replacements of Φ(σ) where σ ∈ Gtop runs
over the generators of Ho(G SpQ). The set X is then a set of generators for Ho(C).
By Theorem 2.2 we have Quillen equivalences

G SpQ ≃Q mod-Etop and C ≃Q mod-E(X ).

We are now going to compare mod-Etop to mod-E(X ) by relating them both to
mod-HA. Let X1 be a cofibrant and fibrant replacement for Φ(σ1) where σ1 ∈
Gtop and define X2 analogously. Remember that E(X )(X1, X2) was defined as the
homomorphism spectrum of the fibrant replacement of the suspension spectrum of
X1 and X2 in Sp(C) [SS03, Definition 3.7.5], so

E(X )(X1, X2) = HomSp(C)(Σ
∞

f X1,Σ
∞

f X2).

By adjunction and using the Quillen equivalence Σ∞ : C −−→←− Sp(C) : Ev0 we obtain

[S0, E(X )(X1, X2)]
Sp
∗
∼= [Σ∞X1,Σ

∞X2]
Sp(C)
∗

∼= [X1, X2]
C

∗ .

Via the equivalence Φ and again by adjunction this equals

[σ1, σ2]
G SpQ
∗

∼= [S0, Etop(σ1, σ2)]
Sp
∗ .

Thus, Etop(σ1, σ2) and E(X )(X1, X2) have the same homotopy groups. By Lemma
3.3, these are concentrated in degree zero where they equal A(σ1, σ2). As the genera-
tors Xi ∈ X have been chosen to be fibrant and cofibrant, the spectra E(X )(X1, X2)
are all fibrant in Sp. Hence Theorem 3.4 applies, giving us a chain of Quillen equiv-
alences between mod-E(X ) and mod-HA. Thus we have arrived at a collection of
Quillen equivalences

G SpQ
←−−−→ mod-Etop ≃Q mod-HA ≃Q mod-E(X ) −−→←− C

which concludes our proof of the G-equivariant Rigidity Theorem. �

Hence we have presented a nontrivial example of rigidity that is not monogenic.
It is a subject of further research whether rigidity also holds for G-spectra G Sp
before rationalisation.
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