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THE COHOMOLOGY OF λ-RINGS AND K-THEORY

MICHAEL ROBINSON

Abstract. We introduce the André-Quillen cohomology of λ-rings and Ψ-
rings, this is different to the λ-ring cohomology defined by Yau in 2005. We
show that there is a natural transformation connecting the cohomology of the
K-theory of spheres to the homotopy groups of spheres.

1. Introduction

λ-rings were first introduced in an algebraic-geometry setting by Grothendieck
in 1958, then later used in group theory by Atiyah and Tall. In 1962 Adams
introduced the operations Ψi to study vector fields of spheres. These operations
give us another type of ring, the Ψ-rings, which are closely related to the λ-rings.
The main example of λ-rings and Ψ-rings are in algebraic topology; the K-theory
of a topological space is a λ-ring and Ψ-ring.

For more detailed information on the cohomology of λ-rings and Ψ-rings, see my
thesis [5]. In 2005, Donald Yau defined a cohomology for λ-rings. We are using
the André-Quillen cohomology of λ-rings and Ψ-rings which is different to Yau’s
cohomology. In this paper, we let N denote the non-zero natural numbers and N0

denote N ∪ {0}.

2. λ-rings and Ψ-rings

In this section, we introduce the definitions of a λ-ring and a Ψ-ring. For more
information on λ-rings and Ψ-rings, see Atiyah and Tall [1] or Knutson [4].

2.1. λ-rings. A λ-ring is a unital commutative ring, R, together with a sequence
of operations λi : R→ R, for i ∈ N0, satisfying

(1) λ0(r) = 1,
(2) λ1(r) = r,

(3) λi(r + s) = Σi
k=0λ

k(r)λi−k(s),
(4) λi(r) = 0 for i > 1,
(5) λi(rs) = Pi(λ

1(r), λ2(r), . . . , λi(r), λ1(s), . . . , λi(s)),
(6) λi(λj(r)) = Pi,j(λ

1(r), . . . , λij(r)),

where Pi and Pi,j are universal polynomials with integer coefficients, see the cited
material for precise definitions. Note that what we refer to as a λ-ring is called a
special λ-ring in the materials.

2.2. λ-modules. M is a λ-module over the λ-ring R if M is an R-module together
with a sequence of group homomorphisms Λi :M →M , for i ∈ N, satisfying

(1) Λ1(m) = m,

(2) Λi(rm) = Ψi(r)Λi(m),
1
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(3) Λij(m) = (−1)(i+1)(j+1)ΛiΛj(m),

for all m ∈M, r ∈ R and i, j ∈ N.

2.3. λ-derivations. A λ-derivation of R with values in M is an additive homo-
morphism d : R →M such that

(1) d(rs) = rd(s) + d(r)s,

(2) d(λi(r)) = Λi(d(r)) +
∑i−1

j=1 Λ
j(d(r))λi−j (r),

for all r, s ∈ R, and i ∈ N. We let Derλ(R,M) denote the set of all λ-derivations
of R with values in M .

2.4. Ψ-rings. The λ-operations are neither additive nor multiplicative which makes
them difficult to use. From these we can obtain the Adams operations which are
ring homomorphisms. We define the Adams operations using the Newton formula.

Ψi(r) − λ1(r)Ψi−1(r) + ...+ (−1)i−1λi−1(r)Ψ1(r) + (−1)iiλi(r) = 0.

A Ψ-ring is a unital commutative ring, R, together with a sequence of ring
homomorphisms Ψi : R → R, for i ∈ N, satisfying

(1) Ψ1(r) = r,

(2) Ψi(Ψj(r)) = Ψij(r),

for all r ∈ R and i, j ∈ N. We say that a Ψ-ring R is special if it also satisfies the
property

Ψp(r) ≡ rp mod pR

for all primes p and r ∈ R. All of the Ψ-rings which come from λ-rings are special.
Wilkerson [8] gives us a condition for when the converse is true.

Theorem 2.1. (Wilkerson) If R is a Z torsion free special Ψ-ring, then there
exists a unique λ-ring structure on R whose adams operations are precisely the
Ψ-operations.

There is a unique λ-ring structure on the ring of the integers Z given by

λi(x) =

(
x

i

)
,

for i ∈ N. The corresponding special Ψ-operations on Z are given by Ψi(x) = x for
i ∈ N.

The definition of the free λ-ring is well-known, see [4]. We are now going to
construct the free Ψ-ring on one generator a. Let A be the free commutative ring
generated by {ai|i ∈ N}. Let the operations Ψi : A→ A be given by Ψi(aj) = aij ,
for i, j ∈ N. Then A is the free Ψ-ring on one generator.

Lemma 2.2. If R and S are Ψ-rings, then R⊗ S with Ψi : R⊗ S → R⊗ S given
by Ψi(r, s) = (Ψi(r),Ψi(s)) is the coproduct in the category of Ψ-rings.

Proof. The coproduct of two commutative rings is given by the tensor product, so
we only need to check the Ψ-operations. There is a unique Ψ-ring structure on
R⊗ S such that

R→ R ⊗ S, r 7→ r ⊗ 1,

S → R⊗ S, s 7→ 1⊗ s,
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are homomorphisms of Ψ-rings given by

Ψi(r ⊗ s) = Ψi((r ⊗ 1)(1⊗ s))

= Ψi(r ⊗ 1)Ψi(1⊗ s)

= (Ψi(r)⊗ 1)(1⊗ Ψi(s))

= Ψi(r) ⊗Ψi(s).

�

Corollary 2.3. Let A be the free commutative ring generated by {ai, bi, . . . , xi|i ∈
N}. Let the operations Ψi : A → A be given by Ψi(aj) = aij, Ψi(bj) = bij , . . .,
Ψi(xj) = xij for i, j ∈ N. Then A is the free Ψ-ring generated by {a, b, . . . , x}.

2.5. Ψ-modules. M is a Ψ-module over the Ψ-ring R ifM is an R-module together
with a sequence of group homomorphisms ψi :M →M , for i ∈ N, satisfying

(1) ψ1(m) = m,

(2) ψi(rm) = Ψi(r)ψi(m),
(3) ψi(ψj(m)) = ψij(m),

for all m ∈ M , r ∈ R, and i, j ∈ N. We let R−modΨ denote the category of all
Ψ-modules over R. We say that M is special if R is special and

ψp(m) ≡ 0 mod pM

for all primes p and m ∈M .

2.6. Ψ-derivations. A Ψ-derivation of R with values in M is an additive homo-
morphism d : R →M such that

(1) d(rs) = rd(s) + d(r)s,
(2) ψi(d(r)) = d(Ψi(r)),

for all r, s ∈ R, and i ∈ N. We let DerΨ(R,M) denote the set of all Ψ-derivations
of R with values in M .

3. Cohomology of λ-rings

It is known that there is an adjoint pair of functors

Sets
F //

λ− rings
U

oo

where U is the forgetful functor and F takes a set S to the free λ-ring generated by
S. The adjoint pair gives rise to a comonad G on λ−rings which is monadic. Let R
be a λ-ring and M be a λ-module over R. We define the cohomology of the λ-ring
R with coefficients in M , denoted by H∗

λ(R,M), to be the comonad cohomology
[3] of R with coefficients in Derλ(−,M). Note that Derλ(−,M) is a functor from
the category of λ-rings to the category of abelian groups.

Corollary 3.1. For any λ-ring R and M ∈ R−modλ, we have

H0
λ(R,M) ∼= Derλ(R,M).

Furthermore, if R is free as a λ-ring then Hi
λ(R,M) = 0 for i > 0.
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Let R be a λ-ring and M ∈ R−modλ. A λ-ring extension of R by M is an exact
sequence

0 // M
α // X

β
// R // 0

where X is a λ-ring, β is a map of λ-rings, α is an additive homomorphism such
that αλi = Λiα for all i ∈ N and α(m)x = α(mβ(x)) for all m ∈ M and x ∈ X .
The map α identifies M with an ideal of square-zero in X .

Two λ-ring extensions (X), (X ′) with R,M fixed are said to be equivalent if there
exists a map of λ-rings φ : X → X ′ such that the following diagram commutes.

0 // M // X //

φ

��

R // 0

0 // M // X ′ // R // 0

We denote the set of equivalence classes of λ-ring extensions ofR byM by Extalgλ(R,M).

Lemma 3.2. For any λ-ring R and M ∈ R−modλ, we have

H1
λ(R,M) ∼= Extalgλ(R,M).

The proof can be found in my thesis [5].

4. Cohomology of Ψ-rings

Let I denote the category with one object associated to the multiplicative monoid
of the nonzero natural numbers. We can consider Ψ-rings as diagrams of commu-
tative rings; Ψ-rings are functors from I to the category of commutative rings.

R : I → Com.rings.

It is well known that there is an adjoint pair of functors

Sets
F //

Com.rings
U

oo

where U is the forgetful functor and F takes a set S to the free commutative ring
generated by S. The adjoint pair gives rise to a comonad G on Com.rings which
is monadic and the cohomology with respect to this comonad is the André-Quillen
cohomology of commutative rings. The adjoint pair gives rise to another adjoint
pair

Sets
FI //

Com.ringsI
UI

oo

where UI is the forgetful functor and FI takes a set S to the free Ψ-ring generated
by S. This adjoint pair yields a comonad GI on Com.ringsI = Ψ − rings which is
monadic.

Let R be a Ψ-ring and M be a Ψ-module over R. We define the cohomology
of a Ψ-ring R with coefficients in M , denoted by H∗

Ψ(R,M), to be the comonad
cohomology of R with coefficients in DerΨ(−,M). Note that DerΨ(−,M) is a
functor from the category of Ψ-rings to the category of abelian groups.

Corollary 4.1. For any Ψ-ring R and M ∈ R−modΨ, we have

H0
Ψ(R,M) ∼= DerΨ(R,M).

Furthermore, if R is free as a Ψ-ring then Hi
Ψ(R,M) = 0 for i > 0.
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Let R be a Ψ-ring and M ∈ R−modΨ. A Ψ-ring extension of R by M is an
exact sequence

0 // M
α // X

β
// R // 0

where X is a Ψ-ring, β is a map of Ψ-rings, α is an additive homomorphism such
that αΨi = ψiα for all i ∈ N and α(m)x = α(mβ(x)) for all m ∈ M and x ∈ X .
The map α identifies M with an ideal of square-zero in X .

Two Ψ-ring extensions (X), (X) with R,M fixed are said to be equivalent if there
exists a map of Ψ-rings φ : X → X such that the following diagram commutes.

0 // M // X //

φ

��

R // 0

0 // M // X // R // 0

We denote the set of equivalence classes of Ψ-ring extensions ofR byM byExtalgΨ(R,M).
If R and M are special, then we say that an extension

0 // M
α // X

β
// R // 0

is special if X is also special.

Lemma 4.2. For any Ψ-ring R and M ∈ R−modΨ, we have

H1
Ψ(R,M) ∼= ExtalgΨ(R,M).

For each n ∈ N0, there is a natural system [2] on I as follows

Df := Hn
AQ(R,M

f)

where Mf is an R-module with M as an abelian group with the following action
of R

(r,m) 7→ Ψf(r)m, for r ∈ R,m ∈M.

For any morphism u ∈ I, we have u∗ : Df → Duf which is induced by Ψu : Mf →
Muf . For any morphism v ∈ I, we have v∗ : Df → Dfv which is induced by
Ψv : R → R.

Theorem 4.3. There exists a spectral sequence

E
p,q
2 = H

p
BW (I,Hq(R,M)) ⇒ H

p+q
Ψ (R,M)

where Hq(R,M) is the natural system on I whose value on a morphism α in I is
given by Hq

AQ(R,M
α) and Hp

BW (I,Hq(R,M)) is the Baues-Wirsching cohomology

[2] of the small category I with coefficients in the natural system Hq(R,M).

The proof of this theorem can be found in my thesis [5] or the paper [6].

5. Natural transformation

We letK(−) denote the complex K-theory and K̃(−) denote the reduced complex

K-theory. Let X,Y be topological spaces such that K̃(Y ) = 0 and K̃(ΣX) = 0.
Let f : Y → X be a continuous map, then we can consider the Puppe sequence

Y
f

// X // Cf
// ΣY // ΣX // ΣCf

// . . .
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where Cf is the mapping cone of f , and ΣX is the suspension of X . After applying

the functor K̃(−) we get the long exact sequence.

. . . // K̃(ΣX) // K̃(ΣY ) // K̃(Cf ) // K̃(X) // K̃(Y )

However, since K̃(ΣX) = 0 and K̃(Y ) = 0 we obtain the short exact sequence.

0 // K̃(ΣY ) // K(Cf ) // K(X) // 0

This gives us the following proposition.

Proposition 5.1. If X and Y are topological spaces as above then there exist
natural transformations

τλ : [Y,X ] → Extalgλ(K(X), K̃(ΣY )),

τΨ : [Y,X ] → ExtalgΨ(K(X), K̃(ΣY )).

Corollary 5.2. If X is a topological space such that K̃(ΣX) = 0 then there ex-

ist natural transformations τλ : π2n−1(X) → Extalgλ(K(X), K̃(S2n)) and τΨ :

π2n−1(X) → ExtalgΨ(K(X), K̃(S2n)).

6. The Hopf invariant of an extension

Consider the commutative ring R generated by x and y as an abelian group,
R ∼= Z[x] ⊕ Z[y], where x is the unit of the ring and y2 = 0. The ring R is known
as the ring of dual numbers. Let M ∼= Z[z] be the R-module such that y · z = 0.
We can consider the extensions of R by M in the category of commutative rings.
All the extensions have the following form

(6.0.1) 0 // M // X ⊕ Z[γ] // R // 0

where X ∼= Z[α]⊕Z[β] as an abelian group with α being the image of the generator
z, the image of the unit γ is the unit x and the image of β being the generator y.
Since M2 = 0 we get that α2 = 0. Since y2 = 0, we get that αβ = 0 and β2 = hα

for some integer h. We define h to be the Hopf invariant of the extension (6.0.1).

We are going to consider the extensions of K(S2n) by K̃(S2n′

) in the category
of Ψ-rings. We are going to prove the following theorem

Theorem 6.1.

ExtalgΨ(K(S2n), K̃(S2n′

)) ∼=

{
Z⊕ ZGn,n′

if n 6= n′;

Z⊕
∏

p prime
Z if n = n′.

where Gn,n′ denotes the greatest common divisor of all the integers in the set

{ln − ln
′

|l ∈ Z, l ≥ 2}

Corollary 6.2. If n 6= n′ then

Extalgλ(K(S2n), K̃(S2n′

)) ∼= {(h, ν) ∈ Z⊕ ZGn,n′
|h ≡ ν

(2n − 2n
′

)

Gn,n′

mod 2.}

If n = n′ then

Extalgλ(K(S2n), K̃(S2n′

)) ∼= {(h, ν2, ν3, . . .) ∈ Z⊕
∏

p prime

Z|h ≡ ν2 mod 2,

νp ≡ 0 mod p, p > 2.}
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All the Ψ-ring extensions of K(S2n) by K̃(S2n′

) have the form (6.0.1). The
Ψ-operations on Ψk : X → X are given by

ψk(m, r) = (kn
′

m+ νkr, k
nr)

for some νk ∈ Z.

Ψk(Ψl(m, r)) = (kn
′

ln
′

m+ kn
′

νlr + νkl
nr, knlnr)

Ψl(Ψk(m, r)) = (ln
′

kn
′

m+ ln
′

νkr + νlk
nr, lnknr)

Since the Ψ-operations commute, we get that

νlr(k
n′

− kn) = νkr(l
n′

− ln)

If n = n′ then there is no restriction on the choice of νp for p prime. Otherwise we
can rearrange the above to get that

νl = νk
(ln

′

− ln)

(kn′ − kn).

By setting k = 2 we get that for all l ≥ 2

νl = ν2
(ln

′

− ln)

(2n′ − 2n).

We can write all the νl’s as multiples of ν2 since

νl = ν2
(ln

′

− ln)

(2n′ − 2n)
= ν2

(kn
′

− kn)

(2n′ − 2n)

(ln
′

− ln)

(kn′ − kn)
= νk

(ln
′

− ln)

(kn′ − kn).

Since ν2 is an integer, we get that ν2 = z(2n
′

−2n)
Gn,n′

for some integer z.

If we replace the generator β by β + Nα, note that (β + Nα)2 = hα, then we

have to replace νk by νk +N(kn
′

− kn). We get that

νk +N(kn
′

− kn) = ν2
kn

′

− kn

2n′ − 2n
+N(kn

′

− kn) =
(ν2 +N(2n

′

− 2n))(kn
′

− kn)

(2n′ − 2n)

So we only have to be concerned with replacing ν2 by ν2 +N(2n
′

− 2n), then our

usual formula for νk holds. Hence we are replacing z(2n
′

−2n)
Gn,n′

by

z(2n
′

− 2n)

Gn,n′

+N(2n
′

− 2n) =
(z +NGn,n′)(2n

′

− 2n)

Gn,n′

This proves theorem 6.1. The isomorphism depends on n and n′. By restricting
to the special Ψ-ring extensions, we get that ν2r ≡ hr2 mod 2 and νpr ≡ 0 mod p
for p ≥ 3. Since all the Ψ-rings in our extensions are Z torsion free, the theorem of
Wilkerson 2.1 gives us corollary 6.2.

Proposition 6.3. If there exists an extension in Extalgλ(K(S2n), K̃(S2n′

)) whose
Hopf invariant is odd, then either n = n′ or min(n, n′) ≤ g2|n−n′|, where g

p
j denotes

the multiplicity of the prime p in the prime factorisation of the greatest common
divisor of the set of integers {(kj − 1)| k ∈ N− {1, qp|∀q ∈ N}}.
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Proof. The case when n = n′ is clear. Assume that n 6= n′, then the special
Ψ-ring extensions are given by a pair (h, ν) where h is the Hopf invariant. By
6.2, h can only be odd if 2n divides Gn,n′ . Assume that n < n′, since the other
case is analogous. The multiplicity of 2 in the prime factorisation of Gn,n′ is n if
n ≤ g2|n−n′| or g

2
|n−n′| if g

2
|n−n′| < n. It follows that if n ≤ g2|n−n′| then 2n divides

Gn,n′ . �

Note that g22n−1 = 1 for all n ∈ N. Since (k2n − 1) = (kn + 1)(kn − 1) it follows

that g22n =

{
3, n odd
g2n + 1, n even.

Theorem 6.4. If there exists an extension in Extalgλ(K(S2n), K̃(S2n′

)) whose
Hopf invariant is odd, then one of the following is satisfied

(1) n = n′.
(2) n = 1 or n′ = 1.
(3) n′ − n is even and either n = 2 or n′ = 2.
(4) n′ > n ≥ 3 and n′ = n+ 2n−2b for some b ∈ N0.

(5) n > n′ ≥ 3 and n = n′ + 2n
′−2b for some b ∈ N0.

Proof. 1. is clear.
2. follows from g2n ≥ 1 for all N.
3. follows from g22n ≥ 3 for all n ∈ N.
4. and 5. follows from g2|n−n′| being 2 plus the multiplicity of 2 in the prime

factorisation of |n− n′|. �

Lemma 6.5. If there exists an extension in Extalgλ(K(S2n), K̃(S2an)) for a ∈ N

whose Hopf invariant is odd, then one of the following is satisfied

(1) n = 1, 2 or 4.
(2) n = 3 and a is even.
(3) n ≥ 5 and (a− 1)n = n+ 2n−2b for some b ∈ N0.

Corollary 6.6. If there exists an extension in Extalgλ(K(S2n), K̃(S4n)) whose
Hopf invariant is odd, then n = 1, 2 or 4.

Corollary 6.7 (Adams). If f : S4n−1 → S2n is a continuous map whose Hopf
invariant is odd, then n = 1, 2 or 4.

7. Stable Extalg groups of spheres

Proposition 7.1. If n > k + 1 then Gn,n+k = Gn+1,n+k+1.

Proof. Let n > k + 1. We know that Gn,n+k = Gn+1,n+k+1 if and only if the
multiplicity of any prime p in the prime factorization of Gn,n+k is gpk. For all primes
p > 2 we get that pn > 2k − 1, so the multiplicity of p in the prime factorisation
of Gn,n+k is gpk. We can easily see that g2k ≤ k + 1 for all k. It follows that the
multiplicity of 2 in the prime factorisation of Gn,n+k is g2k. �

Corollary 7.2. If n > k + 1 then

Extalgλ(K(S2n), K̃(S2(n+k))) ∼= Extalgλ(K(S2(n+1)), K̃(S2(n+k+1))).

The groups Extalgλ(K(S2n), K̃(S2(n+k))) are independent of n for n > k+1, we
call these the stable Extalg groups of spheres which we denote by Extalg

s
2k.
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Proposition 7.3. There are natural transformations

Υk : πs
2k−1 → Extalg

s
2k

where πs
2k−1 denotes the stable homotopy groups of spheres.

For small k these groups look as follows.

k πs
2k−1 Extalgs2k

1 Z2 2Z⊕ Z2

2 Z24 ⊕ Z3 2Z⊕ Z24

3 0 2Z⊕ Z2

4 Z240 2Z⊕ Z240

5 Z2 ⊕ Z2 ⊕ Z2 2Z⊕ Z2

6 Z504 2Z⊕ Z504

7 Z3 2Z⊕ Z2

8 Z480 ⊕ Z2 2Z⊕ Z480
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