
ar
X

iv
:1

00
9.

43
64

v2
  [

m
at

h.
G

R
] 

 2
 O

ct
 2

01
0

Subgroup Distortion in Wreath Products of

Cyclic Groups

Tara C. Davis and Alexander Yu. Olshanskii

October 5, 2010

Abstract

We study the effects of subgroup distortion in the wreath products

A wr Z, where A is finitely generated abelian. We show that every finitely

generated subgroup of A wr Z has distortion function bounded above by

some polynomial. Moreover, for A infinite, and for any polynomial, there

is a 2-generated subgroup of A wr Z having distortion function equivalent

to the given polynomial.

1 Introduction

The notion of subgroup distortion was first formulated by Gromov in [Gr]. For
a group G with finite generating set T and a subgroup H of G finitely generated
by S, the distortion function of H in G is

∆G
H(l) = max{|w|S : w ∈ H, |w|T ≤ l},

where |w|S represents the word length with respect to the given generating set
S, and similarly for |w|T . This function measures the difference in the word
metrics on G and on H .

As usual, we only study distortion up to a natural equivalence relation. For
functions f and g on N, we say that f � g if there exists an integer C > 0 such
that f(l) ≤ Cg(Cl+C) +Cl for all l ≥ 0. We say two functions are equivalent,
written f ≈ g, if f � g and g � f . When considered up to this equivalence, the
distortion function becomes independent of the choice of finite generating sets.
A subgroup H of G is said to be undistorted if ∆G

H(l) ≈ l. If a subgroup H is
not undistorted, then it is said to be distorted, and its distortion refers to the
equivalence class of ∆G

H(l).
Here we study the effects of distortion in various subgroups of the wreath

products Zk wr Z, for 0 < k ∈ Z, and more generally, in A wr Z where A
is finitely generated abelian. The group Z wr Z is the simplest example of a
finitely generated (though not finitely presented) group containing a free abelian
group of infinite rank. In [GS] the group Z wr Z is studied in connection with
diagram groups and in particular with Thompson’s group. In the same paper,
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it is shown that in Hd = (· · · (Z wr Z) wr Z) · · · wr Z), where the group Z

appears d times, there is a subgroup K ≤ Hd ×Hd having distortion function
∆Hd×Hd

K (l) � ld. In contrast to the study of these iterated wreath products, here
we obtain polynomial distortion of arbitrary degree in the group Z wr Z itself.
In [C] the distortion of Z wr Z in Baumslag’s metabelian group is shown to be
at least exponential, and an undistorted embedding of Z wr Z in Thompson’s
group is constructed.

In this note, rather than embedding the group Z wr Z into larger groups,
or studying multiple wreath products, we will study distorted and undistorted
subgroups in the wreath products A wr Z with A finitely generated abelian.
The main results are as follows.

Theorem 1.1. Let A be a finitely generated abelian group.

1. For any finitely generated subgroup H ≤ A wr Z there exists m ∈ N such
that the distortion of H in A wr Z is

∆A wr Z

H (l) � lm.

2. If A is finite, then m = 1; that is, all subgroups are undistorted.

3. If A is infinite, then for every m ∈ N, there is a 2-generated subnormal
subgroup H of A wr Z having distortion function

∆A wr Z

H (l) ≈ lm.

Theorem 1.1 will be proved in Section 10.

Corollary 1.2. It follows from the proof of Theorem 1.1 that the 2-generated
subgroups of Z wr Z having distortion function equivalent to lm can be given
explicitly. If we let the standard generating set for Z wr Z be {a, b}, then the
distorted subgroup is given by H = 〈b, [· · · [a, b], b], · · · , b]〉, where the commutator
is (m − 1)-fold. Because the subgroup 〈[a, b], b〉 of Z wr Z is normal, it follows
by induction that the distorted subgroup H is subnormal.

Remark 1.3. There are distorted embeddings from the group Z wr Z into itself
as a normal subgroup. For example, the map defined on generators by b 7→
b, a 7→ [a, b] extends to an embedding, and the image is a quadratically distorted
subgroup by Corollary 1.2. By Lemma 9.3, Z wr Z is the smallest example of a
metabelian group embeddable to itself as a normal subgroup with distortion.

Corollary 1.4. There is a distorted embedding of Z wr Z into Thompson’s
group F .

Under the embedding of Remark 1.3, Z wr Z embeds into itself as a distorted
subgroup. It is proved in [GS] that Z wr Z embeds to F . Therefore, Corollary
1.4 is true.

Question 1.5. Is there a finitely generated subgroup H ≤ Z wr Z whose dis-
tortion is not equivalent to a polynomial?
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The following will be explained in Section 3.

Corollary 1.6. For every m ∈ N, there is a 2-generated subgroup H of the free
n-generated metabelian group Kn,2 having distortion function

∆
Kn,2

H (l) � lm.

2 Background and Preliminaries

2.1 Subgroup Distortion

Here we provide some examples of distortion as well as some basic facts to be
used later on.

Example 2.1.

1. Consider the three-dimensional Heisenberg group H3 = 〈a, b, c|c = [a, b], [a, c] =
[b, c] = 1〉. It has cyclic subgroup 〈c〉∞ with quadratic distortion, which follows

from the equation cl
2

= [al, bl].

2. The Baumslag-Solitar Group BS(1, 2) = 〈a, b|bab−1 = a2〉 has cyclic subgroup

〈a〉∞ with at least exponential distortion, because a2
l

= blab−l.

However, there are no similar mechanisms distorting subgroups in Z wr Z.
Therefore, a natural conjecture would be that free metabelian groups in general
or the group Z wr Z in particular do not contain distorted subgroups. This
conjecture was brought to the attention of the authors by Denis Osin. The
result of Theorem 1.1 shows that the conjecture is not true.

The following facts are well-known and easily verified. When we discuss dis-
tortion functions, it is assumed that the groups under consideration are finitely
generated.

Lemma 2.2.

1. If H ≤ G and [G : H ] < ∞ then ∆G
H(l) ≈ l.

2. If H ≤ K ≤ G then ∆K
H(l) � ∆G

H(l).

3. If H is a retraction of G then ∆G
H(l) ≈ l.

4. If G is a finitely generated abelian group, and H ≤ G, then ∆G
H(l) ≈ l.

2.2 Wreath Products

Let A be a finitely generated abelian group. The group A wr G, where G is any
group, is defined as follows.

Definition 2.3. The group A wr G is the semidirect product given by the action

of G on
⊕

g∈G

A(g): for f ∈
⊕

g∈G

A(g), g1 ∈ G we have that (f ◦ g1)(g2) = f(g1g2)

for any g2 ∈ G.
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The following is a presentation for the group A wr G.

Lemma 2.4. The group wr G has presentation given by generators and defin-
ing relations

〈y1, . . . , ys, x1, . . . , xt|[yi, g
−1yjg], R, S : g ∈ G, 1 ≤ i, j ≤ s〉,

where G = 〈x1, . . . , xt|R〉, and A = 〈y1, . . . , ys|S〉.

A proof may be found in [DS].

Remark 2.5. The group Z wr Z is isomorphic to the subgroup G of 2× 2 real
matrices generated by two elements

a =

(

1 1
0 1

)

and b =

(

ζ 0
0 1

)

where ζ is any transcendental number.

2.3 Connections with Free Solvable Groups

In [M], Magnus shows that if F = Fk is an absolutely free group of rank k
with normal subgroup N , then the group F/[N,N ] embeds into Zk wr F/N =
Zk wr G. For more information in an easy to read exposition, refer to [RS].

Remark 2.6. The monomorphism α : F/[N,N ] → Zk wr G is called the Mag-
nus embedding.

Lemma 2.7. Consider the group Z wr Z = Wλ〈b〉. Let 1 6= w ∈ W,x /∈ W .
Then gp〈w, x〉 ∼= Z wr Z.

This follows because the mapping φ : Z wr Z → gp〈w, x〉 : a 7→ w, b 7→ x
preserves all defining relations, and it is easy to see that the kernel is trivial.

We let Kk,l denote the k-generated class l free solvable group.

Lemma 2.8. If k, l ≥ 2, then the group Kk,l contains a subgroup isomorphic
to Z wr Z.

Proof. It suffices to show that the free metabelian group of rank 2, K2,2, contains
a subgroup isomorphic to Z wr Z. This follows because for any H ≤ K2,2 we

may use the Nielsen-Schrier Theorem to identify H ≤ F
(l−2)
k /F

(l)
k ≤ Fk/F

(l)
k

∼=
Kk,l.

Let K2,2 have free generators x, y. Because Z wr Z is metabelian, we have
a homomorphism

φ : K2,2 → Z wr Z : x 7→ a, y 7→ b,

where a, b are the usual generators of Z wr Z. Let H be the subgroup of K2,2

generated by [x, y] and y. Then by Lemmas 2.4, 2.7 and Dyck’s Theorem we
have that H ∼= Z wr Z.
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It should be noted that by results of [S], the group Z wr Z2 can not be
embedded into any free metabelian or free solvable groups.

Subgroup distortion has connections with the membership problem. It was
observed in [Gr] and proved in [F] that for a finitely generated subgroup H
of a finitely generated group G with solvable word problem, the membership
problem is solvable in H if and only if the distortion function ∆G

H(l) is bounded
by a recursive function.

By Theorem 2 of [U], the membership problem for free solvable groups of
length greater than two is undecidable. Therefore, because of the connections
between subgroup distortion and the membership problem just mentioned, we
restrict our primary attention to the case of free metabelian groups.

Lemma 2.8 motivates us to study distortion in Z wr Z in order to better
understand distortion in free metabelian groups. Distortion in free metabelian
groups is similar to distortion in wreath products of free abelian groups, by
Lemma 2.8 and the Magnus embedding. In particular, if k ≥ 2 then

Z wr Z ≤ Kk,2 ≤ Zk wr Zk.

Thus by Lemma 2.2, given H ≤ Z wr Z we have

∆Z wr Z

H (l) � ∆
Kk,2

H (l).

This explains Corollary 1.6. On the other hand, given L ≤ Kk,2 then we have

∆
Kk,2

L (l) � ∆Z
k wr Z

k

L (l).

Based on this discussion, we ask the following. An answer would be helpful in
order to more fully understand subgroup distortion in free metabelian groups.

Question 2.9.

What effects of subgroup distortion are possible in Zk wr Zk for k > 1?

3 Canonical Forms and Word Metric

Here we aim to further understand the form of elements in Zk wr Z as well as
the word metric in these groups.

Using the presentation of Zk wr Z of Lemma 2.4, and the definition of
Zk wr Z we may write any element in a canonical form. The form described in
Remark 3.1 below is useful for understanding the structure of group elements.

We will use the notation that (x)i equals the conjugate b−ixbi for i ∈ Z and
x ∈ Zk, where Zk wr Z = Zk wr 〈b〉.

Remark 3.1. Arbitrary element in Zk wr Z = gp〈a1, . . . , ak, b〉 is of the form

btw = bt
∞
∏

i=−∞

◦

(a1)
mi,1

i (a2)
mi,2

i · · · (ak)
mi,k

i ,

where the product is finite, indicated by the ◦ symbol.
The form is unique.
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The normal form described in Remark 3.2 for elements of A wr Z, where A
is a finitely generated abelian group, is necessary to obtain a general formula
for computing the word length.

Remark 3.2. Arbitrary element of A wr Z may be written in a normal form,
following [CT], as

bt(u1)ι1 · · · (uN )ιN (v1)−ǫ1 · · · (vM )−ǫM

where 0 ≤ ι1 < · · · < ιN , 0 < ǫ1 < · · · < ǫM , and u1, . . . , uN , v1, . . . , vM are
minimal length representatives of elements in A− {1}.

The following formula for the word length in A wr Z is given in [CT].

Lemma 3.3. Given an element in A wr Z having normal form as in Remark
3.2, its length is given by the formula

N
∑

i=1

|ui|A +

M
∑

i=1

|vi|A +min{2ǫM + ιN + |t− ιN |, 2ιN + ǫM + |t+ ǫM |}.

Because the subgroup W of G = Z wr Z = WλZ is abelian, we also use
additive notation to represent elements of W .

We will use the following notation in the case of Z wr Z.

Remark 3.4. In the case of Z wr Z = 〈a〉 wr 〈b〉, we use module language to
write any element as

w = af(x) where f(x) =

∞
∑

i=−∞

◦

mix
i

is a Laurent polynomial.

4 Structure of Some Subgroups of Z wr Z

Lemma 4.1. Let G be a group having normal subgroup W and cyclic G/W =
〈bW 〉. Then any finitely generated subgroup H of G may be generated by ele-
ments of the form btw1, w2, . . . , ws where wi ∈ W .

The proof is elementary and follows from the assumption that G/W is cyclic.

Remark 4.2. It follows that any finitely generated subgroup in Zk wr Z or
Zk
n wr Z can be generated by elements btw1, w2, . . . , ws where wi ∈ W .

Definition 4.3. For k > 0 fixed and any t > 0, the group Lt is the subgroup of
Zk wr Z generated by the subgroup W and by the element bt.

The following discussion helps further the understanding of the structure of
Zk wr Z and its subgroups, and will be used again in later Sections.
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Lemma 4.4. The group Lt
∼= Ztk wr Z.

Proof. By [DS] we have that a presentation of Ztk wr Z is given by

〈b′, a′1, . . . , a
′
tk|[a

′
i, a

′
j ], [a

′
i, b

′−la′jb
′l], l > 0, 1 ≤ i, j ≤ tk〉.

Observe that Lt may be generated by the elements bt, a1, b
−1a1b, . . . , b

1−ta1b
t−1,

. . . , ak, b
−1akb, . . . , b

1−takb
t−1. The map φ : Ztk wr Z → Lt : b′ 7→ bt, a′1 7→

b−1a1b, a
′
2 7→ b−2a1b, . . . , a

′
t 7→ b1−ta1b

t−1, a′t+1 7→ a2, . . . , a
′
kt 7→ b1−takb

t−1 is
easily checked to be an isomorphism.

Lemma 4.5. For any w ∈ W there is an isomorphism Lt → Lt identical on W
such that btw → bt, provided t 6= 0.

This follows because the actions of bt and btw on W coincide.

Lemma 4.6. Let H be a finitely generated subgroup of Zk wr Z not contained
in W . Then H is a subgroup of Lt for some t. Under the isomorphism Lt →
Ztk wr Z of Lemma 4.4, the subgroup H has generators of the form b, x1, . . . , xs

where Ztk wr Z = Wλ〈b〉∞,W =
∏

Z

Ztk, and x1, . . . , xs ∈ W . Moreover, the

distortion of H in Zk wr Z is equivalent to the distortion of gp〈b, x1, . . . , xs〉 in
Ztk wr Z.

Proof. By Lemma 4.1 the generators of H may be chosen to have the form
btw0, w1, . . . , ws where wi ∈ W . Therefore, for this value of t we have that H is
a subgroup of Lt. Using the isomorphisms of Lemmas 4.4 and 4.5 we have thatH
is a subgroup of Zkt wr Z generated by the image of btw0, w1, . . . , ws under the
two isomorphisms: elements b, x1, . . . , xs. Finally, because [Zk wr Z : Lt] < ∞
we have by Lemma 2.2 that the distortion of H in Zk wr Z is equivalent to the
distortion of its image in Ztk wr Z.

5 Undistorted Abelian Subgroups

Lemma 5.1. Any subgroup of the form H = gp〈bkw〉, k 6= 0, where w ∈ W is
undistorted in Z wr Z.

Proof. Consider the subgroup Lk = gp〈W, bkw〉 of Z wr Z. We have that the
index [Z wr Z : Lk] < ∞. Moreover, from Lk = W · 〈bkw〉, W � Lk, and
W ∩ 〈bkw〉 = {1} it follows that H is a retraction of Lk. Therefore, by Lemma
2.2, H is undistorted in Z wr Z.

Lemma 5.2. Any finitely generated subgroup of Z wr Z contained in the free
abelian subgroup W of Z wr Z is undistorted.
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Proof. Let H ≤ Z wr Z, H ⊂ W . Let the generating set for Z wr Z be the
usual one, {a, b}, and let H have generating set {h1, . . . , hs}, where without
loss of generality s is the minimum possible number of generators. Then for
some n ≥ s we have that H ≤ K = gp〈ai1 , . . . , ain〉, where aj = b−jabj in terms
of generators of Z wr Z. This follows by letting {ai1 , . . . , ain} be the collection
of distinct constituents occuring in the canonical form of the generators of H .
Then we have that the free abelian group H , considered as a subgroup of the
free abelian group K is undistorted by Lemma 2.2. It suffices to show that K
is undistorted in Z wr Z. Let h ∈ K, so there is an expression h = aα1

i1
· · · aαn

in

for some αi ∈ Z. Then by Lemma 3.3 we have that

|h|Z wr Z ≥

n
∑

j=1

|αj | = |h|K .

Thus the subgroup is undistorted.

Here we are able to prove that all finitely generated abelian subgroups of
Z wr Z are undistorted. It should be remarked that the authors are aware
that an independent proof of this fact is available in [GS]. In that paper it is
shown that Zk wr Z is a subgroup of the Thompson group F , and that every
finitely generated abelian subgroup of F is undistorted. However, our proof is
elementary and so we include it.

Proof. By Lemmas 4.4 and 2.2, it suffices to consider the case where k = 1. Let
H be a finitely generated subgroup of Z wr Z. Then by Remark 4.2, H can be
generated by elements bkw1, w2, . . . , ws where wi ∈ W . If k = 0 then H ⊂ W so
by Lemma 5.2 it is undistorted. If s = 1 then by Lemma 5.1, H is undistorted.
Thus is remains to observe that if s > 1 and k 6= 0 that such an H is nonabelian
because bkw1 and w2 do not commute.

6 Lower Bounds on Distortion in Z wr Z.

Lemma 6.1. Let m ∈ N. For any l ∈ N let there be polynomials fl(x) ∈ Z[x]
such that the sum of modules of coefficients of fl(x) is equivalent to lm, while
the sum of modules of coefficients of gl(x) = (1 − x)m−1fl(x) is at most linear
in l. Then the subgroup H of Z wr Z generated by h = a(1− x)m−1 ∈ W and b
has distortion ∆Z wr Z

H (l) � lm.

Proof. We let H = gp〈h, b〉. By Lemma 2.7 we have that H ∼= Z wr Z under
the obvious isomorphism b 7→ b, h 7→ a. We fix the notation that hi = b−ihbi.
Suppose we have fl(x) and gl(x) as in the statement of Lemma 6.1. Then if

fl(x) =

l
∑

i=0

aix
i, we have that in the module language, hfl(x) = ha0ha1

1 · · ·hal

l ,
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so by Lemma 3.3 and by hypothesis, we have that

|hfl(x)|H =

l
∑

i=0

|ai|+ 2l ≈ lm.

On the other hand, in Z wr Z = 〈a, b〉 we have that

hfl(x) = afl(x)(1 − x)m−1 = agl(x).

Let gl(x) =
∑l+m−1

i=0 bix
i. Then

hfl(x) = a

l+m−1
∑

i=0

bix
i = ab00 ab11 · · · a

bl+m−1

l+m−1 .

Therefore,

|hfl(x)|Z wr Z =

l+m−1
∑

i=0

|bi|+ 2(l+m− 1) ≈ l.

Therefore, H is distorted in Z wr Z of order at least lm.

We will use the following formula involving binomial coefficients during the
proof of Theorem 1.1.

Lemma 6.2. For any m,N ∈ N we have that

m−1
∑

i=0

(−1)i
(

m− 1

i

)

(N + 1− i)m−1 = (m− 1)!.

Proof. This is the derivative of formula 1.14 in [Go].

We are now prepared to prove the following fact.

Proposition 6.3. For any m ∈ N, there exist polynomials fl(x) as in Lemma
6.1. That is to say, the 2-generated subgroup 〈b, a(1 − x)m−1〉 = H ≤ Z wr Z

has distortion ∆Z wr Z

H (l) � lm.

Proof. We will construct concrete polynomials as described in Lemma 6.1. Let
m be fixed. We will define

fml−1(x) = a0 + a1x+ · · ·+ aml−1x
ml−1.

The coefficient asl+t, for s = 0, 1, . . . ,m− 1, t = 0, 1, . . . , l − 1 is

asl+t =

s
∑

i=0

di((s− i)l + t+ 1)m−1,

where d0 = 1 and d1, . . . , ds are constants to be determined later. Observe that
it suffices to find d1, . . . , ds ∈ Q with bounded denominators not depending on

9



l. For in this case, we can multiply fl(x) and gl(x) by an integer (independent
of l) and obtain polynomials with integer coefficients and satisfying Lemma 6.1.

Then we have that

ml−1
∑

i=0

|ai| ≥

l−1
∑

i=0

|ai| =

l
∑

i=1

im−1 ≈ lm.

The equality
∑l−1

i=0 |ai| =
∑l

i=1 i
m−1 follows by the definition of

a0l+t =

0
∑

i=0

di((0 − i)l + t+ 1)m−1 = (t+ 1)m−1.

It remains to prove that each of the coefficients |cj |, j = 0, . . . , (m−1)+(ml−1),

of (1 − x)m−1fml−1(x) =
∑(m−1)+(ml−1)

i=0 cjx
j is bounded by a constant, if we

choose d1, . . . , ds properly. We fix the notation that (1 − x)m−1 =
∑m−1

i=0 bix
i

so that

bi = (−1)i
(

m− 1

i

)

.

For j ∈ [sl, (s+ 1)l− 1] and s ∈ {0, . . . ,m− 1} then

aj =

s
∑

k=0

dk((s− k)l + j − sl + 1)m−1.

Let j ∈ [sl +m− 1, (s+ 1)l − 1] and s ∈ {0, . . . ,m− 1}. Then we have that

cj =

m−1
∑

i=0

biaj−i =

m−1
∑

i=0

bi(

s
∑

k=0

dk((s− k)l + j − i− sl + 1)m−1).

Let γi,j,k,l = (s−k)l+ j− i−sl+1 = −kl+ j− i+1 be a temporary shorthand.
Then we have that

cj =

m−1
∑

i=0

bi(

s
∑

k=0

dk(γi,j,k,l)
m−1 =

s
∑

k=0

dk(

m−1
∑

i=0

bi(γi,j,k,l)
m−1).

By Lemma 6.2 with N = j − kl, which is a constant within each summand
where k and j are fixed, we have

Consider now an index j ∈ N inside an interval of the form [sl, sl +m − 2]
for 0 ≤ s ≤ m − 1. We may write j = sl + u for 0 ≤ u ≤ m − 2. Then by
definition we have that

aj−i =























s
∑

k=0

dk((s− k)l + j − i − sl+ 1)m−1 if 0 ≤ i ≤ j − sl,

s−1
∑

k=0

dk((s− 1− k)l + j − i − (s− 1)l + 1)m−1 if j − sl + 1 ≤ i ≤ m− 1.
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Therefore, for such j we compute that

cj =

j−sl
∑

i=0

biaj−i +

m−1
∑

i=j−sl+1

biaj−i

=

j−sl
∑

i=0

bi(
s

∑

k=0

dk(−kl+ j − i+ 1)m−1) +
m−1
∑

i=j−sl+1

bi(
s−1
∑

k=0

dk(−kl + j − i+ 1)m−1)

=

j−sl
∑

i=0

bi(

s−1
∑

k=0

dk(−kl + j − i + 1)m−1) +

j−sl
∑

i=0

dsbi(−sl + j − i+ 1)m−1

+

m−1
∑

i=j−sl+1

bi(

s−1
∑

k=0

dk(−kl + j − i+ 1)m−1)

=

m−1
∑

i=0

bi

s−1
∑

k=0

dk(−kl+ j − i+ 1)m−1 + ds

u
∑

i=0

bi(u− i+ 1)m−1

= (m− 1)!

s−1
∑

k=0

dk + ds

u
∑

i=0

bi(u− i+ 1)m−1.

The last equation follows from Lemma 6.2. The final formula obtained is a
constant independent of l.

Therefore, we have shown that for all j ∈ {0, 1, . . . ,ml − 1} that cj is a
constant independent of l. It remains to prove that d1, . . . , dm−1 may be chosen
in such a way that the remaining coefficients

cml+m−2 = (−1)m−1aml−1, . . . , cml = b1aml−1 + b2aml−2 + · · ·+ bm−1aml−m+1

are bounded by a constant. By the triangle inequality, it suffices to bound the
quantities |aml−1|, . . . , |aml−m+1| by a constant independent of l. This takes
into account the fact that {aml, . . . , aml−m+1} and {al−1, . . . , a0} are disjoint
since without loss of generality, m ≥ 2. For each j ∈ {1, . . . ,m− 1} we have by
definition that

aml−j = a(m−1)l+(l−j) =

m−1
∑

i=0

di((m− 1− i)l + l − j + 1)m−1

m−1
∑

i=0

di(

m−1
∑

k=0

(

m− 1

k

)

((m− i)l)k(1− j)m−1−k)

= lm−1(
m
∑

k=1

dm−k(1− j)0km−1) + lm−2(
m
∑

k=1

dm−k

(

m− 1

m− 2

)

(1− j)1km−2) + · · ·

+l(

m
∑

k=1

dm−k

(

m− 1

1

)

(1− j)m−2k1) + C
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where C is the constant term of this polynomial and hence irrelevant. It suffices
to show that for each p ∈ {1, . . . ,m− 1} that

0 =

(

m− 1

p

)

(1− j)m−1−p(mp + d1(m− 1)p + · · ·+ dm−1(1)
p).

We will select d1, . . . , dm−1 so that

d1(m− 1)p + · · ·+ dm−1(1)
p = −mp

for each p = 1, . . . ,m−1. The matrix of the linear system is a non-singular Van-
dermonde matrix, whose determinent det(A) = ±1·

∏m−2
i=2 i2(m−1)

∏

1≤i<j≤m−2(j−
i) does not depend on l. By Cramer’s rule, the required d1, . . . , dm−1 exist.

7 Auxilliary Computations

7.1 Some Linear Algebra

In order to obtain upper bounds on distortion in Z wr Z we require some facts
from linear algebra. Fix an integer k ≥ 1 and let n > 0 be arbitrary.

Lemma 7.1. Let Y1, . . . , Yn, C1, . . . , Cn be k × 1 column vectors. Suppose that
the modulus of each coordinate of each Ci is bounded by a constant b. Suppose
that the modulus of each coordinate of Y1 and Yn is bounded by bc1 for some
constant c1 ≥ 1. Suppose further we have the relationship

Yi = AYi−1 + Ci, i = 2, . . . , n

where A is a k × k matrix. Then the modulus of each coordinate of arbitrary
Yi, 2 ≤ i ≤ n − 1 is bounded by cc1bn

k where c depends on A only. All matrix
entries are assumed to be complex.

Proof. There exists a Jordan decomposition, A = S−1A′S, where S depends on
A only and

A′ =











J1 0 . . . 0
0 J2 . . . 0
...

. . .
...

0 0 . . . Jl











.

where each block is of the form

Ji =











λi 0 0 . . . 0
1 λi 0 . . . 0
...

. . .
. . .

...
0 0 . . . 1 λi
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for some λi. Let S = (si,j)1≤i,j≤k and let s = max |si,j |. Then for C′
i = SCi

and Y ′
i = SYi we have that

Y ′
i = A′Y ′

i−1 + C′
i. (1)

By hypothesis, the coordinates of C′
i are bounded by b′ = ksb for each i, and the

coordinates of Y ′
1 and Y ′

n are bounded by ksbc1 = b′c1. As we will explain, our
problem can be reduced to the similar problem for Y ′

i in (1). Suppose that the
modules of coordinates of every Y ′

i are bounded by dc1b
′nk where d depends

on A only. Then, letting S−1 = ( ˜si,j)1≤i,j≤k and s̃ = max | ˜si,j | we have by
definition of Y ′

i that arbitrary element of Yi has modulus bounded above by
ks̃dc1b

′nk = cc1bn
k where c = ss̃dk2 only depends on A′, as required.

If there is more than one Jordan block present in A′, the problem is de-
composed into at most k subproblems, each with only one Jordan block of size
smaller than k. By induction it suffices to prove Lemma 7.1 in the case where
A′ has only one Jordan block. Let λ be the eigenvalue of A′. We will consider
two cases.

• First suppose that |λ| > 1.

We introduce notation: let Y ′
i = [yi,1, · · · , yi,k]

T and C′
i = [ci,1, · · · , ci,k]

T .

Consider the constant b′

|λ|−1 . If for each 1 ≤ i ≤ n−1 we have that |yi,1| ≤
b′

|λ|−1 ,

then all |yi,1| are already bounded. Otherwise we have by formula (1) that

yi,1 = λyi−1,1 + ci,1

and |yi−1,1| >
b′

|λ|−1 for some i− 1 > 0. This implies that

|λ||yi−1,1| = |yi,1 − ci,1| ≤ |yi,1|+ |ci,1| < |yi,1|+ b′ < |yi,1|+ |yi−1,1|(|λ| − 1),

which in turn implies that |yi−1,1| < |yi,1|. We similarly obtain that

|yi,1| < |yi+1,1| < · · · < |yn,1| ≤ b′c1.

Let α1 = max{ b′

|λ|−1 , b
′c1}. Then for any i we have that |yi,1| < α1.

By induction we have that |yi,k| < αk for all i. Therefore, all |yi,j | are
bounded by max{α1, . . . , αk}. Observe that this constant is of the form (µc1 +
ν)b′ where µ, ν depend on A only. Therefore, we may select the constant d ≥
µ + ν ≥ µc1+ν

c1
so that the modulus of any coordinate in Y ′

i is bounded above

by dc1b
′ ≤ dc1b

′nk.

• Now suppose that |λ| ≤ 1.

From Formula (1) we derive:

Y ′
i = A′(A′Y ′

i−2 + C′
i−1) + C′

i = (A′)2Y ′
i−2 +A′C′

i−1 + C′
i = · · ·

= (A′)i−1Y ′
1 + (A′)i−2C′

2 + · · ·+A′C′
i−1 + C′

i. (2)
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We have already obtained that the modules of coordinates of Y ′
1 are bounded

by b′c1 and the modules of coordinates of C′
2, . . . , C

′
n, are bounded by b′, so

it suffices to bound the elements of (A′)r from above, where r ≤ n − 1. The
following formula for (A′)r is well-known because A′ is assumed to be a Jordan
block; it may also be checked easily using induction. We have that

(A′)r =

















λr 0 0 . . . 0
rλr−1 λr 0 . . . 0

r(r−1)
2! λr−2 rλr−1 λr . . . 0

...
. . .

. . .
...

r!
(r−(k−1))!(k−1)!λ

r−(k−1) . . . r(r−1)
2! λr−2 rλr−1 λr

















,

with the understanding that if r < k − 1, any terms of the form
(

r
j

)

λr−j where

r < j are 0. Arbitrary nonzero element of the matrix (A′)r is of the form
(

r
j

)

λr−j

for some j ≤ k − 1.
Because |λ| ≤ 1 we have that

|

(

r

j

)

λr−j | ≤

(

r

j

)

=
r(r − 1) · · · (r − (j − 1))

j!

≤ r(r − 1) · · · (r − (j − 1)) ≤ rj ≤ nk−1. (3)

Using the triangle inequality and Equation (7.1) we will obtain an upper
bound on the entries of arbitrary Y ′

i , 2 ≤ i ≤ n− 1. By Equation (7.1), we have
that arbitrary summand is of the form

(A′)i−1Y ′
1 , C

′
i, or (A′)i−jC′

j

for 2 ≤ j ≤ i−1. The modulus of entries in (A′)i−1Y ′
1 is bounded by knk−1b′c1;

in C′
i is bounded by b′; and in (A′)i−jC′

j is bounded by knk−1b′. Since there
are at most n summands in Equation (7.1), we have that every entry of Y ′

i is
bounded above by kb′c1n

k, and k depends upon A.

We will use Lemma 7.1 to prove the following.

Lemma 7.2. Let the (n+ k)× n matrix M have jth column, for j = 1, . . . , n,
given by [0, . . . , 0, d0, d1, . . . , dk, 0, . . . , 0]

T , where d0, dk 6= 0 and d0 first appears
as the jth entry in this jth column. Suppose that X = [x1, x2, . . . , xn]

T is a
solution to the system of equations MX = B, where B = [b1, b2, . . . , bn+k]

T .
Then it is possible to bound the modules of all coordinates x1, . . . , xn of the
vector X such that |xi| ≤ cbnk where b = maxj{|bj |} for every 1 ≤ j ≤ n + k
and the constant c depends upon d0, . . . , dk only.

Prior to proving Lemma 7.2 we prove an easier special case.

Lemma 7.3. It is possible to bound the coordinates x1, . . . , xk of the vector
X from Lemma 7.2 from above by bγ̃ where b = max{|bj |}j=1,...,n+k and γ̃ =
γ̃(d0, . . . , dk−1).
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Proof. By Cramer’s Rule, we have the explicit formula that

|xi| =

∣

∣

∣

∣

det(Li)

det(L)

∣

∣

∣

∣

where L is the k×k upper left submatrix ofM corresponding to the first k equa-
tions, and Li is obtained by replacing column i in L with [b1, . . . , bk]

T . Because
det(L) = dk0 , it suffices to show that the desired bounds exist for det(Li); that
is, we must show that there exists a constant γ̃ depending on d0, . . . , dk−1 only
such that | det(Li)| ≤ bγ̃ for i = 1, . . . , k. By expanding along the ith column in
Li, we find that

det(Li) = ±b1f1(d0, . . . , dk−1)± b2f2(d0, . . . , dk−1)± · · · ± bkfk(d0, . . . , dk−1),

where for each i = 1, . . . , k, fi is a function of d0, . . . , dk−1 only obtained as the
determinant of a submatrix containing none of b1, . . . , bk. The proof is complete
by the triangle inequality.

Note that the |xj | for j = n − k + 1, . . . , n are similarly bounded by bγ for
the same b and some γ = γ(d0, . . . , dk−1) as in Lemma 7.3. It is clear according
to the proof of Lemma 7.3 that we may assume that |xi| ≤ bγ for the same
γ = γ(d0, . . . , dk−1) for all i = 1, . . . , k, n− k + 1, . . . , n.

We proceed with the Proof of Lemma 7.2.

Proof. It suffices to obtain upper bounds for |xi| when n− k ≥ i ≥ k + 1.
For such indices, we have that

dkxi−k + dk−1xi+1−k + · · ·+ d0xi = bi.

In other words,

xi = ξi + a1xi−k + a2xi+1−k + · · ·+ akxi−1,

where ξi = bi
d0

and aj = −
dk−j+1

d0
. Let Xi = [xi−k+1, . . . , xi]

T and let Ξi =

[0, . . . , 0, ξi]
T . Then for the matrix

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 . . . 0 1
a1 a2 . . . ak−1 ak















we have the recursive relationship

Xi = AXi−1 + Ξi

for i = k, . . . , n. Observe that the matrix A depends on d0, . . . , dk only.
We see by Lemma 7.3 that Lemma 7.1 applies to our situation. Therefore,

the modules of coordinates of arbitrary Xi, k + 1 ≤ i ≤ n − k are bounded by
c′bγ(n− k + 1)k ≤ cbγnk, where c = c′γ depends only on d0, . . . , dk.
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7.2 Estimating Word Length

In order to prove Theorem 1.1 we will establish a looser way of computing
lengths in Zr wr Z, r ≥ 1 than the formula introduced in Lemma 3.3.

Lemma 7.4. Let Zr wr Z have standard generating set {a1, . . . , ar, b}. Let a
subgroup H of Zr wr Z have generators of the form b, w1, . . . , wk where each
wi 6= 1 is in the normal closure of ai for i = 1, . . . , k.Then H is isomorphic to
Zk wr Z.

This follows from what has been established already. Each wi generates
a free cyclic Z[〈b〉] submodule. By hypothesis, all wi’s are in different direct
summands, so they generate a free Z[〈b〉] module of rank k.

We will only consider subgroups of Zr wr Z that are of a special form, such as
in the statement of Lemma 7.4. Such a subgroup H has generators b, w1, . . . , wk

where wi ∈ W , and further, for each i = 1, . . . , k we have that

wi =

ti
∑

j=0

di,j(ai)j . (4)

This follows without loss of generality by conjugating by a power of b. Then for
any element g ∈ H , we may write

g = bn
k
∑

i=1

si+pi
∑

q=si

zq(wi)q (5)

for some si, zq ∈ Z, pi ≥ 0. In the generators of Zr wr Z we may also write this
element as

bn
k

∑

i=1

si+pi+ti
∑

j=si

yi,j(ai)j , (6)

for some yi,j ∈ Z. For this element, consider the norms

e(g) =

k
∑

i=1

si+pi+ti
∑

j=si

|yi,j | and eH(g) =

k
∑

i=1

si+pi
∑

q=si

|zq|.

Letting ι = maxi{ti+si+pi, 0}, ε = mini{si, 0}, ιH = maxi{si+pi, 0} we define
uH(g) = ιH − ε and u(g) = ι− ε.

Consider the function

h(l) = max{eH(g) : g ∈ H ∩W, e(g) ≤ l and u(g) ≤ l}.

The following Lemma shows that we may reduce computations of word length
to computations with coefficients of polynomials.

Lemma 7.5. Let H ≤ Zr wr Z be of the form H = gp〈b, w1, . . . , wk〉 where for
each i = 1, . . . , k we have that wi =

∑ti
j=0 di,j(ai)j, and r ≥ k. Then we have

that
∆Z

r
wr Z

H (l) ≈ h(l).
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Proof. Recall that by Lemma 3.3 as well as Lemma 7.4, we have the following
formulas. For g ∈ H with the notation established above, we have that: |g|H =
eH(g) + min{−2ε + ιH + |n − ιH |, 2ιH − ε + |n − ε|} and |g|Zr wr Z = e(g) +
min{−2ε+ ι+ |n− ι|, 2ι− ε+ |n− ε|}.

The following inequality follows from the definitions:

max{e(g), u(g), |n|} ≤ |g|Zr wr Z. (7)

Similarly, we have that

|g|H ≤ eH(g) + 2uH(g) + |n| and |g|Zr wr Z ≤ e(g) + 2u(g) + |n|. (8)

Observe that for g ∈ H ∩W we have that

|g|H ≥ max{eH(g), uH(g)}. (9)

Observe that
max{uH(g) : g ∈ H,u(g) ≤ l} ≤ l. (10)

Thus,

∆Z
r wr Z

H (l) ≤ max{eH(g) : g ∈ H, e(g) ≤ l, u(g) ≤ l}+max{2uH(g) : g ∈ H,u(g) ≤ l}

+max{|n| : g ∈ H, |n| ≤ l} ≤ h(l) + 3l.

The first inequality follows from Equation (7), the second from Equation (8).
On the other hand, we have that

∆Z wr Z

H (l) ≥ max{eH(g) : g ∈ H ∩W, e(g) ≤ l/4, u(g) ≤ l/4}

−max{uH(g) : g ∈ H ∩W, e(g) ≤ l/4, u(g) ≤ l/4} ≥ h(l/4)− l/4.

The first inequality follows from Equation (8), the second from Equation
(9), and the third from Equation (10).

Thus ∆Z
r wr Z

H (l) and h(l) are equivalent.

7.3 Some Modules

In order to later obtain upper bounds on distortion of some subgroups of Zr wr Z
we will need the following auxiliary remarks about module theory. As usual,
Zr wr Z has standard generating set {a1, . . . , ar, b}.

Let H ≤ Zr wr Z be generated by b, as well as any elements w1, . . . , wk ∈ W .
Let V be the normal closure of w1, . . . , wk in Zr wr Z.

The following is proved in [FS].

Lemma 7.6. The ring Q[〈b〉] is a principal ideal ring.

Let V = V ⊗Z Q and W = W ⊗Z Q. Observe that the groups W and V are
free modules over Q[〈b〉] of respective ranks r and l ≤ k.
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Lemma 7.7. The free Q[〈b〉]-modules V andW have bases e′1, . . . , e
′
l and f ′

1, . . . , f
′
r

respectively such that
e′i = u′

if
′
i , i = 1, . . . , l

for some u′
i ∈ Q[〈b〉].

Proof. The statement of Lemma 7.7 is a result from module theory. It follows
because by Lemma 7.6 W is a free module over a prinicipal ideal ring with
submodule V . See for instance, [B].

Remark 7.8. It follows that there exist 0 < m,n ∈ Z with (me′i) = ui(nf
′
i)

where ei = me′i ∈ V, fi = nf ′
i ∈ W,ui ∈ Z[〈b〉]. Moreover, the modules generated

by {e1, . . . , el} and {f1, . . . , fr} are free.

Remark 7.9. There is a bijective correspondence between the set of finitely
generated Z[〈b〉] submodules of Z[〈b〉]r and the set of subgroups K∩W of Zr wr Z

such that the finite set of generators of K is of the form b, w1, . . . , wk, wi ∈ W .

Remark 7.10. Let V1 and W1 be generated as submodules over Z[〈b〉] by the
elements from Remark 7.8: e1, . . . , el and f1, . . . , fr respectively. Let H1 and
G1 be subgroups of Zr wr Z generated by {b, V1} and {b,W1} respectively. It
follows by Remark 7.8 that that G1

∼= Zr wr Z and H1
∼= Zl wr Z.

Remark 7.11. Observe that under the correspondence of Remark 7.9 that each
generator of the group H1 is in the normal closure of only one generator of G1.
That is, for each i, ei = uifi for ui ∈ Z[〈b〉] means that there exist expressions
ei =

∑ti
p=1 ni,p(fi)ji,p .

Lemma 7.12. There exists 0 < n′,m′ ∈ N so that n′W ⊂ W1 ⊂ W, and
m′V ⊂ V1 ⊂ V.

Proof. By Remark 7.9 we have that V is a finitely generated Z[〈b〉] module
with generators w1, . . . , wk. For each wi, we have that the element wi ⊗ 1 ∈ V .
Therefore, by Lemma 7.7, there are λi,j ∈ Q[〈b〉] so that wi =

∑l
j=1 λi,je

′
j. First

observe that mwi =
∑l

j=1 λi,jej , because ei = me′i ∈ V .

Next, there exists Mi ∈ N so that Mimwi =
∑l

j=1 µi,jej ∈ V1 where µi,j ∈

Z[〈b〉]. Let m′ = M1 . . .Mkm. Then for any v ∈ V , we have that v =
∑k

i=1 viwi

where vi ∈ Z[〈b〉], and therefore, m′v ∈ V1 as required. A similar argument
works for obtaining n′.

Lemma 7.13. Let Zr wr Z = G = Wλ〈b〉 and let K = 〈〈w1, . . . , wk〉〉
G ≤ G be

the normal closure of elements wi ∈ W . Suppose that there exists n ∈ N and a
finitely generated subgroup K ′ ≤ K so that nK ≤ K ′. Then

∆G
〈b,K′〉(l) ≈ ∆G

〈b,K〉(l).
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Proof. We will use the notation that K1 = gp〈K, b〉,K ′
1 = gp〈K ′, b〉,K ′′

1 =
gp〈nK, b〉. Observe that the mapping φ : G → G : b → b, w → nw for w ∈ W is
an injective homomorphism which restricts to an isomorphism K1 → K ′′

1 . An
easy computation which uses Lemma 3.3 and the definition of φ shows that for
any g ∈ K1, we have that

|g|G ≤ |φ(g)|G ≤ n|g|G (11)

where the lengths are computed in G with respect to the usual generating set
{a1, . . . , ar, b}.

Observe that under the map φ we have that

for h ∈ K1, |h|K1
= |φ(h)|K′′

1
, (12)

where the lengths in K ′′
1 are computed with respect to the images under φ of a

fixed generating set of K1.
By their definitions, we have the embeddings

K ′′
1 ≤ K ′

1 ≤ K1
φ
→֒ K ′′

1 . (13)

By Equation (13) there exists k′ > 0 depending only on the chosen generating
sets of K1 and K ′

1 so that

for any h ∈ K ′
1, |h|K1

≤ k′|h|K′

1
. (14)

It also follows by by Equation (13) that there exists a constant k > 0 depending
only on the chosen generating sets of K ′′

1 and K ′
1 so that

for any h ∈ K ′′
1 , |h|K′

1
≤ k|h|K′′

1
. (15)

First we show that ∆G
K′′

1

(l) � ∆G
K1

(l).

Let g ∈ K ′′
1 be such that |g|G ≤ l and |g|K′′

1
= ∆G

K′′

1

(l). Then there exists

g′ ∈ K1 such that φ(g′) = g. Therefore, it follows that ∆G
K′′

1

(l) = |g|K′′

1
=

|φ(g′)|K′′

1
= |g′|K1

≤ ∆G
K1

(l). The first and second equalities follow by definition,
the third by Equation (12), and the inequality is true because by Equation (11)
we have that |g′|G ≤ |φ(g)|G = |g|G ≤ l.

We claim that ∆G
K1

(l) � ∆G
K′

1

(l).

Let g ∈ K1 be such that |g|K1
= ∆G

K1
(l). Then |g|K1

≤ |φ(g)|K1
≤

k′|φ(g)|K′

1
≤ k′∆G

K′

1

(nl), which follows from Equations (14), (11) and by defini-

tion.
On the other hand, we will show that ∆G

K′

1

(l) � ∆G
K′′

1

(l). Let g ∈ K ′
1 be such

that |g|K′

1
= ∆G

K′

1

(l). Then |g|K′

1
≤ |φ(g)|K′

1
≤ k|φ(g)|K′′

1
≤ k∆G

K′′

1

(nl), which

follows from Equations (15), (11) and by definition.
Therefore, we have that ∆G

K1
(l) � ∆G

K′

1

(l) � ∆G
K′′

1

(l) � ∆G
K1

(l).

Remark 7.14. Recall that the groups G1 and H1 were defined in Lemma 7.10.
It follows from Lemmas 7.12 and 7.13 that the distortion functions

∆G
G1

(l) ≈ ∆G
G(l) ≈ l and ∆G

H1
(l) ≈ ∆G

H(l).
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8 Upper Bounds on Distortion in Zr wr Z

Our goal in this section is to obtain upper bounds on distortion of certain
subgroups of Zr wr Z having a special form. We use that {a1, . . . , ar, b} is the
standard generating set of Zr wr Z.

Lemma 8.1. Let a subgroupH of Zr wr Z have generators of the form b, w1, . . . , wk

where each wi is in the normal closure of ai for i = 1, . . . , k. Then the distortion
of H in Zr wr Z is at most polynomial.

Proof. After conjugating by a power of b, we may assume without loss of gen-
erality that for each i = 1, . . . , k we have expressions as in Equation (4), where
di,0, di,ti 6= 0. Let us have an element g ∈ H . Then we may write g as in
Equation (5) where for each i = 1, . . . , k we have that si ∈ Z and pi ≥ 0. In the
generators of Zr wr Z this expression becomes that of Equation (6) for some
yi,j ∈ Z. By Lemma 7.5, and using the notation introduced there, it suffices
to show that the function h(l) is bounded above by a polynomial. That is,
we may suppose that n = 0, e(g) ≤ l and u(g) ≤ l. We need to show that
∑k

i=1

∑si+pi

q=si
|zq| is bounded from above by a polynomial in l.

For each i = 1, . . . , k the expressions (5) and (6) yield a linear system of
equations MiZi = Yi, where Zi = [zsi , . . . , zsi+pi

]T , Yi = [yi,si , . . . , yi,ti+si+pi
]T

and

Mi =

































di,0 0 0 . . . 0
di,1 di,0 0 . . . 0
di,2 di,1 di,0 . . . 0
... . . .

. . .
. . .

...
di,ti di,ti−1 . . . di,1 . . . 0
0 di,ti . . . di,2 . . . 0
...

. . .
...

0 . . . 0 di,ti di,ti−1

0 . . . 0 0 di,ti

































is an (pi + ti + 1)× (pi + 1) matrix.
By Lemma 7.2 we have that for each i = 1, . . . , k and for each q = si, . . . , si+

pi that |zq| ≤ cyi(pi + 1)ti where c = c(di,j), yi = max{|yi,j |}j=si,...,si+ti+pi
.

Moreover, we know that for each i, yi ≤
∑ti+si+pi

j=si
|yi,j | ≤ e(g) ≤ l. It is

not hard to check as well that pi ≤ u(g) ≤ l for each i. Therefore, letting
t = maxi{ti} we have that

k
∑

i=1

si+pi
∑

q=si

|zq| ≤

k
∑

i=1

(pi + 1)cyi(pi + 1)ti ≤ kc(l + 1)t+2.

This completes the proof, because k, c and t depend only on the choice of gen-
erating set of H .
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Remark 8.2. As the proof of Proposition 7.4 shows, for a subgroupH in Z wr Z

generated by elements b, w only, for w =
∑t

j=0 djaj where d0, dt 6= 0 ∈ W , the
polynomial upper bound has degree equal to the number t + 2 appearing in the
canonical form of w.

Applying Remark 8.2 to Proposition 6.3, we see that the subgroup H =
〈b, a(1 − x)m−1〉 has distortion function at most lm+1, up to equivalence. In
fact, we can prove the following stronger result.

Lemma 8.3. Let H = 〈b, w = a(1 − x)m−1〉 ≤ Z wr Z. Then the distortion of
H in Z wr Z is at most lm, up to equivalence.

Proof. We apply Lemma 7.5. It suffices to show that the function h(l) � lm. Let
h ∈ H ∩W . We have an expression h = wf(x) where f is a Laurent polynomial

f(x) =

s+p
∑

q=s

zsx
s

for some s ∈ Z, p ≥ 0. Then in the generators of Z wr Z we have that

h = a(1− x)m−1f(x) = ag(x), where g(x) =

m−1+s+p
∑

j=s

yjx
j .

As in the proof of Lemma 8.1, we may suppose that
∑

j

|yj | ≤ l and p ≤ l, and

it suffices to prove that for each q, |zq| ≤ (
∑

j |yj |)l
m−2. We have that in the

ring of formal power series with integral coefficients,

f(x) =
g(x)

(1 − x)m−1
= g(x)

[

∞
∑

i=0

xi
]m−1

.

It follows by an easy induction argument that if
[

∞
∑

i=0

xi
]m−1

=

∞
∑

i=0

cix
i then for

i = 0, . . . , l we have that |ci| ≤ (l + 1)m−2. Now consider arbitrary coefficient

zs+j for 0 ≤ j ≤ p. Then we have the formula zs+j =

s+j
∑

i=s

yics+j−i and so

|zs+j | ≤

s+j
∑

i=s

|yi||cs+j−i| ≤ (l + 1)m−2

s+j
∑

i=s

|yi|

because p ≤ l. Therefore the required bounds exist.

9 Distortion in Zk wr Z

We are now able to formulate and prove the following, which constitutes a large
component of the proof of Theorem 1.1.
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Lemma 9.1. Let 0 < k ∈ Z be fixed.

(1) For every m ∈ N, there is a 2-generated subgroup H of Zk wr Z having
distortion function

∆Z
k

wr Z

H (l) ≈ lm.

(2) For any finitely generated subgroup H ≤ Zk wr Z there exists m ∈ N such
that the distortion of H in Zk wr Z is

∆Z
k

wr Z

H (l) � lm.

First, we prove Part (1) of Lemma 9.1 for the group Z wr Z. In this case
where k = 1, part (1) of Lemma 9.1 follows in part from Proposition 6.3,
which provides the polynomial lower bound of degree m on distortion. All
that remains to be shown is that for the particular subgroup H constructed
there, that ∆Z wr Z

H (l) � lm, which follows from Lemma 8.3. Now, for k > 1
fixed, we may consider the subgroup H1 obtained by intersecting H with Lk =
gp〈bk,W 〉 ∼= Zk wr Z. Then we have that H1 is subnormal in Lk and that the

distortion ∆Z
k wr Z

H1
(l) ≈ ∆Z wr Z

H (l), since the indices [Z wr Z : Lk] and [H : H1]
are finite.

Remark 9.2. If we adopt the notation that the commutator [a, b] = a−1b−1ab,
then we see that in Z wr Z, the element of W corresponding to the polynomial
a(1−x)m−1 is [· · · [a, b], b], · · · , b]−1 where the commutator is (m−1)-fold. This
explains Corollary 1.2.

To prove part (2) of Lemma 9.1, we will set up some notation. Let H be
any finitely generated subgroup of Zk wr Z not contained in W . By Lemma 4.6,
we may identify H with a subgroup of G = Zr wr Z = Wλ〈b〉 for some r ≥ 1
such that the generators of H are of the form b, w1, . . . , ws, where wi ∈ W . The
distortion ofH in Zr wr Z under this identification is equivalent to its distortion
in Zk wr Z. By the results of Section 7.3, we obtain subgroups

H1 ≤ G1 ≤ G

as in Remark 7.10.
In particular, by Remark 7.14, the embedding G1 ≤ G is undistorted, which

together with Lemma 2.2 implies that ∆G1

H1
(l) ≈ ∆G

H1
(l). By Remark 7.14, we

also have that ∆G
H1

(l) ≈ ∆G
H(l). It follows that

∆G
H(l) ≈ ∆G1

H1
(l).

By Remarks 7.10, 7.11 and Lemma 8.1 we have that ∆G1

H1
(l) is at most poly-

nomial. That is to say, the subgroup H has at most polynomial distortion in
Zr wr Z, and so part (2) of Lemma 9.1 is proved.

We now return to one of the motivating ideas of this paper, and complete
the explanation of Remark 1.3.
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Lemma 9.3. The group Z wr Z is the smallest metabelian group which em-
beds to itself as a normal distorted subgroup in the following sense. For any
metabelian group G, if there is an embedding φ : G → G such that φ(G) � G
and φ(G) is a distorted subgroup in G, then there exists some subgroup H of G
for which H ∼= Z wr Z.

Proof. By Lemma 2.2, we have that the group G/φ(G) is infinite, else φ(G)
would be undistorted. Being a finitely generated solvable group, G must have
a subnormal factor isomorphic to Z. Because φ(G) ∼= G, one may repeat this
argument to obtain a subnormal series in G with arbitrarily many infinite cyclic
factors. Therefore, the derived subgroup G′ has infinite (rational) rank.

Since the group B = G/G′ is finitely presented, the action of B by conju-
gation makes G′ a finitely generated left B module. Hence, G′ = 〈B ◦ C〉 for
some finitely generated C ≤ G′. Because it is a finitely generated abelian group,
B = 〈bk〉 · · · 〈b1〉 is a product of cyclic groups. Therefore for some i we have a
subgroup A = 〈〈bi−1〉 · · · 〈b1〉 ◦C〉 of finite rank in G′ but 〈〈bi〉 ◦A〉 has infinite
rank. Then A has an element such that the 〈bi〉 submodule generated by a has
infinite rank, and so it is a free 〈bi〉 module. It follows that a and b, where
bi = bG′, generate a subgroup of the form Z wr Z.

10 The Case of A wr Z

In this section, we will prove Theorem 1.1 Part (2). First we recall some basic
similarities and differences between the groups Zk

n wr Z and Zk wr Z. Let G =
Zk
n wr Z, for n ≥ 2, k ≥ 1. It follows from [DS] that there is a presentation

Zk
n wr Z = 〈a1, . . . , ak, b|a

n
i , [ai, aj ], [ai, b

−xajb
x], x ≥ 0, 1 ≤ i, j ≤ k〉. Moreover,

by [C] we have the length formula as in Lemma 3.3.

Remark 10.1. By Lemma 4.1 and an analogue of Lemma 4.6 we have that
for any finitely generated nonabelian subgroup H of G, it suffices to consider

generators of the form b, w1, . . . , ws where wi ∈ W =
⊕

Z

Zn is a free module of

rank k over the group ring R = Zn[〈b〉].

Although the notion of equivalence has only been defined for functions from
N to N, we would like to define a notion of equivalence for functions on a finitely
generated group. We say that two functions f, g : G → N are equivalent if there
exists C > 0 such that for any h ∈ G we have

1

C
f(h)− C ≤ g(h) ≤ Cf(h) + C.

If there is a function f : G → N such that f ≈ | · |G, then for any subgroup H
of G, ∆G

H(l) ≈ max{|h|H : h ∈ H, f(h) ≤ l}.

Lemma 10.2. For any g ∈ G, the following function f : G → N is equivalent
to the length in G. We have that

f(g) = |t|+ ǫM + ιN ≈ |g|G.
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Proof. First let g ∈ G have normal form as in the statement of Lemma 3.2.
Then by Lemma 3.3 it follows that

|g|G ≤ (N+M)(n−1)+2(ιN +εM )+ |t| ≤ (ιN +1+εM )(n−1)+2(ιN +εM )+ |t|

≤ (n+ 1)(ιN + ǫM ) + |t|+ (n− 1) ≤ Cf(g) + C,

where C = n+ 1. The computations follow from the definitions, as well as the
fact that εM ≥ M, ιN ≥ N − 1 and the length in Zk

n of each ui, vj is bounded
from above by n−1. On the other hand, observe that |g|G ≥ max{|t|, ιN +εM}.
Therefore, 2|g|G ≥ f(g), so the two functions are equivalent.

We are now able to prove the following special case of Theorem 1.1 Part (2).

Lemma 10.3. If p is a prime, then any finitely generated subgroup of G =
Zk
p wr Z is undistorted.

Proof. If p is a prime, then Zp is a field. This implies that the ring R = Zp[〈b〉]
is a principal ideal ring, by [FS]. Consider a finitely generated subgroup H of
G. Let V = H ∩ W. Then V is a free R-module, being a finitely generated
submodule of the free module W over the PIR R. Just as in Lemma 7.7, we
have that V and W have bases e1, . . . , el and f1, . . . , fk respectively, for l ≤ k
such that

ei = gifi, i = 1, . . . , l (16)

for some gi ∈ R. Thus we can choose the generators for G and H to be
{b, f1, . . . , fk} and {b, e1, . . . , el}, respectively.

Without loss of generality, the gi are regular (not Laurent) polynomials.
Observe that H ∼= Zl

p wr Z. Let h ∈ H have normal form in the generators of
H given by

h = bt(u1)ι1 · · · (uN )ιN (v1)−ε1 · · · (vM )−εM .

Then by Lemma 10.2, |h|H ≤ (p+1)(|t|+ιN +εM )+(p+1). We wish to compare
this to the length of h in G, and by Lemma 10.2, it suffices to compare |h|H to
f(h). By Equation (18), we may obtain an expression for the normal form of h in
the generators of G. For instance, (uN )ιN = (eα1

1 · · · eαl

l )ιN , where at least one of

α1, . . . , αl is nonzero modulo p. Introducing the notation that gi =
∑ki

j=0 βjx
j

we have that (uN )ιN = ((f1)
β1α1

0 · · · (f1)
βkα1

k1
· · · (fl)

β1αl

0 · · · (fl)
βkαl

kl
)ιN , where at

least one term (fi)
β1αi

0 · · · (fi)
βkαi

ki
is nontrivial. Therefore, the largest subscript

occurring in the normal form in the generators of G is of the form ιN + j, where

j ∈

l
⋃

i=1

{0, . . . , ki}. Using similar considerations on (vM )−εM , we see that the

smallest negative subscript is of the form εM − q for q ∈

l
⋃

i=1

{0, . . . , ki}. Letting

k = maxi{ki}, which is a constant that depends only on the choice of finite
generating sets of G and H , we have that
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f(h) = |t|+ ιN + εM + j− q ≥ |t|+ ιN + εM − k ≥ ( 1
p+1 )[|h|H − (p+1)]− k.

This implies that |h|H ≤ cf(h) + c for c = (p+ 1)(k + 1), which implies that H
is undistorted.

We are now prepared to prove Theorem 1.1 Part (1).

Proof. Let A be a finitely generated abelian group and consider G = A wr Z =
A wr 〈b〉. There exists a series

A = A0 > A1 > · · · > Am
∼= Zk

for k ≥ 0 where Ai−1/Ai has prime order for i = 1, . . . ,m. We claim that for any
finitely generated subgroup H ≤ G, there exists n ≥ 0 such that ∆G

H(l) � ln.
We induct on m. If m = 0, then A ∼= Zk and the claim holds by Theorem

1.1. Now let m > 0. Observe that A1 is a finitely generated abelian group with
a series A1 > · · · > Am

∼= Zk of length m − 1. Therefore, by induction, any
finitely generated subgroup in A1 wr Z has distortion at most equivalent to a
polynomial.

By Lemma 10.3, all finitely generated subgroups of G1 = (A/A1) wr Z are
undistorted. By induction, all finitely generated subgroups of G2 = A1 wr Z
have at most polynomial distortion. Denote the natural homomorphism by
φ : G → G1. Let

U =
⊕

〈b〉

A1 = ker(φ).

Observe that U · 〈b〉 ∼= G2. The product is semidirect because U is a normal
subgroup which meets 〈b〉 trivially, and it is isomorphic to the wreath product

by definition: the action of b on the module
⊕

〈b〉

A1 is the same. Let H be a

finitely generated subgroup in G. Suppose that H is not contained in W . It
follows in this case by Remark 10.1 that we may assume that b is contained
among the generators.

Let R = Z[〈b〉]. Observe that R is a Noetherian ring. This follows from basic
algebra because Z is a commutative Noetherian ring, so Z[[x]] ∼= R is as well.
Therefore, W is a finitely generated module over the Noetherian ring R, hence
is Noetherian itself. Thus, the R-submodule H ∩ U is finitely generated. Let
{w′

1, . . . , w
′
r} generate H∩U as a R-module. Let {b, w1, . . . , ws} be a set of gen-

erators of H modulo U ; that is, the images of these elements generate the sub-
group H1 = HU/U ∼= H/H ∩U of G1. Then the set {b, w1, . . . , ws, w

′
1, . . . , w

′
r}

generatesH . Furthermore, the collection {b, w′
1, . . . , w

′
r} generates the subgroup

H2 = 〈b〉 · (H ∩ U) of G2.
Let g ∈ H have |g|G ≤ l. Then the image g1 = φ(g) in G1 belongs to H1,

because g ∈ H , and has length |g|G1
≤ l by Lemma 10.2 and definition of φ and

G1. It follows by Lemma 10.3 that H1 is undistorted in G1. Therefore, there
exists a linear function f : N → N (which does not depend on the choice of g)
such that |g1|H1

≤ f(l). That is to say, there exists a product P of at most f(l)
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of the chosen generators {b, w1, . . . , ws} of H1 such that P = g−1
1 in H1. Taking

preimages, we obtain that gP ∈ U .
Because H is a subgroup of G, there exists a constant c depending only on

the choice of finite generating set of H such that for any h ∈ H we have that

|h|G ≤ c|h|H . (17)

It follows by Equation (17) that

|gP |G ≤ |g|G + |P |G ≤ |g|G + c|P |H ≤ l + cf(l). (18)

Observe that gP ∈ H2. This follows because gP ∈ U by construction, and
g ∈ H by choice. Further, P ∈ H because it is a product of some of the
generators of H . Since H2 = 〈b〉 · (H ∩ U) we see that gP ∈ H2. Using the fact
that G and G2 are wreath products together with the length formula in Lemma
3.3, we have that for any h ∈ G2,

|h|G2
≤ |h|G. (19)

By induction, the finitely generated subgroup H2 of G2 has at most poly-
nomial distortion. Therefore, there exists a function F : N → N such that
F (l) ≈ ln for some n ≥ 1 and such that for any h ∈ H2,

|h|H2
≤ F (|h|G2

). (20)

Since gP ∈ H2, we have that

|gP |H2
≤ F (|gP |G2

) ≤ F (|gP |G) ≤ F (l + cf(l)).

The first inequality follows from Equation (20), the second from Equation (19),
and the last from Equation (18).

Because H2 ≤ H there is a constant k such that for any h ∈ H2, |h|H ≤
k|h|H2

.
Combining all previous estimates, we compute that

|g|H ≤ |gP |H + |P |H ≤ k|gP |H2
+ f(l) ≤ kF (l + cf(l)) + f(l).

The right-hand side is bounded by a polynomial function since f is linear, and
F is polynomial.

If the subgroup H had been abelian, it follows by induction that it is undis-
torted, because the finitely generated group H ∩ U is also abelian, and so its
distortion in G2 is linear.

Remark 10.4. It follows by the same induction argument above that all finitely
generated subgroups in A wr Z where A is finite abelian are undistorted. For in
this case, k = 0 and so F (l) is linear. Therefore, Theorem 1.1 Part (2) is also
proved.

Now we complete the proof of Theorem 1.1, Part (3). Let A be a finitely
generated abelian group of rank k. Consider the 2-generated subgroup H ≤
Zk wr Z constructed in Lemma 9.1 Part (2). By the above induction argument,
we have that the distortion of the subgroup H in A wr Z is at most equivalent
to its distortion in Zk wr Z. The required lower bound on distortion follows
from the fact that Zk wr Z is a subgroup of A wr Z.
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