Subgroup Distortion in Wreath Products of Cyclic Groups

Tara C. Davis and Alexander Yu. Olshanskii

October 5, 2010

Abstract

We study the effects of subgroup distortion in the wreath products A wr \mathbb{Z}, where A is finitely generated abelian. We show that every finitely generated subgroup of A wr \mathbb{Z} has distortion function bounded above by some polynomial. Moreover, for A infinite, and for any polynomial, there is a 2-generated subgroup of $A \mathrm{wr} \mathbb{Z}$ having distortion function equivalent to the given polynomial.

1 Introduction

The notion of subgroup distortion was first formulated by Gromov in Gr . For a group G with finite generating set T and a subgroup H of G finitely generated by S, the distortion function of H in G is

$$
\Delta_{H}^{G}(l)=\max \left\{|w|_{S}: w \in H,|w|_{T} \leq l\right\}
$$

where $|w|_{S}$ represents the word length with respect to the given generating set S, and similarly for $|w|_{T}$. This function measures the difference in the word metrics on G and on H.

As usual, we only study distortion up to a natural equivalence relation. For functions f and g on \mathbb{N}, we say that $f \preceq g$ if there exists an integer $C>0$ such that $f(l) \leq C g(C l+C)+C l$ for all $l \geq 0$. We say two functions are equivalent, written $f \approx g$, if $f \preceq g$ and $g \preceq f$. When considered up to this equivalence, the distortion function becomes independent of the choice of finite generating sets. A subgroup H of G is said to be undistorted if $\Delta_{H}^{G}(l) \approx l$. If a subgroup H is not undistorted, then it is said to be distorted, and its distortion refers to the equivalence class of $\Delta_{H}^{G}(l)$.

Here we study the effects of distortion in various subgroups of the wreath products \mathbb{Z}^{k} wr \mathbb{Z}, for $0<k \in \mathbb{Z}$, and more generally, in A wr \mathbb{Z} where A is finitely generated abelian. The group \mathbb{Z} wr \mathbb{Z} is the simplest example of a finitely generated (though not finitely presented) group containing a free abelian group of infinite rank. In [GS] the group $\mathbb{Z} w r \mathbb{Z}$ is studied in connection with diagram groups and in particular with Thompson's group. In the same paper,
it is shown that in $H_{d}=(\cdots(\mathbb{Z}$ wr $\mathbb{Z})$ wr $\mathbb{Z}) \cdots$ wr $\left.\mathbb{Z}\right)$, where the group \mathbb{Z} appears d times, there is a subgroup $K \leq H_{d} \times H_{d}$ having distortion function $\Delta_{K}^{H_{d} \times H_{d}}(l) \succeq l^{d}$. In contrast to the study of these iterated wreath products, here we obtain polynomial distortion of arbitrary degree in the group \mathbb{Z} wr \mathbb{Z} itself. In [C] the distortion of \mathbb{Z} wr \mathbb{Z} in Baumslag's metabelian group is shown to be at least exponential, and an undistorted embedding of \mathbb{Z} wr \mathbb{Z} in Thompson's group is constructed.

In this note, rather than embedding the group \mathbb{Z} wr \mathbb{Z} into larger groups, or studying multiple wreath products, we will study distorted and undistorted subgroups in the wreath products A wr \mathbb{Z} with A finitely generated abelian. The main results are as follows.

Theorem 1.1. Let A be a finitely generated abelian group.

1. For any finitely generated subgroup $H \leq A$ wr \mathbb{Z} there exists $m \in \mathbb{N}$ such that the distortion of H in A wr \mathbb{Z} is

$$
\Delta_{H}^{A w r} \mathbb{Z}_{(l)} \preceq l^{m} .
$$

2. If A is finite, then $m=1$; that is, all subgroups are undistorted.
3. If A is infinite, then for every $m \in \mathbb{N}$, there is a 2-generated subnormal subgroup H of A wr \mathbb{Z} having distortion function

$$
\Delta_{H}^{A} w r \mathbb{Z}(l) \approx l^{m}
$$

Theorem 1.1 will be proved in Section 10 .
Corollary 1.2. It follows from the proof of Theorem 1.1 that the 2-generated subgroups of \mathbb{Z} wr \mathbb{Z} having distortion function equivalent to l^{m} can be given explicitly. If we let the standard generating set for \mathbb{Z} wr \mathbb{Z} be $\{a, b\}$, then the distorted subgroup is given by $H=\langle b,[\cdots[a, b], b], \cdots, b]\rangle$, where the commutator is $(m-1)$-fold. Because the subgroup $\langle[a, b], b\rangle$ of \mathbb{Z} wr \mathbb{Z} is normal, it follows by induction that the distorted subgroup H is subnormal.

Remark 1.3. There are distorted embeddings from the group \mathbb{Z} wr \mathbb{Z} into itself as a normal subgroup. For example, the map defined on generators by $b \mapsto$ $b, a \mapsto[a, b]$ extends to an embedding, and the image is a quadratically distorted subgroup by Corollary 1.2. By Lemma 9.3. \mathbb{Z} wr \mathbb{Z} is the smallest example of a metabelian group embeddable to itself as a normal subgroup with distortion.

Corollary 1.4. There is a distorted embedding of \mathbb{Z} wr \mathbb{Z} into Thompson's group F.

Under the embedding of Remark $1.3, \mathbb{Z}$ wr \mathbb{Z} embeds into itself as a distorted subgroup. It is proved in GS] that \mathbb{Z} wr \mathbb{Z} embeds to F. Therefore, Corollary 1.4 is true.

Question 1.5. Is there a finitely generated subgroup $H \leq \mathbb{Z}$ wr \mathbb{Z} whose distortion is not equivalent to a polynomial?

The following will be explained in Section 3
Corollary 1.6. For every $m \in \mathbb{N}$, there is a 2 -generated subgroup H of the free n-generated metabelian group $K_{n, 2}$ having distortion function

$$
\Delta_{H}^{K_{n, 2}}(l) \succeq l^{m}
$$

2 Background and Preliminaries

2.1 Subgroup Distortion

Here we provide some examples of distortion as well as some basic facts to be used later on.

Example 2.1.

1. Consider the three-dimensional Heisenberg group $\mathcal{H}^{3}=\langle a, b, c| c=[a, b],[a, c]=$ $[b, c]=1\rangle$. It has cyclic subgroup $\langle c\rangle_{\infty}$ with quadratic distortion, which follows from the equation $c^{l^{2}}=\left[a^{l}, b^{l}\right]$.
2. The Baumslag-Solitar Group $B S(1,2)=\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle$ has cyclic subgroup $\langle a\rangle_{\infty}$ with at least exponential distortion, because $a^{2^{l}}=b^{l} a b^{-l}$.

However, there are no similar mechanisms distorting subgroups in \mathbb{Z} wr \mathbb{Z}. Therefore, a natural conjecture would be that free metabelian groups in general or the group \mathbb{Z} wr \mathbb{Z} in particular do not contain distorted subgroups. This conjecture was brought to the attention of the authors by Denis Osin. The result of Theorem 1.1 shows that the conjecture is not true.

The following facts are well-known and easily verified. When we discuss distortion functions, it is assumed that the groups under consideration are finitely generated.

Lemma 2.2.

1. If $H \leq G$ and $[G: H]<\infty$ then $\Delta_{H}^{G}(l) \approx l$.
2. If $H \leq K \leq G$ then $\Delta_{H}^{K}(l) \preceq \Delta_{H}^{G}(l)$.
3. If H is a retraction of G then $\Delta_{H}^{G}(l) \approx l$.
4. If G is a finitely generated abelian group, and $H \leq G$, then $\Delta_{H}^{G}(l) \approx l$.

2.2 Wreath Products

Let A be a finitely generated abelian group. The group A wr G, where G is any group, is defined as follows.

Definition 2.3. The group A wr G is the semidirect product given by the action of G on $\bigoplus_{g \in G} A(g):$ for $f \in \bigoplus_{g \in G} A(g), g_{1} \in G$ we have that $\left(f \circ g_{1}\right)\left(g_{2}\right)=f\left(g_{1} g_{2}\right)$ for any $g_{2} \in G$.

The following is a presentation for the group A wr G.
Lemma 2.4. The group wr G has presentation given by generators and defining relations

$$
\left\langle y_{1}, \ldots, y_{s}, x_{1}, \ldots, x_{t} \mid\left[y_{i}, g^{-1} y_{j} g\right], R, S: g \in G, 1 \leq i, j \leq s\right\rangle
$$

where $G=\left\langle x_{1}, \ldots, x_{t} \mid R\right\rangle$, and $A=\left\langle y_{1}, \ldots, y_{s} \mid S\right\rangle$.
A proof may be found in DS.
Remark 2.5. The group \mathbb{Z} wr \mathbb{Z} is isomorphic to the subgroup G of 2×2 real matrices generated by two elements

$$
a=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } b=\left(\begin{array}{cc}
\zeta & 0 \\
0 & 1
\end{array}\right)
$$

where ζ is any transcendental number.

2.3 Connections with Free Solvable Groups

In (M], Magnus shows that if $F=F_{k}$ is an absolutely free group of rank k with normal subgroup N, then the group $F /[N, N]$ embeds into \mathbb{Z}^{k} wr $F / N=$ \mathbb{Z}^{k} wr G. For more information in an easy to read exposition, refer to [RS].
Remark 2.6. The monomorphism $\alpha: F /[N, N] \rightarrow \mathbb{Z}^{k}$ wr G is called the Magnus embedding.

Lemma 2.7. Consider the group \mathbb{Z} wr $\mathbb{Z}=W \lambda\langle b\rangle$. Let $1 \neq w \in W, x \notin W$. Then $g p\langle w, x\rangle \cong \mathbb{Z}$ wr \mathbb{Z}.

This follows because the mapping $\phi: \mathbb{Z} \mathrm{wr} \mathbb{Z} \rightarrow \operatorname{gp}\langle w, x\rangle: a \mapsto w, b \mapsto x$ preserves all defining relations, and it is easy to see that the kernel is trivial.

We let $K_{k, l}$ denote the k-generated class l free solvable group.
Lemma 2.8. If $k, l \geq 2$, then the group $K_{k, l}$ contains a subgroup isomorphic to $\mathbb{Z} w r \mathbb{Z}$.

Proof. It suffices to show that the free metabelian group of rank $2, K_{2,2}$, contains a subgroup isomorphic to \mathbb{Z} wr \mathbb{Z}. This follows because for any $H \leq K_{2,2}$ we may use the Nielsen-Schrier Theorem to identify $H \leq F_{k}^{(l-2)} / F_{k}^{(l)} \leq F_{k} / F_{k}^{(l)} \cong$ $K_{k, l}$.

Let $K_{2,2}$ have free generators x, y. Because $\mathbb{Z} \mathrm{wr} \mathbb{Z}$ is metabelian, we have a homomorphism

$$
\phi: K_{2,2} \rightarrow \mathbb{Z} \text { wr } \mathbb{Z}: x \mapsto a, y \mapsto b
$$

where a, b are the usual generators of \mathbb{Z} wr \mathbb{Z}. Let H be the subgroup of $K_{2,2}$ generated by $[x, y]$ and y. Then by Lemmas [2.4, 2.7 and Dyck's Theorem we have that $H \cong \mathbb{Z}$ wr \mathbb{Z}.

It should be noted that by results of $\left[S\right.$, the group \mathbb{Z} wr \mathbb{Z}^{2} can not be embedded into any free metabelian or free solvable groups.

Subgroup distortion has connections with the membership problem. It was observed in Gr and proved in $[\mathrm{F}$ that for a finitely generated subgroup H of a finitely generated group G with solvable word problem, the membership problem is solvable in H if and only if the distortion function $\Delta_{H}^{G}(l)$ is bounded by a recursive function.

By Theorem 2 of $[\mathbf{U}$, the membership problem for free solvable groups of length greater than two is undecidable. Therefore, because of the connections between subgroup distortion and the membership problem just mentioned, we restrict our primary attention to the case of free metabelian groups.

Lemma 2.8 motivates us to study distortion in \mathbb{Z} wr \mathbb{Z} in order to better understand distortion in free metabelian groups. Distortion in free metabelian groups is similar to distortion in wreath products of free abelian groups, by Lemma 2.8 and the Magnus embedding. In particular, if $k \geq 2$ then

$$
\mathbb{Z} \text { wr } \mathbb{Z} \leq K_{k, 2} \leq \mathbb{Z}^{k} \text { wr } \mathbb{Z}^{k}
$$

Thus by Lemma [2.2, given $H \leq \mathbb{Z}$ wr \mathbb{Z} we have

$$
\Delta_{H}^{\mathbb{Z} \mathrm{wr} \mathbb{Z}}(l) \preceq \Delta_{H}^{K_{k, 2}}(l)
$$

This explains Corollary 1.6. On the other hand, given $L \leq K_{k, 2}$ then we have

$$
\Delta_{L}^{K_{k, 2}}(l) \preceq \Delta_{L}^{\mathbb{Z}^{k}} \text { wr } \mathbb{Z}^{k}(l)
$$

Based on this discussion, we ask the following. An answer would be helpful in order to more fully understand subgroup distortion in free metabelian groups.

Question 2.9.

What effects of subgroup distortion are possible in \mathbb{Z}^{k} wr \mathbb{Z}^{k} for $k>1$?

3 Canonical Forms and Word Metric

Here we aim to further understand the form of elements in \mathbb{Z}^{k} wr \mathbb{Z} as well as the word metric in these groups.

Using the presentation of \mathbb{Z}^{k} wr \mathbb{Z} of Lemma 2.4, and the definition of \mathbb{Z}^{k} wr \mathbb{Z} we may write any element in a canonical form. The form described in Remark 3.1 below is useful for understanding the structure of group elements.

We will use the notation that $(x)_{i}$ equals the conjugate $b^{-i} x b^{i}$ for $i \in \mathbb{Z}$ and $x \in \mathbb{Z}^{k}$, where \mathbb{Z}^{k} wr $\mathbb{Z}=\mathbb{Z}^{k}$ wr $\langle b\rangle$.
Remark 3.1. Arbitrary element in \mathbb{Z}^{k} wr $\mathbb{Z}=g p\left\langle a_{1}, \ldots, a_{k}, b\right\rangle$ is of the form

$$
b^{t} w=b^{t} \prod_{i=-\infty}^{\infty}\left(a_{1}\right)_{i}^{m_{i, 1}}\left(a_{2}\right)_{i}^{m_{i, 2}} \cdots\left(a_{k}\right)_{i}^{m_{i, k}}
$$

where the product is finite, indicated by the ${ }^{\circ}$ symbol.
The form is unique.

The normal form described in Remark 3.2 for elements of A wr \mathbb{Z}, where A is a finitely generated abelian group, is necessary to obtain a general formula for computing the word length.

Remark 3.2. Arbitrary element of A wr \mathbb{Z} may be written in a normal form, following [CT], as

$$
b^{t}\left(u_{1}\right)_{\iota_{1}} \cdots\left(u_{N}\right)_{\iota_{N}}\left(v_{1}\right)_{-\epsilon_{1}} \cdots\left(v_{M}\right)_{-\epsilon_{M}}
$$

where $0 \leq \iota_{1}<\cdots<\iota_{N}, 0<\epsilon_{1}<\cdots<\epsilon_{M}$, and $u_{1}, \ldots, u_{N}, v_{1}, \ldots, v_{M}$ are minimal length representatives of elements in $A-\{1\}$.

The following formula for the word length in A wr \mathbb{Z} is given in CT .
Lemma 3.3. Given an element in A wr \mathbb{Z} having normal form as in Remark 3.2. its length is given by the formula

$$
\sum_{i=1}^{N}\left|u_{i}\right|_{A}+\sum_{i=1}^{M}\left|v_{i}\right|_{A}+\min \left\{2 \epsilon_{M}+\iota_{N}+\left|t-\iota_{N}\right|, 2 \iota_{N}+\epsilon_{M}+\left|t+\epsilon_{M}\right|\right\}
$$

Because the subgroup W of $G=\mathbb{Z}$ wr $\mathbb{Z}=W \lambda \mathbb{Z}$ is abelian, we also use additive notation to represent elements of W.

We will use the following notation in the case of \mathbb{Z} wr \mathbb{Z}.
Remark 3.4. In the case of \mathbb{Z} wr $\mathbb{Z}=\langle a\rangle$ wr $\langle b\rangle$, we use module language to write any element as

$$
w=a f(x) \text { where } f(x)=\sum_{i=-\infty}^{\infty} m_{i} x^{i}
$$

is a Laurent polynomial.

4 Structure of Some Subgroups of \mathbb{Z} wr \mathbb{Z}

Lemma 4.1. Let G be a group having normal subgroup W and cyclic $G / W=$ $\langle b W\rangle$. Then any finitely generated subgroup H of G may be generated by elements of the form $b^{t} w_{1}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.

The proof is elementary and follows from the assumption that G / W is cyclic.
Remark 4.2. It follows that any finitely generated subgroup in \mathbb{Z}^{k} wr \mathbb{Z} or \mathbb{Z}_{n}^{k} wr \mathbb{Z} can be generated by elements $b^{t} w_{1}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.

Definition 4.3. For $k>0$ fixed and any $t>0$, the group L_{t} is the subgroup of \mathbb{Z}^{k} wr \mathbb{Z} generated by the subgroup W and by the element b^{t}.

The following discussion helps further the understanding of the structure of \mathbb{Z}^{k} wr \mathbb{Z} and its subgroups, and will be used again in later Sections.

Lemma 4.4. The group $L_{t} \cong \mathbb{Z}^{t k}$ wr \mathbb{Z}.
Proof. By [DS] we have that a presentation of $\mathbb{Z}^{t k}$ wr \mathbb{Z} is given by

$$
\left\langle b^{\prime}, a_{1}^{\prime}, \ldots, a_{t k}^{\prime} \mid\left[a_{i}^{\prime}, a_{j}^{\prime}\right],\left[a_{i}^{\prime}, b^{-l} a_{j}^{\prime} b^{\prime l}\right], l>0,1 \leq i, j \leq t k\right\rangle
$$

Observe that L_{t} may be generated by the elements $b^{t}, a_{1}, b^{-1} a_{1} b, \ldots, b^{1-t} a_{1} b^{t-1}$, $\ldots, a_{k}, b^{-1} a_{k} b, \ldots, b^{1-t} a_{k} b^{t-1}$. The map $\phi: \mathbb{Z}^{t k}$ wr $\mathbb{Z} \rightarrow L_{t}: b^{\prime} \mapsto b^{t}, a_{1}^{\prime} \mapsto$ $b^{-1} a_{1} b, a_{2}^{\prime} \mapsto b^{-2} a_{1} b, \ldots, a_{t}^{\prime} \mapsto b^{1-t} a_{1} b^{t-1}, a_{t+1}^{\prime} \mapsto a_{2}, \ldots, a_{k t}^{\prime} \mapsto b^{1-t} a_{k} b^{t-1}$ is easily checked to be an isomorphism.

Lemma 4.5. For any $w \in W$ there is an isomorphism $L_{t} \rightarrow L_{t}$ identical on W such that $b^{t} w \rightarrow b^{t}$, provided $t \neq 0$.

This follows because the actions of b^{t} and $b^{t} w$ on W coincide.
Lemma 4.6. Let H be a finitely generated subgroup of \mathbb{Z}^{k} wr \mathbb{Z} not contained in W. Then H is a subgroup of L_{t} for some t. Under the isomorphism $L_{t} \rightarrow$ $\mathbb{Z}^{t k}$ wr \mathbb{Z} of Lemma 4.4, the subgroup H has generators of the form b, x_{1}, \ldots, x_{s} where $\mathbb{Z}^{t k}$ wr $\mathbb{Z}=W \lambda\langle b\rangle_{\infty}, W=\prod_{\mathbb{Z}} \mathbb{Z}^{t k}$, and $x_{1}, \ldots, x_{s} \in W$. Moreover, the distortion of H in \mathbb{Z}^{k} wr \mathbb{Z} is equivalent to the distortion of $g p\left\langle b, x_{1}, \ldots, x_{s}\right\rangle$ in $\mathbb{Z}^{t k}$ wr \mathbb{Z}.

Proof. By Lemma 4.1 the generators of H may be chosen to have the form $b^{t} w_{0}, w_{1}, \ldots, w_{s}$ where $w_{i} \in W$. Therefore, for this value of t we have that H is a subgroup of L_{t}. Using the isomorphisms of Lemmas4.4and4.5 we have that H is a subgroup of $\mathbb{Z}^{k t}$ wr \mathbb{Z} generated by the image of $b^{t} w_{0}, w_{1}, \ldots, w_{s}$ under the two isomorphisms: elements b, x_{1}, \ldots, x_{s}. Finally, because $\left[\mathbb{Z}^{k}\right.$ wr $\left.\mathbb{Z}: L_{t}\right]<\infty$ we have by Lemma 2.2 that the distortion of H in \mathbb{Z}^{k} wr \mathbb{Z} is equivalent to the distortion of its image in $\mathbb{Z}^{t k}$ wr \mathbb{Z}.

5 Undistorted Abelian Subgroups

Lemma 5.1. Any subgroup of the form $H=g p\left\langle b^{k} w\right\rangle, k \neq 0$, where $w \in W$ is undistorted in \mathbb{Z} wr \mathbb{Z}.

Proof. Consider the subgroup $L_{k}=\operatorname{gp}\left\langle W, b^{k} w\right\rangle$ of \mathbb{Z} wr \mathbb{Z}. We have that the index $\left[\mathbb{Z}\right.$ wr $\left.\mathbb{Z}: L_{k}\right]<\infty$. Moreover, from $L_{k}=W \cdot\left\langle b^{k} w\right\rangle, W \unlhd L_{k}$, and $W \cap\left\langle b^{k} w\right\rangle=\{1\}$ it follows that H is a retraction of L_{k}. Therefore, by Lemma 2.2, H is undistorted in \mathbb{Z} wr \mathbb{Z}.

Lemma 5.2. Any finitely generated subgroup of $\mathbb{Z} w r \mathbb{Z}$ contained in the free abelian subgroup W of \mathbb{Z} wr \mathbb{Z} is undistorted.

Proof. Let $H \leq \mathbb{Z}$ wr $\mathbb{Z}, H \subset W$. Let the generating set for \mathbb{Z} wr \mathbb{Z} be the usual one, $\{a, b\}$, and let H have generating set $\left\{h_{1}, \ldots, h_{s}\right\}$, where without loss of generality s is the minimum possible number of generators. Then for some $n \geq s$ we have that $H \leq K=\operatorname{gp}\left\langle a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle$, where $a_{j}=b^{-j} a b^{j}$ in terms of generators of $\mathbb{Z} \mathrm{wr} \mathbb{Z}$. This follows by letting $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ be the collection of distinct constituents occuring in the canonical form of the generators of H. Then we have that the free abelian group H, considered as a subgroup of the free abelian group K is undistorted by Lemma 2.2. It suffices to show that K is undistorted in \mathbb{Z} wr \mathbb{Z}. Let $h \in K$, so there is an expression $h=a_{i_{1}}^{\alpha_{1}} \cdots a_{i_{n}}^{\alpha_{n}}$ for some $\alpha_{i} \in \mathbb{Z}$. Then by Lemma 3.3 we have that

$$
|h|_{\mathbb{Z}} \text { wr } \mathbb{Z} \geq \sum_{j=1}^{n}\left|\alpha_{j}\right|=|h|_{K} .
$$

Thus the subgroup is undistorted.

Here we are able to prove that all finitely generated abelian subgroups of \mathbb{Z} wr \mathbb{Z} are undistorted. It should be remarked that the authors are aware that an independent proof of this fact is available in GS. In that paper it is shown that \mathbb{Z}^{k} wr \mathbb{Z} is a subgroup of the Thompson group F, and that every finitely generated abelian subgroup of F is undistorted. However, our proof is elementary and so we include it.

Proof. By Lemmas 4.4 and 2.2, it suffices to consider the case where $k=1$. Let H be a finitely generated subgroup of \mathbb{Z} wr \mathbb{Z}. Then by Remark 4.2, H can be generated by elements $b^{k} w_{1}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$. If $k=0$ then $H \subset W$ so by Lemma 5.2 it is undistorted. If $s=1$ then by Lemma 5.1 H is undistorted. Thus is remains to observe that if $s>1$ and $k \neq 0$ that such an H is nonabelian because $b^{k} w_{1}$ and w_{2} do not commute.

6 Lower Bounds on Distortion in \mathbb{Z} wr \mathbb{Z}.

Lemma 6.1. Let $m \in \mathbb{N}$. For any $l \in \mathbb{N}$ let there be polynomials $f_{l}(x) \in \mathbb{Z}[x]$ such that the sum of modules of coefficients of $f_{l}(x)$ is equivalent to l^{m}, while the sum of modules of coefficients of $g_{l}(x)=(1-x)^{m-1} f_{l}(x)$ is at most linear in l. Then the subgroup H of \mathbb{Z} wr \mathbb{Z} generated by $h=a(1-x)^{m-1} \in W$ and b has distortion $\Delta_{H}^{\mathbb{Z}} w r \mathbb{Z}(l) \succeq l^{m}$.

Proof. We let $H=\operatorname{gp}\langle h, b\rangle$. By Lemma 2.7 we have that $H \cong \mathbb{Z}$ wr \mathbb{Z} under the obvious isomorphism $b \mapsto b, h \mapsto a$. We fix the notation that $h_{i}=b^{-i} h b^{i}$. Suppose we have $f_{l}(x)$ and $g_{l}(x)$ as in the statement of Lemma 6.1. Then if $f_{l}(x)=\sum_{i=0}^{l} a_{i} x^{i}$, we have that in the module language, $h f_{l}(x)=h^{a_{0}} h_{1}^{a_{1}} \cdots h_{l}^{a_{l}}$,
so by Lemma 3.3 and by hypothesis, we have that

$$
\left|h f_{l}(x)\right|_{H}=\sum_{i=0}^{l}\left|a_{i}\right|+2 l \approx l^{m}
$$

On the other hand, in \mathbb{Z} wr $\mathbb{Z}=\langle a, b\rangle$ we have that

$$
h f_{l}(x)=a f_{l}(x)(1-x)^{m-1}=a g_{l}(x)
$$

Let $g_{l}(x)=\sum_{i=0}^{l+m-1} b_{i} x^{i}$. Then

$$
h f_{l}(x)=a \sum_{i=0}^{l+m-1} b_{i} x^{i}=a_{0}^{b_{0}} a_{1}^{b_{1}} \cdots a_{l+m-1}^{b_{l+m-1}} .
$$

Therefore,

$$
\left|h f_{l}(x)\right|_{\mathbb{Z} \text { wr } \mathbb{Z}}=\sum_{i=0}^{l+m-1}\left|b_{i}\right|+2(l+m-1) \approx l .
$$

Therefore, H is distorted in \mathbb{Z} wr \mathbb{Z} of order at least l^{m}.
We will use the following formula involving binomial coefficients during the proof of Theorem 1.1

Lemma 6.2. For any $m, N \in \mathbb{N}$ we have that

$$
\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i}(N+1-i)^{m-1}=(m-1)!
$$

Proof. This is the derivative of formula 1.14 in GO.
We are now prepared to prove the following fact.
Proposition 6.3. For any $m \in \mathbb{N}$, there exist polynomials $f_{l}(x)$ as in Lemma 6.1. That is to say, the 2-generated subgroup $\left\langle b, a(1-x)^{m-1}\right\rangle=H \leq \mathbb{Z}$ wr \mathbb{Z} has distortion $\Delta_{H}^{\mathbb{Z}} w r \mathbb{Z}(l) \succeq l^{m}$.

Proof. We will construct concrete polynomials as described in Lemma 6.1 Let m be fixed. We will define

$$
f_{m l-1}(x)=a_{0}+a_{1} x+\cdots+a_{m l-1} x^{m l-1}
$$

The coefficient $a_{s l+t}$, for $s=0,1, \ldots, m-1, t=0,1, \ldots, l-1$ is

$$
a_{s l+t}=\sum_{i=0}^{s} d_{i}((s-i) l+t+1)^{m-1}
$$

where $d_{0}=1$ and d_{1}, \ldots, d_{s} are constants to be determined later. Observe that it suffices to find $d_{1}, \ldots, d_{s} \in \mathbb{Q}$ with bounded denominators not depending on
l. For in this case, we can multiply $f_{l}(x)$ and $g_{l}(x)$ by an integer (independent of l) and obtain polynomials with integer coefficients and satisfying Lemma6.1

Then we have that

$$
\sum_{i=0}^{m l-1}\left|a_{i}\right| \geq \sum_{i=0}^{l-1}\left|a_{i}\right|=\sum_{i=1}^{l} i^{m-1} \approx l^{m}
$$

The equality $\sum_{i=0}^{l-1}\left|a_{i}\right|=\sum_{i=1}^{l} i^{m-1}$ follows by the definition of

$$
a_{0 l+t}=\sum_{i=0}^{0} d_{i}((0-i) l+t+1)^{m-1}=(t+1)^{m-1}
$$

It remains to prove that each of the coefficients $\left|c_{j}\right|, j=0, \ldots,(m-1)+(m l-1)$, of $(1-x)^{m-1} f_{m l-1}(x)=\sum_{i=0}^{(m-1)+(m l-1)} c_{j} x^{j}$ is bounded by a constant, if we choose d_{1}, \ldots, d_{s} properly. We fix the notation that $(1-x)^{m-1}=\sum_{i=0}^{m-1} b_{i} x^{i}$ so that

$$
b_{i}=(-1)^{i}\binom{m-1}{i}
$$

For $j \in[s l,(s+1) l-1]$ and $s \in\{0, \ldots, m-1\}$ then

$$
a_{j}=\sum_{k=0}^{s} d_{k}((s-k) l+j-s l+1)^{m-1}
$$

Let $j \in[s l+m-1,(s+1) l-1]$ and $s \in\{0, \ldots, m-1\}$. Then we have that

$$
c_{j}=\sum_{i=0}^{m-1} b_{i} a_{j-i}=\sum_{i=0}^{m-1} b_{i}\left(\sum_{k=0}^{s} d_{k}((s-k) l+j-i-s l+1)^{m-1}\right)
$$

Let $\gamma_{i, j, k, l}=(s-k) l+j-i-s l+1=-k l+j-i+1$ be a temporary shorthand. Then we have that

$$
c_{j}=\sum_{i=0}^{m-1} b_{i}\left(\sum_{k=0}^{s} d_{k}\left(\gamma_{i, j, k, l}\right)^{m-1}=\sum_{k=0}^{s} d_{k}\left(\sum_{i=0}^{m-1} b_{i}\left(\gamma_{i, j, k, l}\right)^{m-1}\right)\right.
$$

By Lemma 6.2 with $N=j-k l$, which is a constant within each summand where k and j are fixed, we have

Consider now an index $j \in \mathbb{N}$ inside an interval of the form $[s l, s l+m-2]$ for $0 \leq s \leq m-1$. We may write $j=s l+u$ for $0 \leq u \leq m-2$. Then by definition we have that
$a_{j-i}= \begin{cases}\sum_{k=0}^{s} d_{k}((s-k) l+j-i-s l+1)^{m-1} & \text { if } 0 \leq i \leq j-s l, \\ \sum_{k=0}^{s-1} d_{k}((s-1-k) l+j-i-(s-1) l+1)^{m-1} & \text { if } j-s l+1 \leq i \leq m-1 .\end{cases}$

Therefore, for such j we compute that

$$
\begin{gathered}
c_{j}=\sum_{i=0}^{j-s l} b_{i} a_{j-i}+\sum_{i=j-s l+1}^{m-1} b_{i} a_{j-i} \\
=\sum_{i=0}^{j-s l} b_{i}\left(\sum_{k=0}^{s} d_{k}(-k l+j-i+1)^{m-1}\right)+\sum_{i=j-s l+1}^{m-1} b_{i}\left(\sum_{k=0}^{s-1} d_{k}(-k l+j-i+1)^{m-1}\right) \\
=\sum_{i=0}^{j-s l} b_{i}\left(\sum_{k=0}^{s-1} d_{k}(-k l+j-i+1)^{m-1}\right)+\sum_{i=0}^{j-s l} d_{s} b_{i}(-s l+j-i+1)^{m-1} \\
+\sum_{i=j-s l+1}^{m-1} b_{i}\left(\sum_{k=0}^{s-1} d_{k}(-k l+j-i+1)^{m-1}\right) \\
=\sum_{i=0}^{m-1} b_{i} \sum_{k=0}^{s-1} d_{k}(-k l+j-i+1)^{m-1}+d_{s} \sum_{i=0}^{u} b_{i}(u-i+1)^{m-1} \\
=(m-1)!\sum_{k=0}^{s-1} d_{k}+d_{s} \sum_{i=0}^{u} b_{i}(u-i+1)^{m-1}
\end{gathered}
$$

The last equation follows from Lemma 6.2. The final formula obtained is a constant independent of l.

Therefore, we have shown that for all $j \in\{0,1, \ldots, m l-1\}$ that c_{j} is a constant independent of l. It remains to prove that d_{1}, \ldots, d_{m-1} may be chosen in such a way that the remaining coefficients
$c_{m l+m-2}=(-1)^{m-1} a_{m l-1}, \ldots, c_{m l}=b_{1} a_{m l-1}+b_{2} a_{m l-2}+\cdots+b_{m-1} a_{m l-m+1}$
are bounded by a constant. By the triangle inequality, it suffices to bound the quantities $\left|a_{m l-1}\right|, \ldots,\left|a_{m l-m+1}\right|$ by a constant independent of l. This takes into account the fact that $\left\{a_{m l}, \ldots, a_{m l-m+1}\right\}$ and $\left\{a_{l-1}, \ldots, a_{0}\right\}$ are disjoint since without loss of generality, $m \geq 2$. For each $j \in\{1, \ldots, m-1\}$ we have by definition that

$$
\begin{gathered}
a_{m l-j}=a_{(m-1) l+(l-j)}=\sum_{i=0}^{m-1} d_{i}((m-1-i) l+l-j+1)^{m-1} \\
\sum_{i=0}^{m-1} d_{i}\left(\sum_{k=0}^{m-1}\binom{m-1}{k}((m-i) l)^{k}(1-j)^{m-1-k}\right) \\
=l^{m-1}\left(\sum_{k=1}^{m} d_{m-k}(1-j)^{0} k^{m-1}\right)+l^{m-2}\left(\sum_{k=1}^{m} d_{m-k}\binom{m-1}{m-2}(1-j)^{1} k^{m-2}\right)+\cdots \\
+l\left(\sum_{k=1}^{m} d_{m-k}\binom{m-1}{1}(1-j)^{m-2} k^{1}\right)+C
\end{gathered}
$$

where C is the constant term of this polynomial and hence irrelevant. It suffices to show that for each $p \in\{1, \ldots, m-1\}$ that

$$
0=\binom{m-1}{p}(1-j)^{m-1-p}\left(m^{p}+d_{1}(m-1)^{p}+\cdots+d_{m-1}(1)^{p}\right)
$$

We will select d_{1}, \ldots, d_{m-1} so that

$$
d_{1}(m-1)^{p}+\cdots+d_{m-1}(1)^{p}=-m^{p}
$$

for each $p=1, \ldots, m-1$. The matrix of the linear system is a non-singular Vandermonde matrix, whose determinent $\operatorname{det}(A)= \pm 1 \cdot \prod_{i=2}^{m-2} i^{2}(m-1) \prod_{1 \leq i<j \leq m-2}(j-$ i) does not depend on l. By Cramer's rule, the required d_{1}, \ldots, d_{m-1} exist.

7 Auxilliary Computations

7.1 Some Linear Algebra

In order to obtain upper bounds on distortion in \mathbb{Z} wr \mathbb{Z} we require some facts from linear algebra. Fix an integer $k \geq 1$ and let $n>0$ be arbitrary.

Lemma 7.1. Let $Y_{1}, \ldots, Y_{n}, C_{1}, \ldots, C_{n}$ be $k \times 1$ column vectors. Suppose that the modulus of each coordinate of each C_{i} is bounded by a constant b. Suppose that the modulus of each coordinate of Y_{1} and Y_{n} is bounded by bc c_{1} for some constant $c_{1} \geq 1$. Suppose further we have the relationship

$$
Y_{i}=A Y_{i-1}+C_{i}, i=2, \ldots, n
$$

where A is a $k \times k$ matrix. Then the modulus of each coordinate of arbitrary $Y_{i}, 2 \leq i \leq n-1$ is bounded by $c c_{1} b n^{k}$ where c depends on A only. All matrix entries are assumed to be complex.

Proof. There exists a Jordan decomposition, $A=S^{-1} A^{\prime} S$, where S depends on A only and

$$
A^{\prime}=\left(\begin{array}{ccc}
J_{1} & 0 \ldots & 0 \\
0 & J_{2} \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 \ldots & J_{l}
\end{array}\right)
$$

where each block is of the form

$$
J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 0 & 0 \ldots & 0 \\
1 & \lambda_{i} & 0 \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 \ldots & 1 & \lambda_{i}
\end{array}\right)
$$

for some λ_{i}. Let $S=\left(s_{i, j}\right)_{1 \leq i, j \leq k}$ and let $s=\max \left|s_{i, j}\right|$. Then for $C_{i}^{\prime}=S C_{i}$ and $Y_{i}^{\prime}=S Y_{i}$ we have that

$$
\begin{equation*}
Y_{i}^{\prime}=A^{\prime} Y_{i-1}^{\prime}+C_{i}^{\prime} \tag{1}
\end{equation*}
$$

By hypothesis, the coordinates of C_{i}^{\prime} are bounded by $b^{\prime}=k s b$ for each i, and the coordinates of Y_{1}^{\prime} and Y_{n}^{\prime} are bounded by $k s b c_{1}=b^{\prime} c_{1}$. As we will explain, our problem can be reduced to the similar problem for Y_{i}^{\prime} in (11). Suppose that the modules of coordinates of every Y_{i}^{\prime} are bounded by $d c_{1} b^{\prime} n^{k}$ where d depends on A only. Then, letting $S^{-1}=\left(s_{i, j}\right)_{1 \leq i, j \leq k}$ and $\tilde{s}=\max \left|s_{i, j}\right|$ we have by definition of Y_{i}^{\prime} that arbitrary element of Y_{i} has modulus bounded above by $k \tilde{s} d c_{1} b^{\prime} n^{k}=c c_{1} b n^{k}$ where $c=s \tilde{s} d k^{2}$ only depends on A^{\prime}, as required.

If there is more than one Jordan block present in A^{\prime}, the problem is decomposed into at most k subproblems, each with only one Jordan block of size smaller than k. By induction it suffices to prove Lemma 7.1 in the case where A^{\prime} has only one Jordan block. Let λ be the eigenvalue of A^{\prime}. We will consider two cases.

- First suppose that $|\lambda|>1$.

We introduce notation: let $Y_{i}^{\prime}=\left[y_{i, 1}, \cdots, y_{i, k}\right]^{T}$ and $C_{i}^{\prime}=\left[c_{i, 1}, \cdots, c_{i, k}\right]^{T}$. Consider the constant $\frac{b^{\prime}}{|\lambda|-1}$. If for each $1 \leq i \leq n-1$ we have that $\left|y_{i, 1}\right| \leq \frac{b^{\prime}}{|\lambda|-1}$, then all $\left|y_{i, 1}\right|$ are already bounded. Otherwise we have by formula (1) that

$$
y_{i, 1}=\lambda y_{i-1,1}+c_{i, 1}
$$

and $\left|y_{i-1,1}\right|>\frac{b^{\prime}}{|\lambda|-1}$ for some $i-1>0$. This implies that

$$
|\lambda|\left|y_{i-1,1}\right|=\left|y_{i, 1}-c_{i, 1}\right| \leq\left|y_{i, 1}\right|+\left|c_{i, 1}\right|<\left|y_{i, 1}\right|+b^{\prime}<\left|y_{i, 1}\right|+\left|y_{i-1,1}\right|(|\lambda|-1)
$$

which in turn implies that $\left|y_{i-1,1}\right|<\left|y_{i, 1}\right|$. We similarly obtain that

$$
\left|y_{i, 1}\right|<\left|y_{i+1,1}\right|<\cdots<\left|y_{n, 1}\right| \leq b^{\prime} c_{1}
$$

Let $\alpha_{1}=\max \left\{\frac{b^{\prime}}{\lambda \mid-1}, b^{\prime} c_{1}\right\}$. Then for any i we have that $\left|y_{i, 1}\right|<\alpha_{1}$.
By induction we have that $\left|y_{i, k}\right|<\alpha_{k}$ for all i. Therefore, all $\left|y_{i, j}\right|$ are bounded by $\max \left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. Observe that this constant is of the form $\left(\mu c_{1}+\right.$ $\nu) b^{\prime}$ where μ, ν depend on A only. Therefore, we may select the constant $d \geq$ $\mu+\nu \geq \frac{\mu c_{1}+\nu}{c_{1}}$ so that the modulus of any coordinate in Y_{i}^{\prime} is bounded above by $d c_{1} b^{\prime} \leq d c_{1} b^{\prime} n^{k}$.

- Now suppose that $|\lambda| \leq 1$.

From Formula (1) we derive:

$$
\begin{gather*}
Y_{i}^{\prime}=A^{\prime}\left(A^{\prime} Y_{i-2}^{\prime}+C_{i-1}^{\prime}\right)+C_{i}^{\prime}=\left(A^{\prime}\right)^{2} Y_{i-2}^{\prime}+A^{\prime} C_{i-1}^{\prime}+C_{i}^{\prime}=\cdots \\
=\left(A^{\prime}\right)^{i-1} Y_{1}^{\prime}+\left(A^{\prime}\right)^{i-2} C_{2}^{\prime}+\cdots+A^{\prime} C_{i-1}^{\prime}+C_{i}^{\prime} \tag{2}
\end{gather*}
$$

We have already obtained that the modules of coordinates of Y_{1}^{\prime} are bounded by $b^{\prime} c_{1}$ and the modules of coordinates of $C_{2}^{\prime}, \ldots, C_{n}^{\prime}$, are bounded by b^{\prime}, so it suffices to bound the elements of $\left(A^{\prime}\right)^{r}$ from above, where $r \leq n-1$. The following formula for $\left(A^{\prime}\right)^{r}$ is well-known because A^{\prime} is assumed to be a Jordan block; it may also be checked easily using induction. We have that

$$
\left(A^{\prime}\right)^{r}=\left(\begin{array}{cccc}
\lambda^{r} & 0 & 0 \ldots & 0 \\
r \lambda^{r-1} & \lambda^{r} & 0 \ldots & 0 \\
\frac{r(r-1)}{2!} \lambda^{r-2} & r \lambda^{r-1} & \lambda^{r} \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
\frac{r!}{(r-(k-1))!(k-1)!} \lambda^{r-(k-1)} \ldots & \frac{r(r-1)}{2!} \lambda^{r-2} & r \lambda^{r-1} & \lambda^{r}
\end{array}\right)
$$

with the understanding that if $r<k-1$, any terms of the form $\binom{r}{j} \lambda^{r-j}$ where $r<j$ are 0 . Arbitrary nonzero element of the matrix $\left(A^{\prime}\right)^{r}$ is of the form $\binom{r}{j} \lambda^{r-j}$ for some $j \leq k-1$.

Because $|\lambda| \leq 1$ we have that

$$
\begin{align*}
& \left|\binom{r}{j} \lambda^{r-j}\right| \leq\binom{ r}{j}=\frac{r(r-1) \cdots(r-(j-1))}{j!} \\
& \quad \leq r(r-1) \cdots(r-(j-1)) \leq r^{j} \leq n^{k-1} \tag{3}
\end{align*}
$$

Using the triangle inequality and Equation (7.1) we will obtain an upper bound on the entries of arbitrary $Y_{i}^{\prime}, 2 \leq i \leq n-1$. By Equation (7.1), we have that arbitrary summand is of the form

$$
\left(A^{\prime}\right)^{i-1} Y_{1}^{\prime}, C_{i}^{\prime}, \text { or }\left(A^{\prime}\right)^{i-j} C_{j}^{\prime}
$$

for $2 \leq j \leq i-1$. The modulus of entries in $\left(A^{\prime}\right)^{i-1} Y_{1}^{\prime}$ is bounded by $k n^{k-1} b^{\prime} c_{1}$; in C_{i}^{\prime} is bounded by b^{\prime}; and in $\left(A^{\prime}\right)^{i-j} C_{j}^{\prime}$ is bounded by $k n^{k-1} b^{\prime}$. Since there are at most n summands in Equation (7.1), we have that every entry of Y_{i}^{\prime} is bounded above by $k b^{\prime} c_{1} n^{k}$, and k depends upon A.

We will use Lemma 7.1 to prove the following.
Lemma 7.2. Let the $(n+k) \times n$ matrix M have $j^{\text {th }}$ column, for $j=1, \ldots, n$, given by $\left[0, \ldots, 0, d_{0}, d_{1}, \ldots, d_{k}, 0, \ldots, 0\right]^{T}$, where $d_{0}, d_{k} \neq 0$ and d_{0} first appears as the $j^{\text {th }}$ entry in this $j^{\text {th }}$ column. Suppose that $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is a solution to the system of equations $M X=B$, where $B=\left[b_{1}, b_{2}, \ldots, b_{n+k}\right]^{T}$. Then it is possible to bound the modules of all coordinates x_{1}, \ldots, x_{n} of the vector X such that $\left|x_{i}\right| \leq c b n^{k}$ where $b=\max _{j}\left\{\left|b_{j}\right|\right\}$ for every $1 \leq j \leq n+k$ and the constant c depends upon d_{0}, \ldots, d_{k} only.

Prior to proving Lemma 7.2 we prove an easier special case.
Lemma 7.3. It is possible to bound the coordinates x_{1}, \ldots, x_{k} of the vector X from Lemma 7.2 from above by b $\tilde{\gamma}$ where $b=\max \left\{\left|b_{j}\right|\right\}_{j=1, \ldots, n+k}$ and $\tilde{\gamma}=$ $\tilde{\gamma}\left(d_{0}, \ldots, d_{k-1}\right)$.

Proof. By Cramer's Rule, we have the explicit formula that

$$
\left|x_{i}\right|=\left|\frac{\operatorname{det}\left(L_{i}\right)}{\operatorname{det}(L)}\right|
$$

where L is the $k \times k$ upper left submatrix of M corresponding to the first k equations, and L_{i} is obtained by replacing column i in L with $\left[b_{1}, \ldots, b_{k}\right]^{T}$. Because $\operatorname{det}(L)=d_{0}^{k}$, it suffices to show that the desired bounds exist for $\operatorname{det}\left(L_{i}\right)$; that is, we must show that there exists a constant $\tilde{\gamma}$ depending on d_{0}, \ldots, d_{k-1} only such that $\left|\operatorname{det}\left(L_{i}\right)\right| \leq b \tilde{\gamma}$ for $i=1, \ldots, k$. By expanding along the $i^{\text {th }}$ column in L_{i}, we find that

$$
\operatorname{det}\left(L_{i}\right)= \pm b_{1} f_{1}\left(d_{0}, \ldots, d_{k-1}\right) \pm b_{2} f_{2}\left(d_{0}, \ldots, d_{k-1}\right) \pm \cdots \pm b_{k} f_{k}\left(d_{0}, \ldots, d_{k-1}\right)
$$

where for each $i=1, \ldots, k, f_{i}$ is a function of d_{0}, \ldots, d_{k-1} only obtained as the determinant of a submatrix containing none of b_{1}, \ldots, b_{k}. The proof is complete by the triangle inequality.

Note that the $\left|x_{j}\right|$ for $j=n-k+1, \ldots, n$ are similarly bounded by $b \bar{\gamma}$ for the same b and some $\bar{\gamma}=\bar{\gamma}\left(d_{0}, \ldots, d_{k-1}\right)$ as in Lemma 7.3. It is clear according to the proof of Lemma 7.3 that we may assume that $\left|x_{i}\right| \leq b \gamma$ for the same $\gamma=\gamma\left(d_{0}, \ldots, d_{k-1}\right)$ for all $i=1, \ldots, k, n-k+1, \ldots, n$.

We proceed with the Proof of Lemma 7.2.
Proof. It suffices to obtain upper bounds for $\left|x_{i}\right|$ when $n-k \geq i \geq k+1$.
For such indices, we have that

$$
d_{k} x_{i-k}+d_{k-1} x_{i+1-k}+\cdots+d_{0} x_{i}=b_{i}
$$

In other words,

$$
x_{i}=\xi_{i}+a_{1} x_{i-k}+a_{2} x_{i+1-k}+\cdots+a_{k} x_{i-1}
$$

where $\xi_{i}=\frac{b_{i}}{d_{0}}$ and $a_{j}=-\frac{d_{k-j+1}}{d_{0}}$. Let $X_{i}=\left[x_{i-k+1}, \ldots, x_{i}\right]^{T}$ and let $\Xi_{i}=$ $\left[0, \ldots, 0, \xi_{i}\right]^{T}$. Then for the matrix

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 \ldots & 0 \\
0 & 0 & 1 \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 \ldots & 0 & 1 \\
a_{1} & a_{2} \ldots & a_{k-1} & a_{k}
\end{array}\right)
$$

we have the recursive relationship

$$
X_{i}=A X_{i-1}+\Xi_{i}
$$

for $i=k, \ldots, n$. Observe that the matrix A depends on d_{0}, \ldots, d_{k} only.
We see by Lemma 7.3 that Lemma 7.1 applies to our situation. Therefore, the modules of coordinates of arbitrary $X_{i}, k+1 \leq i \leq n-k$ are bounded by $c^{\prime} b \gamma(n-k+1)^{k} \leq c b \gamma n^{k}$, where $c=c^{\prime} \gamma$ depends only on d_{0}, \ldots, d_{k}.

7.2 Estimating Word Length

In order to prove Theorem 1.1 we will establish a looser way of computing lengths in \mathbb{Z}^{r} wr $\mathbb{Z}, r \geq 1$ than the formula introduced in Lemma 3.3

Lemma 7.4. Let \mathbb{Z}^{r} wr \mathbb{Z} have standard generating set $\left\{a_{1}, \ldots, a_{r}, b\right\}$. Let a subgroup H of \mathbb{Z}^{r} wr \mathbb{Z} have generators of the form b, w_{1}, \ldots, w_{k} where each $w_{i} \neq 1$ is in the normal closure of a_{i} for $i=1, \ldots, k$. Then H is isomorphic to \mathbb{Z}^{k} wr \mathbb{Z}.

This follows from what has been established already. Each w_{i} generates a free cyclic $\mathbb{Z}[\langle b\rangle]$ submodule. By hypothesis, all w_{i} 's are in different direct summands, so they generate a free $\mathbb{Z}[\langle b\rangle]$ module of rank k.

We will only consider subgroups of \mathbb{Z}^{r} wr \mathbb{Z} that are of a special form, such as in the statement of Lemma 7.4. Such a subgroup H has generators b, w_{1}, \ldots, w_{k} where $w_{i} \in W$, and further, for each $i=1, \ldots, k$ we have that

$$
\begin{equation*}
w_{i}=\sum_{j=0}^{t_{i}} d_{i, j}\left(a_{i}\right)_{j} \tag{4}
\end{equation*}
$$

This follows without loss of generality by conjugating by a power of b. Then for any element $g \in H$, we may write

$$
\begin{equation*}
g=b^{n} \sum_{i=1}^{k} \sum_{q=s_{i}}^{s_{i}+p_{i}} z_{q}\left(w_{i}\right)_{q} \tag{5}
\end{equation*}
$$

for some $s_{i}, z_{q} \in \mathbb{Z}, p_{i} \geq 0$. In the generators of \mathbb{Z}^{r} wr \mathbb{Z} we may also write this element as

$$
\begin{equation*}
b^{n} \sum_{i=1}^{k} \sum_{j=s_{i}}^{s_{i}+p_{i}+t_{i}} y_{i, j}\left(a_{i}\right)_{j} \tag{6}
\end{equation*}
$$

for some $y_{i, j} \in \mathbb{Z}$. For this element, consider the norms

$$
e(g)=\sum_{i=1}^{k} \sum_{j=s_{i}}^{s_{i}+p_{i}+t_{i}}\left|y_{i, j}\right| \text { and } e_{H}(g)=\sum_{i=1}^{k} \sum_{q=s_{i}}^{s_{i}+p_{i}}\left|z_{q}\right| .
$$

Letting $\iota=\max _{i}\left\{t_{i}+s_{i}+p_{i}, 0\right\}, \varepsilon=\min _{i}\left\{s_{i}, 0\right\}, \iota_{H}=\max _{i}\left\{s_{i}+p_{i}, 0\right\}$ we define $u_{H}(g)=\iota_{H}-\varepsilon$ and $u(g)=\iota-\varepsilon$.

Consider the function

$$
h(l)=\max \left\{e_{H}(g): g \in H \cap W, e(g) \leq l \text { and } u(g) \leq l\right\} .
$$

The following Lemma shows that we may reduce computations of word length to computations with coefficients of polynomials.

Lemma 7.5. Let $H \leq \mathbb{Z}^{r}$ wr \mathbb{Z} be of the form $H=g p\left\langle b, w_{1}, \ldots, w_{k}\right\rangle$ where for each $i=1, \ldots, k$ we have that $w_{i}=\sum_{j=0}^{t_{i}} d_{i, j}\left(a_{i}\right)_{j}$, and $r \geq k$. Then we have that

$$
\Delta_{H}^{\mathbb{Z}^{r}} w r \mathbb{Z}(l) \approx h(l)
$$

Proof. Recall that by Lemma 3.3 as well as Lemma 7.4 we have the following formulas. For $g \in H$ with the notation established above, we have that: $|g|_{H}=$ $e_{H}(g)+\min \left\{-2 \varepsilon+\iota_{H}+\left|n-\iota_{H}\right|, 2 \iota_{H}-\varepsilon+|n-\varepsilon|\right\}$ and $|g|_{\mathbb{Z}^{r} \text { wr } \mathbb{Z}}=e(g)+$ $\min \{-2 \varepsilon+\iota+|n-\iota|, 2 \iota-\varepsilon+|n-\varepsilon|\}$.

The following inequality follows from the definitions:

$$
\begin{equation*}
\max \{e(g), u(g),|n|\} \leq|g|_{\mathbb{Z}^{r}} \text { wr } \mathbb{Z} \tag{7}
\end{equation*}
$$

Similarly, we have that

$$
\begin{equation*}
|g|_{H} \leq e_{H}(g)+2 u_{H}(g)+|n| \text { and }|g|_{\mathbb{Z}^{r}} \text { wr } \mathbb{Z} \leq e(g)+2 u(g)+|n| . \tag{8}
\end{equation*}
$$

Observe that for $g \in H \cap W$ we have that

$$
\begin{equation*}
|g|_{H} \geq \max \left\{e_{H}(g), u_{H}(g)\right\} \tag{9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\max \left\{u_{H}(g): g \in H, u(g) \leq l\right\} \leq l \tag{10}
\end{equation*}
$$

Thus,

$$
\begin{gathered}
\left.\Delta_{H}^{\mathbb{Z}^{r}} \operatorname{wr} \mathbb{Z}_{(} l\right) \leq \max \left\{e_{H}(g): g \in H, e(g) \leq l, u(g) \leq l\right\}+\max \left\{2 u_{H}(g): g \in H, u(g) \leq l\right\} \\
+\max \{|n|: g \in H,|n| \leq l\} \leq h(l)+3 l
\end{gathered}
$$

The first inequality follows from Equation (7), the second from Equation (8).
On the other hand, we have that

$$
\begin{gathered}
\Delta_{H}^{\mathbb{Z}} \mathrm{wr} \mathbb{Z}(l) \geq \max \left\{e_{H}(g): g \in H \cap W, e(g) \leq l / 4, u(g) \leq l / 4\right\} \\
-\max \left\{u_{H}(g): g \in H \cap W, e(g) \leq l / 4, u(g) \leq l / 4\right\} \geq h(l / 4)-l / 4
\end{gathered}
$$

The first inequality follows from Equation (8), the second from Equation (9), and the third from Equation (10).

Thus $\Delta_{H}^{\mathbb{Z}^{r}}$ wr $\mathbb{Z}(l)$ and $h(l)$ are equivalent.

7.3 Some Modules

In order to later obtain upper bounds on distortion of some subgroups of \mathbb{Z}^{r} wr \mathbb{Z} we will need the following auxiliary remarks about module theory. As usual, \mathbb{Z}^{r} wr \mathbb{Z} has standard generating set $\left\{a_{1}, \ldots, a_{r}, b\right\}$.

Let $H \leq \mathbb{Z}^{r}$ wr \mathbb{Z} be generated by b, as well as any elements $w_{1}, \ldots, w_{k} \in W$. Let V be the normal closure of w_{1}, \ldots, w_{k} in \mathbb{Z}^{r} wr \mathbb{Z}.

The following is proved in [FS].
Lemma 7.6. The ring $\mathbb{Q}[\langle b\rangle]$ is a principal ideal ring.
Let $\bar{V}=V \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\bar{W}=W \otimes_{\mathbb{Z}} \mathbb{Q}$. Observe that the groups \bar{W} and \bar{V} are free modules over $\mathbb{Q}[\langle b\rangle]$ of respective ranks r and $l \leq k$.

Lemma 7.7. The free $\mathbb{Q}[\langle b\rangle]$-modules \bar{V} and \bar{W} have bases $e_{1}^{\prime}, \ldots, e_{l}^{\prime}$ and $f_{1}^{\prime}, \ldots, f_{r}^{\prime}$ respectively such that

$$
e_{i}^{\prime}=u_{i}^{\prime} f_{i}^{\prime}, i=1, \ldots, l
$$

for some $u_{i}^{\prime} \in \mathbb{Q}[\langle b\rangle]$.
Proof. The statement of Lemma 7.7 is a result from module theory. It follows because by Lemma $7.6 \bar{W}$ is a free module over a prinicipal ideal ring with submodule \bar{V}. See for instance, B .

Remark 7.8. It follows that there exist $0<m, n \in \mathbb{Z}$ with $\left(m e_{i}^{\prime}\right)=u_{i}\left(n f_{i}^{\prime}\right)$ where $e_{i}=m e_{i}^{\prime} \in V, f_{i}=n f_{i}^{\prime} \in W, u_{i} \in \mathbb{Z}[\langle b\rangle]$. Moreover, the modules generated by $\left\{e_{1}, \ldots, e_{l}\right\}$ and $\left\{f_{1}, \ldots, f_{r}\right\}$ are free.

Remark 7.9. There is a bijective correspondence between the set of finitely generated $\mathbb{Z}[\langle b\rangle]$ submodules of $\mathbb{Z}[\langle b\rangle]^{r}$ and the set of subgroups $K \cap W$ of \mathbb{Z}^{r} wr \mathbb{Z} such that the finite set of generators of K is of the form $b, w_{1}, \ldots, w_{k}, w_{i} \in W$.

Remark 7.10. Let V_{1} and W_{1} be generated as submodules over $\mathbb{Z}[\langle b\rangle]$ by the elements from Remark 7.8; e_{1}, \ldots, e_{l} and f_{1}, \ldots, f_{r} respectively. Let H_{1} and G_{1} be subgroups of $\mathbb{Z}^{r} w r \mathbb{Z}$ generated by $\left\{b, V_{1}\right\}$ and $\left\{b, W_{1}\right\}$ respectively. It follows by Remark 7.8 that that $G_{1} \cong \mathbb{Z}^{r}$ wr \mathbb{Z} and $H_{1} \cong \mathbb{Z}^{l}$ wr \mathbb{Z}.

Remark 7.11. Observe that under the correspondence of Remark 7.9 that each generator of the group H_{1} is in the normal closure of only one generator of G_{1}. That is, for each $i, e_{i}=u_{i} f_{i}$ for $u_{i} \in \mathbb{Z}[\langle b\rangle]$ means that there exist expressions $e_{i}=\sum_{p=1}^{t_{i}} n_{i, p}\left(f_{i}\right)_{j_{i, p}}$.

Lemma 7.12. There exists $0<n^{\prime}, m^{\prime} \in \mathbb{N}$ so that $n^{\prime} W \subset W_{1} \subset W$, and $m^{\prime} V \subset V_{1} \subset V$.

Proof. By Remark 7.9 we have that V is a finitely generated $\mathbb{Z}[\langle b\rangle]$ module with generators w_{1}, \ldots, w_{k}. For each w_{i}, we have that the element $w_{i} \otimes 1 \in \bar{V}$. Therefore, by Lemma 7.7, there are $\lambda_{i, j} \in \mathbb{Q}[\langle b\rangle]$ so that $w_{i}=\sum_{j=1}^{l} \lambda_{i, j} e_{j}^{\prime}$. First observe that $m w_{i}=\sum_{j=1}^{l} \lambda_{i, j} e_{j}$, because $e_{i}=m e_{i}^{\prime} \in V$.

Next, there exists $M_{i} \in \mathbb{N}$ so that $M_{i} m w_{i}=\sum_{j=1}^{l} \mu_{i, j} e_{j} \in V_{1}$ where $\mu_{i, j} \in$ $\mathbb{Z}[\langle b\rangle]$. Let $m^{\prime}=M_{1} \ldots M_{k} m$. Then for any $v \in V$, we have that $v=\sum_{i=1}^{k} v_{i} w_{i}$ where $v_{i} \in \mathbb{Z}[\langle b\rangle]$, and therefore, $m^{\prime} v \in V_{1}$ as required. A similar argument works for obtaining n^{\prime}.

Lemma 7.13. Let \mathbb{Z}^{r} wr $\mathbb{Z}=G=W \lambda\langle b\rangle$ and let $K=\left\langle\left\langle w_{1}, \ldots, w_{k}\right\rangle\right\rangle^{G} \leq G$ be the normal closure of elements $w_{i} \in W$. Suppose that there exists $n \in \mathbb{N}$ and a finitely generated subgroup $K^{\prime} \leq K$ so that $n K \leq K^{\prime}$. Then

$$
\Delta_{\left\langle b, K^{\prime}\right\rangle}^{G}(l) \approx \Delta_{\langle b, K\rangle}^{G}(l)
$$

Proof. We will use the notation that $K_{1}=\operatorname{gp}\langle K, b\rangle, K_{1}^{\prime}=\operatorname{gp}\left\langle K^{\prime}, b\right\rangle, K_{1}^{\prime \prime}=$ $\operatorname{gp}\langle n K, b\rangle$. Observe that the mapping $\phi: G \rightarrow G: b \rightarrow b, w \rightarrow n w$ for $w \in W$ is an injective homomorphism which restricts to an isomorphism $K_{1} \rightarrow K_{1}^{\prime \prime}$. An easy computation which uses Lemma 3.3 and the definition of ϕ shows that for any $g \in K_{1}$, we have that

$$
\begin{equation*}
|g|_{G} \leq|\phi(g)|_{G} \leq n|g|_{G} \tag{11}
\end{equation*}
$$

where the lengths are computed in G with respect to the usual generating set $\left\{a_{1}, \ldots, a_{r}, b\right\}$.

Observe that under the map ϕ we have that

$$
\begin{equation*}
\text { for } h \in K_{1},|h|_{K_{1}}=|\phi(h)|_{K_{1}^{\prime \prime}}, \tag{12}
\end{equation*}
$$

where the lengths in $K_{1}^{\prime \prime}$ are computed with respect to the images under ϕ of a fixed generating set of K_{1}.

By their definitions, we have the embeddings

$$
\begin{equation*}
K_{1}^{\prime \prime} \leq K_{1}^{\prime} \leq K_{1} \stackrel{\phi}{\hookrightarrow} K_{1}^{\prime \prime} . \tag{13}
\end{equation*}
$$

By Equation (13) there exists $k^{\prime}>0$ depending only on the chosen generating sets of K_{1} and K_{1}^{\prime} so that

$$
\begin{equation*}
\text { for any } h \in K_{1}^{\prime},|h|_{K_{1}} \leq k^{\prime}|h|_{K_{1}^{\prime}} . \tag{14}
\end{equation*}
$$

It also follows by by Equation (13) that there exists a constant $k>0$ depending only on the chosen generating sets of $K_{1}^{\prime \prime}$ and K_{1}^{\prime} so that

$$
\begin{equation*}
\text { for any } h \in K_{1}^{\prime \prime},|h|_{K_{1}^{\prime}} \leq k|h|_{K_{1}^{\prime \prime}} \tag{15}
\end{equation*}
$$

First we show that $\Delta_{K_{1}^{\prime \prime}}^{G}(l) \preceq \Delta_{K_{1}}^{G}(l)$.
Let $g \in K_{1}^{\prime \prime}$ be such that $|g|_{G} \leq l$ and $|g|_{K_{1}^{\prime \prime}}=\Delta_{K_{1}^{\prime \prime}}^{G}(l)$. Then there exists $g^{\prime} \in K_{1}$ such that $\phi\left(g^{\prime}\right)=g$. Therefore, it follows that $\Delta_{K_{1}^{\prime \prime}}^{G}(l)=|g|_{K_{1}^{\prime \prime}}=$ $\left|\phi\left(g^{\prime}\right)\right|_{K_{1}^{\prime \prime}}=\left|g^{\prime}\right|_{K_{1}} \leq \Delta_{K_{1}}^{G}(l)$. The first and second equalities follow by definition, the third by Equation (12), and the inequality is true because by Equation (11) we have that $\left|g^{\prime}\right|_{G} \leq|\phi(g)|_{G}=|g|_{G} \leq l$.

We claim that $\Delta_{K_{1}}^{G}(l) \preceq \Delta_{K_{1}^{\prime}}^{G}(l)$.
Let $g \in K_{1}$ be such that $|g|_{K_{1}}=\Delta_{K_{1}}^{G}(l)$. Then $|g|_{K_{1}} \leq|\phi(g)|_{K_{1}} \leq$ $k^{\prime}|\phi(g)|_{K_{1}^{\prime}} \leq k^{\prime} \Delta_{K_{1}^{\prime}}^{G}(n l)$, which follows from Equations (14), (11) and by definition.

On the other hand, we will show that $\Delta_{K_{1}^{\prime}}^{G}(l) \preceq \Delta_{K_{1}^{\prime \prime}}^{G}(l)$. Let $g \in K_{1}^{\prime}$ be such that $|g|_{K_{1}^{\prime}}=\Delta_{K_{1}^{\prime}}^{G}(l)$. Then $|g|_{K_{1}^{\prime}} \leq|\phi(g)|_{K_{1}^{\prime}} \leq k|\phi(g)|_{K_{1}^{\prime \prime}} \leq k \Delta_{K_{1}^{\prime \prime}}^{G}(n l)$, which follows from Equations (15), (11) and by definition.

Therefore, we have that $\Delta_{K_{1}}^{G}(l) \preceq \Delta_{K_{1}^{\prime}}^{G}(l) \preceq \Delta_{K_{1}^{\prime \prime}}^{G}(l) \preceq \Delta_{K_{1}}^{G}(l)$.
Remark 7.14. Recall that the groups G_{1} and H_{1} were defined in Lemma 7.10. It follows from Lemmas 7.12 and 7.13 that the distortion functions

$$
\Delta_{G_{1}}^{G}(l) \approx \Delta_{G}^{G}(l) \approx l \text { and } \Delta_{H_{1}}^{G}(l) \approx \Delta_{H}^{G}(l)
$$

8 Upper Bounds on Distortion in \mathbb{Z}^{r} wr \mathbb{Z}

Our goal in this section is to obtain upper bounds on distortion of certain subgroups of \mathbb{Z}^{r} wr \mathbb{Z} having a special form. We use that $\left\{a_{1}, \ldots, a_{r}, b\right\}$ is the standard generating set of \mathbb{Z}^{r} wr \mathbb{Z}.
Lemma 8.1. Let a subgroup H of \mathbb{Z}^{r} wr \mathbb{Z} have generators of the form b, w_{1}, \ldots, w_{k} where each w_{i} is in the normal closure of a_{i} for $i=1, \ldots, k$. Then the distortion of H in \mathbb{Z}^{r} wr \mathbb{Z} is at most polynomial.

Proof. After conjugating by a power of b, we may assume without loss of generality that for each $i=1, \ldots, k$ we have expressions as in Equation (4), where $d_{i, 0}, d_{i, t_{i}} \neq 0$. Let us have an element $g \in H$. Then we may write g as in Equation (5) where for each $i=1, \ldots, k$ we have that $s_{i} \in \mathbb{Z}$ and $p_{i} \geq 0$. In the generators of \mathbb{Z}^{r} wr \mathbb{Z} this expression becomes that of Equation (6) for some $y_{i, j} \in \mathbb{Z}$. By Lemma 7.5 and using the notation introduced there, it suffices to show that the function $h(l)$ is bounded above by a polynomial. That is, we may suppose that $n=0, e(g) \leq l$ and $u(g) \leq l$. We need to show that $\sum_{i=1}^{k} \sum_{q=s_{i}}^{s_{i}+p_{i}}\left|z_{q}\right|$ is bounded from above by a polynomial in l.

For each $i=1, \ldots, k$ the expressions (5) and (6) yield a linear system of equations $M_{i} Z_{i}=Y_{i}$, where $Z_{i}=\left[z_{s_{i}}, \ldots, z_{s_{i}+p_{i}}\right]^{T}, Y_{i}=\left[y_{i, s_{i}}, \ldots, y_{i, t_{i}+s_{i}+p_{i}}\right]^{T}$ and

$$
M_{i}=\left(\begin{array}{ccccc}
d_{i, 0} & 0 & 0 & \ldots & 0 \\
d_{i, 1} & d_{i, 0} & 0 & \cdots & 0 \\
d_{i, 2} & d_{i, 1} & d_{i, 0} & \cdots & 0 \\
\vdots & \ldots & \ddots & \ddots & \vdots \\
d_{i, t_{i}} & d_{i, t_{i}-1} & \ldots & d_{i, 1} \ldots & 0 \\
0 & d_{i, t_{i}} & \ldots & d_{i, 2} \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \ldots & 0 & d_{i, t_{i}} & d_{i, t_{i}-1} \\
0 & \cdots & 0 & 0 & d_{i, t_{i}}
\end{array}\right)
$$

is an $\left(p_{i}+t_{i}+1\right) \times\left(p_{i}+1\right)$ matrix.
By Lemma 7.2 we have that for each $i=1, \ldots, k$ and for each $q=s_{i}, \ldots, s_{i}+$ p_{i} that $\left|z_{q}\right| \leq c y_{i}\left(p_{i}+1\right)^{t_{i}}$ where $c=c\left(d_{i, j}\right), y_{i}=\max \left\{\left|y_{i, j}\right|\right\}_{j=s_{i}, \ldots, s_{i}+t_{i}+p_{i}}$. Moreover, we know that for each $i, y_{i} \leq \sum_{j=s_{i}}^{t_{i}+s_{i}+p_{i}}\left|y_{i, j}\right| \leq e(g) \leq l$. It is not hard to check as well that $p_{i} \leq u(g) \leq l$ for each i. Therefore, letting $t=\max _{i}\left\{t_{i}\right\}$ we have that

$$
\sum_{i=1}^{k} \sum_{q=s_{i}}^{s_{i}+p_{i}}\left|z_{q}\right| \leq \sum_{i=1}^{k}\left(p_{i}+1\right) c y_{i}\left(p_{i}+1\right)^{t_{i}} \leq k c(l+1)^{t+2} .
$$

This completes the proof, because k, c and t depend only on the choice of generating set of H.

Remark 8.2. As the proof of Proposition 7.4 shows, for a subgroup H in \mathbb{Z} wr \mathbb{Z} generated by elements b, w only, for $w=\sum_{j=0}^{t} d_{j} a_{j}$ where $d_{0}, d_{t} \neq 0 \in W$, the polynomial upper bound has degree equal to the number $t+2$ appearing in the canonical form of w.

Applying Remark 8.2 to Proposition 6.3, we see that the subgroup $H=$ $\left\langle b, a(1-x)^{m-1}\right\rangle$ has distortion function at most l^{m+1}, up to equivalence. In fact, we can prove the following stronger result.
Lemma 8.3. Let $H=\left\langle b, w=a(1-x)^{m-1}\right\rangle \leq \mathbb{Z}$ wr \mathbb{Z}. Then the distortion of H in \mathbb{Z} wr \mathbb{Z} is at most l^{m}, up to equivalence.
Proof. We apply Lemma 7.5. It suffices to show that the function $h(l) \preceq l^{m}$. Let $h \in H \cap W$. We have an expression $h=w f(x)$ where f is a Laurent polynomial

$$
f(x)=\sum_{q=s}^{s+p} z_{s} x^{s}
$$

for some $s \in \mathbb{Z}, p \geq 0$. Then in the generators of \mathbb{Z} wr \mathbb{Z} we have that

$$
h=a(1-x)^{m-1} f(x)=a g(x), \text { where } g(x)=\sum_{j=s}^{m-1+s+p} y_{j} x^{j} .
$$

As in the proof of Lemma 8.1] we may suppose that $\sum_{j}\left|y_{j}\right| \leq l$ and $p \leq l$, and it suffices to prove that for each $q,\left|z_{q}\right| \leq\left(\sum_{j}\left|y_{j}\right|\right) l^{m-2}$. We have that in the ring of formal power series with integral coefficients,

$$
f(x)=\frac{g(x)}{(1-x)^{m-1}}=g(x)\left[\sum_{i=0}^{\infty} x^{i}\right]^{m-1}
$$

It follows by an easy induction argument that if $\left[\sum_{i=0}^{\infty} x^{i}\right]^{m-1}=\sum_{i=0}^{\infty} c_{i} x^{i}$ then for $i=0, \ldots, l$ we have that $\left|c_{i}\right| \leq(l+1)^{m-2}$. Now consider arbitrary coefficient z_{s+j} for $0 \leq j \leq p$. Then we have the formula $z_{s+j}=\sum_{i=s}^{s+j} y_{i} c_{s+j-i}$ and so

$$
\left|z_{s+j}\right| \leq \sum_{i=s}^{s+j}\left|y_{i}\right|\left|c_{s+j-i}\right| \leq(l+1)^{m-2} \sum_{i=s}^{s+j}\left|y_{i}\right|
$$

because $p \leq l$. Therefore the required bounds exist.

9 Distortion in \mathbb{Z}^{k} wr \mathbb{Z}

We are now able to formulate and prove the following, which constitutes a large component of the proof of Theorem [1.1.

Lemma 9.1. Let $0<k \in \mathbb{Z}$ be fixed.
(1) For every $m \in \mathbb{N}$, there is a 2-generated subgroup H of \mathbb{Z}^{k} wr \mathbb{Z} having distortion function

$$
\Delta_{H}^{\mathbb{Z}^{k} w r \mathbb{Z}}(l) \approx l^{m}
$$

(2) For any finitely generated subgroup $H \leq \mathbb{Z}^{k}$ wr \mathbb{Z} there exists $m \in \mathbb{N}$ such that the distortion of H in \mathbb{Z}^{k} wr \mathbb{Z} is

$$
\Delta_{H}^{\mathbb{Z}^{k} w r} \mathbb{Z}(l) \preceq l^{m} .
$$

First, we prove Part (1) of Lemma 9.1 for the group \mathbb{Z} wr \mathbb{Z}. In this case where $k=1$, part (1) of Lemma 9.1 follows in part from Proposition 6.3 which provides the polynomial lower bound of degree m on distortion. All that remains to be shown is that for the particular subgroup H constructed there, that $\Delta_{H}^{\mathbb{Z}} \mathrm{wr}^{\mathbb{Z}}(l) \preceq l^{m}$, which follows from Lemma 8.3. Now, for $k>1$ fixed, we may consider the subgroup H_{1} obtained by intersecting H with $L_{k}=$ $\operatorname{gp}\left\langle b^{k}, W\right\rangle \cong \mathbb{Z}^{k}$ wr \mathbb{Z}. Then we have that H_{1} is subnormal in L_{k} and that the distortion $\Delta_{H_{1}}^{\mathbb{Z}^{k}}$ wr $\mathbb{Z}(l) \approx \Delta_{H}^{\mathbb{Z}} \mathrm{wr} \mathbb{Z}(l)$, since the indices $\left[\mathbb{Z} \mathrm{wr} \mathbb{Z}: L_{k}\right]$ and $\left[H: H_{1}\right]$ are finite.

Remark 9.2. If we adopt the notation that the commutator $[a, b]=a^{-1} b^{-1} a b$, then we see that in \mathbb{Z} wr \mathbb{Z}, the element of W corresponding to the polynomial $a(1-x)^{m-1}$ is $\left.[\cdots[a, b], b], \cdots, b\right]^{-1}$ where the commutator is $(m-1)$-fold. This explains Corollary 1.2.

To prove part (2) of Lemma 9.1, we will set up some notation. Let H be any finitely generated subgroup of \mathbb{Z}^{k} wr \mathbb{Z} not contained in W. By Lemma 4.6 we may identify H with a subgroup of $G=\mathbb{Z}^{r}$ wr $\mathbb{Z}=W \lambda\langle b\rangle$ for some $r \geq 1$ such that the generators of H are of the form b, w_{1}, \ldots, w_{s}, where $w_{i} \in W$. The distortion of H in \mathbb{Z}^{r} wr \mathbb{Z} under this identification is equivalent to its distortion in \mathbb{Z}^{k} wr \mathbb{Z}. By the results of Section 7.3, we obtain subgroups

$$
H_{1} \leq G_{1} \leq G
$$

as in Remark 7.10.
In particular, by Remark 7.14, the embedding $G_{1} \leq G$ is undistorted, which together with Lemma 2.2 implies that $\Delta_{H_{1}}^{G_{1}}(l) \approx \Delta_{H_{1}}^{G}(l)$. By Remark 7.14 we also have that $\Delta_{H_{1}}^{G}(l) \approx \Delta_{H}^{G}(l)$. It follows that

$$
\Delta_{H}^{G}(l) \approx \Delta_{H_{1}}^{G_{1}}(l)
$$

By Remarks 7.10, 7.11 and Lemma 8.1 we have that $\Delta_{H_{1}}^{G_{1}}(l)$ is at most polynomial. That is to say, the subgroup H has at most polynomial distortion in \mathbb{Z}^{r} wr \mathbb{Z}, and so part (2) of Lemma 9.1 is proved.

We now return to one of the motivating ideas of this paper, and complete the explanation of Remark 1.3

Lemma 9.3. The group \mathbb{Z} wr \mathbb{Z} is the smallest metabelian group which embeds to itself as a normal distorted subgroup in the following sense. For any metabelian group G, if there is an embedding $\phi: G \rightarrow G$ such that $\phi(G) \unlhd G$ and $\phi(G)$ is a distorted subgroup in G, then there exists some subgroup H of G for which $H \cong \mathbb{Z}$ wr \mathbb{Z}.
Proof. By Lemma 2.2, we have that the group $G / \phi(G)$ is infinite, else $\phi(G)$ would be undistorted. Being a finitely generated solvable group, G must have a subnormal factor isomorphic to \mathbb{Z}. Because $\phi(G) \cong G$, one may repeat this argument to obtain a subnormal series in G with arbitrarily many infinite cyclic factors. Therefore, the derived subgroup G^{\prime} has infinite (rational) rank.

Since the group $B=G / G^{\prime}$ is finitely presented, the action of B by conjugation makes G^{\prime} a finitely generated left B module. Hence, $G^{\prime}=\langle B \circ C\rangle$ for some finitely generated $C \leq G^{\prime}$. Because it is a finitely generated abelian group, $B=\left\langle b_{k}\right\rangle \cdots\left\langle b_{1}\right\rangle$ is a product of cyclic groups. Therefore for some i we have a subgroup $A=\left\langle\left\langle b_{i-1}\right\rangle \cdots\left\langle b_{1}\right\rangle \circ C\right\rangle$ of finite rank in G^{\prime} but $\left\langle\left\langle b_{i}\right\rangle \circ A\right\rangle$ has infinite rank. Then A has an element such that the $\left\langle b_{i}\right\rangle$ submodule generated by a has infinite rank, and so it is a free $\left\langle b_{i}\right\rangle$ module. It follows that a and b, where $b_{i}=b G^{\prime}$, generate a subgroup of the form $\mathbb{Z} \mathrm{wr} \mathbb{Z}$.

10 The Case of A wr \mathbb{Z}

In this section, we will prove Theorem 1.1 Part (2). First we recall some basic similarities and differences between the groups \mathbb{Z}_{n}^{k} wr \mathbb{Z} and \mathbb{Z}^{k} wr \mathbb{Z}. Let $G=$ $\mathbb{Z}_{n}^{k} \mathrm{wr} \mathbb{Z}$, for $n \geq 2, k \geq 1$. It follows from DS that there is a presentation \mathbb{Z}_{n}^{k} wr $\mathbb{Z}=\left\langle a_{1}, \ldots, a_{k}, b \mid a_{i}^{n},\left[a_{i}, a_{j}\right],\left[a_{i}, b^{-x} a_{j} b^{x}\right], x \geq 0,1 \leq i, j \leq k\right\rangle$. Moreover, by [C] we have the length formula as in Lemma 3.3.

Remark 10.1. By Lemma 4.1 and an analogue of Lemma 4.6 we have that for any finitely generated nonabelian subgroup H of G, it suffices to consider generators of the form b, w_{1}, \ldots, w_{s} where $w_{i} \in W=\bigoplus_{\mathbb{Z}} \mathbb{Z}_{n}$ is a free module of rank k over the group ring $R=\mathbb{Z}_{n}[\langle b\rangle]$.

Although the notion of equivalence has only been defined for functions from \mathbb{N} to \mathbb{N}, we would like to define a notion of equivalence for functions on a finitely generated group. We say that two functions $f, g: G \rightarrow \mathbb{N}$ are equivalent if there exists $C>0$ such that for any $h \in G$ we have

$$
\frac{1}{C} f(h)-C \leq g(h) \leq C f(h)+C
$$

If there is a function $f: G \rightarrow \mathbb{N}$ such that $f \approx|\cdot|_{G}$, then for any subgroup H of $G, \Delta_{H}^{G}(l) \approx \max \left\{|h|_{H}: h \in H, f(h) \leq l\right\}$.
Lemma 10.2. For any $g \in G$, the following function $f: G \rightarrow \mathbb{N}$ is equivalent to the length in G. We have that

$$
f(g)=|t|+\epsilon_{M}+\iota_{N} \approx|g|_{G} .
$$

Proof. First let $g \in G$ have normal form as in the statement of Lemma 3.2 Then by Lemma 3.3 it follows that

$$
\begin{gathered}
|g|_{G} \leq(N+M)(n-1)+2\left(\iota_{N}+\varepsilon_{M}\right)+|t| \leq\left(\iota_{N}+1+\varepsilon_{M}\right)(n-1)+2\left(\iota_{N}+\varepsilon_{M}\right)+|t| \\
\leq(n+1)\left(\iota_{N}+\epsilon_{M}\right)+|t|+(n-1) \leq C f(g)+C
\end{gathered}
$$

where $C=n+1$. The computations follow from the definitions, as well as the fact that $\varepsilon_{M} \geq M, \iota_{N} \geq N-1$ and the length in \mathbb{Z}_{n}^{k} of each u_{i}, v_{j} is bounded from above by $n-1$. On the other hand, observe that $|g|_{G} \geq \max \left\{|t|, \iota_{N}+\varepsilon_{M}\right\}$. Therefore, $2|g|_{G} \geq f(g)$, so the two functions are equivalent.

We are now able to prove the following special case of Theorem 1.1 Part (2).
Lemma 10.3. If p is a prime, then any finitely generated subgroup of $G=$ \mathbb{Z}_{p}^{k} wr \mathbb{Z} is undistorted.

Proof. If p is a prime, then \mathbb{Z}_{p} is a field. This implies that the ring $R=\mathbb{Z}_{p}[\langle b\rangle]$ is a principal ideal ring, by [FS]. Consider a finitely generated subgroup H of G. Let $V=H \cap W$. Then V is a free R-module, being a finitely generated submodule of the free module W over the PIR R. Just as in Lemma 7.7, we have that V and W have bases e_{1}, \ldots, e_{l} and f_{1}, \ldots, f_{k} respectively, for $l \leq k$ such that

$$
\begin{equation*}
e_{i}=g_{i} f_{i}, i=1, \ldots, l \tag{16}
\end{equation*}
$$

for some $g_{i} \in R$. Thus we can choose the generators for G and H to be $\left\{b, f_{1}, \ldots, f_{k}\right\}$ and $\left\{b, e_{1}, \ldots, e_{l}\right\}$, respectively.

Without loss of generality, the g_{i} are regular (not Laurent) polynomials. Observe that $H \cong \mathbb{Z}_{p}^{l}$ wr \mathbb{Z}. Let $h \in H$ have normal form in the generators of H given by

$$
h=b^{t}\left(u_{1}\right)_{\iota_{1}} \cdots\left(u_{N}\right)_{\iota_{N}}\left(v_{1}\right)_{-\varepsilon_{1}} \cdots\left(v_{M}\right)_{-\varepsilon_{M}} .
$$

Then by Lemma $10.2,|h|_{H} \leq(p+1)\left(|t|+\iota_{N}+\varepsilon_{M}\right)+(p+1)$. We wish to compare this to the length of h in G, and by Lemma 10.2, it suffices to compare $|h|_{H}$ to $f(h)$. By Equation (18), we may obtain an expression for the normal form of h in the generators of G. For instance, $\left(u_{N}\right)_{\iota_{N}}=\left(e_{1}^{\alpha_{1}} \cdots e_{l}^{\alpha_{l}}\right)_{\iota_{N}}$, where at least one of $\alpha_{1}, \ldots, \alpha_{l}$ is nonzero modulo p. Introducing the notation that $g_{i}=\sum_{j=0}^{k_{i}} \beta_{j} x^{j}$ we have that $\left(u_{N}\right)_{\iota_{N}}=\left(\left(f_{1}\right)_{0}^{\beta_{1} \alpha_{1}} \cdots\left(f_{1}\right)_{k_{1}}^{\beta_{k} \alpha_{1}} \cdots\left(f_{l}\right)_{0}^{\beta_{1} \alpha_{l}} \cdots\left(f_{l}\right)_{k_{l}}^{\beta_{k} \alpha_{l}}\right)_{\iota_{N}}$, where at least one term $\left(f_{i}\right)_{0}^{\beta_{1} \alpha_{i}} \cdots\left(f_{i}\right)_{k_{i}}^{\beta_{k} \alpha_{i}}$ is nontrivial. Therefore, the largest subscript occurring in the normal form in the generators of G is of the form $\iota_{N}+j$, where $j \in \bigcup_{i=1}^{l}\left\{0, \ldots, k_{i}\right\}$. Using similar considerations on $\left(v_{M}\right)_{-\varepsilon_{M}}$, we see that the smallest negative subscript is of the form $\varepsilon_{M}-q$ for $q \in \bigcup_{i=1}^{l}\left\{0, \ldots, k_{i}\right\}$. Letting $k=\max _{i}\left\{k_{i}\right\}$, which is a constant that depends only on the choice of finite generating sets of G and H, we have that

$$
f(h)=|t|+\iota_{N}+\varepsilon_{M}+j-q \geq|t|+\iota_{N}+\varepsilon_{M}-k \geq\left(\frac{1}{p+1}\right)\left[|h|_{H}-(p+1)\right]-k .
$$

This implies that $|h|_{H} \leq c f(h)+c$ for $c=(p+1)(k+1)$, which implies that H is undistorted.

We are now prepared to prove Theorem 1.1 Part (1).
Proof. Let A be a finitely generated abelian group and consider $G=A$ wr $\mathbb{Z}=$ $A \mathrm{wr}\langle b\rangle$. There exists a series

$$
A=A_{0}>A_{1}>\cdots>A_{m} \cong \mathbb{Z}^{k}
$$

for $k \geq 0$ where A_{i-1} / A_{i} has prime order for $i=1, \ldots, m$. We claim that for any finitely generated subgroup $H \leq G$, there exists $n \geq 0$ such that $\Delta_{H}^{G}(l) \preceq l^{n}$.

We induct on m. If $m=0$, then $A \cong \mathbb{Z}^{k}$ and the claim holds by Theorem 1.1. Now let $m>0$. Observe that A_{1} is a finitely generated abelian group with a series $A_{1}>\cdots>A_{m} \cong \mathbb{Z}^{k}$ of length $m-1$. Therefore, by induction, any finitely generated subgroup in A_{1} wr \mathbb{Z} has distortion at most equivalent to a polynomial.

By Lemma 10.3, all finitely generated subgroups of $G_{1}=\left(A / A_{1}\right)$ wr \mathbb{Z} are undistorted. By induction, all finitely generated subgroups of $G_{2}=A_{1}$ wr \mathbb{Z} have at most polynomial distortion. Denote the natural homomorphism by $\phi: G \rightarrow G_{1}$. Let

$$
U=\underset{\langle b\rangle}{\bigoplus} A_{1}=\operatorname{ker}(\phi)
$$

Observe that $U \cdot\langle b\rangle \cong G_{2}$. The product is semidirect because U is a normal subgroup which meets $\langle b\rangle$ trivially, and it is isomorphic to the wreath product by definition: the action of b on the module $\bigoplus A_{1}$ is the same. Let H be a〈b〉
finitely generated subgroup in G. Suppose that H is not contained in W. It follows in this case by Remark 10.1 that we may assume that b is contained among the generators.

Let $R=\mathbb{Z}[\langle b\rangle]$. Observe that R is a Noetherian ring. This follows from basic algebra because \mathbb{Z} is a commutative Noetherian ring, so $\mathbb{Z}[[x]] \cong R$ is as well. Therefore, W is a finitely generated module over the Noetherian ring R, hence is Noetherian itself. Thus, the R-submodule $H \cap U$ is finitely generated. Let $\left\{w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right\}$ generate $H \cap U$ as a R-module. Let $\left\{b, w_{1}, \ldots, w_{s}\right\}$ be a set of generators of H modulo U; that is, the images of these elements generate the subgroup $H_{1}=H U / U \cong H / H \cap U$ of G_{1}. Then the set $\left\{b, w_{1}, \ldots, w_{s}, w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right\}$ generates H. Furthermore, the collection $\left\{b, w_{1}^{\prime}, \ldots, w_{r}^{\prime}\right\}$ generates the subgroup $H_{2}=\langle b\rangle \cdot(H \cap U)$ of G_{2}.

Let $g \in H$ have $|g|_{G} \leq l$. Then the image $g_{1}=\phi(g)$ in G_{1} belongs to H_{1}, because $g \in H$, and has length $|g|_{G_{1}} \leq l$ by Lemma 10.2 and definition of ϕ and G_{1}. It follows by Lemma 10.3 that H_{1} is undistorted in G_{1}. Therefore, there exists a linear function $f: \mathbb{N} \rightarrow \mathbb{N}$ (which does not depend on the choice of g) such that $\left|g_{1}\right|_{H_{1}} \leq f(l)$. That is to say, there exists a product P of at most $f(l)$
of the chosen generators $\left\{b, w_{1}, \ldots, w_{s}\right\}$ of H_{1} such that $P=g_{1}^{-1}$ in H_{1}. Taking preimages, we obtain that $g P \in U$.

Because H is a subgroup of G, there exists a constant c depending only on the choice of finite generating set of H such that for any $h \in H$ we have that

$$
\begin{equation*}
|h|_{G} \leq c|h|_{H} \tag{17}
\end{equation*}
$$

It follows by Equation (17) that

$$
\begin{equation*}
|g P|_{G} \leq|g|_{G}+|P|_{G} \leq|g|_{G}+c|P|_{H} \leq l+c f(l) \tag{18}
\end{equation*}
$$

Observe that $g P \in H_{2}$. This follows because $g P \in U$ by construction, and $g \in H$ by choice. Further, $P \in H$ because it is a product of some of the generators of H. Since $H_{2}=\langle b\rangle \cdot(H \cap U)$ we see that $g P \in H_{2}$. Using the fact that G and G_{2} are wreath products together with the length formula in Lemma 3.3. we have that for any $h \in G_{2}$,

$$
\begin{equation*}
|h|_{G_{2}} \leq|h|_{G} \tag{19}
\end{equation*}
$$

By induction, the finitely generated subgroup H_{2} of G_{2} has at most polynomial distortion. Therefore, there exists a function $F: \mathbb{N} \rightarrow \mathbb{N}$ such that $F(l) \approx l^{n}$ for some $n \geq 1$ and such that for any $h \in H_{2}$,

$$
\begin{equation*}
|h|_{H_{2}} \leq F\left(|h|_{G_{2}}\right) . \tag{20}
\end{equation*}
$$

Since $g P \in H_{2}$, we have that

$$
|g P|_{H_{2}} \leq F\left(|g P|_{G_{2}}\right) \leq F\left(|g P|_{G}\right) \leq F(l+c f(l))
$$

The first inequality follows from Equation (20), the second from Equation (19), and the last from Equation (18).

Because $H_{2} \leq H$ there is a constant k such that for any $h \in H_{2},|h|_{H} \leq$ $k|h|_{H_{2}}$.

Combining all previous estimates, we compute that

$$
|g|_{H} \leq|g P|_{H}+|P|_{H} \leq k|g P|_{H_{2}}+f(l) \leq k F(l+c f(l))+f(l)
$$

The right-hand side is bounded by a polynomial function since f is linear, and F is polynomial.

If the subgroup H had been abelian, it follows by induction that it is undistorted, because the finitely generated group $H \cap U$ is also abelian, and so its distortion in G_{2} is linear.

Remark 10.4. It follows by the same induction argument above that all finitely generated subgroups in A wr \mathbb{Z} where A is finite abelian are undistorted. For in this case, $k=0$ and so $F(l)$ is linear. Therefore, Theorem 1.1 Part (2) is also proved.

Now we complete the proof of Theorem 1.1 Part (3). Let A be a finitely generated abelian group of rank k. Consider the 2 -generated subgroup $H \leq$ \mathbb{Z}^{k} wr \mathbb{Z} constructed in Lemma 9.1 Part (2). By the above induction argument, we have that the distortion of the subgroup H in A wr \mathbb{Z} is at most equivalent to its distortion in \mathbb{Z}^{k} wr \mathbb{Z}. The required lower bound on distortion follows from the fact that \mathbb{Z}^{k} wr \mathbb{Z} is a subgroup of A wr \mathbb{Z}.

References

[B] Bourbaki, N., Algebra II, Springer, 2003.
[C] Cleary, S., Distortion of Wreath Products in Some Finitely Presented Groups, Pacific J. Math. 228, No. 1, 2006, 53-61.
[CT] Cleary, S., Taback, J., Dead End Words in Lamplighter Groups and Wreath Products, Quart. J. Math. 56, 2005, 165-178.
[DS] Drozd, Yu. A., Skuratovski, R. V., Generators and Relations for Wreath Products, Ukrainian Math. J., Vol. 60, No. 7, 2008 , 1168-1171.
[F] Farb, B., The Extrinsic Geometry of Subgroups and the Generalized Word Problem, Proceedings of the London Math. Society, 3, 68, No. 3, 1994, 577-593.
[FS] Farkas, D., Snider, R., When is the Augmentation Ideal Principal, Archiv der Mathematik, Vol. 33, No. 1, Birkhauser Basel, 2005, 348-350.
[Go] Gould, H., Combinatorial Identities; a Standardized Set of Tables Listing 500 binomial Coefficient Summations, Morgantown, W. Va., Rev. Ed. 1972.
[Gr] Gromov, M., Geometric Group Theory: Asymptotic Invariants of Infinite Groups, London Mathematical Society Lecture Notes, Series 182, Cambridge University Press, 1993.
[GS] Guba, V., Sapir, M., On Subgroups of R. Thompson's Group F and Other Diagram Groups, Math. Sbornik, 190, 8, 1999, 1077-1130.
[M] Magnus W., On a Theorem of Marshall Hall, Ann. Math., 40, 1939, 764768.
[RS] Remeslennikov, V, Sokolov, V., Some Properties of a Magnus Embedding, Algebra and Logic, Vol. 9, No. 5, 1970, 342-349. Translated from Russian in Algebra i Logika, Vol. 9, No. 5, 1970, 566-578.
[S] Shmelkin, A., Free Polynilpotent Groups, Izv. Akad. Nauk. SSSR, Ser. Mat., Vol 28, 1964, 91-122.
[U] Umirbaev, U., Occurrence Problem for Free Solvable Groups, Algebra and Logic, Vol. 34, No. 2, 1995.

