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Decomposition Theorem for Perverse sheaves on Artin stacks

Shenghao Sun

Abstract

We generalize the decomposition theorem for perverse sheaves to Artin stacks with
affine automorphism groups over finite fields and over the complex numbers. During
the proof, we also give the generic base change theorem for f∗ on stacks, and some
results on comparison between derived categories of different topoi.

1 A counter-example: BE.

Let E be a complex elliptic curve, and let f : pt=Spec C→ BE be the natural projection;
this is a representable proper map. There is a natural non-zero morphism CBE → Rf∗Cpt,
adjoint to the isomorphism f∗CBE ≃ Cpt, but there is no non-zero morphism in the other
direction, because

Hom(Rf∗Cpt,CBE) = Hom(Cpt, f
!CBE) = Hom(Cpt,Cpt[2]) = 0.

Here the Hom’s are taken in the derived categories. Similarly, the non-zero natural map
Rf∗Cpt → R2f∗Cpt[−2] = CBE [−2] lies in

Hom(Rf∗Cpt,CBE [−2]) = Hom(Cpt, f
!CBE [−2]) = Hom(Cpt,Cpt) = C,

but the Hom set in the other direction is zero:

Hom(CBE [−2], Rf∗Cpt) = Hom(f∗CBE [−2],Cpt) = Hom(Cpt[−2],Cpt) = 0.

Therefore, Rf∗C is not semi-simple of geometric origin (since it is not a direct sum of the
p
H i(f∗C)[−i]’s). The same argument applies to finite fields, with C replaced by Qℓ.

Remark 1.1. This example was first given by Drinfeld, who asked for the reason of the
failure of the usual argument for schemes. Later, it was communicated by J. Bernstein to
Y. Varshavsky, who asked M. Olsson in an email correspondence. Olsson kindly shared this
email with me, and explained to me that the reason is the failure of the upper bound of
weights in [4] for stacks.

In the following we explain why the usual proof (as in [3]) fails for f. The proof in [3] of
the decomposition theorem over C relies on the decomposition theorems over finite fields
([3], 5.3.8, 5.4.5), so it suffices to explain why the proof of ([3], 5.4.5) fails for f, for an
elliptic curve E/Fq.

Let K0 = Rf∗Qℓ. The perverse t-structure agrees with the trivial t-structure on Spec Fq,
and by definition ([12], 4), we have p

H iK0 = H i+1(K0)[−1] on BE, and so
⊕

i

(pH iK)[−i] =
⊕

i

(H iK)[−i].

Each Rif∗Qℓ[−i] is pure of weight 0. In the proof of ([3], 5.4.5), the exact triangles

τ<iK0
// τ≤iK0 // (H iK0)[−i] //
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split geometrically, because Ext1((H iK)[−i], τ<iK) has weights > 0. We will see that
for f : Spec Fq → BE, this group is pure of weight 0, and in fact has 1 as a Frobenius
eigenvalue. For simplicity, we denote H i(X ,Qℓ) by H

i(X ).
Let π : BE → Spec Fq be the structural map; then π ◦ f = id. Since E is connected,

the sheaves Rif∗Qℓ are inverse images of some sheaves on Spec Fq, namely f∗Rif∗Qℓ. By
smooth base change, they are isomorphic to π∗H i(E) as Gal(Fq)-modules. In particular,
R0f∗Qℓ = Qℓ, R

1f∗Qℓ
∼= π∗H1(E) and R2f∗Qℓ = Qℓ(−1). Then the exact triangle above

becomes

i = 2 : τ≤1K0 // K0
// Qℓ(−1)[−2]

//

i = 1 : Qℓ
// τ≤1K0 // π∗H1(E)[−1] // .

Apply Ext∗(Qℓ(−1)[−2],−) to the second triangle. One can computeH∗(BE) by a theorem
of Borel (see ([17], 7)): H2i−1(BE) = 0, and H2i(BE) = SymiH1(E). Let α and β be the
eigenvalues of the Frobenius F on H1(E). We have

Ext1(Qℓ(−1)[−2],Qℓ) = Ext3(Qℓ,Qℓ(1)) = H3(BE)(1) = 0,

and

Ext1(Qℓ(−1)[−2], π
∗H1(E)[−1]) = H2(BE)⊗H1(E)(1) = H1(E)⊗H1(E)(1) = End(H1(E)),

which is 4-dimensional with eigenvalues α/β, β/α, 1, 1, and

Ext2(Qℓ(−1)[−2],Qℓ) = H4(BE)(1),

which is 3-dimensional with eigenvalues α/β, β/α, 1. This implies that the kernel

Ext1(Qℓ(−1)[−2], τ≤1K) =

Ker
(
Ext1(Qℓ(−1)[−2], π

∗H1(E)[−1])→ Ext2(Qℓ(−1)[−2],Qℓ)
)

is non-zero, pure of weight 0, and has 1 as a Frobenius eigenvalue. So the first exact triangle
above does not necessarily (in fact does not, as the argument in the beginning shows) split
geometrically. Also

Ext1(π∗H1(E)[−1],Qℓ) = Ext2(Qℓ, π
∗H1(E)∨) = H1(E)⊗H1(E)∨ = End(H1(E))

is 4-dimensional and has eigenvalues α/β, β/α, 1, 1, hence the proof for the geometric split-
ting of the second exact triangle fails too.

In [12], Laszlo and Olsson generalized the theory of perverse sheaves to Artin stacks
locally of finite type over some field. In [17], we proved that for Artin stacks of finite type
over a finite field, with affine automorphism groups (defined below), Deligne’s upper bound
of weights for the compactly supported cohomology groups still applies. In this paper, we
will show that for such stacks, similar argument as in [3] gives the decomposition theorem.

Organization. In §2 we complete the proof of the structure theorem for ι-mixed
sheaves on stacks, as claimed in ([17], 2.7). In §3, we generalize the decomposition theorem
for perverse sheaves on stacks over finite fields, using weight theory. In §4 we prove the
generic base change for f∗ and RH om, and in §5 we use this result to prove a comparison
between bounded derived categories with prescribed stratification over the complex numbers
and over an algebraic closure of a finite field, as well as a comparison between the lisse-
étale topos and the lisse-analytic topos of a C-stack, and then finish the proof of the
decomposition theorem over C.
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Notations and Conventions 1.2. We fix an algebraic closure F of the finite field Fq with
q elements. Let F or Fq be the q-geometric Frobenius, namely the q-th root automorphism

on F. Let ℓ be a prime number, ℓ 6= p, and fix an isomorphism of fields Qℓ
ι
→ C. For

simplicity, let |α| denote the complex absolute value |ια|, for α ∈ Qℓ.
By an Artin stack, or an algebraic stack, we mean an algebraic stack in the sense of M.

Artin ([9], 4.1) of finite type over the base.
Objects over Fq will be denoted with an index 0. For instance, ifK0 is a Qℓ-sheaf complex

on an Artin stack X0 over Fq, then K denotes its inverse image on X := X0 ⊗Fq F.
For a field k, let Gal(k) denote its absolute Galois group Gal(ksep/k). By a variety over

k we mean a separated reduced k-scheme of finite type.
For a map f : X → Y and a sheaf complex K on Y, we sometimes write Hn(X,K)

for Hn(X, f∗K).We will write Hn(X ) for Hn(X ,Qℓ), and h
n(X ,F ) for dimHn(X ,F ),

and ditto for Hn
c (X ) and hnc (X ,F ).

We will denote Rf∗, Rf!, Lf
∗ and Rf ! by f∗, f!, f

∗ and f ! respectively. We will only
consider the middle perversity.

Acknowledgment.

I would like to thank my advisor Martin Olsson for introducing this topic to me, and
gave so many suggestions during the writing.

2 The prototype: the structure theorem of mixed sheaves

on stacks.

We generalize the structure theorem of ι-mixed sheaves ([4], 3.4.1) to stacks. This result
is independent from other results in this paper, but it is the prototype, in some sense I
think, of the corresponding results (e.g. weight filtrations and the decomposition theorem)
for perverse sheaves.

Theorem 2.1. (stack version of ([4], 3.4.1)) Let X0 be an Fq-algebraic stack.
(i) Every ι-mixed sheaf F0 on X0 has a unique decomposition F0 =

⊕
b∈R/Z F0(b),

called the decomposition according to the weights mod Z, such that the punctual ι-weights
of F0(b) are all in the coset b. This decomposition, in which almost all the F0(b)’s are zero,
is functorial in F0.

(ii) Every ι-mixed lisse sheaf F0 with integer punctual ι-weights on X0 has a unique
finite increasing filtration W by lisse subsheaves, called the weight filtration, such that GrWi
is punctually ι-pure of weight i. Every morphism between such sheaves on X0 is strictly
compatible with their weight filtrations.

(iii) If X0 is a normal algebraic stack, and F0 is a lisse and punctually ι-pure sheaf on
X0, then F on X is semi-simple.

Proof. (i) and (ii) are proved in ([17], 2.6.1), where (iii) is claimed to hold without giving
a detailed proof. Here we complete the proof of (iii).

First of all, note that we may replace X0 and F0 by X0 ⊗ Fqv and F0 ⊗ Fqv , for any
finite base change Fqv/Fq.

From the proof of ([12], 8.3), we see that if U ⊂ X is an open substack, and GU is a
subsheaf of F |U , then it extends to a unique subsheaf G ⊂ F . Therefore, we may shrink
X to a dense open substack U , and replace X0 by some model of U over a finite extension
Fqv . We can assume X0 is smooth and geometrically connected.
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Following the proof ([4], 3.4.5), it suffices to show ([4], 3.4.3) for stacks. We claim that,
if F0 is lisse and punctually ι-pure of weight w, then H1(X ,F ) is ι-mixed of weights
≥ 1 + w. The conclusion follows from this claim.

Let D = dimX0. By Poincaré duality, it suffices to show that, for every lisse sheaf
F0, punctually ι-pure of weight w, H2D−1

c (X ,F ) is ι-mixed of weights ≤ 2D− 1 +w. To
show this, we may shrink X0 to open substacks, and hence we may assume that the inertia
I0 →X0 is flat. As in the proof of ([17], 1.4), we have the spectral sequence

Hr
c (X,R

kπ!F ) =⇒ Hr+k
c (X ,F ),

so let r + k = 2D − 1. Note that k can only be of the form −2i − 2d, for i ≥ 0, where
d = rel.dim(I0/X0). So we have r = 2dimX0 + 2i − 1, and in order for Hr

c (X,−) to be
non-zero, i = 0. Then

H2D−1
c (X ,F ) = H2 dimX−1

c (X,R−2dπ!F ).

It suffices to show that H−2d
c (BG,F ) has weights ≤ w − 2d, where G0 is an algebraic

group of dimension d, and F0 is a lisse punctually ι-pure sheaf on BG0 of weight w. In
fact, R−2dπ!F is punctually ι-pure of weight w − 2d. We reduce to the case where G0 is
connected, and the claim is clear.

3 Decomposition theorem for stacks over Fq.

For an algebraic stack X0/Fq, let Dm(X0,Qℓ) be the full subcategory of ι-mixed sheaf
complexes in Dc(X0,Qℓ) ([17], 2.3iii). It is stable under the perverse truncations pτ≤0

and pτ≥0. This can be checked smooth locally, and hence follows from ([17], 2.10) and
([3], 5.1.6). The core of Dm(X0,Qℓ) with respect to this induced perverse t-structure is
called the category of ι-mixed perverse sheaves on X0, denoted Pervm(X0). This is a Serre
subcategory of Perv(X0).

In fact, Lafforgue proved the conjecture of Deligne that, all (Weil) sheaves are ι-mixed,
for any ι. Using this result, Dm(X0,Qℓ) = Dc(X0,Qℓ) and Pervm(X0) = Perv(X0). But
to emphasize the condition of ι-mixedness, we still write “Dm” and “Pervm” in this paper.

Definition 3.1. Let K0 ∈ Dm(X0,Qℓ).
(i) We say that K0 has ι-weights ≤ w if for each i ∈ Z, the punctual ι-weights of H iK0

are ≤ i + w, and we denote by D≤w(X0,Qℓ) the subcategory of such complexes. We say
that K0 has ι-weights ≥ w if its Verdier dual DK0 has ι-weights ≤ −w, and denote by
D≥w(X0,Qℓ) the subcategory of such complexes.

(ii) For a coset b ∈ R/Z, we say that K0 has ι-weights in b if the punctual ι-weights of
H iK0 are in b, for all i ∈ Z.

Lemma 3.2. Let P : X ′
0 → X0 be a representable surjection of Fq-algebraic stacks, and

K0 ∈ Dc(X0,Qℓ). Then K0 is ι-mixed of weights ≤ w (resp. ≥ w) if and only if P ∗K0

(resp. P !K0) is so.

Proof. It suffices to consider only the case where K0 has weights ≤ w, since the other
statement is dual to this one. The “only if” part is obvious. The “if” part for ι-mixedness
follows from ([17], 2.8), and the “if” part for the weights follows from the surjectivity of
P.

In particular, this applies to the case where P is a presentation.
We say that an Fq-algebraic stack X0 has affine automorphism groups if for every integer

v ≥ 1 and every x ∈X0(Fqv), the automorphism group scheme Autx over k(x) is affine. In
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the following, some results require the stack to have affine automorphism groups. We will
first give results that apply to all stacks, and then give those that require this condition.

The following lemma is the perverse sheaf version of (2.1i).

Lemma 3.3. Every ι-mixed perverse sheaf F0 on X0 has a unique decomposition F0 =⊕
b∈R/Z F0(b) into perverse subsheaves, called the decomposition according to the weights

mod Z, such that for each coset b, the ι-weights of F0(b) belong to b. This decomposition,
in which almost all the F0(b)’s are zero, is functorial in F0.

Proof. By descent theory ([12], 7.1) we reduce to the case where X0 = X0 is a scheme. One
can further replace X0 by the disjoint union of finitely many open affines, and assume X0

is separated. We want to reduce to the case where X0 is proper.
Let j : X0 →֒ Y0 be a Nagata compactification, i.e. an open dense immersion into a

proper scheme Y0, and assume we have the existence and uniqueness of the decomposition
of any ι-mixed perverse sheaf on Y0 according to the weights mod Z, and the decomposition
is functorial. Let

j!∗F0 =
⊕

b∈R/Z

G0(b)

be the decomposition for j!∗F0. Applying j
∗ we get a decomposition

F0 =
⊕

b∈R/Z

j∗G0(b).

Note that j∗ takes a perverse sheaf to a perverse sheaf. This shows the existence. For
uniqueness, let F0 =

⊕
b F0(b) be another such decomposition. Then we have

j!∗F0 =
⊕

b∈R/Z

j!∗F0(b).

Following the proof in [3] we see that j!∗F0(b) is ι-mixed of weights in b (by twisting, we
may assume F0(b) is ι-mixed of integer weights, then follow the proof in ([3], 5.3.1) to
show j!∗ preserves ι-mixedness with integer weights, and finally twist back). By uniqueness
of the decomposition for j!∗F0 we have j!∗F0(b) = G0(b), and so F0(b) = j∗G0(b). For
functoriality, given a morphism F0 → G0 between ι-mixed perverse sheaves on X0, we get
a morphism j!∗F0 → j!∗G0 of ι-mixed sheaves on Y0, which respects their decompositions
by assumption, and then apply j∗.

So we may assume that X0/Fq is proper. Let a be the structural map of X0/Fq. Let K0

and L0 in Db
c(X0,Qℓ) be ι-pure complexes of ι-weights w and w′, respectively, and assume

w − w′ /∈ Z. Then we claim that Ext1(K0, L0) = 0. From the exact sequence ([3], 5.1.2.5)

0 // Exti−1(K,L)F // Exti(K0, L0) // Exti(K,L)F // 0

we see it suffices to show that 1 cannot be a Frobenius eigenvalue on Exti(K,L), for every
i. Note that RH om(K0, L0) = D(K0 ⊗

L DL0) is ι-pure of weight w′ − w, by the spectral
sequence

H
i(K0 ⊗

L
H

jDL0) =⇒H
i+j(K0 ⊗

L DL0)

and the similar one for the first factor K0. Consider the spectral sequence

Ria∗R
j
H om(K0, L0) =⇒ Ri+j(a∗H om)(K0, L0).

Since a∗ = a!, by ([4], 3.3.10) we see that the ι-weights of Exti(K,L) cannot be integers.
Therefore Ext1(K0, L0) = 0.
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For every b ∈ R/Z, we apply ([3], 5.3.6) to Pervι-mix(X0), taking S+ (resp. S−) to
be the set of isomorphism classes of simple ι-mixed perverse sheaves (and hence ι-pure
(3.5)) of weight not in b (resp. in b). Then for every ι-mixed perverse sheaf F0, we get
a unique subobject F0(b) with ι-weights in b, such that F0/F0(b) has ι-weights not in b,
and F0(b) is functorial in F0. As we see from the argument above, this extension splits:
F0 = F0(b) ⊕F0/F0(b), so by induction we get the decomposition, which is unique and
functorial.

Lemma 3.4. (stack version of ([3], 5.3.2)) Let j : U0 →֒X0 be an immersion of algebraic
stacks. Then for any real number w, the intermediate extension j!∗ ([12], 6) respects Perv≥w

and Perv≤w. In particular, if F0 is an ι-pure perverse sheaf on U0, then j!∗F0 is ι-pure of
the same weight.

Proof. For a closed immersion i, we see that i∗ respects D≥w and D≤w, so we may assume
that j is an open immersion. We only need to consider the case for Perv≤w, since the case
for Perv≥w follows from j!∗D = Dj!∗.

Let P : X0 →X0 be a presentation, and let the following diagram be 2-Cartesian:

U0
j′ //

P ′

��

X0

P
��

U0 j
// X0.

For F0 ∈ Perv≤w(U0), by (3.2) it suffices to show that P ∗j!∗F0 ∈ D≤w(X0,Qℓ). Let d be
the relative dimension of P. By ([12], 6.2) we have

P ∗j!∗F0 = (P ∗(j!∗F0)[d])[−d] = j′!∗(P
′∗
F0[d])[−d].

Since P ′∗F0 ∈ D≤w, P
′∗F0[d] ∈ D≤w+d, and by ([3], 5.3.2), j′!∗(P

′∗F0[d]) ∈ Perv≤w+d,
and by definition P ∗j!∗F0 ∈ D≤w.

Corollary 3.5. (stack version of ([3], 5.3.4)) Every ι-mixed simple perverse sheaf F0 on
an algebraic stack X0 is ι-pure.

Proof. By ([12], 8.2ii), there exists a d-dimensional irreducible substack j : V0 →֒ X0 such
that Vred is smooth, and a simple ι-mixed (hence ι-pure) lisse sheaf L0 on V0 such that
F0
∼= j!∗L0[d]. The result follows from (3.4).

The stack version of ([3], 5.3.5) is given in ([12], 9.2), and the following is a variant for
ι-mixed perverse sheaves with integer weights (3.1ii), which is the perverse sheaf version of
(2.1ii).

Theorem 3.6. Let F0 be an ι-mixed perverse sheaf on X0 with integer weights. Then there
exists a unique finite increasing filtration W of F0 by perverse subsheaves, called the weight
filtration, such that GrWi F0 is ι-pure of weight i, for each i. Every morphism between such
perverse sheaves on X0 is strictly compatible with their weight filtrations.

Proof. As in ([12], 9.2), we may assume X0 = X0 is a scheme. The proof in ([3], 5.3.5)
still applies. Namely, by (3.9ii), if F0 and G0 are ι-pure simple perverse sheaves on X0, of
ι-weights f and g respectively, and f > g, then Ext1(G0,F0) = 0. Then take S+ (resp. S−)
to be the set of isomorphism classes of ι-pure simple perverse sheaves on X0 of ι-weights
> i (resp. ≤ i) for each integer i, and apply ([3], 5.3.6).
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Theorem 3.7. (stack version of ([3], 5.4.1, 5.4.4)) Let K0 ∈ D
b
m(X0,Qℓ). Then K0 has

ι-weights ≤ w (resp. ≥ w) if and only if p
H iK0 has ι-weights ≤ w+ i (resp. ≥ w+ i), for

each i ∈ Z. In particular, K0 is ι-pure of weight w if and only if each p
H iK0 is ι-pure of

weight w + i.

Proof. The case of “ ≥ ” follows from the case of “ ≤ ” and p
H i ◦D = D ◦ p

H −i. So we
only need to show the case of “ ≥ ”.

Let P : X0 →X0 be a presentation of relative dimension d. Then K0 has ι-weights ≤ w
if and only if (3.2) P ∗K0 has ι-weights ≤ w, if and only if ([3], 5.4.1) each p

H i(P ∗K0) has
ι-weights ≤ w + i. We have p

H i(P ∗K0) = p
H i(P ∗(K0[−d])[d]) = P ∗pH i(K0[−d])[d] =

P ∗(pH i−dK0)[d], so P
∗(pH i−dK0), and hence p

H i−dK0, has ι-weights ≤ w + i− d.

In the following results, except (3.8i, ii, iv, v), we will need the assumption of affine
automorphism groups.

Proposition 3.8. (stack version of ([3], 5.1.14)) (i) The Verdier dual D interchanges D≤w

and D≥−w.
(ii) For every morphism f of Fq-algebraic stacks, f∗ respects D≤w and f ! respects D≥w.
(iii) For every morphism f : X0 → Y0, where X0 is an Fq-algebraic stack with affine

automorphism groups, f! respects D
−,stra
≤w and f∗ respects D+,stra

≥w .

(iv) ⊗L takes D−
≤w ×D

−
≤w′ into D

−
≤w+w′.

(v) RH om takes D−
≤w ×D

+
≥w′ into D

+
≥w′−w.

Proof. (i), (ii) and (iv) are clear, and (v) follows from (iv). For (iii), if X0 has affine
automorphism groups, so are all fibers f−1(y), for y ∈ Y0(Fqv ), and the claim for f! follows
from the spectral sequence

H i
c(f

−1(y),H jK) =⇒ H i+j
c (f−1(y),K)

and ([17], 1.4), and the claim for f∗ follows from ([17], 2.10, 3.8) and the claim for f!.

Corollary 3.9. (stack version of ([3], 5.1.15)) Let X0 be an Fq-algebraic stack with affine
automorphism groups, and let a : X0 → Spec Fq be the structural map. Let K0 (resp. L0)
be in D−

≤w(X0,Qℓ) (resp. D
+
>w(X0,Qℓ)) for some real number w. Then

(i) a∗RH om(K0, L0) is in D+
>0(Spec Fq,Qℓ).

(ii) Exti(K0, L0) = 0 for i > 0.
If L0 ∈ D

+
≥w, then a∗RH om(K0, L0) is in D+

≥0, and we have

(iii) Exti(K,L)F = 0 for i > 0. In particular, for i > 0, the morphism Exti(K0, L0)→
Exti(K,L) is zero.

The proof is the same as ([3], 5.1.15), using the above stability result for stacks with
affine automorphism groups.

The following is a perverse sheaf version of (2.1iii).

Theorem 3.10. (stack version of ([3], 5.3.8)) Let X0 be an Fq-algebraic stack with affine
automorphism groups. Then every ι-pure perverse sheaf F0 on X0 is geometrically semi-
simple (i.e. F is semi-simple), hence F is a direct sum of perverse sheaves of the form
j!∗L[dU ], for inclusions j : U →֒ X of dU -dimensional irreducible substacks that are
essentially smooth, and for simple ι-pure lisse sheaves L on U .

Proof. Let F ′ be the sum in F of simple perverse subsheaves; it is a direct sum, and
is the largest semi-simple perverse subsheaf of F . Then F ′ is stable under Frobenius,
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hence descends to a perverse subsheaf F ′
0 ⊂ F0 (([3], 5.1.2) holds for stacks also). Let

F ′′
0 = F0/F

′
0. By (3.9iii), the extension

0 //
F ′ // F //

F ′′ // 0

splits, because F ′
0 and F ′′

0 have the same weight ([12], 9.3). Then F ′′ must be zero, since
otherwise it contains a simple perverse subsheaf, and this contradicts the maximality of
F ′. Therefore F = F ′ is semi-simple. The other claim follows from ([12], 8.2ii).

Theorem 3.11. (stack version of ([3], 5.4.5)) Let X0 be an Fq-algebraic stack with affine
automorphism groups, and let K0 ∈ D

b
m(X0,Qℓ) be ι-pure. Then K on X is isomorphic

to the direct sum of the shifted perverse cohomology sheaves (pH iK)[−i].

Proof. By (3.7), both pτ<iK0 and (pH iK0)[−i] are ι-pure of the same weight as that of
K0. Therefore, by (3.9iii), the exact triangle

pτ<iK0
// pτ≤iK0 // (pH iK0)[−i] //

is geometrically split, i.e. we have

pτ≤iK ≃
pτ<iK ⊕ (pH iK)[−i],

and the result follows by induction.

4 Generic base change.

In the next section we will prove the decomposition theorem for stacks over the complex
numbers C. A technical step in the proof (as in [3]) will be to compare the derived categories
of the fiber over C and the fiber over F of some stack over a DVR with mixed characteristics.
For doing that, we prove a stack version of the generic base change theorem ([5], Th.
finitude) in this section.

4.1. Let S be a scheme satisfying the following condition denoted (LO): it is a noetherian
affine excellent finite-dimensional scheme in which ℓ is invertible, and all S-schemes of finite
type have finite ℓ-cohomological dimension. The theory of derived categories and the six
operations in [10, 11] then applies to algebraic stacks over S locally of finite type. Let (Λ,m)
be a complete DVR of mixed characteristic, with finite residue field Λ0 of characteristic ℓ
and uniformizer λ. Let Λn = Λ/mn+1. As mentioned in §1, we will only consider algebraic
stacks that are of finite type over the base. Let A = A (X ) := Mod(XN

lis-ét,Λ•).
We refer to ([17], §3) for the definition and basic properties of stratifiable complexes in

detail; we only give a quick review of the definition here.
For a pair (S ,L), where S is a stratification of the stack X , and L assigns to every

stratum U ∈ S a finite set L(U) of isomorphism classes of simple lcc Λ0-sheaves on U ,
we define DS ,L(A ) to be the full subcategory of Dc(A ) consisting of the complexes of
projective systemsK = (Kn)n such that, for all i, n ∈ Z and for every U ∈ S , the restriction
H i(Kn)|U is lcc with Jordan-Hölder components contained in L(U). Define DS ,L(X ,Λ) to
be its essential image under the localization Dc(A ) → Dc(X ,Λ); in other words, it is the
quotient of DS ,L(A ) by the thick subcategory of AR-null complexes. It is a triangulated
category.

4.2. For a morphism f : X → Y of S-algebraic stacks and K ∈ D+
c (X ,Λn) (resp.

D+
c (X ,Λ)), we say that the formation of f∗K commutes with generic base change, if

there exists an open dense subset U ⊂ S such that for any morphism g : S′ → U ⊂ S

8



with S′ satisfying (LO), the base change morphism g′∗f∗K → fS′∗g
′′∗K is an isomor-

phism. The base change morphism is defined to be the one corresponding by adjunction
(g′∗, g′∗) to f∗K → g′∗fS′∗g

′′∗K ≃ f∗g
′′
∗g

′′∗K, obtained by applying f∗ to the adjunction map
K → g′′∗g

′′∗K.

X

f

��

XS′

g′′oo

fS′

��
Y

��

YS′

g′oo

��
S U?

_oo S′
goo

Lemma 4.3. (i) Let P : Y → Y be a presentation, and let the following diagram be
2-Cartesian:

X

f

��

XY
P ′

oo

f ′

��
Y Y

P
oo

.

Then for K ∈ D+
c (X ,Λn) (resp. K ∈ D+

c (X ,Λ)), the formation of f∗K commutes with
generic base change if and only if the formation of f ′∗P

′∗K commutes with generic base
change.

(ii) Let K ′ → K → K ′′ → K ′[1] be an exact triangle in D+
c (X ,Λn) (resp. D+

c (X ,Λ)),
and let f : X → Y be an S-morphism. If the formations of f∗K

′ and f∗K
′′ commute with

generic base change, then so is the formation of f∗K.
(iii) Let f : X → Y be a schematic morphism, and let K ∈ D+

{X},L(X ,Λ) for some
finite set L of isomorphism classes of simple Λ0-modules on X . Then the formation of f∗K
commutes with generic base change.

(iv) Let K ∈ D+
c (X ,Λ), and let j : U → X be an open immersion with complement

i : Z → X . For g : S′ → S, consider the following diagram obtained by base change:

US′

gU

vvmmmmmmmmmmmmmmm

� �
jS′ // XS′

g′′

vvllllllllllllllll

fS′��

ZS′

gZ

uulllllllllllllllll
? _

iS′oo

U
� �

j
// X

f
��

Z?
_

i
oo YS′

g′
vvllllllllllllllll

Y

.

Suppose the base change morphisms

g′∗(fj)∗j
∗K −→ (f ′jS′)∗g

∗
Uj

∗K,

g′∗(fi)∗i
!K −→ (f ′iS′)∗g

∗
Z i

!K and

g′′∗j∗j
∗K −→ jS′∗g

∗
Uj

∗K

are isomorphisms, then the base change morphism g′∗f∗K → fS′∗g
′′∗K is also an isomor-

phism.
(v) Let f : X → Y be a schematic morphism of S-Artin stacks, and let K ∈ D+,stra

c (X ,Λ).
Then the formation of f∗K commutes with generic base change on S.

(vi) Let f : X → Y be a morphism of S-Artin stacks, and let j : U → Y be an open
immersion with complement i : Z → Y. Let K ∈ D+

c (X ,Λ) (or D+
c (X ,Λn)). For a map

9



g : S′ → S, consider the following diagram, in which the squares are 2-Cartesian:

XU ,S′
� �

j′
S′ //

fU
S′

��

g′′
U

{{vvvvvv
XS′

fS′

��

g′′

}}zz
zz

zz
XZ,S′

fZ
S′

��

g′′
Z

zzvvvvvv

? _
i′
S′oo

XU
� �

j′
//

fU

��

X

f

��

XZ
? _

i′
oo

fZ

��

US′

g′
U

zzvvvvvvv

� �

jS′

// YS′

g′||yy
yy

yy
ZS′ ,? _

iS′

oo

g′
Zzzuuuuuuu

U
� �

j
// Y Z?

_

i
oo

and assume that the base change morphisms

g′∗U fU∗j
′∗K → fUS′∗g

′′∗
U j

′∗K and g′∗ZfZ∗i
′!K → fZS′∗g

′′∗
Z i

′!K

are isomorphisms. Then after shrinking S, the base change morphism g′∗f∗K → fS′∗g
′′∗K

is an isomorphism.

Proof. (i) Given a map g : S′ → S, consider the following diagram

XY
P ′

~~}}
}}

}}

f ′

��

XY,S′

g′′
Yoo

P ′

S′
{{ww

ww
ww

f ′

S′

��

X

f

��

XS′

g′′oo

fS′

��

Y

P~~||
||

||
YS′

g′
Y

oo

PS′{{ww
ww

ww

Y YS′

g′oo

,

where all squares are 2-Cartesian. For the base change morphism g′∗f∗K → fS′∗g
′′∗K to

be an isomorphism on YS′, it suffices for it to be an isomorphism locally on YS′ . In the
following commutative diagram

P ∗
S′g′∗f∗K

(0)
//

(1)

P ∗
S′fS′∗g

′′∗K

(2)
��

g′∗Y P
∗f∗K

(3)

��

f ′S′∗P
′∗
S′g′′∗K

(4)

g′∗Y f
′
∗P

′∗K
(5) // f ′S′∗g

′′∗
Y P

′∗K,

(1) and (4) are canonical isomorphisms given by “P ∗g∗ ≃ g∗P ∗”, (2) and (3) are canonical
isomorphisms given by “P ∗f∗ = f∗P

∗”, which follows from the definition of f∗ on the
lisse-étale site. Therefore, (0) is an isomorphism if and only if (5) is an isomorphism.

(ii) This follows easily from the axioms of a triangulated category (or 5-lemma):

g′∗f∗K
′ //

∼

��

g′∗f∗K //

��

g′∗f∗K
′′ //

∼

��
fS′∗g

′′∗K ′ // fS′∗g
′′∗K // fS′∗g

′′∗K ′′ // .

10



(iii) By (i) we may assume that f : X → Y is a morphism of S-schemes. Note that
the property of being trivialized by a pair of the form ({X},L) is preserved when passing
to a presentation. By definition f∗K is the class of the system (f∗K̂n)n, so it suffices to
show that there exists a nonempty open subscheme of S over which the formation of f∗K̂n

commutes with base change, for every n. By the spectral sequence

Rpf∗H
q(K̂n) =⇒ Rp+qf∗K̂n

and (ii), it suffices to show the existence of a nonempty open subset of S, over which the
formations of f∗L commute with generic base change, for all L ∈ L. This follows from ([5],
Th. finitude).

(iv) Consider the commutative diagram

g′∗f∗i∗i
!K

(1)

(2)
// fS′∗g

′′∗i∗i
!K

(3)
// fS′∗iS′∗g

∗
Zi

!K

(4)

g′∗(fi)∗i
!K

(5) // (fS′iS′)∗g
∗
Z i

!K.

(1) and (4) are canonical isomorphisms, (5) is an isomorphism by assumption, and (3) is
the base change morphism for i∗, which is an isomorphism by ([11], 12.5.3), since i∗ = i!
(note that i∗ has finite cohomological dimension, so it is defined on complexes unbounded
in both directions). Therefore, (2) is an isomorphism. Similarly, consider the commutative
diagram

g′∗f∗j∗j
∗K

(1)

(2)
// fS′∗g

′′∗j∗j
∗K

(3)
// fS′∗jS′∗g

∗
Uj

∗K

(4)

g′∗(fj)∗j
∗K

(5) // (fS′jS′)∗g
∗
Uj

∗K.

(1) and (4) are canonical isomorphisms, and (3) and (5) are isomorphisms by assumption,
so (2) is an isomorphism. Then applying (ii) to the exact triangle i∗i

!K → K → j∗j
∗K →,

we are done.
(v) By (i), we may assume that f : X → Y is a morphism of S-schemes. Assume K

is trivialized by (S ,L), and let j : U → X be the immersion of an open stratum in S

with complement i : Z → X. Then j∗K ∈ D+
{U},L(U)(U,Λ), so by (iii), the formation of

j∗(K|U ) commutes with generic base change. This is the third base change isomorphism in
the assumption of (iv). By noetherian induction and (iv), we replace X by U and assume
that S = {X}. The result follows from (iii).

(vi) In the commutative diagrams

g′∗j∗fU∗j
′∗K

(1) //

(2)
��

jS′∗g
′∗
U fU∗j

′∗K

(3)��
g′∗(fj′)∗j

′∗K
(4)

// (fS′j′S′)∗g
′′∗
U j

′∗K
(5)

// jS′∗fUS′∗g
′′∗
U j

′∗K

and

g′∗i∗fZ∗i
′!K

(6) //

(7)
��

iS′∗g
′∗
ZfZ∗i

′!K

(8)��

g′∗(fi′)∗i
′!K

(9)
// (fS′i′S′)∗g

′′∗
Z i

′!K
(10)

// iS′∗fZS′∗g
′′∗
Z i

′!K,

(2), (5), (7) and (10) are canonical isomorphisms, (3) and (8) are isomorphisms by assump-
tion, (6) is an isomorphism by proper base change, and (1) is an isomorphism after shrinking
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S by (v). Therefore, (4) and (9) are isomorphisms. Also by (iii), the base change morphism
g′′∗j′∗j

′∗K → j′S′∗g
′′∗
U j

′∗K becomes an isomorphism after shrinking S. Hence by (iv), the
base change morphism g′∗f∗K → fS′∗g

′′∗K is an isomorphism after shrinking S.

4.4. For K ∈ D−
c (X ,Λ) and L ∈ D

+
c (X ,Λ), and for a morphism g : Y → X , the base change

morphism g∗RH omX (K,L) → RH omY(g
∗K, g∗L) is defined as follows. By adjunction

(g∗, g∗), it corresponds to the morphism

RH omX (K,L)→ g∗RH omY(g
∗K, g∗L) ≃ RH omX (K, g∗g

∗L)

obtained by applying RH omX (K,−) to the adjunction morphism L→ g∗g
∗L.

The following is the main result of this section.

Theorem 4.5. (i) Let f : X → Y be a morphism of S-algebraic stacks. For every K ∈
D+,stra

c (X ,Λ) (resp. D+,stra
c (X ,Λn)), the formation of f∗K commutes with generic base

change on S.
(ii) For every K,L ∈ Db

c(X ,Λ) (resp. Db
c(X ,Λn)), the formation of RH omX (K,L)

commutes with generic base change on S.

Proof. (i) We can always replace a stack by its maximal reduced closed substack, so we will
assume all stacks in the proof are reduced.

Suppose K is (S ,L)-stratifiable for some pair (S ,L). By (4.3i,iii,iv), we can replace
Y by a presentation and replace X by an open stratum in S , to assume that Y = Y is a
scheme, that S = {X}, that the relative inertia If is flat and has components over X ([2],
5.1.14), and let

X
π // X

b // Y

be the rigidification with respect to If . Replacing X by the inverse image of an open dense
subscheme of the S-algebraic space X, we may assume X is a scheme. Let F = π∗K,
which is stratifiable ([17], 3.8). By (4.3v), the formation of b∗F commutes with generic
base change. To finish the proof, we shall show that the formation of π∗K commutes with
generic base change. As in the proof of (4.3iii), it suffices to show that there exists an open
dense subscheme of S, over which the formations of π∗L commute with any base change
g : S′ → U, for all L ∈ L.

By ([2], 5.1.5), π is smooth, so étale locally it has a section. By (4.3i) we may assume
that π : BG → X is a neutral gerbe, associated to a flat group space G/X. By (4.3vi)
we can use dévissage and shrink X to an open subscheme. Using the same technique as
the proof of ([17], 3.8), we can reduce to the case where G/X is smooth. For the reader’s
convenience, we briefly recall this reduction. Shrinking X, we may assume X is an integral
scheme with function field k(X), and G/X is a group scheme. There exists a finite field
extension L/k(X) such that Gred is smooth over Spec L. Factor L/k(X) as a separable
extension L′/k(X) and a purely inseparable extension L/L′. Purely inseparable morphisms
are universal homeomorphisms. By taking the normalization of X in these field extensions,
we get a finite generically étale surjection X ′ → X, such that Gred is generically smooth
over X ′. Shrinking X and X ′ we may assume X ′ → X is an étale surjection, and replacing
X by X ′ (4.3i) we may assume Gred is generically smooth over X, and shrinking X we may
assume Gred is smooth over X. Replacing G by Gred (since the morphism BGred → BG is
representable and radicial) one can assume G/X is smooth.

Now P : X → BG is a presentation. Consider the associated smooth hypercover, and
let fi : G

i → X be the structural maps. We have the spectral sequence ([11], 10.0.9)

Rjfi∗f
∗
i P

∗L =⇒ Ri+jπ∗L.
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As in the proof of ([17], 3.8), we can regard the map fi as a product
∏

i f1 and apply
Künneth formula (shrinking X we can assume X is affine, so X satisfies the condition
(LO), and we can apply ([11], 11.0.14))

fi∗f
∗
i P

∗L = f1∗f
∗
1P

∗L⊗L f1∗Λ0 ⊗
L · · · ⊗L f1∗Λ0.

Shrink S so that the formations of f1∗f
∗
1P

∗L and f1∗Λ0 commute with any base change on
S. From the base change morphism of the spectral sequences

g∗Rjfi∗f
∗
i P

∗L +3 g∗Ri+jπ∗L

(1)

��

H jg∗(f1∗f
∗
1P

∗L⊗L
Λ0
f1∗Λ0 ⊗

L
Λ0
· · · ⊗L

Λ0
f1∗Λ0)

H j
(
(g∗f1∗f

∗
1P

∗L)⊗L
Λ0

(g∗f1∗Λ0)⊗
L
Λ0
· · · ⊗L

Λ0
(g∗f1∗Λ0)

)

∼
��

H j
(
(f1∗g

∗f∗1P
∗L)⊗L

Λ0
(f1∗g

∗Λ0)⊗
L
Λ0
· · · ⊗L

Λ0
(f1∗g

∗Λ0)
)

H j
(
(f1∗f

∗
1P

∗g∗L)⊗L
Λ0

(f1∗Λ0)⊗
L
Λ0
· · · ⊗L

Λ0
(f1∗Λ0)

)

Rjfi∗f
∗
i P

∗g∗L +3 Ri+jπ∗g
∗L

we see that the base change morphism (1) is an isomorphism.
(ii) For K and L ∈ Db

c(X ,Λ), the complex RH om(K,L) is defined to be the image
in Dc(X ,Λ) of the projective system RH omΛ•

(K̂, L̂), so we only need to prove the case
where K and L are in Db

c(X ,Λn).

Note that for an algebraic stack X , RH omX takes Db,op
c ×Db

c into D
b
c. To see this, take

a presentation P : X → X of relative dimension d, for some locally constant function d on
X. For bounded complexes K and L on X , to show RH omX (K,L) is bounded, it suffices
to show that P ∗RH omX (K,L) is bounded. We have

P ∗RH omX (K,L) = P !RH omX (K,L)〈−d〉 = RH omX(P ∗K,P !L)〈−d〉

= RH omX(P ∗K,P ∗L),

which is bounded on X.
Let g : S′ → S be any morphism, and consider the 2-Cartesian diagrams

XS′
P ′

//

g′′ ��

XS′ //

g′ ��

S′

g
��

X
P

// X // S.

For the base change morphism

g′∗RH omX (K,L)→ RH omXS′ (g
′∗K, g′∗L)

to be an isomorphism, we can check it locally on XS′ . Consider the commutative diagram

P ′∗g′∗RH omX (K,L)
(1) //

(2)
��

P ′∗RH omXS′ (g
′∗K, g′∗L)

(3)
��

g′′∗P ∗RH omX (K,L)

(4)
��

RH omXS′ (P
′∗g′∗K,P ′∗g′∗L)

(5)
��

g′′∗RH omX(P ∗K,P ∗L)
(6) // RH omXS′ (g

′′∗P ∗K, g′′∗P ∗L),
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where (2) and (5) are canonical isomorphisms, (3) and (4) are proved to be isomorphisms
above, and (6) is an isomorphism after shrinking S ([5], Th. finitude, 2.10). Therefore (1)
is an isomorphism after shrinking S.

Remark 4.5.1. This result generalizes ([16], 9.10ii), in that the open subscheme in S can
be chosen to be independent of the index i as in Rif∗F.

5 Complex analytic stacks.

In this section, we give some fundamental results on constructible sheaves and derived
categories on the lisse-analytic topos of the analytification of a complex algebraic stack,
and prove a comparison between the lisse-étale topos and the lisse-analytic topos of the
stack.

5.1 Lisse-analytic topos.

For the definition of analytic stacks, we follow [14, 18]. Strictly speaking, Toen only dis-
cussed analytic Deligne-Mumford stacks in [18], and Noohi only discussed topological stacks
in [14] (and mentioned analytic stacks briefly). I believe that they could have done the the-
ory of analytic stacks in their papers. For completeness, we give a definition as follows.

Definition 5.1.1. Let Ana-Sp be the site of complex analytic spaces with the analytic
topology. A stack X over this site is called an analytic stack, if the following hold:

(i) the diagonal ∆ : X→ X×X is representible (by analytic spaces) and quasi-compact,
(ii) there exists an analytic smooth surjection P : X → X, where X is an analytic space.

5.1.2. Similar to the lisse-étale topos of an algebraic stack, one can define the lisse-analytic
topos Xlis-an of an analytic stack X to be the topos associated to the lisse-analytic site
Lis-an(X) defined as follows:
• Objects: pairs (U, u : U → X), where U is an complex analytic space and u is a

smooth morphism (or an analytic submersion, in the topological terminology);
• Morphisms: a morphism (U, u ∈ X(U)) → (V, v ∈ X(V )) is given by a pair (f, α),

where f : U → V is a morphism of analytic spaces and α : vf ∼= u is a 2-isomorphism in
X(U);
• Open coverings: {(ji, αi) : (Ui, ui ∈ X(Ui)) → (U, u ∈ X(U))}i∈I is an open covering

if the maps ji’s are open immersions of analytic subspaces and their images cover U.
To give a sheaf F ∈ Xlis-an is equivalent to giving the data
• for every (U, u) ∈ Lis-an(X), a sheaf Fu in the analytic topos Uan of U, and
• for every morphism (f, α) : (U, u)→ (V, v), a morphism f∗ : f−1Fv → Fu.
The sheaf F is Cartesian if f∗ is an isomorphism, for every (f, α). By abuse of notation,

we will also denote “Fu” by “FU”, if there is no confusion about the reference to u.
This topos is equivalent to the “lisse-étale” topos Xlis-ét associated to the site Lis-ét(X)

with the same underlying category as that of Lis-an(X), but the open coverings are surjective
families of local isomorphisms. This is because the two topologies are cofinal: for a local
isomorphism V → U of analytic spaces, there exists an open covering {Vi ⊂ V }i of V by
analytic subspaces, such that for each i, the composition Vi ⊂ V → U is isomorphic to the
natural map from a disjoint union of open analytic subspaces of U to U.
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5.2 Locally constant sheaves and constructible sheaves.

For a sheaf on the analytic site of an analytic space, we say that the sheaf is locally con-
stant constructible, abbreviated as lcc, if it is locally constant with respect to the analytic
topology, and has finite stalks.

Let X be an analytic stack. For a Cartesian sheaf F ∈ Xlis-an, we say that F is locally
constant (resp. lcc) if the conditions in the following (5.2.1) hold. This lemma is an analytic
version of ([16], 9.1).

Lemma 5.2.1. Let F ∈ Xlis-an be a Cartesian sheaf. Then the following are equivalent.
(i) For every (U, u) ∈ Lis-an(X), the sheaf FU is locally constant (resp. lcc).
(ii) There exists an analytic presentation P : X → X such that FX is locally constant

(resp. lcc).

Proof. It suffices to show that (ii)⇒(i), which is similar to that of ([16], 9.1). There exists
an open covering U = ∪Ui, such that over each Ui, the smooth surjection X ×P,X,u U → U
has a section si :

X ×X U //

��

X

P
��

Ui
� � //

si
<<y

y
y

y

U
u // X.

Therefore FUi
≃ s∗iFX×XU , which is locally constant (resp. lcc).

5.2.2. Let X be a complex algebraic stack. Following ([14], 20), one can define its associated
analytic stack X an as follows. If X1 ⇉ X0 → X is a smooth groupoid presentation, then
X an is defined to be the analytic stack given by the presentation Xan

1 ⇉ Xan
0 , and it can be

proved that this is independent of the choice of the presentation, up to an isomorphism that
is unique up to 2-isomorphism. Similarly, for a morphism f : X → Y of complex algebraic
stacks, one can choose their presentations so that f lifts to a morphism of groupoids, hence
induces a morphism of their analytifications, denoted fan : X an → Yan. The analytification
functor preserves 2-Cartesian products.

5.2.3. Let X = X an for a complex algebraic stack X , and let P : X → X be a pre-
sentation. For a Cartesian sheaf F ∈ Xlis-an, we say that F is constructible, if for every
(U, u) ∈ Lis-ét(X ), the sheaf FUan is constructible, i.e. lcc on each stratum in an algebraic
stratification of the analytic space Uan.

One could also define a notion of analytic constructibility, using analytic stratifications
rather than algebraic ones, but this notion will not give us a comparison between the
constructible derived categories of the lisse-étale topos and of the lisse-analytic topos.

Lemma 5.2.4. Let F ∈ Xlis-an be a Cartesian sheaf. Then the following are equivalent.
(i) F is constructible.
(ii) FXan is constructible on Xan (in the algebraic sense above).
(iii) There exists an algebraic stratification S an on X, such that for each stratum Uan,

the sheaf FUan is lcc.

Proof. (i)⇒(ii) is clear.
(ii)⇒(iii). Let SX be a stratification of the scheme X, such that for each U ∈ SX , the

sheaf FUan is lcc. Let U be an open stratum, and let V be the image of U under the map
P ; then V is an open substack of X , and PU : U → V is a presentation. Let V ′ → V an be
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an analytic presentation. There exists an analytic open covering V ′ = ∪V ′
i , over which P

an
U

has a section:

Uan � � //

P an

U

��

Xan

P an

��
V ′
i

si

77p
p

p
p

p
p� � // V ′ // V an � � // X,

so FV ′
i
≃ s−1

i FUan is lcc, therefore FV ′ (and hence FV an , by (5.2.1)) is lcc. Note that

X − P−1(V )→ X − V gives an algebraic presentation of (X − V )an = X− V an, and

(F |X−V an)(X−P−1(V ))an ≃ FXan |(X−P−1(V ))an

is still constructible, so by noetherian induction we are done.
(iii)⇒(i). Let (U, u) ∈ Lis-ét(X ). Then uan,∗S an = (u∗S )an is an algebraic stratification

of Uan, and it is clear that FUan is lcc on each stratum of this stratification.

5.2.5. A constructible Λn-module on Xlis-an is a Λn-sheaf, which is constructible as a sheaf
of sets. They form a full subcategory of Mod(X,Λn) that is closed under kernels, cokernels
and extensions (i.e. it is a Serre subcategory). It suffices to show that Cartesian sheaves
form a Serre subcategory, because lcc Λn-modules form a Serre subcategory, and one can
use (5.2.4iii).

Let (f, α) : (U, u) → (V, v) be a morphism in Lis-an(X). Note that the functor F 7→
f∗F : Mod(Van,Λn) → Mod(Uan,Λn) is exact, because f∗F = Λn,U ⊗f−1Λn,V

f−1F =

f−1F. Let a : F → G be a morphism of Cartesian sheaves. Then Ker(f∗aV : f∗FV →
f∗GV ) = f∗Ker(aV ), and it is clear that the induced morphism f∗Ker(aV ) → Ker(aU ) is
an isomorphism:

f∗Ker(aV ) //

��

f∗FV
f∗aV //

∼
��

f∗GV

∼
��

Ker(aU ) // FU
aU // GU .

The proof for cokernels and extensions (using 5-lemma) is similar. One can also mimic the
proof in ([16], 3.8, 3.9) to prove a similar statement for analytic stacks, in the more general
situation where the coefficient ring is a flat sheaf. In this paper, we will only need the case
of a constant coefficient ring.

5.3 Derived categories.

5.3.1. Again assume X = X an. Let D(Xlis-an,Λn) be the ordinary derived category of Λn-
modules on X. By (5.2.5), we have the triangulated subcategory Dc(Xlis-an,Λn) of complexes
with constructible cohomology sheaves. We follow [11] and define the derived category
Dc(Xlis-an,Λ) of constructible Λ-adic sheaves (by abuse of language, as usual) as follows.
A complex of projective systems K in the ordinary derived category D(XN

lis-an,Λ•) of the
simplicial topos XN

lis-an ringed by Λ• = (Λn)n, is called a λ-complex if for every i and n, the
sheaf H i(Kn) is constructible and the cohomology system H i(K) is AR-adic. A λ-module
is a λ-complex concentrated in degree 0. Then we define Dc(Xlis-an,Λ) to be the quotient
of the full subcategory Dc(X

N
lis-an,Λ•) of λ-complexes by the full subcategory of AR-null

complexes (i.e. those with AR-null cohomology systems).
This quotient has a natural t-structure, and we define the category Λ-Shc(X) of con-

structible Λ-adic sheaves on Xlis-an to be its core, namely the quotient of the AR-adic
projective systems with constructible components by the thick full subcategory of AR-null
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systems. By ([8], p.234), this is equivalent to the category of adic systems, i.e. those pro-
jective systems F = (Fn)n, such that for each n, Fn is a constructible Λn-module on Xlis-an,
and the induced morphism Fn ⊗Λn Λn−1 → Fn−1 is an isomorphism.

Using localization and 2-colimit, one can also define the categories Dc(Xlis-an, Eλ) and
Dc(Xlis-an,Qℓ), and their cores, the categories of constructible Eλ or Qℓ-sheaves on Xlis-an.

5.3.2. Let Mod(X,C) be the category of sheaves of C-vector spaces on Xlis-an, with C-linear
morphisms, and define the category Modc(X,C) of constructible CX-modules to be the full
subcategory of Mod(X,C) consisting of those sheaves M, such that there exists an algebraic
stratification S of X, over each stratum of whichM is locally constant, and stalks of M are
finite dimensional C-vector spaces. Note that, in order forM |U to be constant, we may have
to refine S to an analytic stratification that is not necessarily algebraic. Then we define
Dc(Xlis-an,C) to be the full subcategory of the ordinary derived category of CX-modules,
consisting of those sheaf complexes with constructible cohomology sheaves. The core of the
natural t-structure on Dc(Xlis-an,C) is Modc(X,C).

Similarly, one can also define the category Modc(ΛX) of constructible ΛX-modules, i.e.
ΛX-sheaves for which there exists an algebraic stratification of X, such that over each stra-
tum the sheaf is locally constant, and stalks are finitely generated Λ-modules. Then we
define Dc(Xlis-an,Λ) (and also with Eλ- and Qℓ-coefficients) to be the full subcategory of
the ordinary derived category (denoted D(Xlis-an,Λ)) of ΛX-modules, consisting of those
with constructible cohomology. In (5.5.4), we will show that the two derived categories
Dc(Xlis-an,Λ) and Dc(Xlis-an,Λ) are equivalent.

For simplicity, for any coefficient Ω, we will usually drop “lis-an” in Dc(Xlis-an,Ω), if
there is no confusion. Also we will drop “lis-ét” in Dc(Xlis-ét,Ω).

In the following lemma, we show that the category Λ-Shc(X) admits a similar description
as Modc(X,C).

Lemma 5.3.3. There is a natural equivalence between Λ-Shc(X) and Modc(ΛX).

Proof. Firstly, we define the functor φ : Λ-Shc(X) → Modc(ΛX). Let F = (Fn)n be an
adic sheaf on Xlis-an, and define φ(F ) to be lim

←−n
(Fn)n. For a morphism b : F → G of adic

sheaves, define φ(b) to be the induced morphism on their inverse limits.
Then we show it is well-defined. Let P : X → X be a presentation. Then FXan :=

(Fn,Xan)n is an adic sheaf on Xan. By the comparison ([3], 6.1.2, (A′′)), FXan is algebraic,
i.e. it comes from a constructible Λ-adic sheaf G on Xét. Since X is noetherian, G is lisse
over the strata of a stratification SX of X. Let U ∈ SX be an open stratum, and let V be
its image under P. Then V ⊂ X is an open substack and PU : U → V is a presentation. We
have (GU )

an = φ(F )Uan ∼= P an,∗
U (φ(F )V an), and it is the Λ-local system on U(C) obtained

by restricting the continuous representation ρGU
of πét1 (U, u) corresponding to the lisse sheaf

GU to πtop1 (Uan, u) :

πtop1 (Uan, u) // πét1 (U, u)
ρGU // GL(GU,u).

The sheaf φ(F )Uan is locally constant because Uan is covered by contractible analytic open
subspaces.

As in the proof of (5.2.4), one can take an analytic presentation V ′ → V an, and cover
the analytic space V ′ by analytic open subspaces V ′

i , such that P an
U has a section si over

each V ′
i , and so φ(F )V ′

i
is locally constant with stalks finitely generated Λ-modules, and the

same is true for φ(F )V an . Finally apply noetherian induction to the complement X − V an

to finish the proof that φ is well-defined.
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Then we define a functor ψ : Modc(ΛX)→ Λ-Shc(X). Given a ΛX-module M, let Mn =
M ⊗Λ Λn, and define ψ(M) to be the adic system (Mn)n. For a morphism c : M → N of
constructible ΛX-modules, define ψ(c)n to be c⊗ Λn.

We need to show ψ(M) gives a constructible Λ-adic sheaf on Xlis-an. It is clearly adic. To
show each Mn is constructible, by (5.2.4), it suffices to show that there exists an algebraic
stratification of X, such that over each stratum Mn is lcc. This follows from the definition
of Modc(ΛX).

Finally, note that φ and ψ are quasi-inverse to each other.

5.4 Comparison between the derived categories of lisse-étale and lisse-

analytic topoi.

Given an algebraic stack X/C, let X = X an, and let P : X → X be a presentation, with
analytification P an : Xan → X. Let ǫ : X• → X be the associated strictly simplicial smooth
hypercover, and let ǫan : Xan

• → X be the analytification. They induce morphisms of topoi,
denoted by the same symbol. Consider the following morphisms of topoi:

Xlis-an Xlis-an|Xan
•

δan• //γan

oo Xan
•,an

ξ•
��

ǫan
gg

Xlis-ét Xlis-ét|X•

δ• //γoo X•,ét.

ǫ
gg

Following ([11], 10.0.6), we define the derived category Dc(X
an
• ,Λ) as follows. A sheaf

F ∈ Mod(Xan,N
• ,Λ•) is AR-adic if it is Cartesian (in the •-direction) and F |

Xan,N
n,an

is AR-

adic for every n. A complex C ∈ D(Xan,N
• ,Λ•) is a λ-complex (resp. an AR-null complex ) if

the cohomology sheaf H i(C) is AR-adic and H i(Cm)|Xan
n

is constructible, for every i,m, n
(resp. C|Xan

n
is AR-null, for every n). Finally we define Dc(X

an
• ,Λ) to be the quotient of

the full subcategory Dc(X
an,N
• ,Λ•) ⊂ D(Xan,N

• ,Λ•) consisting of all λ-complexes by the full
subcategory of AR-null complexes.

Using the diagram above, we will show that Rǫ∗ ◦ Rξ•,∗ ◦ ǫ
an,∗ gives an equivalence

between Dc(X,Λ) and Dc(X ,Λ), and it is compatible with pushforwards. It is proved
in ([11], 10.0.8) that, (ǫ∗, Rǫ∗) induce an equivalence between the triangulated categories
Dc(X ,Λ) and Dc(X•,Λ). We mimic the proof to give a proof of the analytic analogue.

Proposition 5.4.1. (i) The functors (ǫan,∗, Rǫan∗ ) induce an equivalence between the trian-
gulated categories Dc(X,Λ) and Dc(X

an
• ,Λ).

(ii) Let X be a C-scheme, and let ξ : Xan → Xét be the natural morphism of topoi.
Then Rξ∗ is defined on the unbounded derived category, and the functors (ξ∗, Rξ∗) induce
an equivalence between Dc(X

an,Λ) and Dc(X,Λ).
(iii) Let f : X → Y be a morphism of C-schemes, and let ξX , ξY be as in (ii). Then for

every F ∈ D+
c (X,Λ), the natural morphism

ξ∗Y f∗F → fan∗ (ξ∗XF )

is an isomorphism.

Proof. (i) Firstly, note that δan•,∗ : Ab(Xlis-an|Xan
•
)→ Ab(Xan

•,an) is exact, since the topologies
are the same. So in fact, Rδan•,∗ = δan•,∗. The functor δann,∗ is the restriction functor, and δan,∗n
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takes a sheaf F ∈ Xan
n,an to the sheaf δan,∗n F that assigns to the object

U
u //

!!C
CC

CC
CC

C
Xan

n

��
X

the sheaf u∗F on Uan. It is clear that (δ
an,∗
n , δann,∗) induce an equivalence between the category

Modcart(X|Xan
n
,Λm) of Cartesian sheaves on the localized topos X|Xan

n
and Mod(Xan

n ,Λm).
For K ∈ D(Xan

n ,Λm), we see that the adjunction morphism

K → δann,∗δ
an,∗
n K

is an isomorphism by applying H i :

H
iK →H

i(δann,∗δ
an,∗
n K) ≃ δann,∗δ

an,∗
n H

i(K),

noting that δann,∗ is exact. Similarly, if K ∈ D(X|Xan
n
,Λm) has Cartesian cohomology sheaves,

the coadjunction morphism
δan,∗n δann,∗K → K

is an isomorphism. Hence (δan,∗• , δan•,∗) induce an equivalence

Dcart(X|Xan
•
,Λm)↔ D(Xan

• ,Λm).

We will show later that constructible sheaves form a Serre subcategory in Mod(X|Xan
•
,Λm),

and then it is also clear that (δan,∗• , δan•,∗) gives an equivalence

Dc(X|Xan
•
,Λm)↔ Dc(X

an
• ,Λm).

To show γan,∗ induces an equivalence on the torsion level Λm, we will apply ([10], 2.2.3).
For the morphism γan : (Xlis-an|Xan

•
,Λm) → (Xlis-an,Λm), all the transition morphisms of

topoi in the strictly simplicial ringed topos (Xlis-an|Xan
•
,Λm) as well as γan are flat. Let C be

the category of constructible Λm-modules on Xlis-an, which is a Serre subcategory (5.2.5).
We need to verify the assumption ([10], 2.2.1), which has two parts.
• ([10], 2.1.2) for the ringed site (Lis-an(X)|Xan

n
,Λm) with C = constructible Λm-

modules. This means, for every object U in this site, we need to show that there exist
an analytic open covering U = ∪Ui and an integer n0, such that for every constructible
Λm-module F on this site and n ≥ n0, we have H

n(Ui, F ) = 0. This follows from ([6], 3.1.5,
3.4.1).
• γan,∗ : C → C• is an equivalence with quasi-inverse Rγan∗ . Here C• is the essential image

of C under γan,∗ : Mod(X,Λm) → Mod(X|Xan
•
,Λm), called the category of constructible

sheaves in the target. Recall that, an object in Mod(X|Xan
•
,Λm) is given by a family of

objects Fi ∈ Mod(X|Xan
i
,Λm) indexed by i, together with transition morphisms a∗Fj → Fi

for each a : i→ j in the strictly simplicial set ∆+,op. Consider the commutative diagram

Xan
i

a //

$$JJJJJJJJ
Xan

j

��
X.

For F ∈ Mod(X,Λm), its image γan,∗F is given by Fi = FXan
i
∈ Mod(Xan

i ,Λm) ≃ Modcart(X|Xan
i
,Λm),

and the transition morphisms a∗Fj → Fi are part of the data in the definition of F. One
can prove the analytic version of ([16], 4.4, 4.5) stated as follows.
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Let Des(Xan/X,Λm) be the category of pairs (F,α), where F ∈ Mod(Xan,Λm), and
α : p∗1F → p∗2F is an isomorphism on the analytic topos Xan

1,an (where p1 and p2 are the
natural projections Xan

1 ⇉ Xan
0 = Xan), such that p∗13(α) = p∗23(α) ◦ p

∗
12(α) : p̄

∗
1F → p̄∗3F

on Xan
2 . Here p̄i : X2 → X0 are the natural projections. There is a natural functor A :

Modcart(X,Λm) → Des(Xan/X,Λm), sending M to (F,α), where F = MXan and α is the
composite

p∗1F
p∗
1 // MXan

1

(p∗
2
)−1

// p∗2F.

There is also a natural functor B : Modcart(X
an,+
• ,Λm) → Des(Xan/X,Λm) sending F =

(Fi)i to (F0, α), where α is the composite

p∗1F0
can // F1

can−1
// p∗2F0,

and the cocycle condition is verified as in ([16], 4.5.4).

Lemma 5.4.2. The natural functors in the diagram

Modcart(X
an
• ,Λm)

res // Modcart(X
an,+
• ,Λm)

B
��

Modcart(X,Λm)
A //

ǫan,∗

OO

Des(Xan/X,Λm)

are all equivalences, and the diagram is commutative up to natural isomorphism.

The proof in ([16], 4.4, 4.5) carries verbatim to analytic stacks, so we do not write
down the proof again. This finishes the verification of ([10], 2.2.1). In particular, C• =
Modcart(X|Xan

•
,Λm) is a Serre subcategory ([10], 2.2.2), so as we mentioned before, (δan,∗• , δan•,∗)

give an equivalence
Dc(X|Xan

•
,Λm)↔ Dc(X

an
• ,Λm).

By ([10], 2.2.3), the functors (γan,∗, Rγan∗ ) induce an equivalence

Dc(X,Λm)↔ Dc(X|Xan
•
,Λm).

It is clear that the composition of equivalences

Dc(X,Λm)
γan,∗

// Dc(X|Xan
•
,Λm)

δan•,∗ // Dc(X
an
• ,Λm)

is just ǫan,∗ (they are both restrictions). Since δan•,∗ is the quasi-inverse of δan,∗• , it is both a
left adjoint and a right adjoint of δan,∗• . This implies that Rǫan∗ = Rγan∗ ◦ δ

an,∗
• and it is a

quasi-inverse of the equivalence

ǫan,∗ : Dc(X,Λm)→ Dc(X
an
• ,Λm).

Note that for M ∈ Dc(X
N,Λ•) (resp. Dc(X

an,N
• ,Λ•)), each level Mm is in Dc(X,Λm)

(resp. Dc(X
an
• ,Λm)), and the property of M being AR-adic (resp. AR-null) is intrinsic ([8],

V, 3.2.3). So the notions of AR-adic (resp. AR-null) on the two sides correspond under
this equivalence. Therefore, we get equivalences

(ǫan,∗, Rǫan∗ ) : Dc(X
N,Λ•)↔ Dc(X

an,N
• ,Λ•)

and
(ǫan,∗, Rǫan∗ ) : Dc(X,Λ)↔ Dc(X

an
• ,Λ).
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(ii) This is a generalization of ([3], 6.1.2 (B′′)), which says that ξ∗ : Db
c(X,Λ) →

Db
c(X

an,Λ) is an equivalence. We prove it on the torsion level first.
For a Λn-module G on Xan, the sheaf Riξ∗G on Xét is the sheafification of the presheaf

(U → X) 7→ H i(Uan, G).

By ([6], 3.1.5, 3.4.1), Riξ∗G = 0 for all sheaves G and all i > 1+2dimCX, so Rξ∗ has finite
cohomological dimension, hence it extends to a functor

Rξ∗ : D(Xan,Λn)→ D(X,Λn).

It takes the full subcategory Dc(X
an,Λn) into Dc(X,Λn), since for any i there exist integers

a and b such that Riξ∗G = Riξ∗τ[a,b]G.
Given F ∈ Dc(X,Λn), we want to show that the adjunction morphism F → Rξ∗ξ

∗F
is an isomorphism. Recall that ξ∗ is the analytification functor, which is exact. For each
i ∈ N, we want to show the morphism

H
iF → Riξ∗ξ

∗F

is an isomorphism. Consider the spectral sequence

Rpξ∗ξ
∗
H

qF =⇒ Rp+qξ∗ξ
∗F,

where Rpξ∗ξ
∗H qF is the sheafification of the functor

(U → X) 7→ Hp(Uan, ξ∗H qF ) = Hp(Uan, (H qF )an).

By the comparison theorem of Artin ([1], XVI, 4.1), we haveHp(Uan, (H qF )an) = Hp(U,H qF ),
and this presheaf sheafifies to zero if p > 0 ([13], 10.4). When p = 0, the sheafification is
obviously H qF. Therefore, the spectral sequence degenerates to isomorphisms

H
iF = ξ∗ξ

∗
H

iF ≃ Riξ∗ξ
∗F,

and the adjunction morphism is an isomorphism.
Given G ∈ Dc(X

an,Λn), we want to show that the coadjunction morphism ξ∗Rξ∗G→ G
is an isomorphism. Consider the spectral sequence

ξ∗Rpξ∗H
qG =⇒ ξ∗Rp+qξ∗G,

where ξ∗Rpξ∗H
qG is the analytification of the sheafification of the presheaf on Ét(X)

(U → X) 7→ Hp(Uan,H qG).

By the comparison ([3], 6.1.2 (A′)), the constructible Λn-sheaf H qG is algebraic, therefore
by Artin’s comparison theorem ([1], XVI, 4.1) again, ξ∗Rpξ∗H

qG = 0 for p > 0, and the
spectral sequence degenerates to isomorphisms

H
iG = ξ∗ξ∗H

iG ≃ ξ∗Riξ∗G.

This proves that we have an equivalence

(ξ∗, Rξ∗) : Dc(X
an,Λn)↔ Dc(X,Λn)

for each n. As in the proof of (i), the notions of being AR-adic (resp. AR-null) for complexes
in D(Xan,N,Λ•) and in D(XN,Λ•) are the same, therefore, we have equivalences

(ξ∗, Rξ∗) : Dc(X
an,N,Λ•)↔ Dc(X

N,Λ•)
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and
(ξ∗, Rξ∗) : Dc(X

an,Λ)↔ Dc(X,Λ).

(iii) Applying H i on both sides, we should show that

ξ∗YR
if∗F → Rifan∗ (ξ∗XF )

is an isomorphism. Replacing F by various levels F̂n of its normalization, we reduce to the
case where F ∈ D+

c (X,Λn). We know that f∗ and fan∗ have finite cohomological dimension
(for instance by generic base change), so one can replace F by τ[a,b]F and reduce to the case
where F is bounded. Taking truncations again and using 5-lemma, we reduce to the case
where F is a constructible Λn-sheaf, and this follows from Artin’s comparison ([1], XVI,
4.1).

5.4.3. Let f : X → Y be a morphism of C-algebraic stacks. Choose a commutative diagram

X•
f̃ //

ǫX
��

Y•
ǫY

��
X

f // Y.

Then by construction, the diagram

D+
c (X,Λ)

ǫan,∗
X //

fan
∗

��

D+
c (X

an
• ,Λ)

f̃an
∗

��
D+

c (Y,Λ)
ǫan,∗
Y // D+

c (Y
an
• ,Λ)

commutes. On the algebraic side, the equivalence ǫ∗ is also compatible with taking coho-
mology (cf. [11], p.202). As a summary, we have the following commutative diagram

D+
c (X,Λ)

ǫan,∗
X //

fan
∗

��

D+
c (X

an
• ,Λ)

f̃an
∗��

D+
c (X•,Λ)

ξ∗
X•oo

f̃∗
��

D+
c (X ,Λ)

ǫ∗
Xoo

f∗
��

D+
c (Y,Λ) ǫan,∗

Y

// D+
c (Y

an
• ,Λ) D+

c (Y•,Λ)ξ∗
Y•

oo D+
c (Y,Λ),ǫ∗

Y

oo

where the horizontal arrows are all equivalences of triangulated categories.

5.5 Comparison between the two derived categories on the lisse-analytic

topos.

In (5.3.1) and (5.3.2), we defined two derived categories, denoted Dc(X,Λ) and Dc(X,Λ)
respectively. Before proving they are equivalent, we give some preparation on the analytic
analogues of some concepts and results in [11].

5.5.1. As in [7], let π : XN → X be the morphism of topoi, with π∗ = lim
←−

. We have derived

functors Rπ∗ and Lπ∗ between D(XN,Λ•) and D(X,Λ). Denote Mod(XN,Λ•) by A (X) or
just A .

Lemma 5.5.2. Let M be an AR-null complex in D(A ). Then Rπ∗M = 0.

Proof. Each of H i(M) and τ>iM is AR-null, so by ([7], 1.1) we have Rπ∗H
i(M) ∼=

Rπ∗τ>iM = 0. By ([6], 3.1.5, 3.4.1), the assumption ([10], 2.1.7) for the ringed topoi
(Xlis-an,Λn) with Cn = all Λn-sheaves is satisfied, so by ([10], 2.1.10) we have Rπ∗M = 0.
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Therefore the functor Rπ∗ : Dc(A ) → Dc(X,Λ) factors through the quotient category
Dc(X,Λ) :

Dc(A )
Q // Dc(X,Λ)

Rπ∗ // Dc(X,Λ)
Lπ∗

// D(A ).

One can also define the normalization functor to beK 7→ K̂ := Lπ∗Rπ∗K. ForM ∈ Dc(A ),

we will also write M̂ for Q̂(M), if there is no confusion. A complex M is normalized if

the natural map M̂ → M is an isomorphism. The analytic versions of ([11], 2.2.1, 3.0.11,
3.0.10) hold, as we state in the following.

Proposition 5.5.3. (i) For U → X in Lis-an(X) and M ∈ D(A (X)), we have Rπ∗(MU ) =
(Rπ∗M)U in D(Uan,Λ).

(ii) For U → X in Lis-an(X) and M ∈ D(X,Λ), we have Lπ∗(MU ) = (Lπ∗M)U in
D(A (Uan)).

(iii) For M ∈ D(A (X)), it is normalized if and only if the natural map

Mn ⊗
L
Λn

Λn−1 →Mn−1

is an isomorphism for each n.

They can be proved in the same way as in [11], and we do not repeat the proof here.

Proposition 5.5.4. (i) The functors (Q ◦ Lπ∗, Rπ∗) induce an equivalence Dc(X,Λ) ↔
Dc(X,Λ).

(ii) Let f : X → Y be a morphism of complex algebraic stacks, and let fan : X → Y be
its analytification. Then the following diagram commutes:

D+
c (X,Λ)

RπX ,∗ //

fan
∗

��

D+
c (X,Λ)

fan
∗

��
D+

c (Y,Λ)
RπY,∗ // D+

c (Y,Λ).

Proof. (i) We will show that the adjunction and coadjunction maps are isomorphisms. For
coadjunction maps, this is an analogue of ([11], 3.0.14).

Lemma 5.5.5. Let M ∈ Dc(X
N,Λ•). Then M̂ is constructible and the coadjunction map

M̂ →M has an AR-null cone. In particular, M̂ ∈ Dc(X
N,Λ•).

Proof. It can be proved in the same way as ([11], 3.0.14). We go over the proof briefly.
Let P : X → X be an algebraic presentation, i.e. the analytification of a presentation

of the algebraic stack X . By (5.5.3), the restriction of the natural map M̂ →M to X gives
the natural map N̂ → N in D(A (X)), where N = M |X . It suffices to show the cone of

N̂ → N is AR-null, and M̂ is Cartesian.
1. By ([6], 3.1.5, 3.4.1) and ([11], 2.1.i), the cohomological dimension of Rπ∗ on Xan is

finite. Since Lπ∗ also has finite cohomological dimension, the same is true for the normal-
ization functor, namely there exists an integer d, such that for every a and N ∈ D≥a(XN)
(resp. D≤a(XN)), we have N̂ ∈ D≥a−d(XN) (resp. D≤a+d(XN)).

2. One reduces to the case where N is a λ-module. This is because

H
i(N̂) = H

i( ̂τ≥i−dτ≤i+dN)

and hence one can assume N is bounded, and then a λ-module.
3. One reduces to the case where N is an adic system. There exists an adic system K

with an AR-isomorphism K → N, whose normalization K̂ → N̂ is an isomorphism (5.5.2).
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4. By comparison ([3], 6.1.2 (A′′)), the adic system N on X is algebraic, so by ([5],
Rapport sur la formule des traces, 2.8) there exists an n0 such that N/Ker(λn0) is torsion-
free. Hence one reduces to two cases: N is torsion-free, or λn0N = 0.

5. Assume N is torsion-free and adic. Then the component Nn is flat over Λn, for each
n, and the natural map

Nn ⊗
L
Λn

Λn−1 ≃ Nn ⊗Λn Λn−1
∼
→ Nn−1

is an isomorphism, i.e. N is normalized. Then the cone of N̂ → N is zero.
6. Assume λn0N = 0. One reduces to the case where n0 = 1 by considering the λ-

filtration. This means the map

(Nn)n → (Nn/λNn)n = (N0)n

is an AR-isomorphism, so N and π∗N0 = (N0)n have the same normalization. Note that

Rπ∗(N0)n = N0 ([11], 2.2.3), hence π̂∗N0 = Lπ∗N0. By (5.2.4), N0 is lcc on each stratum
of an algebraic stratification of X, and one can check if Lπ∗N0 → π∗N0 is an isomorphism
on each stratum. By ([3], 6.1.2 (A′)), N0 is algebraic, and one can replace each stratum
by an étale cover on which N0 is constant. Finally by additivity we reduce to the case
N0 = Λ0, which is proved by computing Lπ∗Λ0 via the 2-term flat Λ-resolution of Λ0 (cf.
([11], 3.0.10)).

The proof for M̂ being Cartesian is also the same as ([11], 3.0.14) (note that the analytic
version of ([11], 3.0.13) holds). Let us not to repeat it here.

In particular, M̂ ∈ Dc(A (X)), since the cone (which is AR-null) is AR-adic, and λ-
complexes form a triangulated subcategory.

We prove that the adjunction map is an isomorphism in the following lemma. This will
be the crucial step; it only holds in the analytic category.

Lemma 5.5.6. Let M ∈ Dc(X,Λ). Then the adjunction map M → Rπ∗Lπ
∗M is an iso-

morphism.

Proof. For simplicity, let us denote Rπ∗Lπ
∗M by M̌. Note that ifM ′ →M →M ′′ →M ′[1]

is an exact triangle, and the adjunction maps for M ′ and M ′′ are isomorphisms, then the
same holds for M, since M̌ ′ → M̌ → M̌ ′′ → M̌ ′[1] is also an exact triangle.

1. That the map M → M̌ is an isomorphism is a local property, since it is equivalent
to the vanishing of all the cohomology sheaves of the cone, which can be checked locally.
So we may replace X by the algebraic presentation X.

2. On the analytic topos Xan, the functor Rπ∗ has finite cohomological dimension ([11],
2.1.i). Then as explained in (5.5.5), since the functor M 7→ M̌ has finite cohomological
dimension, one reduces to the case where M is a constructible ΛX-module. This case
follows from ([3], 6.1.2 (B′′)), but for the reader’s convenience, we continue to finish the
proof.

By (5.3.3), M is the limit of some adic sheaf F ∈ Λ-Shc(Xan), and by comparison ([3],
6.1.2 (A′′)) we see that F is algebraic. Therefore by ([5], Rapport sur la formule des traces,
2.8), we reduce to two cases: M is torsion-free (i.e. stalks are free Λ-modules of finite type),
or M is killed by λ. The second case follows from ([11], 2.2.3).

3. AssumeM is a torsion-free constructible sheaf. We want to use noetherian induction
to reduce to the case where M is locally constant. Let j : U →֒ X be the open immersion
of a Zariski open subspace over which M is locally constant (by definition; see (5.3.3)), and
let i : Z →֒ X be the complement. Consider the exact triangle

i∗F // M // Rj∗MU
// ,
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where F = Ri!M ∈ Dc(Zan,Λ). It suffices to show that the adjunction maps for i∗F and
Rj∗MU are isomorphisms.

We have the following commutative diagram of topoi

ZN
an

iN //

πZ
��

XN
an

πX
��

Zan
i // Xan,

so RπX,∗ ◦ i
N
∗ ≃ i∗ ◦ RπZ,∗. Also Lπ

∗
X ◦ i∗ ≃ iN∗ ◦ Lπ

∗
Z , since i∗ is just extension by zero,

and i∗(F ⊗
L
Λ Λn) ≃ i∗F ⊗

L
Λ Λn. Therefore, the adjunction map for i∗F on X is obtained by

applying i∗ to the adjunction map for F on Z :

i∗F → RπX,∗Lπ
∗
Xi∗F ≃ i∗RπZ,∗Lπ

∗
ZF,

which is an isomorphism by noetherian hypothesis.
We have the commutative diagram of topoi

UN
an

jN //

πU
��

XN
an

πX
��

Uan
j // Xan,

so RπX,∗ ◦Rj
N
∗ ≃ Rj∗ ◦RπU,∗. Also Rj

N
∗ ◦ Lπ

∗
U ≃ Lπ

∗
X ◦Rj∗. For each n we have a natural

morphism Λn⊗
L
ΛRj∗F → Rj∗(F⊗

L
ΛΛn). Let P

• be the flat Λ-resolution 0→ Λ
λn+1

−→ Λ→ Λn

of Λn, and let F → I• be an injective resolution of the sheaf F. Then I• ⊗Λ P
• is also a

complex of injectives, and it is clear that j∗(I
•⊗P •) = j∗(I

•)⊗P •. Therefore, the adjunction
map for Rj∗MU on X is obtained by applying Rj∗ to the adjunction map for MU on U.
Hence we reduce to the case where M is a locally constant sheaf on X.

4. Since the question is local for the analytic topology, we may cover X by analytic
open subspaces over which M is constant, and hence reduce to the case where M is con-
stant, defined by a free module Λr of finite rank. By additivity we may assume M = Λ.
Then Lπ∗Λ = (Λn)n, and π∗(Λn)n = lim

←−
(Λn)n = Λ. To finish the proof, we shall show

Riπ∗(Λn)n = 0 for i 6= 0.
Recall that Riπ∗(Λn)n is the sheafification of the presheaf on Xan

U 7→ H i(π∗U, (Λn)n).

Consider the exact sequence ([11], 2.1.i)

0 // R1 lim
←−

H i−1(U,Λn) // H i(π∗U,Λ•) // lim
←−

H i(U,Λn) // 0.

Since X is locally contractible, and R1 lim
←−

H0(U,Λn) = R1 lim
←−

Λ• = 0 for U connected,

we see that the sheafification Riπ∗Λ• is zero for i 6= 0. This proves that the adjunction
morphism M → M̌ is an isomorphism.

Therefore, (Q ◦ Lπ∗, Rπ∗) induce an equivalence between Dc(X,Λ) and Dc(X,Λ).
(ii) If X• → X is a strictly simplicial algebraic smooth hypercover, we have Dc(X,Λ) ≃

Dc(X•,Λ) by (5.4.1i). Similarly, Dc(X,Λ) is naturally equivalent to Dc(X•,Λ). This can be
proved in the same way as we prove “Dc(X,Λm) ≃ Dc(X

an
• ,Λm)” in (5.4.1).
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So we may assume that X = X is the analytic space associated to an algebraic scheme.
By definition of Rπ∗, it suffices to show the following diagram commutes

D+
c (A (X))

RπX,∗ //

fN
∗

��

D+
c (X,Λ)

f∗
��

D+
c (A (Y ))

RπY,∗ // D+
c (Y,Λ),

and this follows from the commutativity of the diagram of topoi

XN
an

πX //

fN

��

Xan

f
��

Y N
an

πY // Yan.

Note that the corresponding diagram for f : X→ Y does not even make sense, since if f is
not smooth, it does not necessarily induce a morphism of their lisse-analytic topoi.

Similarly, RπX ,∗ induces a fully faithful functor Dc(X,Λ)→ Dc(X,Λ), which is compat-
ible with f∗.

6 Over C.

Let (Λ,m) be a complete DVR as before, with residue characteristic ℓ 6= 2. Let X be an
algebraic stack over Spec C. We first prove a comparison theorem between the lisse-étale
topoi over C and over F, and then use this together with (5.4.3) to deduce the decomposition
theorem for C-algebraic stacks with affine diagonal.

6.1 Comparison between the lisse-étale topoi over C and over F.

Let (S ,L) be a pair on X defined on the level of Λ. By refining we may assume all strata in
S are essentially smooth (i.e. their maximal reduced substack is smooth) and connected.
Let A ⊂ C be a subring of finite type over Z, large enough so that there exists a triple
(XS ,SS ,LS) over S := Spec A giving rise to (X ,S ,L) by base change, and 1/ℓ ∈ A. Then S
satisfies the condition (LO); the hypothesis on ℓ-cohomological dimension follows from ([1],
X, 6.2). We may shrink S to assume that strata in SS are smooth over S with geometrically
connected fibers, which is possible because one can take a presentation P : XS → XS and
shrink S so that the strata in P ∗SS are smooth over S with geometrically connected fibers.
Let a : XS → S be the structural map.

Let A ⊂ V ⊂ C, where V is a strictly henselian DVR whose residue field is an algebraic
closure of a finite residue field of A. Let (XV ,SV ,LV ) be the triple obtained by base change
to V, and let (Xs,Ss,Ls) be its special fiber. Then we have morphisms

X
u // XV Xs.

ioo

Proposition 6.1.1. (stack version of ([3], 6.1.9)) For S small enough, the functors

Db
S ,L(X ,Λn) Db

SV ,LV
(XV ,Λn)

u∗
noo i∗n // Db

Ss,Ls
(Xs,Λn)

and

Db
S ,L(X ,Λ) Db

SV ,LV
(XV ,Λ)

u∗
oo i∗ // Db

Ss,Ls
(Xs,Λ)

are equivalences of triangulated categories.
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Proof. Clearly, they are all triangulated functors.
By (4.5), we can shrink S = Spec A so that for any F and G of the form j!L, where

j : US → XS in SS and L ∈ LS(US), the formations of RH omXS
(F,G) commute with base

change on S, and the complexes a∗E xt
q
XS

(F,G) on S are lcc and of formation compatible
with base change, i.e. the cohomology sheaves are lcc, and for any g : S′ → S, the base
change morphism for a∗ :

g∗a∗E xt
q
XS

(F,G)→ aS′∗g
′∗
E xtqXS

(F,G)

is an isomorphism. Then using the same argument as in [3], the claim for u∗n and i∗n follows.
For the reader’s convenience, we explain the proof in [3] in more detail.

Note that the spectra of V,C and s have no non-trivial étale surjections mapping to
them, so their small étale topoi are the same as Sets. In particular, RaV ∗ (resp. RaC∗
and Ras∗) is just RΓ. Let us show the full faithfulness of u∗n and i∗n first. For K,L ∈
Db

SV ,LV
(XV ,Λn), let KC and LC (resp. Ks and Ls) be their images under u∗n (resp. i∗n).

Then the full faithfulness follows from the more general claim that, the maps

ExtiX (KC, LC) ExtiXV
(K,L)

u∗
noo i∗n // ExtiXs

(Ks, Ls)

are bijective for all i.
Since HomDc(X ,Λn)(K,−) and HomDc(X ,Λn)(−, L) are cohomological functors, by 5-

lemma we may assume that K = F and L = G are Λn-sheaves. Let j : US → XS be the
immersion of an open stratum in SS , with complement i : ZS → XS . Using the short exact
sequence

0 // jV !j
∗
V F

// F // iV ∗i
∗
V F

// 0

and noetherian induction on the support of F and G, we may assume that they take the
form jV !L, where j is the immersion of some stratum in SS, and L is a sheaf in LV . The
spectral sequence

Rpa�,∗E xt
q
X�

(F�, G�) =⇒ Extp+q
X�

(F�, G�)

is natural in the base �, which can be V,C or s. The assumption on S made before implies
that the composite base change morphism

g∗a∗E xt
q
XS

(F,G)→ aS′∗g
′∗
E xtqXS

(F,G)→ aS′∗E xt
q
XS′

(g′∗F, g′∗G)

is an isomorphism, for all g : S′ → S. Therefore, the maps

ExtiX (FC, GC) ExtiXV
(F,G)

u∗
noo i∗n // ExtiXs

(Fs, Gs)

are bijective for all i. The claim (hence the full faithfulness of u∗n and i∗n) follows.
This claim also implies their essential surjectivity. To see this, let us give a lemma first.

Lemma 6.1.2. Let F : C → D be a triangulated functor between triangulated categories.
Let A,B ∈ Obj C , and let F (A)

v
→ F (B)→ C → F (A)[1] be an exact triangle in D . If the

map
F : HomC (A,B)→ HomD(F (A), F (B))

is surjective, then C is in the essential image of F.

Proof. Let u : A → B be a morphism such that F (u) = v. Let C ′ be the mapping cone of
u, i.e. let the triangle A

u
→ B → C ′ → A[1] be exact. Then its image

F (A)
v // F (B) // F (C ′) // F (A)[1]

is also an exact triangle. This implies that C ≃ F (C ′).
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Now we can show the essential surjectivity of u∗n and i∗n. ForK ∈ D
b
SC,LC

(X ,Λn), to show
that K lies in the essential image of u∗n, using the truncation exact triangles and (6.1.2),
we reduce to the case where K is a sheaf. Using noetherian induction on the support of K,
we reduce to the case where K = j!L, where j : U → X is the immersion of a stratum in
S , and L ∈ L(U). This is the image of the corresponding jV !LV , since they are all defined
over S. Similarly, i∗n is also essentially surjective.

Next, we prove that u∗ and i∗ are equivalences.
We claim that for K,L ∈ Db

c(XV ,Λ), if the morphisms

u∗n : HomDc(XV ,Λn)(K̂n, L̂n)→ HomDc(X ,Λn)(K̂n,C, L̂n,C)

and
i∗n : HomDc(XV ,Λn)(K̂n, L̂n)→ HomDc(Xs,Λn)(K̂n,s, L̂n,s)

are bijective for all n, then the morphisms

u∗ : HomDc(XV ,Λ)(K,L)→ HomDc(X ,Λ)(KC, LC)

and
i∗ : HomDc(XV ,Λ)(K,L)→ HomDc(Xs,Λ)(Ks, Ls)

are bijective. Let � be one of the bases V,C or s. Since K and L are bounded, we see from
the spectral sequence

Rpa�,∗E xt
q
X�

(K̂n,�, L̂n,�) =⇒ Extp+q
X�

(K̂n,�, L̂n,�)

and the finiteness of RH om and Ra�,∗ ([10], 4.2.2, 4.1) that, the groups Ext
−1(K̂n,�, L̂n,�)

are finite for all n, hence they form a projective system satisfying the condition (ML). By
([11], 3.1.3), we have an isomorphism

HomDc(X�,Λ)(K�, L�)
∼
→ lim
←−
n

HomDc(X�,Λn)(K̂n,�, L̂n,�),

natural in the base �, and the claim follows.
Since when restricted to Db

S�,L�
, the functors u∗n and i∗n are fully faithful for all n, we

deduce that u∗ and i∗ are also fully faithful.
Finally we prove the essential surjectivity of u∗ and i∗. In the following 2-commutative

diagram

Db
SV ,LV

(A (XV ))
QV //

u′∗

��

Db
SV ,LV

(XV ,Λ)

u∗

��
Db

S ,L(A (X ))
Q // Db

S ,L(X ,Λ),

the localization functors Q and QV are essentially surjective. Given K ∈ Db
S ,L(X ,Λ), to

show that K lies in the essential image of u∗, it suffices to show that K̂ ∈ Db
S ,L(A (X )) lies

in the essential image of u′∗.
Let M = K̂ = (Mn)n; it is a normalized complex ([11], 3.0.8). Let ρn :Mn →Mn−1 be

the transition maps. Since u∗n is an equivalence, there exists (uniquely up to isomorphism)
an Mn,V ∈ Db

SV ,LV
(XV ,Λn) such that u∗n(Mn,V ) ≃ Mn, for each n. Also there exists

ρn,V ∈ HomDb
SV ,LV

(XV ,Λn)
(Mn,V ,Mn−1,V ), which is mapped to ρn via u∗n. We see that the

induced morphism ρn,V : Mn,V ⊗
L
Λn

Λn−1 → Mn−1,V is an isomorphism, since its image
under the equivalence u∗n−1 is an isomorphism ([11], 3.0.10).
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For MV = (Mn,V )n to be an object of Db
SV ,LV

(A (XV )), we need to show it is an object

of Dc(A (XV )), i.e. the cohomology systems H i(MV ) are AR-adic ([11], 3.0.6).
Let N i = (N i

n)n be the universal image of the projective system H i(M). Recall ([8], V,
3.2.3) that, since H i(M) is AR-adic, it satisfies the condition (MLAR) (so that it makes
sense to talk about its system of the universal images), and there exists an integer k ≥ 0
such that lk(N

i) := (N i
n+k/λ

n+1N i
n+k)n is an adic system. Let r ≥ 0 be an integer such

that N i
n is the image of H i(Mn+r)→H i(Mn), for each n. Then for every s ≥ r, we have

Im(H i(Mn+r,V )→H i(Mn,V ))

Im(H i(Mn+s,V )→H i(Mn,V ))
= 0,

since its image under the equivalence u∗n is zero. This shows that H i(MV ) also satisfies the
condition (MLAR), with universal images N i

n,V = Im(H i(Mn+r,V ) → H i(Mn,V )). Also,

the projective system lk(N
i
V ) is adic, since the image under u∗n of the transition map

(
N i

n+k+1,V /λ
n+2N i

n+k+1,V

)
⊗Λn+1

Λn → N i
n+k,V /λ

n+1N i
n+k,V

is an isomorphism. By ([8], V, 3.2.3) again, the system H i(MV ) is AR-adic. This finishes
the proof that u∗ (and similarly, i∗) is essentially surjective.

6.2 The proof.

Let P : X → X be a presentation and let X = X an be the associated analytic stack.

6.2.1. Following [12], one can define Ω-perverse sheaves (for Ω = C, Eλ or Qℓ) on X as
follows. Let p = p1/2 be the middle perversity on Xan. Let d : π0(X)→ N be the dimension
of the smooth map P. Define pD≤0

c (X,Ω) (resp. pD≥0
c (X,Ω)) to be the full subcategory of

objects K ∈ Dc(X,Ω) such that P an,∗K[d] is in pD≤0
c (Xan,Ω) (resp. pD≥0

c (Xan,Ω)). As in
([12], 4.1, 4.2), one can show that these subcategories do not depend on the choice of the
presentation P, and they define a t-structure, called the (middle) perverse t-structure on X.

6.2.2. Following ([3], 6.2.4), one can define the sheaf complexes of geometric origin as
follows. Let F be a Ω-perverse sheaf on X (resp. a Qℓ-perverse sheaf on X ). We say that
F is semi-simple of geometric origin if it is semi-simple, and every simple direct summand
belongs to the smallest family of simple perverse sheaves on complex analytic stacks (resp.
lisse-étale sites of C-algebraic stacks) that

(a) contains the constant sheaf Ω over a point, and is stable under the following opera-
tions:

(b) taking the constituents of p
H iT, for T = f∗, f!, f

∗, f !, RH om(−,−) and − ⊗L −,
where f is an arbitrary algebraic morphism between stacks.

A complex K ∈ Db
c(X,Ω) (resp. D

b
c(X ,Qℓ)) is said to be semi-simple of geometric origin

if it is isomorphic to the direct sum of the (pH iK)[−i]’s, and each p
H iK is semi-simple

of geometric origin.
One can replace the constant sheaf Eλ by its ring of integers Oλ, and deduce that every

complex K ∈ Db
c (X,Qℓ) that is semi-simple of geometric origin has an integral structure.

Then we can apply (5.5.4).

Lemma 6.2.3. (stack version of ([3], 6.2.6)) Let F be a simple Qℓ-perverse sheaf of
geometric origin on X . For A ⊂ C large enough, the equivalence (6.1.1)

Db
S ,L(X ,Qℓ)↔ Db

Ss,Ls
(Xs,Qℓ)

takes F to a simple perverse sheaf Fs on Xs, such that (Xs,Fs) is deduced by base extension
from a pair (X0,F0) defined over a finite field Fq, and F0 is ι-pure.
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Proof. Fs is obtained by base extension from some simple perverse sheaf F0 on X0, so it
suffices to show F0 is ι-mixed (3.5). This is clear, since the six operations, the perverse
truncation functors and taking subquotients in the category of perverse sheaves all preserve
ι-mixedness, and the constant sheaf Qℓ on a point is punctually pure.

Finally, we are ready to prove the stack version of the decomposition theorem over C.

Theorem 6.2.4. (stack version of ([3], 6.2.5)) Let f : X → Y be a proper morphism with
finite diagonal of C-algebraic stacks with affine automorphism groups. If K ∈ Db

c(X,C) is
semi-simple of geometric origin, then fan∗ K is also bounded, and is semi-simple of geometric
origin on Y.

Proof. By (5.5.4) we can replace Db
c(X,C) by D

b
c(X,Qℓ), and by (5.4.3) we can replace this

by Db
c(X ,Qℓ).

From ([15], 5.17) we know that there is a canonical isomorphism f! ≃ f∗ on D−
c (X ,Qℓ).

For K ∈ Db
c, we have f!K ∈ D

−
c and f∗K ∈ D

+
c , hence f∗K ∈ D

b
c.

Lemma 6.2.5. We can reduce to the case where K is a simple perverse sheaf F .

Proof. There are two steps: firstly, we show that the statement for simple perverse sheaves
of geometric origin implies the statement for semi-simple perverse sheaves of geometric
origin. This is clear:

f∗(
⊕

i

Fi) =
⊕

i

f∗Fi =
⊕

i

⊕

j

p
H

j(f∗Fi)[−j] =
⊕

j

p
H

j(f∗(
⊕

i

Fi))[−j].

Then we show that the statement for semi-simple perverse sheaves implies the general
statement. If K is semi-simple of geometric origin, we have

f∗K =
⊕

i

f∗
p
H

i(K)[−i] =
⊕

i

⊕

j

p
H

jf∗
p
H

i(K)[−i− j].

Taking p
H n on both sides, we get

p
H

n(f∗K) =
⊕

i+j=n

p
H

jf∗
p
H

i(K),

therefore f∗K =
⊕

n
p
H n(f∗K) and each summand is semi-simple of geometric origin.

Now assume K is a simple perverse sheaf F . By ([17], 3.4v) every bounded complex
is stratifiable. By (6.2.3), F corresponds to a simple perverse sheaf Fs which is induced
from an ι-pure perverse sheaf F0 by base change. By (4.5), the formation of f∗ over C is
the same as the formation of fs,∗ over F or f0,∗ over a finite field. By (3.8), f0,∗F0 is also
ι-pure. By (3.10, 3.11), we have

fs,∗Fs ≃
⊕

i∈Z

p
H

i(fs,∗Fs)[−i],

and each p
H i(fs,∗Fs) is semi-simple of geometric origin. Therefore f∗F is semi-simple of

geometric origin.
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