Capacitary estimates of solutions of semilinear parabolic equations

Moshe Marcus

Laurent Veron

Department of Mathematics, Technion, Haifa, ISRAEL

Department of Mathematics, Univ. of Tours, FRANCE

Abstract

We prove that any positive solution of $\partial_t u - \Delta u + u^q = 0$ (q > 1) in $\mathbb{R}^N \times (0, \infty)$ with initial trace (F,0), where F is a closed subset of \mathbb{R}^N can be represented, up to two universal multiplicative constants, by a series involving the Bessel capacity $C_{2/q,q'}$. As a consequence we prove that there exists a unique positive solution of the equation with such an initial trace. We also characterize the blow-up set of u(x,t) when $t\downarrow 0$, by using the "density" of F expressed in terms of the $C_{2/q,q'}$ -capacity.

2000 Mathematics Subject Classification. 35K05;35K55; 31C15; 31B10; 31C40. Key words. Heat equation; singularities; Borel measures; Bessel capacities; Wiener type test; initial trace.

Contents

1	Introduction	2
2	Estimates from above	5
	2.1 Global L^q -estimates	6
	2.2 Pointwise estimates	9
	2.3 The upper Wiener test	17
3	Estimate from below	22
	3.1 Estimate from below of the solution of the heat equation	23
	3.2 Estimate from above of the nonlinear term	24
4	Applications	37
A	Appendix	39

1 Introduction

Let $T \in (0, \infty]$ and $Q_T = \mathbb{R}^N \times (0, T]$ $(N \ge 1)$. If q > 1 and $u \in C^2(Q_T)$ is nonnegative and verifies

$$\partial_t u - \Delta u + u^q = 0 \quad \text{in } Q_T, \tag{1.1}$$

it has been proven by Marcus and Véron [25] that there exists a unique outer-regular positive Borel measure ν in \mathbb{R}^N such that

$$\lim_{t \to 0} u(.,t) = \nu,\tag{1.2}$$

in the sense of Borel measures; the set of such measures is denoted by $\mathfrak{B}^{reg}_{+}(\mathbb{R}^{N})$. To each of its element ν is associated a unique couple $(\mathcal{S}_{\nu}, \mu_{\nu})$ (we write $\nu \approx (\mathcal{S}_{\nu}, \mu_{\nu})$) where \mathcal{S}_{ν} , the singular part of ν , is a closed subset of \mathbb{R}^{N} and μ_{ν} , the regular part is a nonnegative Radon measure on $\mathcal{R}_{\nu} = \mathbb{R}^{N} \setminus \mathcal{S}_{\nu}$. In this setting, relation (1.2) has the following meaning:

(i)
$$\lim_{t\to 0} \int_{\mathcal{R}_{\nu}} u(.,t) \zeta dx = \int_{\mathcal{R}_{\nu}} \zeta d\mu_{\nu}, \qquad \forall \zeta \in C_{0}(\mathcal{R}_{\nu}),$$
(ii)
$$\lim_{t\to 0} \int_{\mathcal{O}} u(.,t) dx = \infty, \qquad \forall \mathcal{O} \subset \mathbb{R}^{N} \text{ open, } \mathcal{O} \cap \mathcal{S}_{\nu} \neq \emptyset.$$
(1.3)

The measure ν is by definition the initial trace of u and denoted by $Tr_{\mathbb{R}^N}(u)$. It is wellknown that equation (1.1) admits a critical exponent

$$1 < q < q_c = 1 + \frac{N}{2}.$$

This is due to the fact, proven by Brezis and Friedman [6], that if $q \geq q_c$, isolated singularities of solutions of (1.1) in $\mathbb{R}^N \setminus \{0\}$ are removable. Conversely, if $1 < q < q_c$, it is proven by the same authors that for any k > 0, equation (1.1) admits a unique solution $u_{k\delta_0}$ with initial data $k\delta_0$. This existence and uniqueness results extends in a simple way if the initial data $k\delta_0$ is replaced by any Radon measure μ in \mathbb{R}^N (see [5]). Furthermore, if $k \to \infty$, $u_{k\delta_0}$ increases and converges to a positive, radial and self-similar solution u_{∞} of (1.1). Writing it under the form $u_{\infty}(x,t) = t^{-\frac{1}{q-1}} f(|x|/\sqrt{t})$, f is a positive solution of

$$\begin{cases}
\Delta f + \frac{1}{2}y \cdot Df + \frac{1}{q-1}f - f^q = 0 & \text{in } \mathbb{R}^N \\
\lim_{|y| \to \infty} |y|^{\frac{2}{q-1}} f(y) = 0.
\end{cases}$$
(1.4)

The existence, uniqueness and the expression of the asymptotics of f has been studied thoroughly by Brezis, Peletier and Terman in [7]. Later on, Marcus and Véron proved in [25] that in the same range of exponents, for any $\nu \in \mathfrak{B}^{reg}_{+}(\mathbb{R}^{N})$, the Cauchy problem

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & \text{in } Q_{\infty}, \\ Tr_{\mathbb{R}^N}(u) = \nu, \end{cases}$$
 (1.5)

admits a unique positive solution. This result means that the initial trace establishes a one to one correspondence between the set of positive solutions of (1.1) and $\mathfrak{B}^{reg}_{+}(\mathbb{R}^{N})$. A key step for proving the uniqueness is the following inequalities

$$t^{-\frac{1}{q-1}}f(|x-a|/\sqrt{t}) \le u(x,t) \le ((q-1)t)^{-\frac{1}{q-1}} \qquad \forall (x,t) \in Q_{\infty}, \tag{1.6}$$

valid for any $a \in \mathcal{S}_{\nu}$. As a consequence of Brezis and Friedman's result if $q \geq q_c$, i.e. in the supercritical range, Problem (1.5) may admit no solution at all. If $\nu \in \mathfrak{B}^{reg}_+(\mathbb{R}^N)$, $\nu \approx (\mathcal{S}_{\nu}, \mu_{\nu})$, the necessary and sufficient conditions for the existence of a maximal solution $u = \overline{u}_{\nu}$ to Problem (1.5) are obtained in [25] and expressed in terms of the the Bessel capacity $C_{2/q,q'}$, (with q' = q/(q-1)). Furthermore, uniqueness does not hold in general as it was pointed out by Le Gall [21]. In the particular case where $\mathcal{S}_{\nu} = \emptyset$ and ν is simply the Radon measure μ_{ν} , the necessary and sufficient condition for solvability is that μ_{ν} does not charge Borel subsets with $C_{2/q,q'}$ -capacity zero. This result was already proven by Baras and Pierre [4] in the particular case of bounded measures and extended by Marcus and Véron [25] to the general case. We shall denote by $\mathfrak{M}_+^q(\mathbb{R}^N)$ the positive cone of the space $\mathfrak{M}^q(\mathbb{R}^N)$ of Radon measures which does not charge Borel subsets with zero $C_{2/q,q'}$ -capacity. Notice that $W^{-2/q,q}(\mathbb{R}^N) \cap \mathfrak{M}_+^b(\mathbb{R}^N)$ is a subset of $\mathfrak{M}_+^q(\mathbb{R}^N)$; here $\mathfrak{M}_+^b(\mathbb{R}^N)$ is the cone of positive bounded Radon mesures in \mathbb{R}^N . For such measures, uniqueness always holds and we denote $\overline{u}_{\mu_{\nu}} = u_{\mu_{\nu}}$.

In view of the already known facts concerning the parabolic equation, it is useful to recal the much more advanced results previously obtained for the stationary equation

$$-\Delta u + u^q = 0 \quad \text{in } \Omega, \tag{1.7}$$

in a smooth bounded domain Ω of \mathbb{R}^N . This equation has been intensively studied since 1993, both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The existence of a boundary trace for positive solutions, in the class of outer-regular positive Borel measures on $\partial\Omega$, is proven by Le Gall [20], [21] in the case q=N=2, by probabilistic methods, and by Marcus and Véron in [23], [24] in the general case q>1, N>1. The existence of a critical exponent $q_e=(N+1)/(N-1)$ is due to Gmira and Véron [12] who shew that, if $q\geq q_e$ boundary isolated singularities of solutions of (1.7) are removable, which is not the case if $1< q< q_e$. In this subcritical case Le Gall and Marcus and Véron proved that the boundary trace establishes a one to one correspondence between positive solutions of (1.7) in Ω and outer regular positive Borel measures on $\partial\Omega$, which is not the case in the supercritical case $q\geq q_e$. In [10] Dynkin and Kuznetsov introduced the notion of σ -moderate solution which means that u is a positive solution of (1.7) such that there exists an increasing sequence of positive Radon measures on $\partial\Omega$ { μ_n } belonging to $W^{-2/q,q'}(\partial\Omega)$ such that the corresponding solutions $v=v_{\mu_n}$ of

$$\begin{cases}
-\Delta v + v^q = 0 & \text{in } \Omega \\
v = \mu_n & \text{in } \partial\Omega
\end{cases}$$
(1.8)

converges to u locally uniformly in Ω . This class of solutions plays a fundamental role since Dynkin and Kuznetsov proved that a σ -moderate solution of (1.7) is uniquely determined by its *fine trace*, a new notion of trace introduced in order to avoid the non-uniqueness phenomena. Later on, it is proved by Mselati (if q = 2) [32] and then by Dynkin (if $q_e \leq q \leq 2$) [8], that all the positive solutions of (1.7) are σ -moderate. The key-stone element in their proof (partially probabilistic) is the fact that the maximal solution \overline{u}_K of (1.7) with a boundary trace vanishing outside a compact subset $K \subset \partial \Omega$ is indeed σ -moderate. This deep result was obtained by a combination of probabilistic and analytic methods by Mselati [32] in the case q = 2 and by purely analytic tools by Marcus and Véron [28], [29] in the case $q \geq q_e$. Defining \underline{u}_K as the

largest σ -moderate solution of (1.7) with a boundary trace concentrated on K, the crucial step in Marcus-Véron's proof (non probabilistic) is the bilateral estimate satisfied by \overline{u}_K and \underline{u}_K

$$C^{-1}\rho(x)W_K(x) \le \underline{u}_K(x) \le \overline{u}_K(x) \le C\rho(x)W_K(x). \tag{1.9}$$

In this expression $C = C(\Omega, q)$, $\rho(x) = \text{dist}(x, \partial \Omega)$ and $W_F(x)$ is the capacitary potential of K defined by

$$W_K(x) = \sum_{-\infty}^{\infty} 2^{-\frac{m(q+1)}{q-1}} C_{2/q,q'}(2^m K_m(x)), \tag{1.10}$$

where $K_m(x) = K \cap \{z : 2^{-m-1} \le |z - x| \le 2^{-m}\}$, the Bessel capacity being relative to \mathbb{R}^{N-1} . Note that, using a technique introduced in [24], inequality $\overline{u}_K \le C^2 \underline{u}_K$ implies $\underline{u}_K = \overline{u}_K$.

Extending Dynkin's ideas to the parabolic case, we introduce the following notion

Definition 1.1 A positive solution u of (1.1) is called σ -moderate if their exists an increasing sequence $\{\mu_n\} \subset W^{-2/q,q}(\mathbb{R}^N) \cap \mathfrak{M}_+^b(\mathbb{R}^N)$ such that the corresponding solution $u := u_{\mu_n}$ of

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & in \ Q_{\infty} \\ u(x,0) = \mu_n & in \ \mathbb{R}^N, \end{cases}$$
 (1.11)

converges to u locally uniformly in Q_{∞} .

If F is a closed subset of \mathbb{R}^N , we denote by \overline{u}_F the maximal solution of (1.1) with an initial trace vanishing on F^c , and by \underline{u}_F the maximal σ -moderate solution of (1.1) with an initial trace vanishing on F^c . Thus \underline{u}_F is defined by

$$\underline{u}_F = \sup\{u_\mu : \mu \in \mathfrak{M}^q_+(\mathbb{R}^N), \mu(F^c) = 0\},$$
(1.12)

where $\mathfrak{M}_{+}^{q}(\mathbb{R}^{N}) := W^{-2/q,q}(\mathbb{R}^{N}) \cap \mathfrak{M}_{+}^{b}(\mathbb{R}^{N})$. One of the main goal of this article is to prove that \overline{u}_{F} is σ -moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of \mathbb{R}^N , $\overline{u}_F = \underline{u}_F$.

We define below a set function which will play a fundamental role in the sequel.

Definition 1.3 Let F be a closed subset of \mathbb{R}^N . The $C_{2/q,q'}$ -capacitary potential W_F of F is defined by

$$W_F(x,t) = t^{-\frac{1}{q-1}} \sum_{n=0}^{\infty} (n+1)^{\frac{N}{2} - \frac{1}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F_n}{\sqrt{(n+1)t}} \right) \qquad \forall (x,t) \in Q_{\infty}, \tag{1.13}$$

where
$$F_n = F_n(x,t) := \{ y \in F : \sqrt{nt} \le |x - y| \le \sqrt{(n+1)t} \}.$$

One of the tool for proving Theorem 1.2 is the following bilateral estimate which is only meaningful in the supercritical case, otherwhile it reduces to (1.6);

Theorem 1.4 For any $q \ge q_c$ there exist two positive constants $C_1 \ge C_2 > 0$, depending only on N and q such that for any closed subset F of \mathbb{R}^N , there holds

$$C_2W_F(x,t) \le \underline{u}_F(x,t) \le \overline{u}_F(x,t) \le C_1W_F(x,t) \qquad \forall (x,t) \in Q_{\infty}. \tag{1.14}$$

It is important to notice that the capacitary potential is equivariant with respect to the same scaling transformation which let (1.1) invariant in the sense that, for any $\ell > 0$,

$$\ell^{\frac{1}{q-1}}W_F(\sqrt{\ell}x,\ell t) = W_{F/\sqrt{\ell}}(x,t) \qquad \forall (x,t) \in Q_{\infty}. \tag{1.15}$$

This quasi representation, up to uniformly upper and lower bounded functions, is also interesting in the sense that it indicates precisely what are the blow-up point of $\overline{u}_F = \underline{u}_F := u_F$. Introducing an integral expression comparable to W_F we show, in particular, the following results

$$\lim_{\tau \to 0} C_{2/q,q'}\left(\frac{F}{\tau} \cap B_1(x)\right) = \gamma \in [0,\infty) \Longrightarrow \lim_{t \to 0} t^{-\frac{1}{q-1}} u_F(x,t) = C\gamma \tag{1.16}$$

for some $C_{\gamma} = C(N, q, \gamma) > 0$, and

$$\limsup_{\tau \to 0} \tau^{\frac{2}{q-1}} C_{2/q,q'} \left(\frac{F}{\tau} \cap B_1(x) \right) < \infty \Longrightarrow \limsup_{t \to 0} u_F(x,t) < \infty. \tag{1.17}$$

Our paper is organized as follows. In Section 2 we obtain estimates from above on \overline{u}_F . In Section 3 we give estimates from below on \underline{u}_F . In Section 4 we prove the main theorems and expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N° HPRN-CT-2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations. Let Ω be a domain in \mathbb{R}^N with a compact C^2 boundary and T > 0. Set $B_r(a)$ the open ball of radius r > 0 and center a (and $B_r(0) := B_r$) and

$$Q_T^{\Omega} := \Omega \times (0, T), \quad \partial_{\ell} Q_T^{\Omega} = \partial \Omega \times (0, T), \quad Q_T := Q_T^{\mathbb{R}^N}, \quad Q_{\infty} := Q_{\infty}^{\mathbb{R}^N}.$$

Let $\mathbb{H}^{\Omega}[.]$ (resp. $\mathbb{H}[.]$) denote the heat potential in Ω with zero lateral boundary data (resp. the heat potential in \mathbb{R}^N) with corresponding kernel

$$(x, y, t) \mapsto H^{\Omega}(x, y, t) \quad (\text{resp.}(x, y, t) \mapsto H(x, y, t) = (4\pi t)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4t}}).$$

We denote by $q_c := 1 + \frac{N}{2}$, the parabolic critical exponent.

Theorem 2.1 Let $q \ge q_c$. Then there exists a positive constant $C_1 = C_1(N,q)$ such that for any closed subset F of \mathbb{R}^N and any $u \in C^2(Q_\infty) \cap C(\overline{Q_\infty} \setminus F)$ satisfying

$$\begin{cases} \partial_t u - \Delta u + u^q = 0 & in \ Q_{\infty} \\ \lim_{t \to 0} u(x, t) = 0 & locally \ uniformly \ in \ F^c, \end{cases}$$
 (2.1)

there holds

$$u(x,t) \le C_1 W_F(x,t) \qquad \forall (x,t) \in Q_\infty,$$
 (2.2)

where W_F is the (2/q, q')-capacitary potential of F defined by (1.13).

First we shall consider the case where F = K is compact and

$$K \subset B_r \subset \overline{B}_r, \tag{2.3}$$

and then we shall extend to the general case by a covering argument.

2.1 Global L^q -estimates

Let $\rho > 0$, we assume (2.3) holds and we put

$$\mathcal{T}_{r,\rho}(K) = \{ \eta \in C_0^{\infty}(B_{r+\rho}), 0 \le \eta \le 1, \eta = 1 \text{ in a neighborhood of } K \}.$$
 (2.4)

If $\eta \in \mathcal{T}_{r,\rho}(K)$, we set $\eta^* = 1 - \eta$, $\zeta = \mathbb{H}[\eta^*]^{2q'}$ and

$$R[\eta] = |\nabla \mathbb{H}[\eta]|^2 + |\partial_t \mathbb{H}[\eta] + \Delta \mathbb{H}[\eta]|. \tag{2.5}$$

We fix T > 0 and shall consider the equation on Q_T . Throughout this paper C will denote a generic positive constant, depending only on N, q and sometimes T, the value of which may vary from one ocurrence to another. We shall also use sometimes the notation $A \approx B$ for meaning that there exists a constant C > 0 independent of the data such that $C^{-1}A \leq B \leq CA$.

Except in Lemma 2.12 the only assumption on q is q > 1. In the sequel we shall obtain pointwise estimate on the solution expressed in terms of the $L^{q'}$ -norm of $R[\eta]$ for $\eta \in \mathcal{T}_{r,\rho}(K)$. Although these estimates could have been immediately turned into capacitary estimates as in [29], the advantage of keeping them comes from the possibility of performing operations such as dilations or summations on them. The next lemma points out the connection between $R[\eta]$ and the the $C_{2/q,q'}$ - capacity of K.

Lemma 2.2 There exists C = C(N, q) > 0 such that

$$C^{-1} \|\eta\|_{W^{2/q,q'}}^{q'} \le \iint_{Q_{\infty}} (R[\eta])^{q'} dx dt := \|R[\eta]\|_{L^{q'}}^{q'} \le C \|\eta\|_{W^{2/q,q'}}^{q'} \qquad \forall \eta \in \mathcal{T}_{r,\rho}(K).$$
 (2.6)

Therefore

$$\inf \left\{ \|R[\eta]\|_{L^{q'}}^{q'} : \eta \in \mathcal{T}_{r,\rho}(K) \right\} \approx C_{2/q,q'}^{B_{r+\rho}}(K). \tag{2.7}$$

Proof. There holds $\partial_t \mathbb{H}[\eta] = \Delta \mathbb{H}[\eta]$, and

$$\iint_{Q_{\infty}} |\partial_t \mathbb{H}[\eta]|^{q'} dx dt = \int_0^{\infty} \left\| t^{1-1/q} \partial_t \mathbb{H}[\eta] \right\|_{L^{q'}(\mathbb{R}^N)}^{q'} \frac{dt}{t} \approx \|\eta\|_{[W^{2,q'}, L^{q'}]_{1/q, q'}}^{q'}$$
(2.8)

where $\left[W^{2,q'},L^{q'}\right]_{1/q,q'}$ indicates the real interpolation functor of degree 1/q between $W^{2,q'}(\mathbb{R}^N)$ and $L^{q'}(\mathbb{R}^N)$ [35]. Similarly, and using the Gagliardo-Nirenberg inequality,

$$\iint_{C_{\infty}} |\nabla(\mathbb{H}[\eta])|^{2q'} dx dt \le C \|\eta\|_{W^{2/q,q'}}^{q'} \|\eta\|_{L^{\infty}}^{q'} = C \|\eta\|_{W^{2/q,q'}}^{q'}. \tag{2.9}$$

Inequality (2.6) follows from (2.8) and (2.9), and (2.7) from the definition of the Bessel capacity relative to $B_{r+\rho}$.

Lemma 2.3 There exists C = C(N,q) > 0 such that for any T > 0,

$$\iint_{Q_{\infty}} u^{q} \zeta dx dt + \int_{\mathbb{R}^{N}} (u\zeta)(x,T) dx \le C \|R[\eta]\|_{L^{q'}}^{q'} \qquad \forall \eta \in \mathcal{T}_{r,\rho}(K).$$
 (2.10)

Proof. We recall that there always hold

$$0 \le u(x,t) \le \left(\frac{1}{t(q-1)}\right)^{\frac{1}{q-1}} \qquad \forall (x,t) \in Q_{\infty},\tag{2.11}$$

and (see [6] e.g.)

$$0 \le u(x,t) \le \left(\frac{C}{t + (|x| - r)^2}\right)^{\frac{1}{q-1}} \qquad \forall (x,t) \in Q_{\infty} \setminus B_r. \tag{2.12}$$

Since η^* vanishes in an open neighborhood \mathcal{N}_1 , for any open subset \mathcal{N}_2 such that $K \subset \mathcal{N}_2 \subset \overline{\mathcal{N}}_2 \subset \mathcal{N}_1$ there exist $c_{\mathcal{N}_2} > 0$ and $c_{\mathcal{N}_2} > 0$ such that

$$\mathbb{H}[\eta^*](x,t) \le C_{\mathcal{N}_2} \exp(-c_{\mathcal{N}_2}t), \qquad \forall (x,t) \in Q_T^{\mathcal{N}_2}.$$

Therefore

$$\lim_{t \to 0} \int_{\mathbb{R}^N} (u\zeta)(x,t) dx = 0.$$

Thus ζ is an admissible test function and one has

$$\iint_{Q_T} u^q \zeta dx dt + \int_{\mathbb{R}^N} (u\zeta)(x, T) dx = \iint_{Q_T} u(\partial_t \zeta + \Delta \zeta) dx dt.$$
 (2.13)

Notice that the three terms on the left-hand side are nonnegative. Put $\mathbb{H}_{\eta^*} = \mathbb{H}[\eta^*]$, then

$$\partial_t \zeta + \Delta \zeta = 2q' \mathbb{H}_{\eta^*}^{2q'-1} \left(\partial_t \mathbb{H}_{\eta^*} + \Delta \mathbb{H}_{\eta^*} \right) + 2q' (2q'-1) \mathbb{H}_{\eta^*}^{2q'-2} |\nabla \mathbb{H}_{\eta^*}|^2,$$

$$= 2q' \mathbb{H}_{\eta^*}^{2q'-1} \left(\partial_t \mathbb{H}_{\eta} + \Delta \mathbb{H}_{\eta} \right) + 2q' (2q'-1) \mathbb{H}_{\eta}^{2q'-2} |\nabla \mathbb{H}_{\eta}|^2,$$

because $\mathbb{H}_{\eta^*} = 1 - \mathbb{H}_{\eta}$, hence

$$u(\partial_t \zeta + \Delta \zeta) = u \mathbb{H}_{\eta^*}^{2q'/q} \left[2q'(2q'-1) \mathbb{H}_{\eta^*}^{2q'-2-2q'/q} |\nabla \mathbb{H}_{\eta}|^2 - 2q' \mathbb{H}_{\eta^*}^{2q'-1-2q'/q} (\Delta \mathbb{H}_{\eta} + \partial_t \mathbb{H}_{\eta}) \right].$$

Since 2q'-2-2q'/q=0 and $0 \leq \mathbb{H}_{\eta^*} \leq 1$,

$$\left| \iint_{Q_T} u(\partial_t \zeta + \Delta \zeta) dx \, dt \right| \leq C(q) \left(\iint_{Q_T} u^q \zeta dx \, dt \right)^{1/q} \left(\iint_{Q_T} R^{q'}(\eta) dx \, dt \right)^{1/q'},$$

where

$$R(\eta) = \left| \nabla \mathbb{H}_{\eta} \right|^{2} + \left| \Delta \mathbb{H}_{\eta} + \partial_{t} \mathbb{H}_{\eta} \right|.$$

Using Lemma 2.2 one obtains (2.10).

Proposition 2.4 Let r > 0, $\rho > 0$, $T \ge (r + \rho)^2$

$$\mathcal{E}_{r+\rho} := \{ (x,t) : |x|^2 + t \le (r+\rho)^2 \}$$

and $Q_{r+\rho,T} = Q_T \setminus \mathcal{E}_{r+\rho}$. There exists C = C(N,q,T) > 0 such that

$$\iint_{Q_{r+\rho,T}} u^q dx dt + \int_{\mathbb{R}^N} u(x,T) dx \le C \|R[\eta]\|_{L^{q'}}^{q'} \qquad \forall \eta \in \mathcal{T}_{r,\rho}(K). \tag{2.14}$$

Proof. Because $K \subset B_r$ and $\eta^* \equiv 1$ outside $B_{r+\rho}$ and takes value between 0 and 1,

$$\mathbb{H}[\eta^*](x,t) \ge \mathbb{H}[1-\chi_{B_{r+\rho}}](x,t) = \left(\frac{1}{4\pi t}\right)^{\frac{N}{2}} \int_{|y| \ge r+\rho} e^{-\frac{|x-y|^2}{4t}} dy,$$

$$= 1 - \left(\frac{1}{4\pi t}\right)^{\frac{N}{2}} \int_{|y| \le r+\rho} e^{-\frac{|x-y|^2}{4t}} dy.$$

For $(x,t) \in \mathcal{E}_{r+\rho}$, put $x = (r+\rho)\xi$, $y = (r+\rho)v$ and $t = (r+\rho)^2\tau$. Then $(\xi,\tau) \in \mathcal{E}_1$ and

$$\left(\frac{1}{4\pi t}\right)^{\frac{N}{2}} \int_{|y| \le r + \rho} e^{-\frac{|x-y|^2}{4t}} dy = \left(\frac{1}{4\pi \tau}\right)^{\frac{N}{2}} \int_{|v| \le 1} e^{-\frac{|\xi-v|^2}{4\tau}} dv.$$

We claim that

$$\max\left\{\left(\frac{1}{4\pi\tau}\right)^{\frac{N}{2}}\int_{|v|\leq 1}e^{-\frac{|\xi-v|^2}{4\tau}}dv:(\xi,\tau)\in\mathcal{E}_1\right\}=\ell,\tag{2.15}$$

and $\ell = \ell(N) \in (0,1]$. We recall that

$$\left(\frac{1}{4\pi\tau}\right)^{\frac{N}{2}} \int_{|v| \le 1} e^{-\frac{|\xi - v|^2}{4\tau}} dv < 1 \qquad \forall \tau > 0.$$
(2.16)

If the maximum is achieved for some $(\bar{\xi}, \bar{\tau}) \in \mathcal{E}_1$, it is smaller that 1 and

$$\mathbb{H}[\eta^*](x,t) \ge \mathbb{H}[1-\chi_{B_{r+\rho}}](x,t) \ge 1-\ell > 0, \qquad \forall (x,t) \in \mathcal{E}_{r+\rho}.$$
 (2.17)

Let us assume that the maximum is achieved following a sequence $\{(\xi_n, \tau_n)\}$ with $\tau_n \to 0$ and $|\xi_n| \downarrow 1$. We can assume that $\xi_n \to \bar{\xi}$ with $|\bar{\xi}| = 1$, then

$$\left(\frac{1}{4\pi\tau_n}\right)^{\frac{N}{2}} \int_{|v|<1} e^{-\frac{|\xi_n - v|^2}{4\tau_n}} dv = \left(\frac{1}{4\pi\tau_n}\right)^{\frac{N}{2}} \int_{B_1(\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv.$$

But $B_1(\xi_n) \cap B_1(-\xi_n) = \emptyset$,

$$\int_{B_1(\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv + \int_{B_1(-\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv < \int_{\mathbb{R}^N} e^{-\frac{|v|^2}{4\tau_n}} dv$$

and

$$\int_{B_1(\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv = \int_{B_1(-\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv.$$

This implies

$$\lim_{n \to \infty} \left(\frac{1}{4\pi \tau_n} \right)^{\frac{N}{2}} \int_{B_1(\xi_n)} e^{-\frac{|v|^2}{4\tau_n}} dv \le 1/2.$$

If the maximum were achieved with a sequence $\{(\xi_n, \tau_n)\}$ with $|\tau_n| \to \infty$, it would also imply (2.17), since the integral term in (2.16) is always bounded. Therefore (2.16) holds. Put $C = (1 - \ell)^{-1}$, then

$$\iint_{Q_{r,T}} u^q dx \, dt + \int_{\mathbb{R}^N} u(.,T) dx \le C \|R[\eta]\|_{L^{q'}}^{q'}, \qquad (2.18)$$

and
$$(2.14)$$
 follows.

2.2 Pointwise estimates

We give first a rough pointwise estimate.

Lemma 2.5 There exists a constant C = C(N,q) > 0 such that, for any $\eta \in \mathcal{T}_{r,\rho}(K)$,

$$u(x, (r+2\rho)^2) \le \frac{C \|R[\eta]\|_{L^{q'}}^{q'}}{(\rho(r+\rho))^{\frac{N}{2}}}, \quad \forall x \in \mathbb{R}^N.$$
 (2.19)

Proof. We observe first that

$$\int_{s}^{T} \int_{\mathbb{R}^{N}} u^{q} dx dt + \int_{\mathbb{R}^{N}} u(x, T) dx = \int_{\mathbb{R}^{N}} u(x, s) dx \qquad \forall T > s > 0.$$
 (2.20)

By the maximum principle u is dominated by the maximal solution v which has the indicatrix function I_{B_r} for initial trace. The function v is the limit, as $k \to \infty$, of the solutions v_k with initial data $k\chi_{B_r}$. Since $v_k \le k\mathbb{H}[\chi_{B_r}]$, it follows Hence

$$\int_{\mathbb{R}^N} u(.,s) dx \le C \|R[\eta]\|_{L^{q'}}^{q'} \qquad \forall T > s \ge (r+\rho)^2, \tag{2.21}$$

by Lemma 2.3. Using the fact that

$$u(x,\tau+s) \le \mathbb{H}[u(.,s)](x,\tau) \le \left(\frac{1}{4\pi\tau}\right)^{\frac{N}{2}} \int_{\mathbb{R}^N} u(.,s)dx,$$

we obtain (2.19) with
$$s=(r+\rho)^2$$
 and $\tau=(r+2\rho)^2-(r+\rho)^2\approx \rho(r+\rho)$.

The above estimate does not take into account the fact that u(x,0) = 0 if $|x| \ge r$. It is mainly interesting if $|x| \le r$. In order to derive a sharper estimate which uses the localization of the singularity and not only the $L^{q'}$ -norm of $R[\eta]$. For such a goal, we need some lateral boundary estimates.

Lemma 2.6 Let $\gamma \ge r + 2\rho$ and c > 0 and either N = 1 or 2 and $0 \le t \le c\gamma^2$ for some c > 0, or $N \ge 3$ and t > 0. Then, for any $\eta \in \mathcal{T}_{r,\rho}(K)$, there holds

$$\int_{0}^{t} \int_{\partial B_{\gamma}} u dS d\tau \le C_{5} \gamma \|R[\eta]\|_{L^{q'}}^{q'}. \tag{2.22}$$

where C>0 depends on N, q and c if N=1, 2 or depends only on N and q if $N\geq 3$.

Proof. Let us assume that N=1 or 2. Put $G^{\gamma}:=B^{c}_{\gamma}\times(-\infty,0)$ and $\partial_{\ell}G^{\gamma}=\partial B_{\gamma}\times(-\infty,0)$. Set

$$h_{\gamma}(x) = 1 - \frac{\gamma}{|x|},$$

and let ψ_{γ} be the solution of

$$\begin{split} \partial_{\tau}\psi_{\gamma} + \Delta\psi_{\gamma} &= 0 & \text{in } G^{\gamma}, \\ \psi_{\gamma} &= 0 & \text{on } \partial_{\ell}G^{\gamma}, \\ \psi_{\gamma}(.,0) &= h_{\gamma} & \text{in } B^{c}_{\gamma}. \end{split} \tag{2.23}$$

Thus the function

$$\tilde{\psi}(x,\tau) = \psi_{\gamma}(\gamma x, \gamma^2 \tau)$$

satisfies

$$\partial_t \tilde{\psi} + \Delta \tilde{\psi} = 0 \qquad \text{in } G^1$$

$$\tilde{\psi} = 0 \qquad \text{on } \partial_\ell G^1$$

$$\tilde{\psi}(.,0) = \tilde{h} \qquad \text{in } B_1^c,$$

$$(2.24)$$

and $\tilde{h}(x) = 1 - |x|^{-1}$. By the maximum principle $0 \le \tilde{\psi} \le 1$, and by Hopf Lemma

$$-\frac{\partial \tilde{\psi}}{\partial \mathbf{n}}\Big|_{\partial B_1 \times [-c,0]} \ge \theta > 0, \tag{2.25}$$

where $\theta = \theta(N, c)$. Then $0 \le \psi_{\gamma} \le 1$ and

$$-\frac{\partial \psi_{\gamma}}{\partial \mathbf{n}}\Big|_{\partial B_{\gamma} \times [-\gamma^2, 0]} \ge \theta/\gamma. \tag{2.26}$$

Multiplying (1.1) by $\psi_{\gamma}(x,\tau-t)=\psi_{\gamma}^*(x,\tau)$ and integrating on $B_{\gamma}^c\times(0,t)$ yields to

$$\int_{0}^{t} \int_{B_{\gamma}^{c}} u^{q} \psi_{r}^{*} dx d\tau + \int_{B_{\gamma}^{c}} (uh_{\gamma})(x,t) dx - \int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial u}{\partial \mathbf{n}} \psi_{\gamma}^{*} dS d\tau = -\int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial \psi_{\gamma}^{*}}{\partial \mathbf{n}} u d\sigma d\tau.$$
 (2.27)

Since ψ_{γ}^* is bounded from above by 1, (2.22) follows from (2.26) and Proposition 2.4 (notice that $B_{\gamma}^c \times (0,t) \subset \mathcal{E}_{\gamma}^c$), first by taking $t = T = \gamma^2 \ge (r+2\rho)^2$, and then for any $t \le \gamma^2$.

If $N \geq 3$, we proceed as above except that we take

$$h_{\gamma}(x) = 1 - \left(\frac{\gamma}{|x|}\right)^{N-2}.$$

Then $\psi_{\gamma}(x,t) = h_{\gamma}(x)$ and $\theta = N-2$ is independent of the length of the time interval. This leads to the conclusion.

Lemma 2.7 I- Let M, a > 0 and $\eta \in L^{\infty}(\mathbb{R}^N)$ such that

$$0 \le \eta(x) \le Me^{-a|x|^2} \qquad a.e. \text{ in } \mathbb{R}^N.$$
 (2.28)

Then, for any t > 0,

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{M}{(4at+1)^{\frac{N}{2}}} e^{-\frac{a|x|^2}{4at+1}} \qquad \forall x \in \mathbb{R}^N.$$
 (2.29)

II- Let M, a, b > 0 and $\eta \in L^{\infty}(\mathbb{R}^N)$ such that

$$0 \le \eta(x) \le Me^{-a(|x|-b)_+^2}$$
 a.e. in \mathbb{R}^N . (2.30)

Then, for any t > 0,

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{Me^{-\frac{a(|x|-b)^2_+}{4at+1}}}{(4at+1)^{\frac{N}{2}}} \qquad \forall x \in \mathbb{R}^N, \, \forall t > 0.$$
 (2.31)

Proof. For the first statement, put $a = \frac{1}{4}s$. Then

$$0 \le \eta(x) \le M(4\pi s)^{\frac{N}{2}} \frac{1}{(4\pi s)^{\frac{N}{2}}} e^{-\frac{|x|^2}{4s}} = C(4\pi s)^{\frac{N}{2}} \mathbb{H}[\delta_0](x, s).$$

By the order property of the heat kernel,

$$0 \le \mathbb{H}[\eta](x,t) \le M(4\pi s)^{\frac{N}{2}} \mathbb{H}[\delta_0](x,t+s) = M\left(\frac{s}{t+s}\right)^{\frac{N}{2}} e^{-\frac{|x|^2}{4(t+s)}},$$

and (2.29) follows by replacing s by $\frac{1}{4}a$.

For the second statement, let $\tilde{a} < a$ and $R = \max\{e^{-a(r-b)_+^2 + \tilde{a}r^2} : r \ge 0\}$. A direct computation gives $R = e^{\frac{a\tilde{a}b^2}{a-\tilde{a}}}$, and (2.31) implies

$$0 \le \eta(x) \le M e^{\frac{a\tilde{a}b^2}{a-\tilde{a}}} e^{-\tilde{a}|x|^2}.$$

Applying the statement I, we derive

$$0 \le \mathbb{H}[\eta](x,t) \le \frac{Ce^{\frac{a\tilde{a}b^2}{a-\tilde{a}}}}{(4\tilde{a}t+1)^{\frac{N}{2}}}e^{-\frac{\tilde{a}|x|^2}{4\tilde{a}t+1}} \qquad \forall x \in \mathbb{R}^N, \ \forall t > 0.$$
 (2.32)

Since for any $x \in \mathbb{R}^N$ and t > 0,

$$(4\tilde{a}t+1)^{-\frac{N}{2}}e^{-\frac{\tilde{a}|x|^2}{4\tilde{a}t+1}} \le e^{-\frac{a\tilde{a}b^2}{a-\tilde{a}}}(4at+1)^{-\frac{N}{2}}e^{-\frac{a(|x|-b)^2}{4at+1}},$$

(2.31) follows from (2.32).

Lemma 2.8 There exists a constant C = C(N,q) > 0 such that, for any $\eta \in \mathcal{T}_{r,\rho}(K)$, there holds

$$u(x, (r+2\rho)^2) \le C \max \left\{ \frac{r+\rho}{(|x|-r-2\rho)^{N+1}}, \frac{|x|-r-2\rho}{(r+\rho)^{N+1}} \right\} e^{-\frac{(|x|-(r+2\rho))^2}{4(r+2\rho)^2}} \|R[\eta]\|_{L^{q'}}^{q'}, \quad (2.33)$$

for any $x \in \mathbb{R}^N \setminus B_{r+3\rho}$.

Proof. It is classical that the Dirichlet heat kernel $H^{B_1^c}$ in the complement of B_1 satisfies, for some C = C(N) > 0,

$$H^{B_1^c}(x', y', t', s') \le C_7(t' - s')^{-(N+2)/2} (|x'| - 1) e^{-\frac{|x' - y'|^2}{4(t' - s')}}, \tag{2.34}$$

for t' > s'. By performing the change of variable $x' \mapsto (r + 2\rho)x'$, $t' \mapsto (r + 2\rho)^2t'$, for any $x \in \mathbb{R}^N \setminus B_{r+2\rho}$ and $0 \le t \le T$, one obtains

$$u(x,t) \le C(|x| - r - 2\rho) \int_0^t \int_{\partial B_{r+2\rho}} \frac{e^{-\frac{|x-y|^2}{4(t-s)}}}{(t-s)^{1+\frac{N}{2}}} u(y,s) d\sigma(y) ds.$$
 (2.35)

The right-hand side term in (2.35) is smaller than

$$\max \left\{ \frac{C(|x| - r - 2\rho)}{(t - s)^{1 + \frac{N}{2}}} e^{-\frac{(|x| - r - 2\rho)^2}{4(t - s)}} : s \in (0, t) \right\} \int_0^t \int_{\partial B_{r + 2\rho}} u(y, s) d\sigma(y) ds.$$

We fix $t = (r + 2\rho)^2$ and $|x| \ge r + 3\rho$. Since

$$\max \left\{ \frac{e^{-\frac{(|x|-r-2\rho)^2}{4s}}}{s^{1+\frac{N}{2}}} : s \in \left(0, (r+2\rho)^2\right) \right\}$$
$$= (|x|-r-2\rho)^{-2-N} \max \left\{ \frac{e^{-\frac{1}{4\sigma}}}{\sigma^{1+\frac{N}{2}}} : 0 < \sigma < \left(\frac{r+2\rho}{|x|-r-2\rho}\right)^2 \right\},$$

a direct computation gives

$$\max \left\{ \frac{e^{-\frac{1}{4}\sigma}}{\sigma^{1+\frac{N}{2}}} : 0 < \sigma < \left(\frac{r+2\rho}{|x|-r-2\rho}\right)^2 \right\}$$

$$= \begin{cases} (2N+4)^{1+\frac{N}{2}}e^{-(N+2)/2} & \text{if } r+3\rho \leq |x| \leq (r+2\rho)(1+\sqrt{4+2N}), \\ \left(\frac{|x|-r-2\rho}{r+2\rho}\right)^{2+N}e^{-\left(\frac{|x|-r-2\rho}{2r+4\rho}\right)^2} & \text{if } |x| \geq (r+2\rho)(1+\sqrt{4+2N}). \end{cases}$$

Thus there exists a constant C(N) > 0 such that

$$\max \left\{ \frac{e^{-\frac{(|x|-r-2\rho)^2}{4s}}}{s^{1+\frac{N}{2}}} : s \in (0, (r+2\rho)^2) \right\} \le C(N)\rho^{-2-N}e^{-\left(\frac{|x|-(r+2\rho)}{2r+4\rho}\right)^2}. \tag{2.36}$$

Combining this estimate with (2.22) with $\gamma = r + 2\rho$ and (2.35), one derives (2.33).

Lemma 2.9 Under the assumptions of Lemma 2.8, there exists a constant C = C(N,q) > 0 such that

$$0 \le u(x, (r+2\rho)^2) \le C \max\left\{\frac{(r+\rho)^3}{\rho(|x|-r-2\rho)^{N+1}}, \frac{1}{(r+\rho)^{N-1}\rho}\right\} e^{-\left(\frac{|x|-r-3\rho}{2r+4\rho}\right)^2} \|R[\eta]\|_{L^{q'}}^{q'}, \tag{2.37}$$

for every $x \in \mathbb{R}^N \setminus B_{r+3\rho}$.

Proof. This is a direct consequence of the inequality

$$(|x| - r - 2\rho)e^{-\left(\frac{|x| - r - 2\rho}{2r + 4\rho}\right)^2} \le \frac{C(r + \rho)^2}{\rho}e^{-\left(\frac{|x| - r - 3\rho}{2r + 4\rho}\right)^2}, \quad \forall x \in B_{r+2\rho}^c,$$
 (2.38)

and Lemma 2.8. \Box

Lemma 2.10 There exists a constant C = C(N,q) > 0 such that, for any $\eta \in \mathcal{T}_{r,\rho}(K)$, the following estimate holds

$$u(x,t) \le \frac{C\tilde{M}e^{-\frac{(|x|-r-3\rho)_{+}^{2}}{4t}}}{t^{\frac{N}{2}}} \|R[\eta]\|_{L^{q'}}^{q'}, \qquad \forall x \in \mathbb{R}^{N}, \, \forall t \ge (r+2\rho)^{2}, \tag{2.39}$$

where

$$\tilde{M} = \tilde{M}(x, r, \rho) = \begin{cases} \left(1 + \frac{r}{\rho}\right)^{\frac{N}{2}} & \text{if } |x| < r + 3\rho \\ \frac{(r + \rho)^{N+3}}{\rho(|x| - r - 2\rho)^{N+2}} & \text{if } r + 3\rho \le |x| \le C_N(r + 2\rho) \\ 1 + \frac{r}{\rho} & \text{if } |x| \ge C_N(r + 2\rho) \end{cases}$$
(2.40)

with $C_N = 1 + \sqrt{4 + 2N}$.

Proof. It follows by the maximum principle

$$u(x,t) \le \mathbb{H}[u(.,(r+2\rho)^2)](x,t-(r+2\rho)^2).$$

for $t \geq (r+2\rho)^2$ and $x \in \mathbb{R}^N$. By Lemma 2.5 and Lemma 2.9

$$u(x, (r+2\rho)^2) \le C_{10}\tilde{M}e^{-\frac{(|x|-r-3\rho)^2}{4(r+2\rho)^2}} ||R[\eta]||_{L^{q'}}^{q'},$$

where

$$\tilde{M} = \begin{cases} ((r+\rho)\rho)^{-\frac{N}{2}} & \text{if } |x| < r + 3\rho \\ \frac{(r+\rho)^3}{\rho} (|x| - r - 2\rho))^{N+2} & \text{if } r + 3\rho \le |x| \le C_N(r+2\rho) \\ \frac{1}{(r+\rho)^{N-1}\rho} & \text{if } |x| \ge C_N(r+2\rho) \end{cases}$$

Applying Lemma 2.7 with $a=(2r+4\rho)^{-2},\,b=r+3\rho$ and t replaced by $t-(r+2\rho)^2$ implies

$$u(x,t) \le C \frac{(r+2\rho)^N \tilde{M}}{t^{\frac{N}{2}}} e^{-\frac{(|x|-r-3\rho)^2}{4t}} \|R[\eta]\|_{L^{q'}}^{q'},$$
(2.41)

for all $x \in B_{r+3\rho}^c$ and $t \ge (r+2\rho)^2$, which is (2.39).

The next estimate gives a precise upper bound for u when t is not bounded from below.

Lemma 2.11 Assume that $0 < t \le (r + 2\rho)^2$ for some c > 0, then there exists a constant C = C(N, q) > 0 such that the following estimate holds

$$u(x,t) \le C(r+\rho) \max \left\{ \frac{1}{(|x|-r-2\rho)^{N+1}}, \frac{1}{\rho t^{\frac{N}{2}}} \right\} e^{-\frac{(|x|-r-3\rho)^2}{4t}} \|R[\eta]\|_{L^{q'}}^{q'}, \tag{2.42}$$

for any $(x,t) \in \mathbb{R}^N \setminus B_{r+3\rho} \times (0,(r+2\rho)^2]$.

Proof. By using (2.22) the following estimate is a straightforward variant of (2.33) for any $\gamma \geq r + 2\rho$,

$$u(x,t) \le C_8(|x| - r - 2\rho)(r + 2\rho) \max \left\{ \frac{e^{-\frac{(|x| - r - 2\rho)^2}{4s}}}{s^{1 + \frac{N}{2}}} : 0 < s \le t \right\} ||R[\eta]||_{L^{q'}}^{q'}. \tag{2.43}$$

Clearly

$$\max \left\{ \frac{e^{-\frac{(|x|-r-2\rho)^2}{4s}}}{s^{1+\frac{N}{2}}} : 0 < s \le t \right\}$$

$$= \begin{cases} (2N+4)^{1+\frac{N}{2}} (|x|-r-2\rho)^{-N-2} e^{-\frac{N+2}{2}} & \text{if } 0 < |x| \le r+2\rho + \sqrt{2t(N+2)} \\ \frac{e^{-\frac{(|x|-r-2\rho)^2}{4t}}}{t^{1+\frac{N}{2}}} & \text{if } |x| > r+2\rho + \sqrt{2t(N+2)}. \end{cases}$$

By elementary analysis, if $x \in B_{r+3\rho}^c$,

$$(|x| - r - 2\rho)e^{-\frac{(|x| - r - 2\rho)^2}{4t}} \le e^{-\frac{(|x| - r - 3\rho)^2}{4t}} \begin{cases} \rho e^{-\frac{\rho^2}{4t}} & \text{if } 2t < \rho^2 \\ \frac{2t}{\rho} e^{-1 + \frac{\rho^2}{4t}} & \text{if } \rho^2 \le 2t \le 2(r + 2\rho)^2. \end{cases}$$

However, since

$$\frac{\rho}{t}e^{-\frac{\rho^2}{4t}} \le \frac{4}{\rho},$$

we derive

$$(|x| - r - 2\rho)e^{-\frac{(|x| - r - 2\rho)^2}{4t}} \le \frac{Ct}{\rho}e^{-\frac{(|x| - r - 3\rho)^2}{4t}},$$

from which inequality (2.42) follows.

Lemma 2.12 Assume $q \ge q_c$. Let r > 0, $\rho > 0$ and K be a compact subset of $B_{r+\rho}$. If $\eta \in \mathcal{T}_{r,\rho}(K)$, denote by η_r the function defined by $\eta_r(x) = \eta(rx)$ and

$$R_r[\eta_r](x,t) = |\nabla \mathbb{H}[\eta]|^2 + |\partial_t \mathbb{H}[\eta]| + \Delta \mathbb{H}[\eta]| (rx, r^2t) \qquad \forall (x,t) \in Q_{\infty}.$$

Then

$$||R[\eta]||_{L^{q'}}^{q'} = r^{N - \frac{2}{q-1}} ||R_r[\eta_r]||_{L^{q'}}^{q'}.$$
(2.44)

Furthermore

$$C_{2/q,q'}^{B_{r+\rho}}(K) = r^{N-\frac{2}{q-1}} C_{2/q,q'}^{B_{1+\frac{\rho}{r}}}(K/r), \tag{2.45}$$

and

$$r^{N-\frac{2}{q-1}}C_{2/q,q'}(K/r) \le C_{2/q,q'}^{B_{r+\rho}}(K) \le Cr^{N-\frac{2}{q-1}} \left(1 + \frac{r}{\rho}\right)^{\frac{2}{q-1}} C_{2/q,q'}(K/r). \tag{2.46}$$

Proof. Estimate (2.44) follows from the change of variable $(rx, r^2t) = (y, s)$. Thus it implies the scaling property (2.47), since there is a one to one correspondence between $\mathcal{T}_{r,\rho}(K)$ and $\mathcal{T}_{1,\frac{\rho}{r}}(K/r)$. In order to prove (2.44) set $K' = K/r \subset B_1$, thus

$$C_{2/q,q'}^{B_{1+\frac{\rho}{r}}}(K') = \inf \left\{ \|\zeta\|_{W^{2/q,q'}}^{q'} : \zeta \in \mathcal{T}_{1,\frac{\rho}{r}}(K') \right\}.$$

Let $\phi \in C^2(\mathbb{R}^N)$ be a radial cut-off function such that $0 \leq \rho \leq 1$, $\rho = 1$ on B_1 , $\rho = 0$ on $\mathbb{R}^N \setminus B_{1+\frac{\rho}{r}}$, $|\nabla \phi| \leq Cr \rho^{-1} \chi_{B_{1+\frac{\rho}{r}} \setminus B_1}$ and $|D^2 \phi| \leq Cr^2 \rho^{-2} \chi_{B_{1+\frac{\rho}{r}} \setminus B_1}$, where C is independent of r and ρ . Let $\zeta \in C_0^2(\mathbb{R}^N)$. Then

$$\nabla(\zeta\phi) = \zeta\nabla\phi + \phi\nabla\zeta, \ D^2(\zeta\phi) = \zeta D^2\phi + \phi D^2\zeta + 2\nabla\phi \otimes \nabla\zeta.$$

Thus $\|\zeta\phi\|_{L^{q'}(B_{1+\underline{\rho}})} \le \|\zeta\|_{L^{q'}(\mathbb{R}^N)}$,

$$\int_{B_{1+\frac{\rho}{r}}}\left|\nabla(\zeta\phi)\right|^{q'}dx\leq C\left(1+\frac{r}{\rho}\right)^{q'}\left\|\zeta\right\|_{W^{1,q'}}^{q'},$$

and

$$\int_{B_{r+\rho}} \left| D^2(\zeta \phi) \right|^{q'} dx \le C \left(1 + \frac{r^2}{\rho^2} \right)^{q'} \|\zeta\|_{W^{2,q'}}^{q'}.$$

Finally

$$\|\zeta\phi\|_{W^{2/q,q'}} \leq C\left(1 + \frac{r^2}{\rho^2}\right) \|\zeta\|_{W^{2/q,q'}} \,.$$

Denote by \mathcal{T} the linear mapping $\zeta \mapsto \zeta \phi$. Because

$$W^{2/q,q'} = \left[W^{2,q'}, L^{q'} \right]_{1/q,q'},$$

(here we use the Lions-Petree real interpolation notations and results from [22]), it follows

$$\|\mathcal{T}\|_{\mathcal{L}(W_0^{2/q,q'}(\mathbb{R}^N),W_0^{2/q,q'}(B_{1+\frac{\rho}{2}}))} \le C(q) \left(1 + \frac{r^2}{\rho^2}\right)^{1/q}.$$

Therefore

$$C_{2/q,q'}^{B_{1+\frac{\rho}{r}}}(K') \le C\left(1 + \frac{r^2}{\rho^2}\right)^{\frac{1}{q-1}} C_{2/q,q'}(K').$$

Thus we get the left-hand side of (2.46). The right-hand side is a straightforward consequence of (2.47).

Remark. In the subcritical case $1 < q < q_c$, estimate (2.46) becomes

$$C_{2/q,q'}^{B_{r+\rho}}(K) \le C \max\left\{r^N, \rho^N\right\} \left(1 + \rho^{-\frac{2}{q-1}}\right) C_{2/q,q'}(K/r).$$
 (2.47)

By using Lemma 2.11, it is easy to derive from this estimate that any positive solution u of (2.1), the initial trace of which vanishes outside 0, satisfies

$$u(x,t) \le Ct^{-\frac{1}{q-1}} \min \left\{ 1, \left(\frac{|x|}{\sqrt{t}} \right)^{\frac{2}{q-1}-N} e^{-\frac{|x|^2}{4t}} \right\} \qquad \forall (x,t) \in Q_{\infty}.$$
 (2.48)

This upper estimate corresponds to the one obtained in [7]. If $F = \overline{B}_r$ the upper estimate is less esthetic. However, it is proved in [25] by a barrier method that, if the initial trace of positive solution u of (2.1), vanishes outside F, and if 1 < q < 3, there holds

$$u(x,t) \le t^{-\frac{1}{q-1}} f_1((|x|-r)/\sqrt{t}) \qquad \forall (x,t) \in Q_{\infty}, \ |x| \ge r,$$
 (2.49)

where $f = f_1$ is the unique positive (and radial) solution of

$$\begin{cases} f'' + \frac{y}{2}f' + \frac{1}{q-1}f - f^q = 0 & \text{in } (0, \infty) \\ f'(0) = 0, \lim_{y \to \infty} |y|^{\frac{2}{q-1}} f(y) = 0. \end{cases}$$
 (2.50)

Notice that the existence of f_1 follows from [7] since q is the critical exponent in 1 dim. Furthermore f_1 has the following asymptotic expansion

$$f_1(y) = Cy^{(3-q)/(q-1)}e^{-y^2/4t}(1+o(1))$$
 as $y \to \infty$.

2.3 The upper Wiener test

Definition 2.13 We define on $\mathbb{R}^N \times \mathbb{R}$ the two parabolic distances δ_2 and δ_{∞} by

$$\delta_2[(x,t),(y,s)] := \sqrt{|x-y|^2 + |t-s|},\tag{2.51}$$

and

$$\delta_{\infty}[(x,t),(y,s)] := \max\{|x-y|,\sqrt{|t-s|}\}. \tag{2.52}$$

If $K \subset \mathbb{R}^N$ and $i = 2, \infty$,

$$\delta_i[(x,t),K] = \inf\{\delta_i[(x,t),(y,0)] : y \in K\} = \begin{cases} \max\left\{\operatorname{dist}(x,K),\sqrt{|t|}\right\} & \text{if } i = \infty, \\ \sqrt{\operatorname{dist}^2(x,K) + |t|} & \text{if } i = 2. \end{cases}$$

For $\beta > 0$ and $i = 2, \infty$, we denote by $\mathcal{B}^i_{\beta}(m)$ the parabolic ball of center m = (x, t) and radius β in the parabolic distance δ_i .

Let K be any compact subset of \mathbb{R}^N and \overline{u}_K the maximal solution of (1.1) which blows up on K. The function \overline{u}_K is obtained as the decreasing limit of the $\overline{u}_{K_{\epsilon}}$ ($\epsilon > 0$) when $\epsilon \to 0$, where

$$K_{\epsilon} = \{x \in \mathbb{R}^N : \operatorname{dist}(x, K) \le \epsilon\}$$

and $\overline{u}_{K_{\epsilon}} = \lim_{k \to \infty} u_{k,K_{\epsilon}} = \overline{u}_{K}$, where u_{k} is the solution of the classical problem,

$$\begin{cases}
\partial_t u_k - \Delta u_k + u_k^q = 0 & \text{in } Q_T, \\
u_k = 0 & \text{on } \partial_\ell Q_T, \\
u_k(.,0) = k\chi_{K_\epsilon} & \text{in } \mathbb{R}^N.
\end{cases}$$
(2.53)

If $(x,t) = m \in \mathbb{R}^N \times (0,T]$, we set $d_K = \text{dist}(x,K)$, $D_K = \max\{|x-y| : y \in K\}$ and $\lambda = \sqrt{d_K^2 + t} = \delta_2[m,K]$. We define a slicing of K, by setting $d_n = d_n(K,t) := \sqrt{nt}$ $(n \in \mathbb{N})$,

$$T_n = \overline{B}_{d_{n+1}}(x) \setminus B_{d_n}(x), \quad \forall n \in \mathbb{N},$$

thus $T_0 = B_{\sqrt{t}}(x)$, and

$$K_n(x) = K \cap T_n(x)$$
 for $n \in \mathbb{N}$ and $Q_n(x) = K \cap B_{d_{n+1}}(x)$.

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of this section is the following discrete upper Wiener-type estimate.

Theorem 2.14 Assume $q \ge q_c$. Then there exists C = C(N, q, T) > 0 such that

$$\overline{u}_K(x,t) \le \frac{C}{t^{\frac{N}{2}}} \sum_{n=0}^{a_t} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right) \qquad \forall (x,t) \in Q_T, \tag{2.54}$$

where a_t is the largest integer j such that $K_i \neq \emptyset$.

With no loss of generality, we can first assume that x=0. Furthermore, in considering the scaling transformation $u_{\ell}(y,t)=\ell^{\frac{1}{q-1}}u(\sqrt{\ell}y,\ell t)$, with $\ell>0$, we can assume t=1. Thus the new compact singular set of the initial trace becomes $K/\sqrt{\ell}$, that we shall still denote K. We shall also set $a_K=a_{K,1}$ Since for each $n\in\mathbb{N}$,

$$\frac{1}{2\sqrt{n+1}} \le d_{n+1} - d_n \le \frac{1}{\sqrt{n+1}},$$

it is possible to exhibit a collection Θ_n of points $a_{n,j}$ with center on the sphere $\Sigma_n = \{y \in \mathbb{R}^N : |y| = (d_{n+1} + d_n)/2\}$, such that

$$T_n \subset \bigcup_{a_{n,j} \in \Theta_n} B_{1/\sqrt{n+1}}(a_{n,j}), \quad |a_{n,j} - a_{n,k}| \ge 1/2\sqrt{n+1} \text{ and } \#\Theta_n \le Cn^{N-1},$$

for some constant C = C(N). If $K_{n,j} = K_n \cap B_{1/\sqrt{n+1}}(a_{n,j})$, there holds

$$K = \bigcup_{0 \le n \le a_K} \bigcup_{a_{n,j} \in \Theta_n} K_{n,j}.$$

The first intermediate step is based on the quasi-additivity property of capacities [2].

Lemma 2.15 Let $q \ge q_c$. There exists a constant C = C(N, q) such that

$$\sum_{l_{n,j} \in \Theta_n} C_{2/q,q'}(K_{n,j}) \le Cn^{\frac{N}{2} - \frac{1}{q-1}} C_{2/q,q'}\left(\frac{K_n}{\sqrt{n+1}}\right) \qquad \forall n \in \mathbb{N}_*, \tag{2.55}$$

where $B_{n,j} = B_{2/\sqrt{n+1}}(a_{n,j})$ and $C_{2/q,q'}$ stands for the capacity taken with respect to \mathbb{R}^N .

Proof. The following result is proved in [2, Th 3]: if the spheres $B_{\rho_j^{\theta}}(b_j)$ are disjoint in \mathbb{R}^N and G is an analytic subset of $\bigcup B_{\rho_j}(b_j)$ where the ρ_j are positive and smaller than some $\rho^* > 0$, there holds

$$C_{2/q,q'}(G) \le \sum_{j} C_{2/q,q'}(G \cap B_{\rho_j}(b_j)) \le AC_{2/q,q'}(G),$$
 (2.56)

where $\theta = 1 - 2/N(q - 1)$, for some A depending on N, q and ρ^* . This property is called quasi-additivity. We define for $n \in \mathbb{N}_*$,

$$\tilde{T}_n = \sqrt{n+1}T_n$$
, $\tilde{K}_n = \sqrt{n+1}K_n$ and $\tilde{Q}_n = \sqrt{n+1}Q_n$.

Since $K_{n,j} \subset B_{1/\sqrt{n+1}}(a_{n,j})$ and the $C_{2/q,q'}$ capacities are taken with respect to the balls $B_{2/\sqrt{n+1}}(a_{n,j}) = B_{n,j}$. By Lemma 2.12 with $r = \rho = 1/\sqrt{n+1}$

$$C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \le C(n+1)^{\frac{1}{q-1} - \frac{N}{2}} C_{2/q,q'}(\tilde{K}_{n,j}),$$
 (2.57)

where $\tilde{K}_{n,j} = \sqrt{n+1} K_{n,j}$ and $\tilde{B}_{n,j} = \sqrt{n+1} B_{n,j}$. For a fixed n > 0 and each repartition Λ of points $\tilde{a}_{n,j} = \sqrt{n+1} a_{n,j}$ such that the balls $B_{2\theta}(\tilde{a}_{n,j})$ are disjoint, the quasi-additivity property holds in the following sense: if we set

$$K_{n,\Lambda} = \bigcup_{a_{n,j} \in \Lambda} K_{n,j}$$
, $\tilde{K}_{n,\Lambda} = \sqrt{n+1} K_{n,\Lambda} = \bigcup_{a_{n,j} \in \Lambda} \tilde{K}_{n,j}$ and $\tilde{K}_n = \sqrt{n+1} K_n$,

then

$$\sum_{a_{n,j}\in\Lambda} C_{2/q,q'}(\tilde{K}_{n,j}) \le AC_{2/q,q'}(\tilde{K}_{n,\Lambda}). \tag{2.58}$$

The maximal cardinal of any such repartition Λ is of the order of Cn^{N-1} for some positive constant C = C(N), therefore, the number of repartitions needed for a full covering of the set \tilde{T}_n is of finite order depending upon the dimension. Because \tilde{K}_n is the union of the $\tilde{K}_{n,\Lambda}$,

$$\sum_{a_{n,j}\in\Theta_n} C_{2/q,q'}(\tilde{K}_{n,j}) = \sum_{\Lambda} \sum_{a_{n,j}\in\Lambda} C_{2/q,q'}(\tilde{K}_{n,j}) \le C C_{2/q,q'}(\tilde{K}_n). \tag{2.59}$$

Since, by Lemma 2.12,

$$C_{2/q,q'}(\tilde{K}_n) \le C_{2/q,q'}^{B_{2(n+1)}}(\tilde{K}_n) = (n+1)^{N-\frac{1}{q-1}} C_{2/q,q'}^{B_2} \left(\frac{K_n}{\sqrt{n+1}}\right) \le C(n+1)^{N-\frac{1}{q-1}} C_{2/q,q'} \left(\frac{K_n}{\sqrt{n+1}}\right),$$

we obtain (2.55) by combining this last inequality with (2.57) and (2.59).

Proof of Theorem 2.14. Step 1. We first notice that

$$\overline{u}_K \le \sum_{0 \le n \le a_K} \sum_{a_{n,j} \in \Theta_n} \overline{u}_{K_{n,j}}.$$
(2.60)

Actually, since $K = \bigcup_n \bigcup_{a_{n,j}} K_{n,j}$, for any $0 < \epsilon' < \epsilon$, there holds $\overline{K_{\epsilon'}} \subset \bigcup_n \bigcup_{a_{n,j}} K_{n,j} \epsilon$. Because a finite sum of positive solutions of (1.1) is a super solution,

$$\overline{u}_{K_{\epsilon'}} \le \sum_{0 \le n \le a_K} \sum_{a_{n,j} \in \Theta_n} \overline{u}_{K_{n,j}}.$$
(2.61)

Letting successively ϵ' and ϵ go to 0 implies (2.60).

Step 2. Let $n \in \mathbb{N}$. Since $K_{n,j} \subset B_{1/\sqrt{n+1}}(a_{n,j})$ and $|x - a_{n,j}| = (d_n + d_{n+1})/2 = (\sqrt{n+1} + \sqrt{n})/2$, we can apply the previous lemmas with $r = 1/\sqrt{n+1}$ and $\rho = r$. For $n \geq n_N$ there

holds $t = 1 \ge (r + 2\rho)^2 = 9/(n+1)$ and $|x - a_{n,j}| = (\sqrt{n+1} - \sqrt{n})/2 \ge (2 + C_N)(3/\sqrt{n+1})$ (notice that $n_N \ge 8$). Thus

$$u_{K_{n,j}}(0,1) \le Ce^{(\sqrt{n}-3/\sqrt{n+1})^2/4} C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \le Ce^{3/2} e^{-\frac{n}{4}} C_{2/q,q'}^{B_{n,j}}(K_{n,j}).$$
(2.62)

Using Lemma 2.15 we obtain, with $d_n = d_n(1) = \sqrt{n+1}$

$$\sum_{n=n_N}^{a_K} \sum_{a_{n,j} \in \Theta_n} u_{K_{n,j}}(0,1) \le C \sum_{n=n_N}^{a_K} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right). \tag{2.63}$$

Finally, we apply Lemma 2.5 if $1 \le n < n_N$ and get

$$\sum_{1}^{n_{N}-1} \sum_{a_{n,j} \in \Theta_{n}} u_{K_{n,j}}(0,1) \leq C \sum_{1}^{n_{N}-1} C_{2/q,q'} \left(\frac{K_{n}}{d_{n+1}}\right) \\
\leq C' \sum_{1}^{n_{N}-1} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_{n}}{d_{n+1}}\right).$$
(2.64)

For n = 0, we proceed similarly, in splitting K_1 in a finite number of $K_{1,i}$, depending only on the dimension, such that diam $K_{1,i} < 1/3$. Combining (2.63) and (2.64), we derive

$$\overline{u}_K(0,1) \le C \sum_{n=0}^{a_K} d_{n+1}^{N - \frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}} \right). \tag{2.65}$$

In order to derive the same result for any t > 0, we notice that

$$\overline{u}_K(y,t) = t^{-\frac{1}{q-1}} \overline{u}_{K,\sqrt{t}}(y\sqrt{t},1).$$

Going back to the definition of $d_n = d_n(K,t) = \sqrt{nt} = d_n(K\sqrt{t},1)$, we derive from (2.65) and the fact that $a_{K,t} = a_{K\sqrt{t},1}$

$$\overline{u}_K(0,t) \le Ct^{-\frac{1}{q-1}} \sum_{n=0}^{a_K} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right), \tag{2.66}$$

with $d_n = d_n(t) = \sqrt{t(n+1)}$. This is (2.54) with x = 0, and a space translation leads to the final result.

Proof of Theorem 2.1. Let m > 0 and $F_m = F \cap \overline{B}_m$. We denote by $U_{B_m^c}$ the maximal solution of (1.1) in Q_{∞} the initial trace of which vanishes on B_m . Such a solution is actually the unique solution of (2.1) which satisfies

$$\lim_{t \to 0} u(x, t) = \infty$$

uniformly on $B_{m'}^c$, for any m' > m: this can be checked by noticing that

$$U_{B_m^c}(y,t) = \ell^{\frac{1}{q-1}} U_{B_m^c}(\sqrt{\ell}y,\ell t) = U_{B_{m/\sqrt{\ell}}^c}(y,t).$$

Furthermore

$$\lim_{m \to \infty} U_{B_m^c}(y,t) = \lim_{m \to \infty} m^{-\frac{2}{q-1}} U_{B_1^c}(y/m, t/m^2) = 0$$

uniformly on any compact subset of \overline{Q}_{∞} . Since $\overline{u}_{F_m} + U_{B_m^c}$ is a super-solution, it is larger that \overline{u}_F and therefore $\overline{u}_{F_m} \uparrow \overline{u}_F$. Because $W_{F_m}(x,t) \leq W_F(x,t)$ and $\overline{u}_{F_m} \leq C_1 W_{F_m}(x,t)$, the result follows.

Theorem 2.1 admits the following integral expression.

Theorem 2.16 Assume $q \ge q_c$. Then there exists a positive constant $C_1^* = C^*(N, q, T)$ such that, for any closed subset F of \mathbb{R}^N , there holds

$$\overline{u}_F(x,t) \le \frac{C_1^*}{t^{1+\frac{N}{2}}} \int_{\sqrt{t}}^{\sqrt{t(a_t+2)}} e^{-\frac{s^2}{4t}} s^{N-\frac{2}{q-1}} C_{2/q,q'}\left(\frac{1}{s} F \cap B_1(x)\right) s \, ds,\tag{2.67}$$

where $a_t = \min\{n : F \subset B_{\sqrt{n+1}t}(x)\}.$

Proof. We first use

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \le C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right),$$

and we denote

$$\Phi(s) = C_{2/q,q'}\left(\frac{F}{s} \cap B_1\right) \qquad \forall s > 0.$$
(2.68)

Step 1. The following inequality holds (see [1] and [29])

$$c_1 \Phi(\alpha s) \le \Phi(s) \le c_2 \Phi(\beta s) \qquad \forall s > 0, \quad \forall 1/2 \le \alpha \le 1 \le \beta \le 2,$$
 (2.69)

for some positive constants c_1 , c_2 depending on N and q. If $\beta \in [1,2]$,

$$\Phi(\beta s) = C_{2/q,q'}\left(\frac{1}{\beta}\left(\frac{F}{s} \cap B_{\beta}\right)\right) \approx C_{2/q,q'}\left(\frac{F}{s} \cap B_{\beta}\right) \ge c_1\Phi(s).$$

If $\alpha \in [1/2, 1]$,

$$\Phi(\alpha s) = C_{2/q,q'}\left(\frac{1}{\alpha}\left(\frac{F}{s} \cap B_{\alpha}\right)\right) \approx C_{2/q,q'}\left(\frac{F}{s} \cap B_{\alpha}\right) \le c_2\Phi(s).$$

Step 2. By (2.69)

$$C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \le c_2 C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right) \quad \forall \ s \in [d_{n+1},d_{n+2}],$$

and $n \leq a_t$. Then

$$c_2 \int_{d_{n+1}}^{d_{n+2}} s^{N - \frac{2}{q-1}} e^{-s^2/4t} C_{2/q, q'} \left(\frac{F}{s} \cap B_1 \right) s \, ds$$

$$\geq C_{2/q, q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) \int_{d_{n+1}}^{d_{n+2}} s^{N - \frac{2}{q-1}} e^{-s^2/4t} s \, ds.$$

Using the fact that $N - \frac{2}{q-1} \ge 0$, we get,

$$\int_{d_{n+1}}^{d_{n+2}} s^{N - \frac{2}{q-1}} e^{-\frac{s^2}{4t}} s \, ds \ge e^{-\frac{n+2}{4}} d_{n+1}^{N - \frac{2}{q-1} + 1} (d_{n+2} - d_{n+1}) \tag{2.70}$$

$$\geq \frac{t}{4e^2} d_{n+1}^{N - \frac{2}{q-1}} e^{-\frac{n}{4}}. (2.71)$$

Thus

$$\overline{u}_F(x,t) \le \frac{C}{t^{1+\frac{N}{2}}} \int_{\sqrt{t}}^{\sqrt{t(a_t+2)}} s^{N-\frac{2}{q-1}} e^{-\frac{s^2}{4t}} C_{2/q,q'}\left(\frac{1}{s}F \cap B_1\right) s \, ds,\tag{2.72}$$

which ends the proof.

3 Estimate from below

If $\mu \in \mathfrak{M}^q_+(\mathbb{R}^N) \cap \mathfrak{M}^b(\mathbb{R}^N)$, we denote by $u_{\mu} = u_{\mu,0}$ the solution of

$$\begin{cases}
\partial_t u_\mu - \Delta u_\mu + u_\mu^q = 0 & \text{in } Q_T, \\
u_\mu(.,0) = \mu & \text{in } \mathbb{R}^N.
\end{cases}$$
(3.1)

The maximal σ -moderate solution of (1.1) which has an initial trace vanishing outside a closed set F is defined by

$$\underline{u}_F = \sup \left\{ u_\mu : \mu \in \mathfrak{M}^q_+(\mathbb{R}^N) \cap \mathfrak{M}^b(\mathbb{R}^N), \ \mu(F^c) = 0 \right\}. \tag{3.2}$$

The main result of this section is the next one

Theorem 3.1 Assume $q \ge q_c$. There exists a constant $C_2 = C_2(N, q, T) > 0$ such that, for any closed subset $F \subset \mathbb{R}^N$, there holds

$$\underline{u}_F(x,t) \ge C_2 W_F(x,t) \qquad \forall (x,t) \in Q_T. \tag{3.3}$$

We first assume that F is compact, and we shall denote it by K. The first observation is that if $\mu \in \mathfrak{M}^q_+(\mathbb{R}^N)$, $u_\mu \in L^q(Q_T)$ (see lemma below) and $0 \le u_\mu \le \mathbb{H}[\mu] := \mathbb{H}_\mu$. Therefore

$$u_{\mu} \ge \mathbb{H}_{\mu} - \mathbb{G}\left[\mathbb{H}_{\mu}^{q}\right],\tag{3.4}$$

where \mathbb{G} is the Green heat potential in Q_T defined by

$$\mathbb{G}[f](t) = \int_0^t \mathbb{H}[f(s)](t-s)ds = \int_0^t \int_{\mathbb{R}^N} H(.,y,t-s)f(y,s)dyds.$$

Since the details of the proof are very technical, we shall present its main line. The key idea is to construct, for any $(x,t) \in Q_T$, a measure $\mu = \mu(x,t) \in \mathfrak{M}_+^q(\mathbb{R}^N)$ such that there holds

$$\mathbb{H}_{\mu}(x,t) \ge CW_K(x,t) \qquad \forall (x,t) \in Q_T,$$
 (3.5)

and

$$\mathbb{G}\left(\mathbb{H}_{\mu}\right)^{q} \le C \,\mathbb{H}_{\mu} \quad \text{in } Q_{T},\tag{3.6}$$

with constants C depends only on N, q, and T, then to replace μ by $\mu_{\epsilon} = \epsilon \mu$ with $\epsilon = (2C)^{-\frac{1}{q-1}}$ in order to derive

$$u_{\mu_{\epsilon}} \ge 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \ge 2^{-1} CW_K. \tag{3.7}$$

From this follows

$$\underline{u}_K \ge 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \ge 2^{-1} CW_K. \tag{3.8}$$

and the proof of Theorem 3.1 with $C_2 = 2^{-1}C$.

We recall the following regularity result which actually can be used for defining the norm in negative Besov spaces [35]

Lemma 3.2 There exists a constant c > 0 such that

$$c^{-1} \|\mu\|_{W^{-2/q,q}(\mathbb{R}^N)} \le \|\mathbb{H}_{\mu}\|_{L^q(Q_T)} \le c \|\mu\|_{W^{-2/q,q}(\mathbb{R}^N)}$$
(3.9)

for any $\mu \in W^{-2/q,q}(\mathbb{R}^N)$.

3.1 Estimate from below of the solution of the heat equation

The purely spatial slicing used is the trace on $\mathbb{R}^N \times \{0\}$ of an extended slicing in Q_T which is constructed as follows: if K is a compact subset of \mathbb{R}^N , m = (x, t), we define d_K , λ , d_n and a_t as in Section 2.3. Let $\alpha \in (0,1)$ to be fixed later on, we define \mathcal{T}_n for $n \in \mathbb{Z}$ by

$$\mathcal{T}_n = \begin{cases} \mathcal{B}^2_{\sqrt{t(n+1)}}(m) \setminus \mathcal{B}^2_{\sqrt{tn}}(m) & \text{if } n \ge 1, \\ \mathcal{B}^2_{\alpha^{-n}\sqrt{t}}(m) \setminus \mathcal{B}^2_{\alpha^{1-n}\sqrt{t}}(m) & \text{if } n \le 0, \end{cases}$$

and put

$$\mathcal{T}_n^* = \mathcal{T}_n \cap \{s : 0 \le s \le t\}, \text{ for } n \in \mathbb{Z}.$$

We recall that for $n \in \mathbb{N}_*$,

$$Q_n = K \cap \mathcal{B}^2_{\sqrt{t(n+1)}}(m) = K \cap B_{d_n}(x)$$

and

$$K_n = K \cap \mathcal{T}_{n+1} = K \cap (B_{d_{n+1}}(x) \setminus B_{d_n}(x)).$$

Let $\nu_n \in \mathfrak{M}_+(\mathbb{R}^N) \cap W^{-2/q,q}(\mathbb{R}^N)$ be the q-capacitary measure of the set K_n/d_{n+1} (see [1, Sec. 2.2]). Such a measure has support in K_n/d_{n+1} and

$$\nu_n(K_n/d_{n+1}) = C_{2/q,q'}(K_n/d_{n+1}) \text{ and } \|\nu_n\|_{W^{-2/q,q'}(\mathbb{R}^N)} = \left(C_{2/q,q'}(K_n/d_{n+1})\right)^{1/q}.$$
 (3.10)

We define μ_n as follows

$$\mu_n(A) = d_{n+1}^{N - \frac{2}{q-1}} \nu_n(A/d_{n+1}) \qquad \forall A \subset K_n, \ A \ \text{Borel} \ ,$$
 (3.11)

and set

$$\mu_{t,K} = \sum_{n=0}^{a_t} \mu_n,$$

and

$$\mathbb{H}_{\mu_{t,K}} = \sum_{n=0}^{a_t} \mathbb{H}_{\mu_n}.$$
 (3.12)

Proposition 3.3 Let $q \ge q_c$, then there holds

$$\mathbb{H}_{\mu_{t,K}}(x,t) \ge \frac{1}{(4\pi t)^{\frac{N}{2}}} \sum_{n=0}^{a_t} e^{-\frac{n+1}{4}} d_{n+1}^{N-\frac{2}{q-1}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right), \tag{3.13}$$

in $\mathbb{R}^N \times (0,T)$.

Proof. Since

$$\mathbb{H}_{\mu_n}(x,t) = \frac{1}{(4\pi t)^{\frac{N}{2}}} \int_{K_n} e^{-\frac{|x-y|^2}{4t}} d\mu_n, \tag{3.14}$$

and

$$y \in K_n \Longrightarrow |x - y| \le d_{n+1},$$

(3.13) follows because of (3.11) and (3.12).

3.2 Estimate from above of the nonlinear term

We write (3.4) under the form

$$u_{\mu}(x,t) \ge \sum_{n \in \mathbb{Z}} \mathbb{H}_{\mu_n}(x,t) - \int_0^t \int_{\mathbb{R}^N} H(x,y,t-s) \left[\sum_{n \in A_K} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds$$

$$= I_1 - I_2.$$
(3.15)

since $\mu_n = 0$ if $n \notin A_K = \mathbb{N} \cap [1, a_t]$, and

$$I_{2} \leq \frac{1}{(4\pi)^{\frac{N}{2}}} \int_{0}^{t} \int_{\mathbb{R}^{N}} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} \left[\sum_{n \in A_{K}} \mathbb{H}_{\mu_{n}}(y,s) \right]^{q} dy ds$$

$$\leq \frac{1}{(4\pi)^{\frac{N}{2}}} (J_{\ell} + J'_{\ell}), \tag{3.16}$$

for some $\ell \in \mathbb{N}^*$ to be fixed later on, where

$$J_{\ell} = \sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_{p}^{*}} (t - s)^{-\frac{N}{2}} e^{-\frac{|x - y|^{2}}{4(t - s)}} \left[\sum_{n$$

and

$$J'_{\ell} = \sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_p^*} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} \left[\sum_{n \ge p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds.$$

The next estimate will be used several times in the sequel.

Lemma 3.4 Let 0 < a < b and t > 0, then,

$$\max \left\{ \sigma^{-\frac{N}{2}} e^{-\frac{\rho^2}{4\sigma}} : 0 \le \sigma \le t, \ at \le \rho^2 + \sigma \le bt \right\} = e^{\frac{1}{4}} \left\{ \begin{array}{l} t^{-\frac{N}{2}} e^{-\frac{a}{4}} & \text{if } \frac{a}{2N} > 1, \\ \left(\frac{2N}{at}\right)^{\frac{N}{2}} e^{-\frac{N}{2}} & \text{if } \frac{a}{2N} \le 1. \end{array} \right.$$

Proof. Set

$$\mathcal{J}(\rho,\sigma) = \sigma^{-\frac{N}{2}} e^{-\frac{\rho^2}{4\sigma}}$$

and

$$\mathcal{K}_{a,b,t} = \left\{ (\rho, \sigma) \in [0, \infty) \times (0, t] : at \le \rho^2 + \sigma \le bt \right\}.$$

We first notice that, for fixed σ , the maximum of $\mathcal{J}(.,\sigma)$ is achieved for ρ minimal. If $\sigma \in [at,bt]$ the minimal value of ρ is 0, while if $\sigma \in (0,at)$, the minimum of ρ is $\sqrt{at-s}$.

- Assume first $a \geq 1$, then $\mathcal{J}(\sqrt{at-\sigma},\sigma) = e^{\frac{1}{4}}\sigma^{-\frac{N}{4}}e^{-\frac{at}{4\sigma}}$, thus, if $1 \leq a/2N$ the minimal value of $\mathcal{J}(\sqrt{at-\sigma},\sigma)$ is $e^{\frac{1-2N}{4}}\left(\frac{2N}{at}\right)^{\frac{N}{2}}$, while, if $a/2N < 1 \leq a$, the minimum is $e^{\frac{1}{4}}t^{-\frac{N}{2}}e^{-\frac{a}{4}}$.
- Assume now $a \leq 1$. Then

$$\max\{\mathcal{J}(\rho,\sigma): (\rho,\sigma) \in \mathcal{K}_{a,b,t}\} = \max\left\{\max_{\sigma \in (at,t]} \mathcal{J}(0,\sigma), \max_{\sigma \in (0,at]} \mathcal{J}(\sqrt{at-\sigma},\sigma)\right\}$$
$$= \max\left\{(at)^{-\frac{N}{2}}, e^{\frac{1-2N}{4}} \left(\frac{2N}{at}\right)^{\frac{N}{2}}\right\}$$
$$= e^{\frac{1-2N}{4}} \left(\frac{2N}{at}\right)^{\frac{N}{2}}.$$

Combining these two estimates, we derive the result.

Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any $\theta \geq 1/2N$ there holds

$$\max\{\mathcal{J}(\rho,\sigma): (\rho,\sigma) \in \mathcal{K}(a,b,t)\} \le e^{\frac{1}{4}} \left(\frac{2N\theta}{t}\right)^{\frac{N}{2}} e^{-\frac{a}{4}} \quad \text{if } \theta a \ge 1.$$
 (3.17)

Lemma 3.5 There exists a positive constant $C = C(N, \ell, q)$ such that

$$J_{\ell} \le Ct^{-\frac{N}{2}} \sum_{n=1}^{a_{t}} d_{n+1}^{N - \frac{2}{q-1}} e^{-(1 + (n-\ell)_{+})/4} C_{2/q,q'} \left(\frac{K_{n}}{d_{n+1}}\right).$$
(3.18)

Proof. The set of p for the summation in J_{ℓ} is reduced to $\mathbb{Z} \cap [-\ell+2,\infty)$ and we write

$$J_{\ell} = J_{1,\ell} + J_{2,\ell}$$

where

$$J_{1,\ell} = \sum_{p=2-\ell}^{0} \iint_{\mathcal{T}_p^*} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} \left[\sum_{n < p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q$$

and

$$J_{2,\ell} = \sum_{p=1}^{\infty} \iint_{\mathcal{T}_p^*} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} \left[\sum_{n < p+\ell} \mathbb{H}_{\mu_n}(y,s) \right]^q.$$

If $p = 2 - \ell, \dots, 0$,

$$(y,s) \in \mathcal{T}_p^* \Longrightarrow t\alpha^{2-2p} \le |x-y|^2 + t - s \le t\alpha^{-2p},$$

and, if $p \ge 1$

$$(y,s) \in \mathcal{T}_p^* \Longrightarrow pt \le |x-y|^2 + t - s \le (p+1)t.$$

By Lemma 3.4 and (3.17), there exists $C = C(N, \ell, \alpha) > 0$ such that

$$\max\left\{ (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} : (y,s) \in \mathcal{T}_p^* \right\} \le C t^{-\frac{N}{2}} e^{-\alpha^{2-2p}/4},\tag{3.19}$$

if $p = 2 - \ell, ..., 0$, and

$$\max\left\{ (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} : (y,s) \in \mathcal{T}_p^* \right\} \le C t^{-\frac{N}{2}} e^{-p/4}, \tag{3.20}$$

if $p \ge 1$. When $p = 2 - \ell, \dots, 0$

$$\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}(y,s)\right]^q \le C \sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}^q(y,s). \tag{3.21}$$

for some $C = C(\ell, q) > 0$, thus

$$J_{1,\ell} \leq Ct^{-\frac{N}{2}} \sum_{p=2-\ell}^{0} e^{-\frac{\alpha^{2-2p}}{4}} \sum_{n=1}^{p+\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q$$

$$\leq Ct^{-\frac{N}{2}} \sum_{n=1}^{\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q \sum_{p=n-\ell+1}^{0} e^{-\frac{\alpha^{2-2p}}{4}}$$

$$\leq Ct^{-\frac{N}{2}} e^{-\frac{\alpha^{2\ell-2}}{4}} \sum_{n=1}^{\ell-1} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q.$$

$$(3.22)$$

If the set of p's is not upper bounded, we introduce $\delta > 0$ to be made precise later on. Then

$$\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_n}(y,s)\right]^q \le \left[\sum_{1}^{p+\ell-1} e^{\delta q' \frac{n}{4}}\right]^{q/q'} \sum_{1}^{p+\ell-1} e^{-\frac{\delta q n}{4}} \mathbb{H}^q_{\mu_n}(y,s), \tag{3.23}$$

with q' = q/(q-1). If, by convention $\mu_n = 0$ whenever $n > a_t$, we obtain, for some C > 0 which depends also on δ ,

$$J_{2,\ell} \leq Ct^{-\frac{N}{2}} \sum_{p=1}^{\infty} e^{\frac{\delta(p+\ell-1)q-p}{4}} \sum_{n=1}^{p+\ell-1} e^{-\frac{\delta qn}{4}} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q$$

$$\leq Ct^{-\frac{N}{2}} \sum_{n=1}^{\infty} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q e^{-\frac{\delta qn}{4}} \sum_{p=(n-\ell+1)\vee 1}^{\infty} e^{\frac{\delta(p+\ell-1)q-p}{4}}$$

$$\leq Ct^{-\frac{N}{2}} \sum_{n=1}^{\infty} e^{-\frac{1+(n-\ell)+}{4}} \|\mathbb{H}_{\mu_n}\|_{L^q(Q_t)}^q.$$
(3.24)

Notice that we choose δ such that $\delta \ell q < 1$. Combining (3.22) and (3.24), we derive (3.18) from Lemma 3.2, (3.10) and (3.11).

The set of indices p for which the μ_n terms are not zero in J'_{ℓ} is $\mathbb{Z} \cap (-\infty, a_t - \ell]$. We write

$$J'_{\ell} = J'_{1,\ell} + J'_{2,\ell},$$

where

$$J'_{1,\ell} = \sum_{p=-\infty}^{0} \iint_{\mathcal{T}_p^*} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} \left[\sum_{n=1 \lor p+\ell}^{\infty} \mathbb{H}_{\mu_n}(y,s) \right]^q dy ds,$$

and

$$J'_{2,\ell} = \sum_{p=1}^{a_t - \ell} \iint_{\mathcal{T}_p^*} (t - s)^{-\frac{N}{2}} e^{-\frac{|x - y|^2}{4(t - s)}} \left[\sum_{n=p+\ell}^{\infty} \mathbb{H}_{\mu_n}(y, s) \right]^q dy ds.$$

Lemma 3.6 There exists a constant $C = C(N, q, \ell) > 0$ such that

$$J'_{1,\ell} \le Ct^{1-\frac{Nq}{2}} \sum_{n=0}^{a_t} e^{-\frac{(1+\beta_0)(n-h)_+}{4}} d_{n+1}^{Nq-2q'} C_{2/q,q'}^q \left(\frac{K_n}{d_{n+1}}\right), \tag{3.25}$$

where $\beta_0 = (q-1)/4$ and $h = 2q(q+1)/(q-1)^2$.

Proof. Since

$$(y,s) \in \mathcal{T}_p^*$$
, and $(z,0) \in K_n \Longrightarrow |y-z| \ge (\sqrt{n} - \alpha^{-p})\sqrt{t}$, (3.26)

there holds

$$\mathbb{H}_{\mu_n}(y,s) \le (4\pi s)^{-\frac{N}{2}} e^{-\frac{(\sqrt{n} - \alpha^{-p})^2 t}{4s}} \mu_n(K_n) \le C t^{-\frac{N}{2}} e^{-\frac{(\sqrt{n} - \alpha^{-p})^2}{4}} \mu_n(K_n),$$

by Lemma 3.4. Let $\epsilon_n > 0$ such that

$$A_{\epsilon} = \sum_{n=1}^{\infty} \epsilon_n^{q'} < \infty,$$

then

$$J'_{1,\ell} \leq CA_{\epsilon}^{q/q'} t^{-\frac{Nq}{2}} \sum_{p=-\infty}^{0} \iint_{\mathcal{T}_{p}^{*}} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} \sum_{n=1\vee(p+\ell)}^{\infty} \epsilon_{n}^{-q} e^{-q\frac{(\sqrt{n}-\alpha^{-p})^{2}}{4}} \mu_{n}^{q}(K_{n}) ds dy$$

$$\leq CA_{\epsilon}^{q/q'} t^{-\frac{Nq}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}(K_{n}) \sum_{-\infty}^{p=0\wedge(n-\ell)} e^{-\frac{q(\sqrt{n}-\alpha^{-p})^{2}}{4}} \iint_{\mathcal{T}_{p}^{*}} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} ds dy$$

$$\leq CA_{\epsilon}^{q/q'} t^{-\frac{Nq}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}(K_{n}) e^{-\frac{q(\sqrt{n}-1)^{2}}{4}} \iint_{\cup_{p\leq0}\mathcal{T}_{p}^{*}} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} ds dy$$

$$\leq CA_{\epsilon}^{q/q'} t^{1-\frac{Nq}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}(K_{n}) e^{-\frac{q(\sqrt{n}-1)^{2}}{4}}.$$

$$(3.27)$$

Set $h = 2q(q+1)/(q-1)^2$ and Q = (1+q)/2, then $q(\sqrt{n}-1)^2 \ge Q(n-h)_+$ for any $n \ge 1$. If we choose $\epsilon_n = e^{-\frac{(q-1)(n-h)_+}{16q}}$, there holds $\epsilon_n^{-q} e^{-\frac{q(\sqrt{n}-1)^2}{4}} \le e^{\frac{(q+3)(n-h)_+}{16}}$. Finally

$$J'_{1,\ell} \le Ct^{1-\frac{Nq}{2}} \sum_{n=1}^{\infty} e^{\frac{(1+\epsilon_0)(n-h)_+}{4}} \mu_n^q(K_n),$$

with $\beta_0 = (q-1)/4$, which yields to (3.25) by the choice of the μ_n .

In order to make easier the obtention of the estimate of the term $J'_{2,\ell}$, we first give the proof in dimension 1.

Lemma 3.7 Assume N=1 and ℓ is an integer larger than 1. There exists a positive constant $C=C(q,\ell)>0$ such that

$$J_{2,\ell}' \le Ct^{-1/2} \sum_{n=\ell}^{a_t} e^{-\frac{n}{4}} d_{n+1}^{\frac{q-3}{q-1}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right). \tag{3.28}$$

Proof. If $(y,s) \in \mathcal{T}_p^*$ and $z \in K_n$ $(p \ge 1, n \ge p = \ell)$, there holds $|x-y| \ge \sqrt{t}\sqrt{p}$ and $|y-z| \ge \sqrt{t}(\sqrt{n}-\sqrt{p+1})$. Therefore

$$J'_{2,\ell} \le C\sqrt{t} \sum_{p=1}^{a_t-\ell} \frac{1}{\sqrt{p}} \int_0^t e^{-\frac{pt}{4(t-s)}} \left(\sum_{n=p+\ell}^{a_t} s^{-1/2} e^{-\frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}} \mu_n(K_n) \right)^q.$$

If $\epsilon \in (0,q)$ is some positive parameter which will be made more precise later on, there holds

$$\left(\sum_{n=p+\ell}^{a_t} s^{-1/2} e^{-\frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}} \mu_n(K_n)\right)^q \\
\leq \left(\sum_{n=p+\ell}^{a_t} e^{-\epsilon q' \frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}}\right)^{q/q'} \sum_{n=p+\ell}^{a_t} s^{-\frac{q}{2}} e^{-(q-\epsilon) \frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}} \mu_n^q(K_n),$$

by Hölder's inequality. By comparison between series and integrals and using Gauss integral

$$\begin{split} \sum_{n=p+\ell}^{a_t} e^{-\epsilon q' \frac{(\sqrt{n} - \sqrt{p+1})^2 t}{4s}} &\leq \int_{p+\ell}^{\infty} e^{-\epsilon q' \frac{(\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx \\ &= 2 \int_{\sqrt{p+\ell} - \sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q' x^2 t}{4s}} (x + \sqrt{p+1}) dx \\ &\leq \frac{4s}{\epsilon q' t} e^{-\epsilon q' \frac{(\sqrt{p+\ell} - \sqrt{p+1})^2 t}{4s}} + 2\sqrt{p+1} \int_{\sqrt{p+\ell} - \sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q' x^2 t}{4s}} dx \\ &\leq C \sqrt{\frac{(p+1)s}{t}} e^{-\epsilon q' \frac{(\sqrt{p+\ell} - \sqrt{p+1})^2 t}{2s}} \\ &\leq C \sqrt{\frac{(p+1)s}{t}}. \end{split}$$

If we set $q_{\epsilon} = q - \epsilon$, then

$$J'_{2,\ell} \le C\epsilon^{-q'/q} t^{1-\frac{q}{2}} \sum_{n=\ell+1}^{\infty} \mu_n^q(K_n) \sum_{p=1}^{n-\ell} p^{\frac{q-2}{2}} \int_0^t (t-s)^{-1/2} s^{-1/2} e^{-\frac{pt}{4(t-s)}} e^{-q\epsilon \frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}} ds.$$

where $C = C(\epsilon, q) > 0$. Since

$$\int_0^t (t-s)^{-1/2} s^{-1/2} e^{-\frac{pt}{4(t-s)}} e^{-q_{\epsilon} \frac{(\sqrt{n}-\sqrt{p+1})^2 t}{4s}} ds$$

$$= \int_0^1 (1-s)^{-1/2} s^{-1/2} e^{-\frac{p}{4(1-s)}} e^{-q_{\epsilon} \frac{(\sqrt{n}-\sqrt{p+1})^2}{4s}} ds,$$

we can apply Lemma A.1 with $a=1/2,\ b=1/2,\ A=\sqrt{p}$ and $B=\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1})$. In this range of indices $B\geq \sqrt{q_{\epsilon}}(\sqrt{p+\ell}-\sqrt{p+1})\geq \sqrt{q_{\epsilon}}(\ell-1)\sqrt{p}$, thus $\kappa=\sqrt{q_{\epsilon}}(\ell-1)$ and

$$\sqrt{\frac{A}{A+B}}\sqrt{\frac{B}{A+B}} \le p^{\frac{1}{4}}n^{-1/2}(\sqrt{n}-\sqrt{p})^{1/2}.$$

Therefore

$$\int_{0}^{t} (t-s)^{-1/2} s^{-\frac{q}{2}} e^{-\frac{pt}{4(t-s)}} e^{-q\frac{(\sqrt{n}-\sqrt{p+1})^{2}t}{4s}} ds \le \frac{Cp^{\frac{1}{4}} (\sqrt{n}-\sqrt{p})^{1/2}}{\sqrt{n}} e^{-\frac{(\sqrt{p}+\sqrt{q\epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}}, \quad (3.29)$$

which implies

$$J_{2,\ell}' \le Ct^{1-\frac{q}{2}} \sum_{n=\ell+1}^{a_t} \frac{\mu_n^q(K_n)}{\sqrt{n}} \sum_{p=1}^{n-\ell} p^{\frac{2q-3}{4}} (\sqrt{n} - \sqrt{p})^{1/2} e^{-\frac{(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1}))^2}{4}}, \tag{3.30}$$

where C depends of ϵ , q and ℓ . By Lemma A.2

$$J_{2,\ell}' \le Ct^{1-\frac{q}{2}} \sum_{n=\ell+1}^{a_t} n^{\frac{q-3}{2}} e^{-\frac{n}{4}} \mu_n^q(K_n)$$
(3.31)

Because $\mu_n(K_n) = d_{n+1}^{\frac{q-3}{q-1}} C_{2/q,q'}\left(\frac{K_n}{d_{n+1}}\right)$ (remember N=1) and diam $\frac{K_n}{d_{n+1}} \le n^{-1}$, there holds

$$\mu_n^q(K_n) \le C \left(\frac{\sqrt{t}}{\sqrt{n}}\right)^{q-3} \mu_n(K_n) = C \left(\frac{\sqrt{t}}{\sqrt{n}}\right)^{q-3} d_{n+1}^{\frac{q-3}{q-1}} C_{2/q,q'}(K_n/d_{n+1})$$
(3.32)

and inequality (3.28) follows.

Next we give the general proof. For this task we shall use again the quasi-additivity with separated partitions.

Lemma 3.8 Assume $N \ge 2$ and ℓ is an integer larger than 1. There exist a positive constant $C_1 = C_1(q, N, \ell) > 0$ such that f

$$J_{2,\ell}' \le C_1 t^{-\frac{N}{2}} \sum_{n=\ell}^{a_t} e^{-\frac{n}{4}} d_{n+1}^{N - \frac{2}{q-1}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}} \right). \tag{3.33}$$

Proof. As in the proof of Theorem 2.14, we know that there exists a finite number J, depending only on the dimension N, of separated sub-partitions $\{\#\Theta_{t,n}^h\}_{h=1}^J$ of the rescaled sets $\tilde{T}_n = \sqrt{\frac{n+1}{t}} T_n$ by the N-dim balls $B_2(\tilde{a}_{n,j})$ where $\tilde{a}_{n,j} = \sqrt{\frac{n+1}{t}} a_{n,j}$, $|a_{n,j}| = \frac{d_{n+1} + d_n}{2}$ and $|a_{n,j} - a_{n,k}| \ge \sqrt{\frac{4t}{n+1}}$. Furthermore $\#\Theta_{t,n}^h \le Cn^{N-1}$. We denote $K_{n,j} = K_n \cap B_{\sqrt{\frac{t}{n+1}}}(a_{n,j})$.

We write $\mu_n = \sum_{h=1}^J \mu_n^h$, and accordingly $J'_{2,\ell} = \sum_{h=1}^J J'_{2,\ell}^h$, where $\mu_n^h = \sum_{j \in \Theta_{t,n}^h} \mu_{n,j}$, and $\mu_{n,j}$ are the

capacitary measures of $K_{n,j}$ relative to $B_{n,j} = B_{6t/5\sqrt{n}}(a_n,j)$, which means

$$\nu_{n,j}(K_{n,j}) = C_{2/q,q'}^{B_{n,j}}(K_{n,j}) \quad \text{and} \quad \|\nu_{n,j}\|_{W^{-2/q,q'}(B_{n,j})} = \left(C_{2/q,q'}^{B_{n,j}}(K_{n,j})\right)^{1/q}. \tag{3.34}$$

Thus

$$J_{2,\ell}' = \sum_{p=1}^{a_t-\ell} \iint_{\mathcal{T}_p^*} (t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^2}{4(t-s)}} \left[\sum_{n=p+\ell}^{\infty} \sum_{h=1}^{J} \sum_{j \in \Theta_{t,n}^h} \mathbb{H}_{\mu_{n,j}}(y,s) \right]^q dy ds.$$

We denote

$$J_{2,\ell}^{\prime h} = \sum_{p=1}^{a_t - \ell} \iint_{\mathcal{T}_p^*} (t - s)^{-\frac{N}{2}} e^{-\frac{|x - y|^2}{4(t - s)}} \left[\sum_{n=p+\ell}^{\infty} \sum_{j \in \Theta_{t,n}^h} \mathbb{H}_{\mu_{n,j}}(y, s) \right]^q dy ds,$$

and clearly

$$J_{2,\ell}' \le C \sum_{h=1}^{J} J_{2,\ell}'^{h}, \tag{3.35}$$

where C depends only on N and q. For integers n and p such that $n \geq \ell + 1$, we set

$$\lambda_{n,j,y} = \inf\{|y-z| : z \in B_{\sqrt{t}/\sqrt{n+1}}(a_{n,j})\} = |y-a_{n,j}| - \frac{\sqrt{t}}{\sqrt{n+1}}.$$

Therefore

$$\sum_{n=p+\ell}^{a_t} \int_{K_n} e^{-\frac{|y-z|^2}{4s}} d\mu_n^h(z) = \sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} \int_{K_{n,j}} e^{-\frac{|y-z|^2}{4s}} d\mu_{n,j}(z)$$

$$\leq \left(\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} e^{-\epsilon q' \frac{\lambda_{n,j,y}^2}{4s}} \right)^{1/q'} \left(\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}^h} e^{-q\lambda_{n,j,y}^2 \frac{1-\epsilon}{4s}} \mu_{n,j}^q(K_{n,j})\right)^{1/q}$$

where $\epsilon > 0$ will be made precise later on.

Step 1 We claim that

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \frac{\lambda_{n,j,y}^2}{4s}} \le C \sqrt{\frac{ps}{t}}$$
(3.36)

where C depends on ϵ , q and N. If y is fixed in T_p , we denote by z_y the point of T_n which solves $|y - z_y| = \text{dist}(y, T_n)$. Thus

$$\sqrt{t}(\sqrt{n} - \sqrt{p+1}) \le |y - z_y| \le t(\sqrt{n} - \sqrt{p}).$$

Let $Y = y\sqrt{t(p+1)}/|y|$. On the axis $\overrightarrow{0Y}$ we set $\mathbf{e} = Y/|Y|$, consider the points $b_k = (k\sqrt{t}/\sqrt{n})\mathbf{e}$ where $-n \le k \le n$ and denote by $G_{n,k}$ the spherical shell obtain by intersecting the spherical shell T_n with the domain $H_{n,k}$ which is the set of points in \mathbb{R}^N limited by the hyperplanes orthogonal to $\overrightarrow{0Y}$ going through $((k+1)\sqrt{t}/\sqrt{n})\mathbf{e}$ and $((k-1)\sqrt{t}/\sqrt{n})\mathbf{e}$. The number of points $a_{n,j} \in G_{n,k}$ is smaller than $C(n+1-|k|)^{N-2}$, where C depends only on N, and we denote by $\Lambda_{n,k}$ the set of $j \in \Theta_{t,n}$ such that $a_{n,j} \in G_{n,k}$. Furthermore, if $a_{n,j} \in G_{n,k}$ elementary geometric considerations (Pythagore's theorem) imply that $\lambda_{n,j,y}^2$ is greater than $t(n+p+1-2k\sqrt{p+1}/\sqrt{n})$. Therefore

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\epsilon q' \frac{\lambda_{n,j,y}^2}{4s}} \le C \sum_{n=p+\ell}^{a_t} \sum_{k=-n}^n (n+1-|k|)^{N-2} e^{-\frac{\epsilon q' (n+p+1-2k\sqrt{p+1}/)t}{4s\sqrt{n}}}$$
(3.37)

Case N=2. Summing a geometric series and using the inequality $\frac{e^u}{e^u-1} \leq 1+u^{-1}$ for u>0, we obtain

$$\sum_{k=-n}^{n} e^{\frac{\epsilon q' \left(k\sqrt{p+1}\right)t}{2s\sqrt{n}}} \leq e^{\frac{\epsilon q' t\sqrt{n(p+1)}}{2s}} \frac{e^{\frac{\epsilon q' t\sqrt{p+1}}{2s\sqrt{n}}}}{e^{\frac{\epsilon q' t\sqrt{p+1}}{2s\sqrt{n}} - 1}} \\
\leq e^{\frac{\epsilon q' t\sqrt{n(p+1)}}{2s}} \left(1 + \frac{2s\sqrt{n}}{\epsilon q' t\sqrt{p+1}}\right).$$
(3.38)

Thus, by comparison between series and integrals,

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\frac{\epsilon q' \lambda_{n,j,y}^2}{4s}} \leq C \sum_{n=p+\ell}^{a_t} \left(1 + \frac{s\sqrt{n}}{t\sqrt{p}} \right) e^{-\frac{\epsilon q' (\sqrt{n} - \sqrt{p+1})^2}{4s}} \\
\leq C \int_{p+1}^{\infty} e^{-\frac{\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx \\
+ \frac{Cs}{t\sqrt{p}} \int_{p+1}^{\infty} \sqrt{x} e^{-\frac{\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx. \tag{3.39}$$

Next

$$\int_{p+1}^{\infty} e^{-\frac{\epsilon q'(\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx = 2 \int_{\sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q'(y - \sqrt{p+1})^2 t}{4s}} y dy$$

$$= 2 \int_{0}^{\infty} e^{-\frac{\epsilon q'y^2 t}{4s}} y dy + 2\sqrt{p+1} \int_{0}^{\infty} e^{-\frac{\epsilon q'y^2 t}{4s}} dy$$

$$= \frac{2s}{t} \int_{0}^{\infty} e^{-\frac{\epsilon q'z^2}{4}} z dz + 2\sqrt{\frac{(p+1)s}{t}} \int_{0}^{\infty} e^{-\frac{\epsilon q'z^2}{4}} dz,$$
(3.40)

and

$$\int_{p+1}^{\infty} \sqrt{x} e^{-\frac{\epsilon q'(\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx = 2 \int_{\sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q'(y - \sqrt{p+1})^2 t}{4s}} y^2 dy$$

$$= 2 \int_{0}^{\infty} e^{-\frac{\epsilon q'y^2 t}{4s}} (y + \sqrt{p+1})^2 dy$$

$$\leq 4 \int_{0}^{\infty} e^{-\frac{\epsilon q'y^2 t}{4s}} y^2 dy + 4(p+1) \int_{0}^{\infty} e^{-\frac{\epsilon q'y^2 t}{4s}} dy$$

$$\leq 4 \left(\frac{s}{t}\right)^{3/2} \int_{0}^{\infty} e^{-\frac{\epsilon q'z^2}{4}} z^2 dz + 4(p+1) \sqrt{\frac{s}{t}} \int_{0}^{\infty} e^{-\frac{\epsilon q'z^2}{4}} dz$$
(3.41)

Jointly with (3.39), these inequalities imply

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\frac{\epsilon q' \lambda_{n,j,y}^2}{4s}} \le C \sqrt{\frac{ps}{t}}.$$
(3.42)

Case N > 2. Because the value of the right-hand side of (3.37) is an increasing value of N, it is sufficient to prove (3.36) when N is even, say $(N-2)/2 = d \in \mathbb{N}_*$. There holds

$$\sum_{k=-n}^{n} (n+1-|k|)^{d} e^{\frac{\epsilon q'(k\sqrt{p+1})t}{2s\sqrt{n}}} \le 2\sum_{k=0}^{n} (n+1-k)^{d} e^{\frac{\epsilon q'(k\sqrt{p+1})t}{2s\sqrt{n}}}.$$
 (3.43)

We set

$$\alpha = \epsilon q' \frac{t\sqrt{p+1}}{2s\sqrt{n}}$$
 and $I_d = \sum_{k=0}^n (n+1-k)^d e^{k\alpha}$.

Since

$$e^{k\alpha} = \frac{e^{(k+1)\alpha} - e^{k\alpha}}{e^{\alpha} - 1},$$

we use Abel's transform to obtain

$$I_d = \frac{1}{e^{\alpha} - 1} \left(e^{(n+1)\alpha} - (n+1)^d + \sum_{k=1}^n \left((n+2-k)^d - (n+1-k)^d \right) e^{k\alpha} \right)$$

$$\leq \frac{1}{e^{\alpha} - 1} \left((1-d)e^{(n+1)\alpha} - (n+1)^d + de^{\alpha} \sum_{k=1}^n \left((n+1-k)^{d-1} \right) e^{k\alpha} \right).$$

Therefore the following induction holds

$$I_d \le \frac{de^{\alpha}}{e^{\alpha} - 1} I_{d-1}. \tag{3.44}$$

In (3.38), we have already used the fact that

$$\frac{de^{\alpha}}{e^{\alpha} - 1} \le C \left(1 + \frac{s\sqrt{n}}{t\sqrt{p}} \right),$$

and

$$I_d \le C \left(1 + \left(\frac{s\sqrt{n}}{t\sqrt{p}} \right)^{d+1} \right) I_0.$$

Thus (3.39) is replaced by

$$\sum_{n=p+\ell}^{a_t} \sum_{j \in \Theta_{t,n}} e^{-\frac{\epsilon q' \lambda_{n,j,y}^2}{4s}} \leq C \sum_{n=p+\ell}^{a_t} \left(1 + \left(\frac{s\sqrt{n}}{t\sqrt{p}} \right)^{d+1} \right) e^{-\frac{\epsilon q' (\sqrt{n} - \sqrt{p+1})^2 t}{4s}} \\
\leq C \int_{p+1}^{\infty} e^{-\frac{\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx \\
+ \left(\frac{Cs}{t\sqrt{p}} \right)^{d+1} \int_{p+1}^{\infty} x^{(d+1)/2} e^{-\frac{\epsilon q' (\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx. \tag{3.45}$$

The first integral on the right-hand side has already been estimated in (3.40), for the second integral, there holds

$$\int_{p+1}^{\infty} x^{(d+1)/2} e^{-\frac{\epsilon q'(\sqrt{x} - \sqrt{p+1})^2 t}{4s}} dx = \int_{0}^{\infty} (y + \sqrt{p+1})^{d+2} e^{-\frac{\epsilon q' y^2 t}{4s}} dx
\leq C \int_{0}^{\infty} y^{d+2} e^{-\frac{\epsilon q' y^2 t}{4s}} dy + C p^{1+\frac{d}{2}} \int_{0}^{\infty} e^{-\frac{\epsilon q' y^2 t}{4s}} dy
\leq C \left(\frac{s}{t}\right)^{2+\frac{d}{2}} \int_{0}^{\infty} z^{(d+1)/2} e^{-\frac{\epsilon q' z^2}{4}} dz
+ C \left(\frac{s}{t}\right)^{3/2} p^{1+\frac{d}{2}} \int_{0}^{\infty} e^{-\frac{\epsilon q' z^2}{4}} dz.$$
(3.46)

Combining (3.40), (3.45) and (3.46), we derive (3.36).

Step 2. Since $\mathcal{T}_p^* \subset \Gamma_p \times [0,t]$ where $\Gamma_p = B_{d_{p+1}}(x) \setminus B_{d_{p-1}}(x)$, $(y,s) \in \mathcal{T}_p^*$ implies that $|x-y|^2 \geq (p-1)t$, thus $J_{2,\ell}^{\prime h}$ satisfies

$$J_{2,\ell}^{\prime h} \leq Ct^{\frac{1-q}{2}} \sum_{p=1}^{\infty} p^{\frac{q-1}{2}} \int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1)/2} e^{-\frac{|x-y|^{2}}{4(t-s)}}$$

$$\times \sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t,n}^{h}} e^{-\frac{q\lambda_{n,j,y}^{2}(1-\epsilon)}{4s}} \mu_{n,j}^{q}(K_{n,j}) ds dy$$

$$\leq Ct^{\frac{1-q}{2}} \sum_{n=\ell+1}^{a_{t}} \sum_{j \in \Theta_{t,n}^{h}} \mu_{n,j}^{q}(K_{n,j})$$

$$\times \sum_{n=1}^{n-\ell} p^{\frac{q-1}{2}} \int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1)/2} e^{-|x-y|^{2}/4(t-s)} e^{-\frac{q\lambda_{n,j,y}^{2}(1-\epsilon)}{4s}} ds dy$$

$$(3.47)$$

and the constant C depends on N, q and ϵ . Next we set $q_{\epsilon} = (1 - \epsilon)q$. Writting

$$|y - a_{n,j}|^2 = |x - y|^2 + |x - a_{n,j}|^2 - 2\langle y - x, a_{n,j} - x \rangle \ge pt + |x - a_{n,j}|^2 - 2\langle y - x, a_{n,j} - x \rangle$$

we get

$$\int_{\Gamma_{p}} e^{-\frac{q_{\epsilon} |y-a_{n,j}|^{2}}{4s}} dy = e^{-\frac{q_{\epsilon} |x-a_{n,j}|^{2}}{4s}} \int_{\sqrt{tp}}^{\sqrt{t(p+1)}} e^{-\frac{q_{\epsilon} r^{2}}{4s}} \int_{|x-y|=r} e^{2q_{\epsilon} \langle y-x, a_{n,j}-x \rangle/4s} dS_{r}(y) dr.$$

For estimating the value of the spherical integral, we can assume that $a_{n,j}-x=(0,\ldots,0,|a_{n,j}-x|)$, $y=(y_1,\ldots,y_N)$ and, using spherical coordinates with center at x, that the unit sphere has the representation $S^{N-1}=\{(\sin\phi.\sigma,\cos\phi)\in\mathbb{R}^{N-1}\times\mathbb{R}:\sigma\in S^{N-2},\phi\in[0,\pi]\}$. With this representation, $dS_r=r^{N-1}\sin^{N-2}\phi\,d\phi\,d\sigma$ and $\langle y-x,a_{n,j}-x\rangle=|a_{n,j}-x|\,|y-x|\cos\phi$. Therefore

$$\int_{|x-y|=r} e^{2q_{\epsilon} \frac{\langle y-x, a_{n,j}-x \rangle}{4s}} dS_r(y) = r^{N-1} \left| S^{N-2} \right| \int_0^{\pi} e^{2q_{\epsilon} \frac{\left| a_{n,j}-x \right| r \cos \phi}{4s}} \sin^{N-2} \phi \, d\phi.$$

By Lemma A.3

$$\int_{|x-y|=r} e^{2q_{\epsilon} \frac{\langle y-x, a_{n,j}-x \rangle}{4s}} dS_{r}(y) \leq C \frac{r^{N-1} e^{2q_{\epsilon} \frac{r |a_{n,j}-x|}{4s}}}{\left(1 + \frac{r |a_{n,j}-x|}{s}\right)^{\frac{N-1}{2}}} \\
\leq C s^{\frac{N-1}{2}} \left(\frac{r}{|a_{n,j}-x|}\right)^{\frac{N-1}{2}} e^{2q_{\epsilon} \frac{r |a_{n,j}-x|}{4s}}.$$
(3.48)

Therefore

$$\int_{\Gamma_p} e^{-q_{\epsilon} \frac{\left|y - a_{n,j}\right|^2}{4s}} dy \le C t^{\frac{N-1}{4}} p^{\frac{N-3}{4}} \frac{s^{\frac{N-1}{2}} e^{-q_{\epsilon} \frac{(\left|a_{n,j} - x\right| - \sqrt{t(p+1)})^2}{4s}}}{\left|a_{n,j} - x\right|^{\frac{N-1}{2}}},\tag{3.49}$$

and, since $|a_{n,j} - x| \ge \sqrt{tn}$,

$$\int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1)/2} e^{-\frac{|x-y|^{2}}{4(t-s)}} e^{-q\epsilon \frac{\lambda_{n,j,y}^{2}}{4s}} dy ds
\leq C \frac{\sqrt{t} p^{\frac{N-3}{4}}}{n^{\frac{N-1}{4}}} \int_{0}^{t} (t-s)^{-\frac{N}{2}} s^{-\frac{(q-1)(N-1)+1}{2}} e^{-\frac{pt}{4(t-s)}} e^{-q\epsilon \frac{(\sqrt{tn}-\sqrt{t(p+1)})^{2}}{4s}} ds
\leq C \frac{t^{\frac{1-q(N-1)}{2}} p^{\frac{N-3}{4}}}{n^{\frac{N-1}{4}}} \int_{0}^{1} (1-s)^{-\frac{N}{2}} s^{-\frac{(q-1)(N-1)+1}{2}} e^{-\frac{p}{4(1-s)}} e^{-q\epsilon \frac{(\sqrt{n}-\sqrt{p+1})^{2}}{4s}}.$$
(3.50)

We apply Lemma A.1, with $A = \sqrt{p}$, $B = \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1})$, $b = \frac{(q-1)(N-1)+1}{2}$, $a = \frac{N}{2}$ and $\kappa = \sqrt{q_{\epsilon}}(\ell-1)/8$ as in the case N = 1, and noticing that, for these specific values,

$$\begin{split} A^{1-a}B^{1-b}(A+B)^{a+b-2} &= p^{\frac{2-N}{4}}(\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{\frac{1-(q-1)(N-1)}{2}} \\ &\qquad \qquad \times (\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{\frac{(q-1)(N-1)+N-3}{2}} \\ &\leq C\left(\frac{n}{p}\right)^{\frac{N}{4}-1/2}\left(\frac{\sqrt{n}-\sqrt{p}}{\sqrt{n}}\right)^{\frac{1-(q-1)(N-1)}{2}}, \end{split}$$

where C depends on N, q and κ . Therefore

$$\int_{0}^{t} \int_{\Gamma_{p}} (t-s)^{-\frac{N}{2}} s^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} e^{-q_{\epsilon}|y-z|^{2}/4s} dy ds
\leq C \frac{t^{(1-q(N-1))/2} p^{\frac{N-3}{4}}}{n^{\frac{N-1}{4}}} \left(\frac{n}{p}\right)^{\frac{N}{4}-1/2} \left(\frac{\sqrt{n}-\sqrt{p}}{\sqrt{n}}\right)^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}}
\leq C t^{\frac{1-q(N-1)}{2}} p^{-\frac{1}{4}} n^{\frac{(q-1)(N-1)-2}{4}} (\sqrt{n}-\sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}}.$$
(3.51)

We derive from (3.47), (3.51),

$$J_{2,\ell}^{\prime h} \leq Ct^{1-\frac{Nq}{2}} \times \sum_{n=\ell+1}^{a_t} \sum_{j \in \Theta_{t,n}^h} n^{\frac{(q-1)(N-1)-2}{4}} \mu_{n,j}^q(K_{n,j}) \sum_{p=1}^{n-\ell} p^{\frac{2q-3}{4}} (\sqrt{n} - \sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{q\epsilon}(\sqrt{n}-\sqrt{p+1}))^2}{4}}.$$

$$(3.52)$$

By Lemma A.2 with $\alpha = \frac{2q-3}{4}$, $\beta = \frac{1-(q-1)(N-1)}{2}$, $\delta = \frac{1}{4}$ and $\gamma = q_{\epsilon}$, we obtain

$$\sum_{p=1}^{n-\ell} p^{\frac{2q-3}{4}} (\sqrt{n} - \sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p} + \sqrt{q_{\epsilon}}(\sqrt{n} - \sqrt{p+1}))^2}{4}} \le C n^{\frac{N(q-1) + q - 3}{4}} e^{-\frac{n}{4}}, \tag{3.53}$$

thus

$$J_{2,\ell}^{\prime h} \le Ct^{1-\frac{Nq}{2}} \sum_{n=\ell+1}^{a_t} n^{\frac{N(q-1)}{2}-1} e^{-\frac{n}{4}} \sum_{j \in \Theta_{t,n}^h} \mu_{n,j}^q(K_{n,j}). \tag{3.54}$$

Because

$$\mu_{n,j}(K_{n,j}) = C_{2/q,q'}^{B_{n,j}}(K_{n,j}),$$

we use the rescaling procedure as in the proof of Lemma 2.15, except that the scale factor is $\sqrt{(n+1)t}$ instead of $\sqrt{n+1}$ so that the sets \tilde{T}_n , \tilde{K}_n , \tilde{Q}_n and \tilde{K}_n remains unchanged Using again the quasi-additivity and the fact that $J'_{2,\ell} = \sum_{i=1}^J J'_{2,\ell}^h$, we deduce

$$J_{2,\ell} \le C' t^{-\frac{N}{2}} \sum_{n=\ell+1}^{a_t} d_{n+1}^{N - \frac{2}{q-1}} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{K_n}{d_{n+1}}\right),$$

which implies (3.33).

The proof of Theorem 3.1 follows from the previous estimates on J_1 and J_2 . Furthermore the following integral expression holds

Theorem 3.9 Assume $q \ge q_c$. Then there exists a positive constants C_2^* , depending on N,q and T, such that for any closed set F, there holds

$$\underline{u}_{F}(x,t) \ge \frac{C_{2}^{*}}{t^{1+\frac{N}{2}}} \int_{0}^{\sqrt{ta_{t}}} e^{-\frac{s^{2}}{4t}} s^{N-\frac{2}{q-1}} C_{2/q,q'}\left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds, \tag{3.56}$$

(3.55)

where a_t is the smallest integer j such that $F \subset B_{\sqrt{jt}}(x)$.

Proof. We shall distinguish according $q = q_c$, or $q > q_c$, and for simplicity we shall denote $B_r = B_r(x)$ for the various values of r.

Case 1: $q = q_c \iff N - \frac{2}{q-1} = 0$. Because $F_n = F \cap (B_{d_{n+1}} \setminus B_{d_n})$ there holds

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right) - C_{2/q,q'}\left(\frac{F \cap B_{d_n}}{d_{n+1}}\right),$$

Furthermore, since $d_{n+1} \ge d_n$,

$$C_{2/q,q'}\left(\frac{F\cap B_{d_n}}{d_{n+1}}\right) = C_{2/q,q'}\left(\frac{d_n}{d_{n+1}}\frac{F\cap B_{d_n}}{d_n}\right) \le C_{2/q,q'}\left(\frac{F}{d_n}\cap B_1\right),$$

thus

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}} \cap B_1\right) - C_{2/q,q'}\left(\frac{F}{d_n} \cap B_1\right),$$

it follows

$$\begin{split} \sum_{n=1}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F_n}{d_{n+1}} \right) &\geq \sum_{n=1}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - \sum_{n=1}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F}{d_n} \cap B_1 \right) \\ &\geq \sum_{n=1}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - e^{-\frac{1}{4}} \sum_{n=0}^{a_t-1} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) \\ &\geq (1 - e^{-\frac{1}{4}}) \sum_{n=1}^{a_t-1} e^{-\frac{n}{4}} C_{2/q,q'} \left(\frac{F}{d_{n+1}} \cap B_1 \right) - e^{-\frac{1}{4}} C_{2/q,q'} \left(\frac{F}{\sqrt{t}} \cap B_1 \right). \end{split}$$

Since, by (2.69),

$$C_{2/q,q'}\left(\frac{F}{s'}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right),$$

for any $s' \in [d_{n+1}, d_{n+2}]$ and $s \in [d_n, d_{n+1}]$, there holds

$$te^{-\frac{n}{4}}C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \ge C_{2/q,q'}\left(\frac{F}{d_{n+1}}\cap B_1\right) \int_{d_n}^{d_{n+1}} e^{-s^2/4t} s \, ds$$

$$\ge \int_{d_n}^{d_{n+1}} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s}\cap B_1\right) s \, ds.$$

This implies

$$W_F(x,t) \ge (1 - e^{-\frac{1}{4}})t^{-(1+\frac{N}{2})} \int_0^{\sqrt{ta_t}} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_1\right) s \, ds.$$

Case 2: $q > q_c \iff N - \frac{2}{q-1} > 0$. In that case it is known [1] that

$$C_{2/q,q'}\left(\frac{F_n}{d_{n+1}}\right) \approx d_{n+1}^{\frac{2}{q-1}-N} C_{2/q,q'}\left(F_n\right)$$

thus

$$W_F(x,t) \approx t^{-1-\frac{N}{2}} \sum_{n=0}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'}(F_n).$$

Since

$$C_{2/q,q'}(F_n) \ge C_{2/q,q'}(F \cap B_{d_{n+1}}) - C_{2/q,q'}(F \cap B_{d_n}),$$

and again

$$t^{-\frac{N}{2}} \sum_{n=0}^{a_t} e^{-\frac{n}{4}} C_{2/q,q'}(F_n) \ge (1 - e^{-\frac{1}{4}}) t^{-\frac{N}{2}} \sum_{n=0}^{a_t - 1} e^{-\frac{n}{4}} C_{2/q,q'}(F \cap B_{d_{n+1}})$$

$$\ge (1 - e^{-\frac{1}{4}}) t^{-(1 + \frac{N}{2})} \int_0^{\sqrt{ta_t}} e^{-\frac{s^2}{4t}} C_{2/q,q'}(F \cap B_s) s \, ds.$$

Because $C_{2/q,q'}(F \cap B_s) \approx s^{N-\frac{2}{q-1}} C_{2/q,q'}(s^{-1}F \cap B_1)$, (3.56) follows.

4 Applications

The first result of this section is the following

Theorem 4.1 Assume $N \ge 1$ and q > 1. Then $\overline{u}_K = \underline{u}_K$.

Proof. If $1 < q < q_c$, the result is already proved in [25]. The proof in the super-critical case is an adaptation that we shall recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9 there exists a positive constant C, depending on N, q and T such that

$$\overline{u}_F(x,t) \le \underline{u}_F(x,t) \qquad \forall (x,t) \in Q_T.$$

By convexity $\tilde{u} = \underline{u}_F - \frac{1}{2C}(\overline{u}_F - \underline{u}_F)$ is a super-solution, which is smaller than \underline{u}_F if we assume that $\overline{u}_F \neq \underline{u}_F$. If we set $\theta := 1/2 + 1/(2C)$, then $u_\theta = \theta \overline{u}_F$ is a subsolution. Therefore there exists a solution u_1 of (1.1) in Q_∞ such that $u_\theta \leq u_1 \leq \tilde{u} < \underline{u}_F$. If $\mu \in \mathfrak{M}^q_+(\mathbb{R}^N)$ satisfies $\mu(F^c) = 0$, then $u_{\theta\mu}$ is the smallest solution of (1.1) which is above the subsolution θu_μ . Thus $u_{\theta\mu} \leq u_1 < \underline{u}_F$ and finally $\underline{u}_F \leq u_1 < \underline{u}_F$, a contradiction.

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation of the capacitary potential

Proposition 4.2 Assume $q \geq q_c$. Then there exist two positive constants C_1^{\dagger} , C_2^{\dagger} , depending only on N, q and T such that

$$C_{2}^{\dagger}t^{-(1+\frac{N}{2})} \int_{0}^{\sqrt{ta_{t}}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4t}} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds \leq W_{F}(x,t)$$

$$\leq C_{1}^{\dagger}t^{-(1+\frac{N}{2})} \int_{\sqrt{t}}^{\sqrt{t(a_{t}+2)}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4t}} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds$$

$$(4.57)$$

for any $(x,t) \in Q_T$.

Definition 4.3 If F is a closed subset of \mathbb{R}^N , we define the (2/q, q')-integral capacitary potential W_F by

$$W_F(x,t) = t^{-1-\frac{N}{2}} \int_0^{D_F(x)} s^{N-\frac{2}{q-1}} e^{-s^2/4t} C_{2/q,q'}\left(\frac{F}{s} \cap B_1(x)\right) s \, ds \qquad \forall (x,t) \in Q_\infty, \quad (4.58)$$

where $D_F(x) = \max\{|x - y| : y \in F\}.$

An easy computation shows that

$$0 \leq W_{F}(x,t) - t^{-(1+\frac{N}{2})} \int_{0}^{\sqrt{ta_{t}}} s^{N - \frac{2}{q-1}} e^{-\frac{s^{2}}{4t}} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds$$

$$\leq C \frac{t^{(q-3)/2(q-1)}}{D_{F}(x)} e^{-D_{F}^{2}(x)/4t},$$

$$(4.59)$$

and

$$0 \leq t^{-(1+\frac{N}{2})} \int_{0}^{\sqrt{t(a_{t}}+2)} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4t}} C_{2/q,q'} \left(\frac{F}{s} \cap B_{1}(x)\right) s \, ds - \mathcal{W}_{F}(x,t)$$

$$\leq C \frac{t^{(q-3)/2(q-1)}}{D_{F}(x)} e^{-\frac{D_{F}^{2}(x)}{4t}}, \tag{4.60}$$

for some C = C(N, q) > 0. Furthermore

$$W_F(x,t) = t^{-\frac{1}{q-1}} \int_0^{D_F(x)/\sqrt{t}} s^{N-\frac{2}{q-1}} e^{-\frac{s^2}{4}} C_{2/q,q'} \left(\frac{F}{s\sqrt{t}} \cap B_1(x) \right) s \, ds. \tag{4.61}$$

The following result gives a sufficient condition in order \overline{u}_F has not a strong blow-up at some point x.

Proposition 4.4 Assume $q \ge q_c$ and F is a closed subset of \mathbb{R}^N . If there exists $\gamma \in [0, \infty)$ such that

$$\lim_{\tau \to 0} C_{2/q,q'}\left(\frac{F}{\tau} \cap B_1(x)\right) = \gamma,\tag{4.62}$$

then

$$\lim_{t \to 0} t^{\frac{1}{q-1}} \overline{u}_F(x,t) = C\gamma, \tag{4.63}$$

for some C = C(N, q) > 0.

Proof. Clearly, condition (4.62) implies

$$\lim_{t \to 0} C_{2/q,q'}\left(\frac{F}{\sqrt{t}s} \cap B_1(x)\right) = \gamma$$

for any s > 0. Then (4.63) follows by Lebesgue's theorem. Notice also that the set of γ is bounded from above by a constant depending on N and q.

In the next result we give a condition in order the solution remains bounded at some point x. The proof is similar to the previous one.

Proposition 4.5 Assume $q \geq q_c$ and F is a closed subset of \mathbb{R}^N . If

$$\limsup_{\tau \to 0} \tau^{-\frac{2}{q-1}} C_{2/q,q'} \left(\frac{F}{\tau} \cap B_1(x) \right) < \infty, \tag{4.64}$$

then $\overline{u}_F(x,t)$ remains bounded when $t \to 0$.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and $\kappa > 0$. Then there exists a constant $C = C(a, b, \kappa) > 0$ such that for any A > 0, $B > \kappa/A$ there holds

$$\int_{0}^{1} (1-x)^{-a} x^{-b} e^{-A^{2}/4(1-x)} e^{-B^{2}/4x} dx \le C e^{-(A+B)^{2}/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.1}$$

Proof. We first notice that

$$\max\{e^{-A^2/4(1-x)}e^{-B^2/4x}: 0 \le x \le 1\} = e^{-(A+B)^2/4},\tag{A.2}$$

and it is achieved for $x_0 = B/(A+B)$. Set $\Phi(x) = (1-x)^{-a}x^{-b}e^{-A^2/4(1-x)}e^{-B^2/4x}$, thus

$$\int_0^1 \Phi(x) dx = \int_0^{x_0} \Phi(x) dx + \int_{x_0}^1 \Phi(x) dx = I_{a,b} + J_{a,b}.$$

Put

$$u = \frac{A^2}{4(1-x)} + \frac{B^2}{4x},\tag{A.3}$$

then

$$4ux^{2} - (4u + B^{2} - A^{2})x + B^{2} = 0. (A.4)$$

If $0 < x < x_0$ this equation admits the solution

$$x = x(u) = \frac{1}{8u} \left(4u + B^2 - A^2 - \sqrt{16u^2 - 8u(A^2 + B^2) + (A^2 - B^2)^2} \right)$$

$$\int_0^{x_0} (1-x)^{-a} x^{-b} e^{-A^2/4(1-x)-B^2/4x} dx = -\int_{(A+B)^2/4}^{\infty} (1-x(u))^{-a} x(u)^{-b} e^{-u} x'(u) du$$

Putting x' = x'(u) and differentiating (A.4),

$$4x^{2} + 8uxx' - (4u + B^{2} - A^{2})x' - 4x = 0 \Longrightarrow -x' = \frac{4x(1-x)}{4u + B^{2} - A^{2} - 8ux}.$$

Thus

$$\int_0^{x_0} \Phi(x) dx = 4 \int_{(A+B)^2/4}^{\infty} \frac{(1-x(u))^{-a+1} x(u)^{-b+1} e^{-u} du}{4u + B^2 - A^2 - 8ux(u)}.$$
 (A.5)

Using the explicit value of the root x(u), we finally get

$$\int_0^{x_0} \Phi(x)dx = 4 \int_{(A+B)^2/4}^{\infty} \frac{(1-x(u))^{-a+1}x(u)^{-b+1}e^{-u}du}{\sqrt{16u^2 - 8u(A^2 + B^2) + (A^2 - B^2)^2}},$$
(A.6)

and the factorization below holds

$$16u^{2} - 8u(A^{2} + B^{2}) + (A^{2} - B^{2})^{2} = 16(u - (A + B)^{2}/4)(u - (A - B)^{2}/4).$$

We set $u = v + (A + B)^2/4$ and obtain

$$x(u) = \frac{v + (AB + B^2)/2 - \sqrt{v(v + AB)}}{2(v + (A + B)^2/4)},$$

and

$$1 - x(u) = \frac{v + (A^2 + AB)/2 + \sqrt{v(v + AB)}}{2(v + (A + B)^2/4)}.$$

We introduce the relation \approx linking two positive quantities depending on A and B. It means that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

$$\int_{0}^{x_{0}} \Phi(x)dx = 2^{a-b-4}e^{-(A+B)^{2}/4} \int_{0}^{\infty} \tilde{\Phi}(v)dv \quad \text{where}$$

$$\tilde{\Phi}(v) = \frac{\left(v + (AB+B^{2})/2 - \sqrt{v(v+AB)}\right)^{1-b} \left(v + (A^{2}+AB)/2 + \sqrt{v(v+AB)}\right)^{1-a}}{(v + (A+B)^{2}/4)^{2-a-b} \sqrt{v(v+AB)}} e^{-v}dv.$$
(A.7)

Case 1: $a \ge 1$, $b \ge 1$. First

$$\frac{\left(v + (A+B)^2/4\right)^{a+b-2}}{\sqrt{v(v+AB)}} \le \frac{\left(v + (A+B)^2/4\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \approx \frac{\left(v + (A+B)^2\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \tag{A.8}$$

since $a + b - 2 \ge 0$ and $AB \ge \kappa$. Next

$$\left(v + (A^2 + AB)/2 + \sqrt{v(v + AB)}\right)^{1-a} \approx (v + A(A+B))^{1-a}.$$
 (A.9)

Furthermore

$$v + (AB + B^{2})/2 - \sqrt{v(v + AB)} = B^{2} \frac{v + (A + B)^{2}/4}{v + B(A + B)/2 + \sqrt{v(v + AB)}}$$

$$\approx B^{2} \frac{v + (A + B)^{2}}{v + B(A + B)}.$$
(A.10)

Then

$$\left(v + (AB + B^2)/2 - \sqrt{v(v + AB)}\right)^{1-b} \approx B^{2-2b} \left(\frac{v + B(A + B)}{v + (A + B)^2}\right)^{b-1} \tag{A.11}$$

It follows

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)}\right)^{a-1} \frac{(v + B(A+B))^{b-1}}{\sqrt{v(v+\kappa)}}
\le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)}\right)^{a-1} \frac{v^{b-1} + (B^2 + AB)^{b-1}}{\sqrt{v(v+\kappa)}}$$
(A.12)

where C depends on a, b and κ . The function $v \mapsto (v + (A+B)^2)/(v + A(A+B))$ is decreasing on $(0, \infty)$. If we set

$$C_1 = \int_0^\infty \frac{v^{b-1}e^{-v}dv}{\sqrt{v(v+\kappa)}}$$
 and $C_2 = \int_0^\infty \frac{e^{-v}dv}{\sqrt{v(v+\kappa)}}$

then

$$C_1 \le K(B^2 + AB)^{b-1}C_2$$

with $K = C_1 \kappa^{1-b}/C_2$. Therefore

$$\int_{0}^{x_0} \Phi(x)dx \le Ce^{-(A+B)^2/4}B^{1-b}A^{1-a}(A+B)^{a+b-2}.$$
(A.13)

The estimate of $J_{a,b}$ is obtained by exchanging (A, a) with (B, b) and replacing x by 1 - x. Mutadis mutandis, this yields directly to the same expression as in A.13 and finally

$$\int_{0}^{1} \Phi(x)dx \le Ce^{-(A+B)^{2}/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.14}$$

Case 2: $a \ge 1$, b < 1. Estimates (A.7), (A.8), (A.9), (A.10) and (A.11) are valid. Because $v \mapsto (v + B(A+B))^{b-1}$ is decreasing, (A.12) has to be replaced by

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)} \right)^{a-1} \frac{\left(AB + B^2\right)^{b-1}}{\sqrt{v(v+\kappa)}}.$$
(A.15)

This implies (A.13) directly. The estimate of $J_{a,b}$ is performed by the change of variable $x \mapsto 1 - x$. If $x_1 = 1 - x_0$, there holds

$$J_{a,b} = \int_0^{x_1} x^{-a} (1-x)^{-b} e^{-A^2/4x} e^{-B^2/4(1-x)} dx = \int_0^{x_1} \Psi(x) dx.$$

Then

$$\int_{0}^{x_{1}} \Psi(x) dx = 2^{b-a-4} e^{-(A+B)^{2}/4} \int_{0}^{x_{1}} \tilde{\Psi}(v) dv \quad \text{where}$$

$$\tilde{\Psi}(v) = \frac{\left(v + (AB + A^{2})/2 - \sqrt{v(v+AB)}\right)^{1-a} \left(v + (B^{2} + AB)/2 + \sqrt{v(v+AB)}\right)^{1-b}}{\left(v + (A+B)^{2}/4\right)^{2-a-b} \sqrt{v(v+AB)}} e^{-v} dv.$$
(A.16)

Equivalence (A.8) is unchanged; (A.9) is replaced by

$$\left(v + (B^2 + AB)/2 + \sqrt{v(v + AB)}\right)^{1-b} \approx (v + B(A+B))^{1-b}, \tag{A.17}$$

(A.10) by

$$v + (AB + A^2)/2 - \sqrt{v(v + AB)} \approx A^2 \frac{v + (A+B)^2}{v + A(A+B)},$$
 (A.18)

and (A.11) by

$$\left(v + (AB + A^2)/2 - \sqrt{v(v + AB)}\right)^{1-a} \approx A^{2-2a} \left(\frac{v + A(A+B)}{v + (A+B)^2}\right)^{a-1}.$$
 (A.19)

Because a > 1, (A.12) turns into

$$\tilde{\Psi}(v) \leq CA^{2-2b}(v + (A+B)^2)^{b-1} \frac{(v+A^2+AB)^{a-1}(v+B^2+AB)^{1-b}}{\sqrt{v(v+\kappa)}}
\leq Ce^{-(A+B)^2/4}A^{2-2b}(A+B)^{2b-2}
\times \frac{v^{a-b} + (A^2+AB)^{a-1}v^{1-b} + (B^2+AB)^{1-b}v^{a-1} + A^{a-1}B^{1-b}(A+B)^{a-b}}{\sqrt{v(v+\kappa)}}.$$
(A.20)

Because $AB \ge \kappa$, there exists a positive constant C, depending on κ , such that

$$\int_{0}^{\infty} \frac{v^{a-b} + (A^{2} + AB)^{a-1}v^{1-b} + (B^{2} + AB)^{1-b}v^{a-1}}{\sqrt{v(v+\kappa)}} e^{-v} dv \\
\leq CA^{a-1}B^{1-b}(A+B)^{a-b} \int_{0}^{\infty} \frac{e^{-v} dv}{\sqrt{v(v+\kappa)}}.$$
(A.21)

Combining (A.20) and (A.21) yields to

$$\int_0^{x_1} \Psi(x) dx \le C e^{-(A+B)^2/4} A^{1-a} B^{1-b} (A+B)^{a+b-2}. \tag{A.22}$$

This, again, implies that (A.1) holds.

Case 3: $\max\{a,b\} < 1$. Inequalities (A.7)-(A.11) hold, but (A.12) has to be replaced by

$$\tilde{\Phi}(v) \le CB^{2-2b} \left(\frac{v + (A+B)^2}{v + A(A+B)}\right)^{a-1} \frac{\left(v + B^2 + AB\right)^{b-1}}{\sqrt{v(v+\kappa)}}
\le CB^{1-b} (A+B)^{2a+b-3} \frac{v^{1-a} + \left(A^2 + AB\right)^{1-a}}{\sqrt{v(v+\kappa)}}$$
(A.23)

Noticing that

$$\int_0^\infty \frac{v^{1-a}e^{-v}dv}{\sqrt{v(v+\kappa)}} \le C\left(A^2 + AB\right)^{1-a} \int_0^\infty \frac{e^{-v}dv}{\sqrt{v(v+\kappa)}},$$

it follows that (A.13) holds. Finally (A.14) holds by exchanging (A, a) and (B, b).

Lemma A.2 . Let α , β , γ , δ be real numbers and ℓ an integer. We assume $\gamma > 1$, $\delta > 0$ and $\ell \geq 2$. Then there exists a positive constant C such that, for any integer $n > \ell$

$$\sum_{p=1}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \le C n^{\alpha - \beta/2} e^{-\delta n}. \tag{A.24}$$

Proof. The function $x \mapsto (\sqrt{x} + \sqrt{\gamma}(\sqrt{n} - \sqrt{x+1}))^2$ is decreasing on $[(\gamma - 1)^{-1}, \infty)$. Furthermore there exists C > 0 depending on ℓ , α and β such that $p^{\alpha}(\sqrt{n} - \sqrt{p})^{\beta} \leq Cx^{\alpha}(\sqrt{n} - \sqrt{x+1})^{\beta}$ for $x \in [p, p+1]$ If we denote by p_0 the smallest integer larger than $(\gamma - 1)^{-1}$, we derive

$$\begin{split} S &= \sum_{p=1}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p}\,)^{\beta} e^{-(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2/4} = \sum_{p=1}^{p_0-1} + \sum_{p_0}^{n-\ell} p^{\alpha} (\sqrt{n} - \sqrt{p}\,)^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \\ &\leq \sum_{p=1}^{p_0-1} p^{\alpha} (\sqrt{n} - \sqrt{p}\,)^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \\ &\quad + C \int^{n+1-\ell} x^{\alpha} (\sqrt{n} - \sqrt{x}\,)^{\beta} e^{-\delta(\sqrt{x} + \sqrt{\gamma}(\sqrt{n} - \sqrt{x+1}))^2} dx, \end{split}$$

(notice that $\sqrt{n} - \sqrt{x} \approx \sqrt{n} - \sqrt{x+1}$ for $x \leq n - \ell$). Clearly

$$\sum_{p=1}^{p_0-1} p^{\alpha} (\sqrt{n} - \sqrt{p})^{\beta} e^{-\delta(\sqrt{p} + \sqrt{\gamma}(\sqrt{n} - \sqrt{p+1}))^2} \le C_0 n^{\alpha} (\sqrt{n} - \sqrt{n-\ell})^{\beta} e^{-\delta n}$$
(A.25)

for some C_0 independent of n. We set $y = y(x) = \sqrt{x+1} - \sqrt{x}/\sqrt{\gamma}$. Obviously

$$y'(x) = \frac{1}{2} \left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{\gamma}\sqrt{x}} \right) \quad \forall x \ge p_0,$$

and their exists $\epsilon = \epsilon(\delta, \gamma) > 0$ such that $\sqrt{2}\sqrt{x} \ge y(x) \ge \epsilon\sqrt{x}$ and $y'(x) \ge \epsilon/\sqrt{x}$. Furthermore

$$\sqrt{x} = \frac{\sqrt{\gamma} \left(y + \sqrt{\gamma y^2 + 1 - \gamma} \right)}{\gamma - 1},$$

$$\sqrt{n} - \sqrt{x} = \frac{\sqrt{n}(\gamma - 1) - \sqrt{\gamma}y - \sqrt{\gamma}\sqrt{\gamma y^2 + 1 - \gamma}}{\gamma - 1}$$

$$= \frac{n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2}{\sqrt{n}(\gamma - 1) - \sqrt{\gamma}y + \sqrt{\gamma}\sqrt{\gamma y^2 + 1 - \gamma}}$$

$$\approx \frac{n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2}{\sqrt{n}}$$

since $y(x) \leq \sqrt{n}$. Furthermore

$$n(\gamma - 1) + \gamma - 2y\sqrt{\gamma n} - \gamma y^2 = \gamma(\sqrt{n+1} + \sqrt{n}/\sqrt{\gamma} + y)(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y)$$

$$\approx \sqrt{n}(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y),$$

because y ranges between $\sqrt{n+2-\ell} - \sqrt{n+1-\ell}\sqrt{\gamma} \approx \sqrt{n}$ and $\sqrt{p_0+1} - \sqrt{p_0}\sqrt{\gamma}$. Thus

$$(\sqrt{n} - \sqrt{x})^{\beta} \approx (\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y)^{\beta}$$
.

This implies

$$\int_{p_{0}}^{n+1-\ell} x^{\alpha} (\sqrt{n} - \sqrt{x})^{\beta} e^{-\delta(\sqrt{x} + \gamma(\sqrt{n} - \sqrt{x+1}))^{2}} dx$$

$$\leq C \int_{y(p_{0})}^{y(n+1-\ell)} y^{2\alpha+1} \left(\sqrt{n+1} - \sqrt{n}/\sqrt{\gamma} - y\right)^{\beta} e^{-\gamma\delta(\sqrt{n} - y)^{2}} dy$$

$$\leq C n^{\alpha+\beta/2+1} \int_{1-y(n+1-\ell)/\sqrt{n}}^{1-y(p_{0})/\sqrt{n}} (1-z)^{2\alpha+1} (z + \sqrt{1+1/n} - 1 - 1/\sqrt{\gamma})^{\beta} e^{-\gamma\delta nz^{2}} dz.$$
(A.26)

Moreover

$$1 - \frac{y(p_0)}{\sqrt{n}} = 1 - \frac{1}{\sqrt{n}} \left(\sqrt{p_0 + 1} - \frac{\sqrt{p_0}}{\sqrt{\gamma}} \right),$$

$$1 - \frac{y(n - \ell + 1)}{\sqrt{n}} = 1 - \frac{\sqrt{n - \ell + 2}}{\sqrt{n}} + \frac{\sqrt{n - \ell + 1}}{\sqrt{n\gamma}}$$

$$= \frac{1}{\sqrt{\gamma}} \left(1 + \frac{\sqrt{\gamma} (\ell - 2) - \ell + 1}{2n} + \frac{\sqrt{\gamma} (\ell - 2)^2 - (\ell - 1)^2}{8n^2} \right) + O(n^{-3}).$$
(A.27)

Let θ fixed such that $1 - \frac{y(n-\ell+1)}{\sqrt{n}} < \theta < 1 - \frac{y(p_0)}{\sqrt{n}}$ for any $n > p_0$. Then

$$\int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^2} dz \le C_{\theta} \int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} e^{-\gamma \delta n z^2} dz$$

$$\le C_{\theta} e^{-\gamma \delta n \theta^2} \int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} dz$$

$$\le C e^{-\gamma \delta n \theta^2} \max\{1, n^{-\alpha-1/2}\}.$$

Because $\gamma \theta^2 > 1$ we derive

$$\int_{\theta}^{1-y(p_0)/\sqrt{n}} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^2} dz \le C n^{-\beta} e^{-\delta n}, \tag{A.28}$$

for some constant C > 0. On the other hand

$$\int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (1-z)^{2\alpha+1} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} dz
\leq C'_{\theta} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} dz.$$

The minimum of $z\mapsto (z+\sqrt{1+1/n}-1-1/\sqrt{\gamma})^{\beta}$ is achieved at $1-y(n+1-\ell)$ with value

$$\frac{\sqrt{\gamma}(\ell+1)+1-\ell}{2n\sqrt{\gamma}}+O(n^{-2}),$$

and the maximum of the exponential term is achieved at the same point with value

$$e^{-n\delta + ((\ell-2)\sqrt{\gamma} + 1 - \ell)/2} (1 + \circ(1)) = C_{\gamma}e^{-n\delta} (1 + \circ(1)).$$

We denote

$$z_{\gamma,n} = 1 + 1/\sqrt{\gamma} - \sqrt{1 + 1/n}$$
 and $I_{\beta} = \int_{1 - u(n+1-\ell)/\sqrt{n}}^{\theta} (z - z_{\gamma,n})^{\beta} e^{-\gamma \delta n z^2} dz$.

Since $1 - y(n + 1 - \ell) \ge 1/\sqrt{2\gamma}$ for n large enough,

$$I_{\beta} \leq \sqrt{2\gamma} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z-z_{\gamma,n})^{\beta} z e^{-\gamma\delta nz^{2}} dz$$

$$\leq \frac{-\sqrt{2\gamma}}{2n\gamma\delta} \left[(z-z_{\gamma,n})^{\beta} e^{-\gamma\delta nz^{2}} \right]_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} + \frac{\beta\sqrt{2\gamma}}{2n\gamma\delta} \int_{1-y(n+1-\ell)/\sqrt{n}}^{\theta} (z-z_{\gamma,n})^{\beta-1} z e^{-\gamma\delta nz^{2}} dz$$

But
$$1 - y(n + 1 - \ell)/\sqrt{n} - z_{\gamma,n} = (\ell - 1)(1 - 1/\sqrt{\gamma})/2n$$
, therefore

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + \beta C_1' n^{-1} I_{\beta - 1}.$$
 (A.29)

If $\beta \leq 0$, we derive

$$I_{\beta} \leq C_1 n^{-\beta - 1} e^{-\delta n}$$

which inequality, combined with (A.26) and (A.28), yields to (A.24). If $\beta > 0$, we iterate and get

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + C_1' n^{-1} (C_1 n^{-\beta} e^{-\delta n} + (\beta - 1) C_1' n^{-1} I_{\beta - 2})$$

If $\beta - 1 \leq 0$ we derive

$$I_{\beta} \le C_1 n^{-\beta - 1} e^{-\delta n} + C_1 C_1' n^{-1 - \beta} e^{-\delta n} = C_2 n^{-\beta - 1} e^{-\delta n}$$

which again yields to (A.24). If $\beta - 1 > 0$, we continue up we find a positive integer k such that $\beta - k \leq 0$, which again yields to

$$I_{\beta} \le C_k n^{-\beta - 1} e^{-\delta n}$$

and to (A.24).

The next estimate is fundamental in deriving the N-dimensional estimate.

Lemma A.3 For any integer $N \geq 2$ there exists a constant $c_N > 0$ such that

$$\int_0^{\pi} e^{m\cos\theta} \sin^{N-2}\theta \, d\theta \le c_N \frac{e^m}{(1+m)^{(N-1)/2}} \qquad \forall m > 0.$$
 (A.30)

Proof. Put $\mathcal{I}_N(m) = \int_0^{\pi} e^{m\cos\theta} \sin^{N-2}\theta \, d\theta$. Then $\mathcal{I}_2'(m) = \int_0^{\pi} e^{m\cos\theta} \cos\theta \, d\theta$ and

$$\mathcal{I}_2''(m) = \int_0^{\pi} e^{m\cos\theta} \cos^2\theta \, d\theta = \mathcal{I}_2(m) - \int_0^{\pi} e^{m\cos\theta} \sin^2\theta \, d\theta$$
$$= \mathcal{I}_2(m) - \frac{1}{m} \int_0^{\pi} e^{m\cos\theta} \cos\theta \, d\theta$$
$$= \mathcal{I}_2(m) - \frac{1}{m} \mathcal{I}_2'(m).$$

Thus \mathcal{I}_2 satisfies a Bessel equation of order 0. Since $\mathcal{I}_2(0) = \pi$ and $\mathcal{I}'_2(0) = 0$, $\pi^{-1}\mathcal{I}_2$ is the modified Bessel function of index 0 (usually denoted by I_0) the asymptotic behaviour of which is well known, thus (A.30) holds. If N=3

$$\mathcal{I}_3(m) = \int_0^{\pi} e^{m\cos\theta} \sin\theta \, d\theta = \left[\frac{-e^{m\cos\theta}}{m} \right]_0^{\pi} = \frac{2\sinh m}{m}.$$

For N > 3 arbitrary

$$\mathcal{I}_N(m) = \int_0^{\pi} \frac{-1}{m} \frac{d}{d\theta} (e^{m\cos\theta}) \sin^{N-3}\theta \, d\theta = \frac{N-3}{m} \int_0^{\pi} e^{m\cos\theta} \cos\theta \sin^{N-4}\theta \, d\theta. \tag{A.31}$$

Therefore,

$$\mathcal{I}_4(m) = \frac{1}{m} \int_0^{\pi} e^{m \cos \theta} \cos \theta \, d\theta = \mathcal{I}'_2(m),$$

and, again (A.30) holds since $I_0'(m)$ has the same behaviour as $I_0(m)$ at infinity. For $N \geq 5$

$$\mathcal{I}_{N}(m) = \frac{3-N}{m^{2}} \left[e^{m\cos\theta}\cos\theta\sin^{N-5}\theta \right]_{0}^{\pi} + \frac{N-3}{m^{2}} \int_{0}^{\pi} e^{m\cos\theta} \frac{d}{d\theta} \left(\cos\theta\sin^{N-5}\theta\right) d\theta.$$

Differentiating $\cos \theta \sin^{N-5} \theta$ and using (A.31), we obtain

$$\mathcal{I}_5(m) = rac{4 \sinh m}{m^2} - rac{4 \sinh m}{m^3},$$

while

$$\mathcal{I}_N(m) = \frac{(N-3)(N-5)}{m^2} \left(\mathcal{I}_{N-4}(m) - \mathcal{I}_{N-2}(m) \right), \tag{A.32}$$

for $N \geq 6$. Since the estimate (A.30) for \mathcal{I}_2 , \mathcal{I}_3 , \mathcal{I}_4 and \mathcal{I}_5 has already been obtained, a straigthforward induction yields to the general result.

Remark. Although it does not has any importance for our use, it must be noticed that \mathcal{I}_N can be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.

References

- [1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wissen. **314**, Springer (1996).
- [2] Aikawa H. and Borichev A.A., Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. **348**, 1013-1030 (1996).
- [3] P. Baras & M. Pierre, Singularités éliminables pour des équations semilinéaires, Ann. Inst. Fourier **34**, 185-206 (1984).
- [4] P. Baras & M. Pierre, *Problèmes paraboliques semi-linéaires avec données mesures*, Applicable Anal. 18, 111-149 (1984).
- [5] H. Brezis, Semilinear equations in \mathbb{R}^N without condition at infinity, Appl. Math. Opt. 12, 271-282 (1985).
- [6] H. Brezis & A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62, 73-97 (1983).
- [7] H. Brezis, L. A. Peletier & D. Terman, A very singular solution of the heat equation with absorption, Arch. rat. Mech. Anal. 95, 185-209 (1986).
- [8] Dynkin E. B. Superdiffusions and positive solutions of nonlinear partial differential equations, University Lecture Series **34**. Amer. Math. Soc., Providence, vi+120 pp (2004).
- [9] Dynkin E. B. and Kuznetsov S. E. Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49, 125-176 (1996).

- [10] Dynkin E. B. and Kuznetsov S. E. Solutions of $Lu = u^{\alpha}$ dominated by harmonic functions, J. Analyse Math. **68**, 15-37 (1996).
- [11] Dynkin E. B. and Kuznetsov S. E. Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. **51**, 897-936 (1998).
- [12] Gmira A. and Véron L. Boundary singularities of solutions of some semilinear elliptic equation, Duke Math. J. **64**, 271-324 (1991).
- [13] G. Grillo, Lower bounds for the Dirichlet heat kernel, Quart. J. Math. Oxford Ser. 48, 203-211 (1997).
- [14] Grisvard P., Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures et Appl., 45, 143-290 (1966).
- [15] Khavin V. P. and Maz'ya V. G., *Nonlinear Potential Theory*, Russian Math. Surveys **27**, 71-148 (1972).
- [16] S.E. Kuznetsov, Polar boundary set for superdiffusions and removable lateral singularities for nonlinear parabolic PDEs, C. R. Acad. Sci. Paris **326**, 1189-1194 (1998).
- [17] S.E. Kuznetsov, σ -moderate solutions of $Lu = u^{\alpha}$ and fine trace on the boundary, Comm. Pure Appl. Math. **51**, 303-340 (1998).
- [18] Labutin D. A., Wiener regularity for large solutions of nonlinear equations, Archiv för Math. 41, 307-339 (2003).
- [19] O.A. Ladyzhenskaya, V.A. Solonnikov& N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow (1967). English transl. Amer. Math. Soc. Providence R.I. (1968).
- [20] Legall J. F., The Brownian snake and solutions of $\Delta u = u^2$ in a domain, Probab. Th. Rel. Fields 102, 393-432 (1995).
- [21] Legall J. F., A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation, J. Appl. Math. Stochastic Anal. 9, 399-414 (1996).
- [22] Lions J. L. & Petree J. Espaces d'interpolation, Publ. Math. I.H.E.S. (1964).
- [23] M. Marcus & L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144, 201-231 (1998).
- [24] Marcus M. and Véron L., The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998).
- [25] M. Marcus & L. Véron, The initial trace of positive solutions of semilinear parabolic equations, Comm. Part. Diff. Equ. 24, 1445-1499 (1999).

- [26] Marcus M. and Véron L., Removable singularities and boundary trace, J. Math. Pures Appl. 80, 879-900 (2000).
- [27] M. Marcus & L. Véron, Semilinear parabolic equations with measure boundary data and isolated singularities, J. Analyse Mathématique (2001).
- [28] Marcus M. and Véron L., Capacitary estimates of solutions of a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris **336**, 913-918 (2003).
- [29] Marcus M. and Véron L., Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Europ. Math. Soc. 6, 483-527 (2004).
- [30] M. Marcus & L. Véron, Capacitary representation of positive solutions of semilinear parabolic equations, C. R. Acad. Sci. Paris **342** no. 9, 655–660 (2006).
- [31] M. Marcus & L. Véron, The precise boundary trace of positive solutions of the equation $\Delta u = u^q$ in the supercritical case, Contemp. Math. **446**, 345-383 (2007).
- [32] Mselati B., Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation. Mem. Amer. Math. Soc. 168 no. 798, xvi+121 pp (2004).
- [33] Pierre M., *Problèmes semi-linéaires avec données mesures*, Séminaire Goulaouic-Meyer-Schwartz (1982-1983) **XIII**.
- [34] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press 30 (1970).
- [35] Triebel H., Interpolation theory, function spaces, Differential operators, North-Holland Publ. Co., (1978).
- [36] Whittaker E. T. & Watson G. N., A course of Modern Analysis, Cambridge University Press, 4th Ed. (1927), Chapter XXI.