Capacitary estimates of solutions of semilinear parabolic equations

Moshe Marcus
Department of Mathematics, Technion, Haifa, ISRAEL

Laurent Veron
Department of Mathematics, Univ. of Tours, FRANCE

Abstract

We prove that any positive solution of $\partial_{t} u-\Delta u+u^{q}=0(q>1)$ in $\mathbb{R}^{N} \times(0, \infty)$ with initial trace ($F, 0$), where F is a closed subset of \mathbb{R}^{N} can be represented, up to two universal multiplicative constants, by a series involving the Bessel capacity $C_{2 / q, q^{\prime}}$. As a consequence we prove that there exists a unique positive solution of the equation with such an initial trace. We also characterize the blow-up set of $u(x, t)$ when $t \downarrow 0$, by using the "density" of F expressed in terms of the $C_{2 / q, q^{\prime}}$-capacity.

2000 Mathematics Subject Classification. 35K05;35K55; 31C15; 31B10; 31C40.
Key words. Heat equation; singularities; Borel measures; Bessel capacities; Wiener type test; initial trace.

Contents

1 Introduction 2
2 Estimates from above 5
2.1 Global L^{q}-estimates 6
2.2 Pointwise estimates 9
2.3 The upper Wiener test 17
3 Estimate from below 22
3.1 Estimate from below of the solution of the heat equation 23
3.2 Estimate from above of the nonlinear term 24
4 Applications 37
A Appendix 39

1 Introduction

Let $T \in(0, \infty]$ and $Q_{T}=\mathbb{R}^{N} \times(0, T](N \geq 1)$. If $q>1$ and $u \in C^{2}\left(Q_{T}\right)$ is nonnegative and verifies

$$
\begin{equation*}
\partial_{t} u-\Delta u+u^{q}=0 \quad \text { in } Q_{T} \tag{1.1}
\end{equation*}
$$

it has been proven by Marcus and Véron [25] that there exists a unique outer-regular positive Borel measure ν in \mathbb{R}^{N} such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} u(., t)=\nu \tag{1.2}
\end{equation*}
$$

in the sense of Borel measures; the set of such measures is denoted by $\mathfrak{B}_{+}^{\text {reg }}\left(\mathbb{R}^{N}\right)$. To each of its element ν is associated a unique couple $\left(\mathcal{S}_{\nu}, \mu_{\nu}\right)$ (we write $\nu \approx\left(\mathcal{S}_{\nu}, \mu_{\nu}\right)$) where \mathcal{S}_{ν}, the singular part of ν, is a closed subset of \mathbb{R}^{N} and μ_{ν}, the regular part is a nonnegative Radon measure on $\mathcal{R}_{\nu}=\mathbb{R}^{N} \backslash \mathcal{S}_{\nu}$. In this setting, relation (1.2) has the following meaning :
$\begin{array}{lcc}\text { (i) } & \lim _{t \rightarrow 0} \int_{\mathcal{R}_{\nu}} u(., t) \zeta d x=\int_{\mathcal{R}_{\nu}} \zeta d \mu_{\nu}, & \forall \zeta \in C_{0}\left(\mathcal{R}_{\nu}\right), \\ \text { (ii) } & \lim _{t \rightarrow 0} \int_{\mathcal{O}} u(., t) d x=\infty, & \forall \mathcal{O} \subset \mathbb{R}^{N} \text { open, } \mathcal{O} \cap \mathcal{S}_{\nu} \neq \emptyset .\end{array}$
The measure ν is by definition the initial trace of u and denoted by $T r_{\mathbb{R}^{N}}(u)$. It is wellknown that equation (1.1) admits a critical exponent

$$
1<q<q_{c}=1+\frac{N}{2} .
$$

This is due to the fact, proven by Brezis and Friedman [6], that if $q \geq q_{c}$, isolated singularities of solutions of (1.1) in $\mathbb{R}^{N} \backslash\{0\}$ are removable. Conversely, if $1<q<q_{c}$, it is proven by the same authors that for any $k>0$, equation (1.1) admits a unique solution $u_{k \delta_{0}}$ with initial data $k \delta_{0}$. This existence and uniqueness results extends in a simple way if the initial data $k \delta_{0}$ is replaced by any Radon measure μ in \mathbb{R}^{N} (see [5). Furthermore, if $k \rightarrow \infty, u_{k \delta_{0}}$ increases and converges to a positive, radial and self-similar solution u_{∞} of (1.1). Writing it under the form $u_{\infty}(x, t)=t^{-\frac{1}{q-1}} f(|x| / \sqrt{t}), f$ is a positive solution of

$$
\left\{\begin{array}{l}
\Delta f+\frac{1}{2} y \cdot D f+\frac{1}{q-1} f-f^{q}=0 \quad \text { in } \mathbb{R}^{N} \tag{1.4}\\
\lim _{|y| \rightarrow \infty}|y|^{\frac{2}{q-1}} f(y)=0 .
\end{array}\right.
$$

The existence, uniqueness and the expression of the asymptotics of f has been studied thoroughly by Brezis, Peletier and Terman in [7]. Later on, Marcus and Véron proved in [25] that in the same range of exponents, for any $\nu \in \mathfrak{B}_{+}^{\text {reg }}\left(\mathbb{R}^{N}\right)$, the Cauchy problem

$$
\left\{\begin{align*}
\partial_{t} u-\Delta u+u^{q} & =0 \quad \text { in } Q_{\infty} \tag{1.5}\\
\operatorname{Tr}_{\mathbb{R}^{N}}(u) & =\nu
\end{align*}\right.
$$

admits a unique positive solution. This result means that the initial trace establishes a one to one correspondence between the set of positive solutions of (1.1) and $\mathfrak{B}_{+}^{\text {reg }}\left(\mathbb{R}^{N}\right)$. A key step for proving the uniqueness is the following inequalities

$$
\begin{equation*}
t^{-\frac{1}{q-1}} f(|x-a| / \sqrt{t}) \leq u(x, t) \leq((q-1) t)^{-\frac{1}{q-1}} \quad \forall(x, t) \in Q_{\infty} \tag{1.6}
\end{equation*}
$$

valid for any $a \in \mathcal{S}_{\nu}$. As a consequence of Brezis and Friedman's result if $q \geq q_{c}$, i.e. in the supercritical range, Problem (1.5) may admit no solution at all. If $\nu \in \mathfrak{B}_{+}^{\text {reg }}\left(\mathbb{R}^{N}\right), \nu \approx\left(\mathcal{S}_{\nu}, \mu_{\nu}\right)$, the necessary and sufficient conditions for the existence of a maximal solution $u=\bar{u}_{\nu}$ to Problem (1.5) are obtained in 25 and expressed in terms of the the Bessel capacity $C_{2 / q, q^{\prime}}$, (with $\left.q^{\prime}=q /(q-1)\right)$. Furthermore, uniqueness does not hold in general as it was pointed out by Le Gall [21]. In the particular case where $\mathcal{S}_{\nu}=\emptyset$ and ν is simply the Radon measure μ_{ν}, the necessary and sufficient condition for solvability is that μ_{ν} does not charge Borel subsets with $C_{2 / q, q^{\prime}}$-capacity zero. This result was already proven by Baras and Pierre [4] in the particular case of bounded measures and extended by Marcus and Véron [25] to the general case. We shall denote by $\mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right)$ the positive cone of the space $\mathfrak{M}^{q}\left(\mathbb{R}^{N}\right)$ of Radon measures which does not charge Borel subsets with zero $C_{2 / q, q^{\prime}}$-capacity. Notice that $W^{-2 / q, q}\left(\mathbb{R}^{N}\right) \cap \mathfrak{M}_{+}^{b}\left(\mathbb{R}^{N}\right)$ is a subset of $\mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right)$; here $\mathfrak{M}_{+}^{b}\left(\mathbb{R}^{N}\right)$ is the cone of positive bounded Radon mesures in \mathbb{R}^{N}. For such measures, uniqueness always holds and we denote $\bar{u}_{\mu_{\nu}}=u_{\mu_{\nu}}$.

In view of the already known facts concerning the parabolic equation, it is useful to recal the much more advanced results previously obtained for the stationary equation

$$
\begin{equation*}
-\Delta u+u^{q}=0 \quad \text { in } \Omega, \tag{1.7}
\end{equation*}
$$

in a smooth bounded domain Ω of \mathbb{R}^{N}. This equation has been intensively studied since 1993, both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The existence of a boundary trace for positive solutions, in the class of outer-regular positive Borel measures on $\partial \Omega$, is proven by Le Gall [20, [21] in the case $q=N=2$, by probabilistic methods, and by Marcus and Véron in [23], [24] in the general case $q>1, N>1$. The existence of a critical exponent $q_{e}=(N+1) /(N-1)$ is due to Gmira and Véron [12] who shew that, if $q \geq q_{e}$ boundary isolated singularities of solutions of (1.7) are removable, which is not the case if $1<q<q_{e}$. In this subcritical case Le Gall and Marcus and Véron proved that the boundary trace establishes a one to one correspondence between positive solutions of (1.7) in Ω and outer regular positive Borel measures on $\partial \Omega$, which is not the case in the supercritical case $q \geq q_{e}$. In [10] Dynkin and Kuznetsov introduced the notion of σ-moderate solution which means that u is a positive solution of (1.7) such that there exists an increasing sequence of positive Radon measures on $\partial \Omega\left\{\mu_{n}\right\}$ belonging to $W^{-2 / q, q^{\prime}}(\partial \Omega)$ such that the corresponding solutions $v=v_{\mu_{n}}$ of

$$
\left\{\begin{align*}
-\Delta v+v^{q} & =0 \quad \text { in } \Omega \tag{1.8}\\
v & =\mu_{n} \quad \text { in } \partial \Omega
\end{align*}\right.
$$

converges to u locally uniformly in Ω. This class of solutions plays a fundamental role since Dynkin and Kuznetsov proved that a σ-moderate solution of (1.7) is uniquely determined by its fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena. Later on, it is proved by Mselati (if $q=2$) [32] and then by Dynkin (if $q_{e} \leq q \leq 2$) [8], that all the positive solutions of (1.7) are σ-moderate. The key-stone element in their proof (partially probabilistic) is the fact that the maximal solution \bar{u}_{K} of (1.7) with a boundary trace vanishing outside a compact subset $K \subset \partial \Omega$ is indeed σ-moderate. This deep result was obtained by a combination of probabilistic and analytic methods by Mselati [32] in the case $q=2$ and by purely analytic tools by Marcus and Véron [28], [29] in the case $q \geq q_{e}$. Defining \underline{u}_{K} as the
largest σ-moderate solution of (1.7) with a boundary trace concentrated on K, the crucial step in Marcus-Véron's proof (non probabilistic) is the bilateral estimate satisfied by \bar{u}_{K} and \underline{u}_{K}

$$
\begin{equation*}
C^{-1} \rho(x) W_{K}(x) \leq \underline{u}_{K}(x) \leq \bar{u}_{K}(x) \leq C \rho(x) W_{K}(x) . \tag{1.9}
\end{equation*}
$$

In this expression $C=C(\Omega, q), \rho(x)=\operatorname{dist}(x, \partial \Omega)$ and $W_{F}(x)$ is the capacitary potential of K defined by

$$
\begin{equation*}
W_{K}(x)=\sum_{-\infty}^{\infty} 2^{-\frac{m(q+1)}{q-1}} C_{2 / q, q^{\prime}}\left(2^{m} K_{m}(x)\right) \tag{1.10}
\end{equation*}
$$

where $K_{m}(x)=K \cap\left\{z: 2^{-m-1} \leq|z-x| \leq 2^{-m}\right\}$, the Bessel capacity being relative to \mathbb{R}^{N-1}. Note that, using a technique introduced in [24], inequality $\bar{u}_{K} \leq C^{2} \underline{u}_{K}$ implies $\underline{u}_{K}=\bar{u}_{K}$.

Extending Dynkin's ideas to the parabolic case, we introduce the following notion
Definition 1.1 A positive solution u of (1.1) is called σ-moderate if their exists an increasing sequence $\left\{\mu_{n}\right\} \subset W^{-2 / q, q}\left(\mathbb{R}^{N}\right) \cap \mathfrak{M}_{+}^{b}\left(\mathbb{R}^{N}\right)$ such that the corresponding solution $u:=u_{\mu_{n}}$ of

$$
\left\{\begin{align*}
\partial_{t} u-\Delta u+u^{q} & =0 \quad \text { in } Q_{\infty} \tag{1.11}\\
u(x, 0) & =\mu_{n} \quad \text { in } \mathbb{R}^{N},
\end{align*}\right.
$$

converges to u locally uniformly in Q_{∞}.
If F is a closed subset of \mathbb{R}^{N}, we denote by \bar{u}_{F} the maximal solution of (1.1) with an initial trace vanishing on F^{c}, and by \underline{u}_{F} the maximal σ-moderate solution of (1.1) with an initial trace vanishing on F^{c}. Thus \underline{u}_{F} is defined by

$$
\begin{equation*}
\underline{u}_{F}=\sup \left\{u_{\mu}: \mu \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right), \mu\left(F^{c}\right)=0\right\} \tag{1.12}
\end{equation*}
$$

where $\mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right):=W^{-2 / q, q}\left(\mathbb{R}^{N}\right) \cap \mathfrak{M}_{+}^{b}\left(\mathbb{R}^{N}\right)$. One of the main goal of this article is to prove that \bar{u}_{F} is σ-moderate and more precisely,

Theorem 1.2 For any $q>1$ and any closed subset F of $\mathbb{R}^{N}, \bar{u}_{F}=\underline{u}_{F}$.
We define below a set function which will play a fundamental role in the sequel.
Definition 1.3 Let F be a closed subset of \mathbb{R}^{N}. The $C_{2 / q, q^{\prime}}$-capacitary potential W_{F} of F is defined by

$$
\begin{equation*}
W_{F}(x, t)=t^{-\frac{1}{q-1}} \sum_{n=0}^{\infty}(n+1)^{\frac{N}{2}-\frac{1}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{\sqrt{(n+1) t}}\right) \quad \forall(x, t) \in Q_{\infty} \tag{1.13}
\end{equation*}
$$

where $F_{n}=F_{n}(x, t):=\{y \in F: \sqrt{n t} \leq|x-y| \leq \sqrt{(n+1) t}\}$.
One of the tool for proving Theorem 1.2 is the following bilateral estimate which is only meaningful in the supercritical case, otherwhile it reduces to (1.6);

Theorem 1.4 For any $q \geq q_{c}$ there exist two positive constants $C_{1} \geq C_{2}>0$, depending only on N and q such that for any closed subset F of \mathbb{R}^{N}, there holds

$$
\begin{equation*}
C_{2} W_{F}(x, t) \leq \underline{u}_{F}(x, t) \leq \bar{u}_{F}(x, t) \leq C_{1} W_{F}(x, t) \quad \forall(x, t) \in Q_{\infty} . \tag{1.14}
\end{equation*}
$$

It is important to notice that the capacitary potential is equivariant with respect to the same scaling transformation which let (1.1) invariant in the sense that, for any $\ell>0$,

$$
\begin{equation*}
\ell^{\frac{1}{q-1}} W_{F}(\sqrt{\ell} x, \ell t)=W_{F / \sqrt{\ell}}(x, t) \quad \forall(x, t) \in Q_{\infty} \tag{1.15}
\end{equation*}
$$

This quasi representation, up to uniformly upper and lower bounded functions, is also interesting in the sense that it indicates precisely what are the blow-up point of $\bar{u}_{F}=\underline{u}_{F}:=u_{F}$. Introducing an integral expression comparable to W_{F} we show, in particular, the following results

$$
\begin{equation*}
\lim _{\tau \rightarrow 0} C_{2 / q, q^{\prime}}\left(\frac{F}{\tau} \cap B_{1}(x)\right)=\gamma \in[0, \infty) \Longrightarrow \lim _{t \rightarrow 0} t^{-\frac{1}{q-1}} u_{F}(x, t)=C \gamma \tag{1.16}
\end{equation*}
$$

for some $C_{\gamma}=C(N, q, \gamma)>0$, and

$$
\begin{equation*}
\limsup _{\tau \rightarrow 0} \tau^{\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{F}{\tau} \cap B_{1}(x)\right)<\infty \Longrightarrow \limsup _{t \rightarrow 0} u_{F}(x, t)<\infty \tag{1.17}
\end{equation*}
$$

Our paper is organized as follows. In Section 2 we obtain estimates from above on \bar{u}_{F}. In Section 3 we give estimates from below on \underline{u}_{F}. In Section 4 we prove the main theorems and expose various consequences. In Appendix we derive a series of sharp integral inequalities.
Aknowledgements The authors are grateful to the European RTN Contract N ${ }^{\circ}$ HPRN-CT-2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations. Let Ω be a domain in \mathbb{R}^{N} with a compact C^{2} boundary and $T>0$. Set $B_{r}(a)$ the open ball of radius $r>0$ and center $a\left(\right.$ and $\left.B_{r}(0):=B_{r}\right)$ and

$$
Q_{T}^{\Omega}:=\Omega \times(0, T), \quad \partial_{\ell} Q_{T}^{\Omega}=\partial \Omega \times(0, T), \quad Q_{T}:=Q_{T}^{\mathbb{R}^{N}}, \quad Q_{\infty}:=Q_{\infty}^{\mathbb{R}^{N}}
$$

Let $\mathbb{H}^{\Omega}[$.$] (resp. \mathbb{H}[$.$]) denote the heat potential in \Omega$ with zero lateral boundary data (resp. the heat potential in \mathbb{R}^{N}) with corresponding kernel

$$
(x, y, t) \mapsto H^{\Omega}(x, y, t) \quad\left(\operatorname{resp} .(x, y, t) \mapsto H(x, y, t)=(4 \pi t)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4 t}}\right) .
$$

We denote by $q_{c}:=1+\frac{N}{2}$, the parabolic critical exponent.
Theorem 2.1 Let $q \geq q_{c}$. Then there exists a positive constant $C_{1}=C_{1}(N, q)$ such that for any closed subset F of \mathbb{R}^{N} and any $u \in C^{2}\left(Q_{\infty}\right) \cap C\left(\overline{Q_{\infty}} \backslash F\right)$ satisfying

$$
\left\{\begin{align*}
& \partial_{t} u-\Delta u+u^{q}=0 \quad \text { in } Q_{\infty} \tag{2.1}\\
& \lim _{t \rightarrow 0} u(x, t)=0 \quad \text { locally uniformly in } F^{c}
\end{align*}\right.
$$

there holds

$$
\begin{equation*}
u(x, t) \leq C_{1} W_{F}(x, t) \quad \forall(x, t) \in Q_{\infty} \tag{2.2}
\end{equation*}
$$

where W_{F} is the $\left(2 / q, q^{\prime}\right)$-capacitary potential of F defined by (1.13).
First we shall consider the case where $F=K$ is compact and

$$
\begin{equation*}
K \subset B_{r} \subset \bar{B}_{r}, \tag{2.3}
\end{equation*}
$$

and then we shall extend to the general case by a covering argument.

2.1 Global L^{q}-estimates

Let $\rho>0$, we assume (2.3) holds and we put

$$
\begin{equation*}
\mathcal{T}_{r, \rho}(K)=\left\{\eta \in C_{0}^{\infty}\left(B_{r+\rho}\right), 0 \leq \eta \leq 1, \eta=1 \text { in a neighborhood of } K\right\} . \tag{2.4}
\end{equation*}
$$

If $\eta \in \mathcal{T}_{r, \rho}(K)$, we set $\eta^{*}=1-\eta, \zeta=\mathbb{H}\left[\eta^{*}\right]^{2 q^{\prime}}$ and

$$
\begin{equation*}
R[\eta]=|\nabla \mathbb{H}[\eta]|^{2}+\left|\partial_{t} \mathbb{H}[\eta]+\Delta \mathbb{H}[\eta]\right| . \tag{2.5}
\end{equation*}
$$

We fix $T>0$ and shall consider the equation on Q_{T}. Throughout this paper C will denote a generic positive constant, depending only on N, q and sometimes T, the value of which may vary from one ocurrence to another. We shall also use sometimes the notation $A \approx B$ for meaning that there exists a constant $C>0$ independent of the data such that $C^{-1} A \leq B \leq C A$.

Except in Lemma 2.12 the only assumption on q is $q>1$. In the sequel we shall obtain pointwise estimate on the solution expressed in terms of the $L^{q^{\prime}}$-norm of $R[\eta]$ for $\eta \in \mathcal{T}_{r, \rho}(K)$. Although these estimates could have been immediately turned into capacitary estimates as in [29], the advantage of keeping them comes from the possibility of performing operations such as dilations or summations on them. The next lemma points out the connection between $R[\eta]$ and the the $C_{2 / q, q^{\prime}}$ capacity of K.

Lemma 2.2 There exists $C=C(N, q)>0$ such that

$$
\begin{equation*}
C^{-1}\|\eta\|_{W^{2 / q, q^{\prime}}}^{q^{\prime}} \leq \iint_{Q_{\infty}}(R[\eta])^{q^{\prime}} d x d t:=\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \leq C\|\eta\|_{W^{2 / q, q^{\prime}}}^{q^{\prime}} \quad \forall \eta \in \mathcal{T}_{r, \rho}(K) \tag{2.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\inf \left\{\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}: \eta \in \mathcal{T}_{r, \rho}(K)\right\} \approx C_{2 / q, q^{\prime}}^{B_{r+\rho}}(K) \tag{2.7}
\end{equation*}
$$

Proof. There holds $\partial_{t} \mathbb{H}[\eta]=\Delta \mathbb{H}[\eta]$, and

$$
\begin{equation*}
\iint_{Q \infty}\left|\partial_{t} \mathbb{H}[\eta]\right|^{q^{\prime}} d x d t=\int_{0}^{\infty}\left\|t^{1-1 / q} \partial_{t} \mathbb{H}[\eta]\right\|_{L^{q^{\prime}}\left(\mathbb{R}^{N}\right)}^{q^{\prime}} \frac{d t}{t} \approx\|\eta\|_{\left[W^{2, q^{\prime}}, L^{q^{\prime}}\right]_{1 / q, q^{\prime}}^{q^{\prime}}} \tag{2.8}
\end{equation*}
$$

where $\left[W^{2, q^{\prime}}, L^{q^{q^{\prime}}}\right]_{1 / q, q^{\prime}}$ indicates the real interpolation functor of degree $1 / q$ between $W^{2, q^{\prime}}\left(\mathbb{R}^{N}\right)$ and $L^{q^{\prime}}\left(\mathbb{R}^{N}\right)$ 35. Similarly, and using the Gagliardo-Nirenberg inequality,

$$
\begin{equation*}
\iint_{Q_{\infty}}|\nabla(\mathbb{H}[\eta])|^{2 q^{\prime}} d x d t \leq C\|\eta\|_{W^{2} / q, q^{\prime}}^{q^{\prime}}\|\eta\|_{L^{\infty}}^{q^{\prime}}=C\|\eta\|_{W^{2 / q, q^{\prime}}}^{q^{\prime}} \tag{2.9}
\end{equation*}
$$

Inequality (2.6) follows from (2.8) and (2.9), and (2.7) from the definition of the Bessel capacity relative to $B_{r+\rho}$.
Lemma 2.3 There exists $C=C(N, q)>0$ such that for any $T>0$,

$$
\begin{equation*}
\iint_{Q_{\infty}} u^{q} \zeta d x d t+\int_{\mathbb{R}^{N}}(u \zeta)(x, T) d x \leq C\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \quad \forall \eta \in \mathcal{T}_{r, \rho}(K) \tag{2.10}
\end{equation*}
$$

Proof. We recall that there always hold

$$
\begin{equation*}
0 \leq u(x, t) \leq\left(\frac{1}{t(q-1)}\right)^{\frac{1}{q-1}} \quad \forall(x, t) \in Q_{\infty} \tag{2.11}
\end{equation*}
$$

and (see [6] e.g.)

$$
\begin{equation*}
0 \leq u(x, t) \leq\left(\frac{C}{t+(|x|-r)^{2}}\right)^{\frac{1}{q-1}} \quad \forall(x, t) \in Q_{\infty} \backslash B_{r} \tag{2.12}
\end{equation*}
$$

Since η^{*} vanishes in an open neighborhood \mathcal{N}_{1}, for any open subset \mathcal{N}_{2} such that $K \subset \mathcal{N}_{2} \subset$ $\overline{\mathcal{N}}_{2} \subset \mathcal{N}_{1}$ there exist $c_{\mathcal{N}_{2}}>0$ and $C_{\mathcal{N}_{2}}>0$ such that

$$
\mathbb{H}\left[\eta^{*}\right](x, t) \leq C_{\mathcal{N}_{2}} \exp \left(-c_{\mathcal{N}_{2}} t\right), \quad \forall(x, t) \in Q_{T}^{\mathcal{N}_{2}} .
$$

Therefore

$$
\lim _{t \rightarrow 0} \int_{\mathbb{R}^{N}}(u \zeta)(x, t) d x=0
$$

Thus ζ is an admissible test function and one has

$$
\begin{equation*}
\iint_{Q_{T}} u^{q} \zeta d x d t+\int_{\mathbb{R}^{N}}(u \zeta)(x, T) d x=\iint_{Q_{T}} u\left(\partial_{t} \zeta+\Delta \zeta\right) d x d t \tag{2.13}
\end{equation*}
$$

Notice that the three terms on the left-hand side are nonnegative. Put $\mathbb{H}_{\eta^{*}}=\mathbb{H}\left[\eta^{*}\right]$, then

$$
\begin{aligned}
\partial_{t} \zeta+\Delta \zeta & =2 q^{\prime} \mathbb{H}_{\eta^{*}}^{2 q^{\prime}-1}\left(\partial_{t} \mathbb{H}_{\eta^{*}}+\Delta \mathbb{H}_{\eta^{*}}\right)+2 q^{\prime}\left(2 q^{\prime}-1\right) \mathbb{H}_{\eta^{*}}^{2 q^{\prime}-2}\left|\nabla \mathbb{H}_{\eta^{*}}\right|^{2} \\
& =2 q^{\prime} \mathbb{H}_{\eta^{*}}^{2 q^{\prime}-1}\left(\partial_{t} \mathbb{H}_{\eta}+\Delta \mathbb{H}_{\eta}\right)+2 q^{\prime}\left(2 q^{\prime}-1\right) \mathbb{H}_{\eta}^{2 q^{\prime}-2}\left|\nabla \mathbb{H}_{\eta}\right|^{2}
\end{aligned}
$$

because $\mathbb{H}_{\eta^{*}}=1-\mathbb{H}_{\eta}$, hence

$$
u\left(\partial_{t} \zeta+\Delta \zeta\right)=u \mathbb{H}_{\eta^{*}}^{2 q^{\prime} / q}\left[2 q^{\prime}\left(2 q^{\prime}-1\right) \mathbb{H}_{\eta^{*}}^{2 q^{\prime}-2-2 q^{\prime} / q}\left|\nabla \mathbb{H}_{\eta}\right|^{2}-2 q^{\prime} \mathbb{H}_{\eta^{*}}^{2 q^{\prime}-1-2 q^{\prime} / q}\left(\Delta \mathbb{H}_{\eta}+\partial_{t} \mathbb{H}_{\eta}\right)\right]
$$

Since $2 q^{\prime}-2-2 q^{\prime} / q=0$ and $0 \leq \mathbb{H}_{\eta^{*}} \leq 1$,

$$
\left|\iint_{Q_{T}} u\left(\partial_{t} \zeta+\Delta \zeta\right) d x d t\right| \leq C(q)\left(\iint_{Q_{T}} u^{q} \zeta d x d t\right)^{1 / q}\left(\iint_{Q_{T}} R^{q^{\prime}}(\eta) d x d t\right)^{1 / q^{\prime}}
$$

where

$$
R(\eta)=\left|\nabla \mathbb{H}_{\eta}\right|^{2}+\left|\Delta \mathbb{H}_{\eta}+\partial_{t} \mathbb{H}_{\eta}\right| .
$$

Using Lemma 2.2 one obtains (2.10).
Proposition 2.4 Let $r>0, \rho>0, T \geq(r+\rho)^{2}$

$$
\mathcal{E}_{r+\rho}:=\left\{(x, t):|x|^{2}+t \leq(r+\rho)^{2}\right\}
$$

and $Q_{r+\rho, T}=Q_{T} \backslash \mathcal{E}_{r+\rho}$. There exists $C=C(N, q, T)>0$ such that

$$
\begin{equation*}
\iint_{Q_{r+\rho, T}} u^{q} d x d t+\int_{\mathbb{R}^{N}} u(x, T) d x \leq C\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \quad \forall \eta \in \mathcal{T}_{r, \rho}(K) . \tag{2.14}
\end{equation*}
$$

Proof. Because $K \subset B_{r}$ and $\eta^{*} \equiv 1$ outside $B_{r+\rho}$ and takes value between 0 and 1 ,

$$
\begin{aligned}
\mathbb{H}\left[\eta^{*}\right](x, t) \geq \mathbb{H}\left[1-\chi_{B_{r+\rho}}\right](x, t) & =\left(\frac{1}{4 \pi t}\right)^{\frac{N}{2}} \int_{|y| \geq r+\rho} e^{-\frac{|x-y|^{2}}{4 t}} d y \\
& =1-\left(\frac{1}{4 \pi t}\right)^{\frac{N}{2}} \int_{|y| \leq r+\rho} e^{-\frac{|x-y|^{2}}{4 t}} d y
\end{aligned}
$$

For $(x, t) \in \mathcal{E}_{r+\rho}$, put $x=(r+\rho) \xi, y=(r+\rho) v$ and $t=(r+\rho)^{2} \tau$. Then $(\xi, \tau) \in \mathcal{E}_{1}$ and

$$
\left(\frac{1}{4 \pi t}\right)^{\frac{N}{2}} \int_{|y| \leq r+\rho} e^{-\frac{|x-y|^{2}}{4 t}} d y=\left(\frac{1}{4 \pi \tau}\right)^{\frac{N}{2}} \int_{|v| \leq 1} e^{-\frac{|\xi-v|^{2}}{4 \tau}} d v .
$$

We claim that

$$
\begin{equation*}
\max \left\{\left(\frac{1}{4 \pi \tau}\right)^{\frac{N}{2}} \int_{|v| \leq 1} e^{-\frac{|\xi-v|^{2}}{4 \tau}} d v:(\xi, \tau) \in \mathcal{E}_{1}\right\}=\ell \tag{2.15}
\end{equation*}
$$

and $\ell=\ell(N) \in(0,1]$. We recall that

If the maximum is achieved for some $(\bar{\xi}, \bar{\tau}) \in \mathcal{E}_{1}$, it is smaller that 1 and

$$
\begin{equation*}
\mathbb{H}\left[\eta^{*}\right](x, t) \geq \mathbb{H}\left[1-\chi_{B_{r+\rho}}\right](x, t) \geq 1-\ell>0, \quad \forall(x, t) \in \mathcal{E}_{r+\rho} . \tag{2.17}
\end{equation*}
$$

Let us assume that the maximum is achieved following a sequence $\left\{\left(\xi_{n}, \tau_{n}\right)\right\}$ with $\tau_{n} \rightarrow 0$ and $\left|\xi_{n}\right| \downarrow 1$. We can assume that $\xi_{n} \rightarrow \bar{\xi}$ with $|\bar{\xi}|=1$, then

$$
\left(\frac{1}{4 \pi \tau_{n}}\right)^{\frac{N}{2}} \int_{|v| \leq 1} e^{-\frac{\left|\xi_{n}-v\right|^{2}}{4 \tau_{n}}} d v=\left(\frac{1}{4 \pi \tau_{n}}\right)^{\frac{N}{2}} \int_{B_{1}\left(\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v
$$

But $B_{1}\left(\xi_{n}\right) \cap B_{1}\left(-\xi_{n}\right)=\emptyset$,

$$
\int_{B_{1}\left(\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v+\int_{B_{1}\left(-\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v<\int_{\mathbb{R}^{N}} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v
$$

and

$$
\int_{B_{1}\left(\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v=\int_{B_{1}\left(-\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v .
$$

This implies

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{4 \pi \tau_{n}}\right)^{\frac{N}{2}} \int_{B_{1}\left(\xi_{n}\right)} e^{-\frac{|v|^{2}}{4 \tau_{n}}} d v \leq 1 / 2
$$

If the maximum were achieved with a sequence $\left\{\left(\xi_{n}, \tau_{n}\right)\right\}$ with $\left|\tau_{n}\right| \rightarrow \infty$, it would also imply (2.17), since the integral term in (2.16) is always bounded. Therefore (2.16) holds. Put $C=(1-\ell)^{-1}$, then

$$
\begin{equation*}
\iint_{Q_{r, T}} u^{q} d x d t+\int_{\mathbb{R}^{N}} u(., T) d x \leq C\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}, \tag{2.18}
\end{equation*}
$$

and (2.14) follows.

2.2 Pointwise estimates

We give first a rough pointwise estimate.
Lemma 2.5 There exists a constant $C=C(N, q)>0$ such that, for any $\eta \in \mathcal{T}_{r, \rho}(K)$,

$$
\begin{equation*}
u\left(x,(r+2 \rho)^{2}\right) \leq \frac{C\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}}{(\rho(r+\rho))^{\frac{N}{2}}}, \quad \forall x \in \mathbb{R}^{N} \tag{2.19}
\end{equation*}
$$

Proof. We observe first that

$$
\begin{equation*}
\int_{s}^{T} \int_{\mathbb{R}^{N}} u^{q} d x d t+\int_{\mathbb{R}^{N}} u(x, T) d x=\int_{\mathbb{R}^{N}} u(x, s) d x \quad \forall T>s>0 . \tag{2.20}
\end{equation*}
$$

By the maximum principle u is dominated by the maximal solution v which has the indicatrix function $I_{B_{r}}$ for initial trace. The function v is the limit, as $k \rightarrow \infty$, of the solutions v_{k} with initial data $k \chi_{B_{r}}$. Since $v_{k} \leq k \mathbb{H}\left[\chi_{B_{r}}\right]$, it follows Hence

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u(., s) d x \leq C\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \quad \forall T>s \geq(r+\rho)^{2} \tag{2.21}
\end{equation*}
$$

by Lemma 2.3. Using the fact that

$$
u(x, \tau+s) \leq \mathbb{H}[u(., s)](x, \tau) \leq\left(\frac{1}{4 \pi \tau}\right)^{\frac{N}{2}} \int_{\mathbb{R}^{N}} u(., s) d x
$$

we obtain (2.19) with $s=(r+\rho)^{2}$ and $\tau=(r+2 \rho)^{2}-(r+\rho)^{2} \approx \rho(r+\rho)$.
The above estimate does not take into account the fact that $u(x, 0)=0$ if $|x| \geq r$. It is mainly interesting if $|x| \leq r$. In order to derive a sharper estimate which uses the localization of the singularity and not only the $L^{q^{\prime}}$-norm of $R[\eta]$. For such a goal, we need some lateral boundary estimates.

Lemma 2.6 Let $\gamma \geq r+2 \rho$ and $c>0$ and either $N=1$ or 2 and $0 \leq t \leq c \gamma^{2}$ for some $c>0$, or $N \geq 3$ and $t>0$. Then, for any $\eta \in \mathcal{T}_{r, \rho}(K)$, there holds

$$
\begin{equation*}
\int_{0}^{t} \int_{\partial B_{\gamma}} u d S d \tau \leq C_{5} \gamma\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \tag{2.22}
\end{equation*}
$$

where $C>0$ depends on N, q and c if $N=1,2$ or depends only on N and q if $N \geq 3$.
Proof. Let us assume that $N=1$ or 2 . Put $G^{\gamma}:=B_{\gamma}^{c} \times(-\infty, 0)$ and $\partial_{\ell} G^{\gamma}=\partial B_{\gamma} \times(-\infty, 0)$. Set

$$
h_{\gamma}(x)=1-\frac{\gamma}{|x|}
$$

and let ψ_{γ} be the solution of

$$
\begin{array}{rc}
\partial_{\tau} \psi_{\gamma}+\Delta \psi_{\gamma}=0 & \text { in } G^{\gamma}, \\
\psi_{\gamma}=0 & \text { on } \partial_{\ell} G^{\gamma}, \tag{2.23}\\
\psi_{\gamma}(., 0)=h_{\gamma} & \text { in } B_{\gamma}^{c} .
\end{array}
$$

Thus the function

$$
\tilde{\psi}(x, \tau)=\psi_{\gamma}\left(\gamma x, \gamma^{2} \tau\right)
$$

satisfies

$$
\begin{array}{rlc}
\partial_{t} \tilde{\psi}+\Delta \tilde{\psi} & =0 & \text { in } G^{1} \\
\tilde{\psi} & =0 & \tag{2.24}\\
\text { on } \partial_{\ell} G^{1} \\
\tilde{\psi}(., 0) & =\tilde{h} & \\
\text { in } B_{1}^{c},
\end{array}
$$

and $\tilde{h}(x)=1-|x|^{-1}$. By the maximum principle $0 \leq \tilde{\psi} \leq 1$, and by Hopf Lemma

$$
\begin{equation*}
-\left.\frac{\partial \tilde{\psi}}{\partial \mathbf{n}}\right|_{\partial B_{1} \times[-c, 0]} \geq \theta>0, \tag{2.25}
\end{equation*}
$$

where $\theta=\theta(N, c)$. Then $0 \leq \psi_{\gamma} \leq 1$ and

$$
\begin{equation*}
-\left.\frac{\partial \psi_{\gamma}}{\partial \mathbf{n}}\right|_{\partial B_{\gamma} \times\left[-\gamma^{2}, 0\right]} \geq \theta / \gamma \tag{2.26}
\end{equation*}
$$

Multiplying (1.1) by $\psi_{\gamma}(x, \tau-t)=\psi_{\gamma}^{*}(x, \tau)$ and integrating on $B_{\gamma}^{c} \times(0, t)$ yields to

$$
\begin{equation*}
\int_{0}^{t} \int_{B_{\gamma}^{c}} u^{q} \psi_{r}^{*} d x d \tau+\int_{B_{\gamma}^{c}}\left(u h_{\gamma}\right)(x, t) d x-\int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial u}{\partial \mathbf{n}} \psi_{\gamma}^{*} d S d \tau=-\int_{0}^{t} \int_{\partial B_{\gamma}} \frac{\partial \psi_{\gamma}^{*}}{\partial \mathbf{n}} u d \sigma d \tau \tag{2.27}
\end{equation*}
$$

Since ψ_{γ}^{*} is bounded from above by 1 , (2.22) follows from (2.26) and Proposition 2.4 (notice that $\left.B_{\gamma}^{c} \times(0, t) \subset \mathcal{E}_{\gamma}^{c}\right)$, first by taking $t=T=\gamma^{2} \geq(r+2 \rho)^{2}$, and then for any $t \leq \gamma^{2}$.
If $N \geq 3$, we proceed as above except that we take

$$
h_{\gamma}(x)=1-\left(\frac{\gamma}{|x|}\right)^{N-2} .
$$

Then $\psi_{\gamma}(x, t)=h_{\gamma}(x)$ and $\theta=N-2$ is independent of the length of the time interval. This leads to the conclusion.

Lemma 2.7 I- Let $M, a>0$ and $\eta \in L^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
0 \leq \eta(x) \leq M e^{-a|x|^{2}} \quad \text { a.e. in } \mathbb{R}^{N} \tag{2.28}
\end{equation*}
$$

Then, for any $t>0$,

$$
\begin{equation*}
0 \leq \mathbb{H}[\eta](x, t) \leq \frac{M}{(4 a t+1)^{\frac{N}{2}}} e^{-\frac{a|x|^{2}}{4 a t+1}} \quad \forall x \in \mathbb{R}^{N} \tag{2.29}
\end{equation*}
$$

II- Let $M, a, b>0$ and $\eta \in L^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
0 \leq \eta(x) \leq M e^{-a(|x|-b)_{+}^{2}} \quad \text { a.e. in } \mathbb{R}^{N} \tag{2.30}
\end{equation*}
$$

Then, for any $t>0$,

$$
\begin{equation*}
0 \leq \mathbb{H}[\eta](x, t) \leq \frac{M e^{-\frac{a(|x|-b)_{+}^{2}}{4 a t+1}}}{(4 a t+1)^{\frac{N}{2}}} \quad \forall x \in \mathbb{R}^{N}, \forall t>0 \tag{2.31}
\end{equation*}
$$

Proof. For the first statement, put $a=\frac{1}{4} s$. Then

$$
0 \leq \eta(x) \leq M(4 \pi s)^{\frac{N}{2}} \frac{1}{(4 \pi s)^{\frac{N}{2}}} e^{-\frac{|x|^{2}}{4 s}}=C(4 \pi s)^{\frac{N}{2}} \mathbb{H}\left[\delta_{0}\right](x, s) .
$$

By the order property of the heat kernel,

$$
0 \leq \mathbb{H}[\eta](x, t) \leq M(4 \pi s)^{\frac{N}{2}} \mathbb{H}\left[\delta_{0}\right](x, t+s)=M\left(\frac{s}{t+s}\right)^{\frac{N}{2}} e^{-\frac{|x|^{2}}{4(t+s)}},
$$

and (2.29) follows by replacing s by $\frac{1}{4} a$.

For the second statement, let $\tilde{a}<a$ and $R=\max \left\{e^{-a(r-b)_{+}^{2}+\tilde{a} r^{2}}: r \geq 0\right\}$. A direct computation gives $R=e^{\frac{a \tilde{b} b^{2}}{a-\tilde{a}}}$, and (2.31) implies

$$
0 \leq \eta(x) \leq M e^{\frac{a \tilde{a} b^{2}}{a-\bar{a}}} e^{-\tilde{a}|x|^{2}}
$$

Applying the statement I, we derive

$$
\begin{equation*}
0 \leq \mathbb{H}[\eta](x, t) \leq \frac{C e^{\frac{a \tilde{a})^{2}}{a-\tilde{a}}}}{(4 \tilde{a} t+1)^{\frac{N}{2}}} e^{-\frac{\tilde{a}|x|^{2}}{4 \tilde{a}+t+1}} \quad \forall x \in \mathbb{R}^{N}, \forall t>0 . \tag{2.32}
\end{equation*}
$$

Since for any $x \in \mathbb{R}^{N}$ and $t>0$,

$$
(4 \tilde{a} t+1)^{-\frac{N}{2}} e^{-\frac{\left.\tilde{a} x\right|^{2}}{4 \tilde{a} t+1}} \leq e^{-\frac{a \tilde{a} b^{2}}{a-\tilde{\alpha}}}(4 a t+1)^{-\frac{N}{2}} e^{-\frac{a(|x|-b)^{2}}{4 a t+1}}
$$

(2.31) follows from (2.32).

Lemma 2.8 There exists a constant $C=C(N, q)>0$ such that, for any $\eta \in \mathcal{T}_{r, \rho}(K)$, there holds

$$
\begin{equation*}
u\left(x,(r+2 \rho)^{2}\right) \leq C \max \left\{\frac{r+\rho}{(|x|-r-2 \rho)^{N+1}}, \frac{|x|-r-2 \rho}{(r+\rho)^{N+1}}\right\} e^{-\frac{(|x|-(r+2 \rho))^{2}}{4(r+2 \rho)^{2}}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} \tag{2.33}
\end{equation*}
$$

for any $x \in \mathbb{R}^{N} \backslash B_{r+3 \rho}$.
Proof. It is classical that the Dirichlet heat kernel $H^{B_{1}^{c}}$ in the complement of B_{1} satisfies, for some $C=C(N)>0$,

$$
\begin{equation*}
H^{B_{1}^{c}}\left(x^{\prime}, y^{\prime}, t^{\prime}, s^{\prime}\right) \leq C_{7}\left(t^{\prime}-s^{\prime}\right)^{-(N+2) / 2}\left(\left|x^{\prime}\right|-1\right) e^{-\frac{\left|x^{\prime}-y^{\prime}\right|^{2}}{4\left(t^{\prime}-s^{\prime}\right)}} \tag{2.34}
\end{equation*}
$$

for $t^{\prime}>s^{\prime}$. By performing the change of variable $x^{\prime} \mapsto(r+2 \rho) x^{\prime}, t^{\prime} \mapsto(r+2 \rho)^{2} t^{\prime}$, for any $x \in \mathbb{R}^{N} \backslash B_{r+2 \rho}$ and $0 \leq t \leq T$, one obtains

$$
\begin{equation*}
u(x, t) \leq C(|x|-r-2 \rho) \int_{0}^{t} \int_{\partial B_{r+2 \rho}} \frac{e^{-\frac{|x-y|^{2}}{4(t-s)}}}{(t-s)^{1+\frac{N}{2}}} u(y, s) d \sigma(y) d s \tag{2.35}
\end{equation*}
$$

The right-hand side term in (2.35) is smaller than

$$
\max \left\{\frac{C(|x|-r-2 \rho)}{(t-s)^{1+\frac{N}{2}}} e^{-\frac{(|x|-r-2 \rho)^{2}}{4(t-s)}}: s \in(0, t)\right\} \int_{0}^{t} \int_{\partial B_{r+2 \rho}} u(y, s) d \sigma(y) d s
$$

We fix $t=(r+2 \rho)^{2}$ and $|x| \geq r+3 \rho$. Since

$$
\begin{aligned}
& \max \left\{\frac{e^{-\frac{(|x|-r-2 \rho)^{2}}{4 s}}}{s^{1+\frac{N}{2}}}: s \in\left(0,(r+2 \rho)^{2}\right)\right\} \\
&=(|x|-r-2 \rho)^{-2-N} \max \left\{\frac{e^{-\frac{1}{4 \sigma}}}{\sigma^{1+\frac{N}{2}}}: 0<\sigma<\left(\frac{r+2 \rho}{|x|-r-2 \rho}\right)^{2}\right\}
\end{aligned}
$$

a direct computation gives

$$
\begin{aligned}
& \max \left\{\frac{e^{-\frac{1}{4} \sigma}}{\sigma^{1+\frac{N}{2}}}: 0<\sigma<\left(\frac{r+2 \rho}{|x|-r-2 \rho}\right)^{2}\right\} \\
&= \begin{cases}(2 N+4)^{1+\frac{N}{2}} e^{-(N+2) / 2} & \text { if } r+3 \rho \leq|x| \leq(r+2 \rho)(1+\sqrt{4+2 N}) \\
\left(\frac{|x|-r-2 \rho}{r+2 \rho}\right)^{2+N} e^{-\left(\frac{|x|-r-2 \rho}{2 r+4 \rho}\right)^{2}} & \text { if }|x| \geq(r+2 \rho)(1+\sqrt{4+2 N})\end{cases}
\end{aligned}
$$

Thus there exists a constant $C(N)>0$ such that

$$
\begin{equation*}
\max \left\{\frac{e^{-\frac{(|x|-r-2 \rho)^{2}}{4 s}}}{s^{1+\frac{N}{2}}}: s \in\left(0,(r+2 \rho)^{2}\right)\right\} \leq C(N) \rho^{-2-N} e^{-\left(\frac{|x|-(r+2 \rho)}{2 r+4 \rho}\right)^{2}} . \tag{2.36}
\end{equation*}
$$

Combining this estimate with (2.22) with $\gamma=r+2 \rho$ and (2.35), one derives (2.33).

Lemma 2.9 Under the assumptions of Lemma 2.8, there exists a constant $C=C(N, q)>0$ such that

$$
\begin{equation*}
0 \leq u\left(x,(r+2 \rho)^{2}\right) \leq C \max \left\{\frac{(r+\rho)^{3}}{\rho(|x|-r-2 \rho)^{N+1}}, \frac{1}{(r+\rho)^{N-1} \rho}\right\} e^{-\left(\frac{|x|-r-3 \rho}{2 r+4 \rho}\right)^{2}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}, \tag{2.37}
\end{equation*}
$$

for every $x \in \mathbb{R}^{N} \backslash B_{r+3 \rho}$.
Proof. This is a direct consequence of the inequality

$$
\begin{equation*}
(|x|-r-2 \rho) e^{-\left(\frac{|x|-r-2 \rho}{2 r+4 \rho}\right)^{2}} \leq \frac{C(r+\rho)^{2}}{\rho} e^{-\left(\frac{|x|-r-3 \rho}{2 r+4 \rho}\right)^{2}}, \quad \forall x \in B_{r+2 \rho}^{c} \tag{2.38}
\end{equation*}
$$

and Lemma 2.8.
Lemma 2.10 There exists a constant $C=C(N, q)>0$ such that, for any $\eta \in \mathcal{T}_{r, \rho}(K)$, the following estimate holds

$$
\begin{equation*}
u(x, t) \leq \frac{C \tilde{M} e^{-\frac{(|x|-r-3 \rho)_{+}^{2}}{4 t}}}{t^{\frac{N}{2}}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}, \quad \forall x \in \mathbb{R}^{N}, \forall t \geq(r+2 \rho)^{2}, \tag{2.39}
\end{equation*}
$$

where

$$
\tilde{M}=\tilde{M}(x, r, \rho)= \begin{cases}\left(1+\frac{r}{\rho}\right)^{\frac{N}{2}} & \text { if }|x|<r+3 \rho \tag{2.40}\\ \frac{(r+\rho)^{N+3}}{\rho(|x|-r-2 \rho)^{N+2}} & \text { if } r+3 \rho \leq|x| \leq C_{N}(r+2 \rho) \\ 1+\frac{r}{\rho} & \text { if }|x| \geq C_{N}(r+2 \rho)\end{cases}
$$

with $C_{N}=1+\sqrt{4+2 N}$.

Proof. It follows by the maximum principle

$$
u(x, t) \leq \mathbb{H}\left[u\left(.,(r+2 \rho)^{2}\right)\right]\left(x, t-(r+2 \rho)^{2}\right)
$$

for $t \geq(r+2 \rho)^{2}$ and $x \in \mathbb{R}^{N}$. By Lemma 2.5 and Lemma 2.9

$$
u\left(x,(r+2 \rho)^{2}\right) \leq C_{10} \tilde{M} e^{-\frac{(|x|-r-3 \rho)^{2}}{4(r+2 \rho)^{2}}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}
$$

where

$$
\tilde{M}= \begin{cases}((r+\rho) \rho)^{-\frac{N}{2}} & \text { if }|x|<r+3 \rho \\ \left.\frac{(r+\rho)^{3}}{\rho}(|x|-r-2 \rho)\right)^{N+2} & \text { if } r+3 \rho \leq|x| \leq C_{N}(r+2 \rho) \\ \frac{1}{(r+\rho)^{N-1} \rho} & \text { if }|x| \geq C_{N}(r+2 \rho)\end{cases}
$$

Applying Lemma 2.7 with $a=(2 r+4 \rho)^{-2}, b=r+3 \rho$ and t replaced by $t-(r+2 \rho)^{2}$ implies

$$
\begin{equation*}
u(x, t) \leq C \frac{(r+2 \rho)^{N} \tilde{M}}{t^{\frac{N}{2}}} e^{-\frac{(|x|-r-3 \rho)^{2}}{4 t}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}, \tag{2.41}
\end{equation*}
$$

for all $x \in B_{r+3 \rho}^{c}$ and $t \geq(r+2 \rho)^{2}$, which is (2.39).
The next estimate gives a precise upper bound for u when t is not bounded from below.
Lemma 2.11 Assume that $0<t \leq(r+2 \rho)^{2}$ for some $c>0$, then there exists a constant $C=C(N, q)>0$ such that the following estimate holds

$$
\begin{equation*}
u(x, t) \leq C(r+\rho) \max \left\{\frac{1}{(|x|-r-2 \rho)^{N+1}}, \frac{1}{\rho t^{\frac{N}{2}}}\right\} e^{-\frac{(|x|-r-3 \rho)^{2}}{4 t}}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}, \tag{2.42}
\end{equation*}
$$

for any $(x, t) \in \mathbb{R}^{N} \backslash B_{r+3 \rho} \times\left(0,(r+2 \rho)^{2}\right]$.
Proof. By using (2.22) the following estimate is a straightforward variant of (2.33) for any $\gamma \geq r+2 \rho$,

$$
\begin{equation*}
u(x, t) \leq C_{8}(|x|-r-2 \rho)(r+2 \rho) \max \left\{\frac{e^{-\frac{(|x|-r-2 \rho)^{2}}{4 s}}}{s^{1+\frac{N}{2}}}: 0<s \leq t\right\}\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}} . \tag{2.43}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
\max \left\{\begin{array}{ll}
\left.\frac{e^{-\frac{(|x|-r-2 \rho)^{2}}{4 s}}}{s^{1+\frac{N}{2}}}: 0<s \leq t\right\} \\
& = \begin{cases}(2 N+4)^{1+\frac{N}{2}} & |x|-r-2 \rho)^{-N-2} e^{-\frac{N+2}{2}} \\
\text { if } 0<|x| \leq r+2 \rho+\sqrt{2 t(N+2)} \\
\frac{e^{-\frac{(|x|-r-2 \rho)^{2}}{4 t}}}{t^{1+\frac{N}{2}}} & \text { if }|x|>r+2 \rho+\sqrt{2 t(N+2)} .\end{cases}
\end{array} .\right.
\end{aligned}
$$

By elementary analysis, if $x \in B_{r+3 \rho}^{c}$,

$$
(|x|-r-2 \rho) e^{-\frac{(|x|-r-2 \rho)^{2}}{4 t}} \leq e^{-\frac{(|x|-r-3 \rho)^{2}}{4 t}} \begin{cases}\rho e^{-\frac{\rho^{2}}{4 t}} & \text { if } 2 t<\rho^{2} \\ \frac{2 t}{\rho} e^{-1+\frac{\rho^{2}}{4 t}} & \text { if } \rho^{2} \leq 2 t \leq 2(r+2 \rho)^{2}\end{cases}
$$

However, since

$$
\frac{\rho}{t} e^{-\frac{\rho^{2}}{4 t}} \leq \frac{4}{\rho}
$$

we derive

$$
(|x|-r-2 \rho) e^{-\frac{(|x|-r-2 \rho)^{2}}{4 t}} \leq \frac{C t}{\rho} e^{-\frac{(|x|-r-3 \rho)^{2}}{4 t}},
$$

from which inequality (2.42) follows.
Lemma 2.12 Assume $q \geq q_{c}$. Let $r>0, \rho>0$ and K be a compact subset of $B_{r+\rho}$. If $\eta \in \mathcal{T}_{r, \rho}(K)$, denote by η_{r} the function defined by $\eta_{r}(x)=\eta(r x)$ and

$$
R_{r}\left[\eta_{r}\right](x, t)=|\nabla \mathbb{H}[\eta]|^{2}+\left|\partial_{t} \mathbb{H}[\eta]+\Delta \mathbb{H}[\eta]\right|\left(r x, r^{2} t\right) \quad \forall(x, t) \in Q_{\infty} .
$$

Then

$$
\begin{equation*}
\|R[\eta]\|_{L^{q^{\prime}}}^{q^{\prime}}=r^{N-\frac{2}{q-1}}\left\|R_{r}\left[\eta_{r}\right]\right\|_{L^{q^{\prime}}}^{q^{\prime}} . \tag{2.44}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
C_{2 / q, q^{\prime}}^{B_{r+\rho}}(K)=r^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}^{B_{1+\frac{\rho}{r}}}(K / r) \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}(K / r) \leq C_{2 / q, q^{\prime}}^{B_{r+\infty}}(K) \leq C r^{N-\frac{2}{q-1}}\left(1+\frac{r}{\rho}\right)^{\frac{2}{q-1}} C_{2 / q, q^{\prime}}(K / r) \tag{2.46}
\end{equation*}
$$

Proof. Estimate (2.44) follows from the change of variable $\left(r x, r^{2} t\right)=(y, s)$. Thus it implies the scaling property (2.47), since there is a one to one correspondence between $\mathcal{T}_{r, \rho}(K)$ and $\mathcal{T}_{1, \frac{\rho}{r}}(K / r)$. In order to prove (2.44) set $K^{\prime}=K / r \subset B_{1}$, thus

$$
C_{2 / q, q^{\prime}}^{B_{1+\frac{\rho}{r}}}\left(K^{\prime}\right)=\inf \left\{\|\zeta\|_{W^{2 / q, q^{\prime}}}^{q^{\prime}}: \zeta \in \mathcal{T}_{1, \frac{\rho}{r}}\left(K^{\prime}\right)\right\} .
$$

Let $\phi \in C^{2}\left(\mathbb{R}^{N}\right)$ be a radial cut-off function such that $0 \leq \rho \leq 1, \rho=1$ on $B_{1}, \rho=0$ on $\mathbb{R}^{N} \backslash B_{1+\frac{\rho}{r}},|\nabla \phi| \leq C r \rho^{-1} \chi_{B_{1+\frac{\rho}{r}} \backslash B_{1}}$ and $\left|D^{2} \phi\right| \leq C r^{2} \rho^{-2} \chi_{B_{1+\frac{\rho}{r}} \backslash B_{1}}$, where C is independent of r and ρ. Let $\zeta \in C_{0}^{2}\left(\mathbb{R}^{N}\right)$. Then

$$
\nabla(\zeta \phi)=\zeta \nabla \phi+\phi \nabla \zeta, D^{2}(\zeta \phi)=\zeta D^{2} \phi+\phi D^{2} \zeta+2 \nabla \phi \otimes \nabla \zeta .
$$

Thus $\|\zeta \phi\|_{L^{q^{\prime}}\left(B_{\left.1+\frac{\rho}{r}\right)}\right.} \leq\|\zeta\|_{L^{q^{\prime}}\left(\mathbb{R}^{N}\right)}$,

$$
\int_{B_{1+\frac{\rho}{r}}}|\nabla(\zeta \phi)|^{q^{\prime}} d x \leq C\left(1+\frac{r}{\rho}\right)^{q^{\prime}}\|\zeta\|_{W^{1, q^{\prime}}}^{q^{\prime}}
$$

and

$$
\int_{B_{r+\rho}}\left|D^{2}(\zeta \phi)\right|^{q^{\prime}} d x \leq C\left(1+\frac{r^{2}}{\rho^{2}}\right)^{q^{\prime}}\|\zeta\|_{W^{2, q^{\prime}}}^{q^{\prime}}
$$

Finally

$$
\|\zeta \phi\|_{W^{2 / q, q^{\prime}}} \leq C\left(1+\frac{r^{2}}{\rho^{2}}\right)\|\zeta\|_{W^{2 / q, q^{\prime}}}
$$

Denote by \mathcal{T} the linear mapping $\zeta \mapsto \zeta \phi$. Because

$$
W^{2 / q, q^{\prime}}=\left[W^{2, q^{\prime}}, L^{q^{\prime}}\right]_{1 / q, q^{\prime}},
$$

(here we use the Lions-Petree real interpolation notations and results from [22]), it follows

$$
\|\mathcal{T}\|_{\mathcal{L}\left(W_{0}^{2 / q, q q^{\prime}}\left(\mathbb{R}^{N}\right), W_{0}^{\left.2 / q, q^{\prime}\left(B_{1+} \frac{\rho}{r}\right)\right)}\right.} \leq C(q)\left(1+\frac{r^{2}}{\rho^{2}}\right)^{1 / q}
$$

Therefore

$$
C_{2 / q, q^{\prime}}^{B_{1+\frac{\rho}{\tau}}}\left(K^{\prime}\right) \leq C\left(1+\frac{r^{2}}{\rho^{2}}\right)^{\frac{1}{q-1}} C_{2 / q, q^{\prime}}\left(K^{\prime}\right)
$$

Thus we get the left-hand side of (2.46). The right-hand side is a straightforward consequence of (2.47).
Remark. In the subcritical case $1<q<q_{c}$, estimate (2.46) becomes

$$
\begin{equation*}
C_{2 / q, q^{\prime}}^{B_{r+\rho}}(K) \leq C \max \left\{r^{N}, \rho^{N}\right\}\left(1+\rho^{-\frac{2}{q-1}}\right) C_{2 / q, q^{\prime}}(K / r) . \tag{2.47}
\end{equation*}
$$

By using Lemma 2.11, it is easy to derive from this estimate that any positive solution u of (2.1), the initial trace of which vanishes outside 0 , satisfies

$$
\begin{equation*}
u(x, t) \leq C t^{-\frac{1}{q-1}} \min \left\{1,\left(\frac{|x|}{\sqrt{t}}\right)^{\frac{2}{q-1}-N} e^{-\frac{|x|^{2}}{4 t}}\right\} \quad \forall(x, t) \in Q_{\infty} \tag{2.48}
\end{equation*}
$$

This upper estimate corresponds to the one obtained in [7]. If $F=\bar{B}_{r}$ the upper estimate is less esthetic. However, it is proved in [25] by a barrier method that, if the initial trace of positive solution u of (2.1), vanishes outside F, and if $1<q<3$, there holds

$$
\begin{equation*}
u(x, t) \leq t^{-\frac{1}{q-1}} f_{1}((|x|-r) / \sqrt{t}) \quad \forall(x, t) \in Q_{\infty},|x| \geq r \tag{2.49}
\end{equation*}
$$

where $f=f_{1}$ is the unique positive (and radial) solution of

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\frac{y}{2} f^{\prime}+\frac{1}{q-1} f-f^{q}=0 \quad \text { in }(0, \infty) \tag{2.50}\\
f^{\prime}(0)=0, \lim _{y \rightarrow \infty}|y|^{\frac{2}{q-1}} f(y)=0
\end{array}\right.
$$

Notice that the existence of f_{1} follows from [7] since q is the critical exponent in 1 dim. Furthermore f_{1} has the following asymptotic expansion

$$
\left.f_{1}(y)=C y^{(3-q) /(q-1)} e^{-y^{2} / 4 t}(1+\circ(1))\right) \quad \text { as } y \rightarrow \infty .
$$

2.3 The upper Wiener test

Definition 2.13 We define on $\mathbb{R}^{N} \times \mathbb{R}$ the two parabolic distances δ_{2} and δ_{∞} by

$$
\begin{equation*}
\delta_{2}[(x, t),(y, s)]:=\sqrt{|x-y|^{2}+|t-s|}, \tag{2.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{\infty}[(x, t),(y, s)]:=\max \{|x-y|, \sqrt{|t-s|}\} . \tag{2.52}
\end{equation*}
$$

If $K \subset \mathbb{R}^{N}$ and $i=2, \infty$,

$$
\delta_{i}[(x, t), K]=\inf \left\{\delta_{i}[(x, t),(y, 0)]: y \in K\right\}= \begin{cases}\max \{\operatorname{dist}(x, K), \sqrt{|t|}\} & \text { if } i=\infty, \\ \sqrt{\operatorname{dist}^{2}(x, K)+|t|} & \text { if } i=2\end{cases}
$$

For $\beta>0$ and $i=2, \infty$, we denote by $\mathcal{B}_{\beta}^{i}(m)$ the parabolic ball of center $m=(x, t)$ and radius β in the parabolic distance δ_{i}.

Let K be any compact subset of \mathbb{R}^{N} and \bar{u}_{K} the maximal solution of (1.1) which blows up on K. The function \bar{u}_{K} is obtained as the decreasing limit of the $\bar{u}_{K_{\epsilon}}(\epsilon>0)$ when $\epsilon \rightarrow 0$, where

$$
K_{\epsilon}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, K) \leq \epsilon\right\}
$$

and $\bar{u}_{K_{\epsilon}}=\lim _{k \rightarrow \infty} u_{k, K_{\epsilon}}=\bar{u}_{K}$, where u_{k} is the solution of the classical problem,

$$
\left\{\begin{align*}
\partial_{t} u_{k}-\Delta u_{k}+u_{k}^{q} & =0 & & \text { in } Q_{T}, \tag{2.53}\\
u_{k} & =0 & & \text { on } \partial_{\ell} Q_{T}, \\
u_{k}(., 0) & =k \chi_{K_{\epsilon}} & & \text { in } \mathbb{R}^{N} .
\end{align*}\right.
$$

If $(x, t)=m \in \mathbb{R}^{N} \times(0, T]$, we set $d_{K}=\operatorname{dist}(x, K), D_{K}=\max \{|x-y|: y \in K\}$ and $\lambda=\sqrt{d_{K}^{2}+t}=\delta_{2}[m, K]$. We define a slicing of K, by setting $d_{n}=d_{n}(K, t):=\sqrt{n t}(n \in \mathbb{N})$,

$$
T_{n}=\bar{B}_{d_{n+1}}(x) \backslash B_{d_{n}}(x), \quad \forall n \in \mathbb{N},
$$

thus $T_{0}=B_{\sqrt{t}}(x)$, and

$$
K_{n}(x)=K \cap T_{n}(x) \text { for } n \in \mathbb{N} \text { and } \mathcal{Q}_{n}(x)=K \cap B_{d_{n+1}}(x) .
$$

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of this section is the following discrete upper Wiener-type estimate.

Theorem 2.14 Assume $q \geq q_{c}$. Then there exists $C=C(N, q, T)>0$ such that

$$
\begin{equation*}
\bar{u}_{K}(x, t) \leq \frac{C}{t^{\frac{N}{2}}} \sum_{n=0}^{a_{t}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) \quad \forall(x, t) \in Q_{T}, \tag{2.54}
\end{equation*}
$$

where a_{t} is the largest integer j such that $K_{j} \neq \emptyset$.
With no loss of generality, we can first assume that $x=0$. Furthermore, in considering the scaling transformation $u_{\ell}(y, t)=\ell^{\frac{1}{q-1}} u(\sqrt{\ell} y, \ell t)$, with $\ell>0$, we can assume $t=1$. Thus the new compact singular set of the initial trace becomes $K / \sqrt{\ell}$, that we shall still denote K. We shall also set $a_{K}=a_{K, 1}$ Since for each $n \in \mathbb{N}$,

$$
\frac{1}{2 \sqrt{n+1}} \leq d_{n+1}-d_{n} \leq \frac{1}{\sqrt{n+1}}
$$

it is possible to exhibit a collection Θ_{n} of points $a_{n, j}$ with center on the sphere $\Sigma_{n}=\left\{y \in \mathbb{R}^{N}\right.$: $\left.|y|=\left(d_{n+1}+d_{n}\right) / 2\right\}$, such that

$$
T_{n} \subset \bigcup_{a_{n, j} \in \Theta_{n}} B_{1 / \sqrt{n+1}}\left(a_{n, j}\right), \quad\left|a_{n, j}-a_{n, k}\right| \geq 1 / 2 \sqrt{n+1} \quad \text { and } \quad \# \Theta_{n} \leq C n^{N-1}
$$

for some constant $C=C(N)$. If $K_{n, j}=K_{n} \cap B_{1 / \sqrt{n+1}}\left(a_{n, j}\right)$, there holds

$$
K=\bigcup_{0 \leq n \leq a_{K}} \bigcup_{a_{n, j} \in \Theta_{n}} K_{n, j}
$$

The first intermediate step is based on the quasi-additivity property of capacities [2].
Lemma 2.15 Let $q \geq q_{c}$. There exists a constant $C=C(N, q)$ such that

$$
\begin{equation*}
\sum_{a_{n, j} \in \Theta_{n}} C_{2 / q, q^{\prime}}\left(K_{n, j}\right) \leq C n^{\frac{N}{2}-\frac{1}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{\sqrt{n+1}}\right) \quad \forall n \in \mathbb{N}_{*}, \tag{2.55}
\end{equation*}
$$

where $B_{n, j}=B_{2 / \sqrt{n+1}}\left(a_{n, j}\right)$ and $C_{2 / q, q^{\prime}}$ stands for the capacity taken with respect to \mathbb{R}^{N}.
Proof. The following result is proved in [2, Th 3]: if the spheres $B_{\rho_{j}^{\theta}}\left(b_{j}\right)$ are disjoint in \mathbb{R}^{N} and G is an analytic subset of $\bigcup B_{\rho_{j}}\left(b_{j}\right)$ where the ρ_{j} are positive and smaller than some $\rho^{*}>0$, there holds

$$
\begin{equation*}
C_{2 / q, q^{\prime}}(G) \leq \sum_{j} C_{2 / q, q^{\prime}}\left(G \cap B_{\rho_{j}}\left(b_{j}\right)\right) \leq A C_{2 / q, q^{\prime}}(G) \tag{2.56}
\end{equation*}
$$

where $\theta=1-2 / N(q-1)$, for some A depending on N, q and ρ^{*}. This property is called quasi-additivity. We define for $n \in \mathbb{N}_{*}$,

$$
\tilde{T}_{n}=\sqrt{n+1} T_{n}, \quad \tilde{K}_{n}=\sqrt{n+1} K_{n} \quad \text { and } \quad \tilde{\mathcal{Q}}_{n}=\sqrt{n+1} \mathcal{Q}_{n}
$$

Since $K_{n, j} \subset B_{1 / \sqrt{n+1}}\left(a_{n, j}\right)$ and the $C_{2 / q, q^{\prime}}$ capacities are taken with respect to the balls $B_{2 / \sqrt{n+1}}\left(a_{n, j}\right)=B_{n, j}$. By Lemma 2.12 with $r=\rho=1 / \sqrt{n+1}$

$$
\begin{equation*}
C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right) \leq C(n+1)^{\frac{1}{q-1}-\frac{N}{2}} C_{2 / q, q^{\prime}}\left(\tilde{K}_{n, j}\right), \tag{2.57}
\end{equation*}
$$

where $\tilde{K}_{n, j}=\sqrt{n+1} K_{n, j}$ and $\tilde{B}_{n, j}=\sqrt{n+1} B_{n, j}$. For a fixed $n>0$ and each repartition Λ of points $\tilde{a}_{n, j}=\sqrt{n+1} a_{n, j}$ such that the balls $B_{2^{\theta}}\left(\tilde{a}_{n, j}\right)$ are disjoint, the quasi-additivity property holds in the following sense: if we set

$$
K_{n, \Lambda}=\bigcup_{a_{n, j} \in \Lambda} K_{n, j}, \quad \tilde{K}_{n, \Lambda}=\sqrt{n+1} K_{n, \Lambda}=\bigcup_{a_{n, j} \in \Lambda} \tilde{K}_{n, j} \quad \text { and } \quad \tilde{K}_{n}=\sqrt{n+1} K_{n}
$$

then

$$
\begin{equation*}
\sum_{a_{n, j} \in \Lambda} C_{2 / q, q^{\prime}}\left(\tilde{K}_{n, j}\right) \leq A C_{2 / q, q^{\prime}}\left(\tilde{K}_{n, \Lambda}\right) . \tag{2.58}
\end{equation*}
$$

The maximal cardinal of any such repartition Λ is of the order of $C n^{N-1}$ for some positive constant $C=C(N)$, therefore, the number of repartitions needed for a full covering of the set \tilde{T}_{n} is of finite order depending upon the dimension. Because \tilde{K}_{n} is the union of the $\tilde{K}_{n, \Lambda}$,

$$
\begin{equation*}
\sum_{a_{n, j} \in \Theta_{n}} C_{2 / q, q^{\prime}}\left(\tilde{K}_{n, j}\right)=\sum_{\Lambda} \sum_{a_{n, j} \in \Lambda} C_{2 / q, q^{\prime}}\left(\tilde{K}_{n, j}\right) \leq C C_{2 / q, q^{\prime}}\left(\tilde{K}_{n}\right) . \tag{2.59}
\end{equation*}
$$

Since, by Lemma 2.12,
$C_{2 / q, q^{\prime}}\left(\tilde{K}_{n}\right) \leq C_{2 / q, q^{\prime}}^{B_{2(n+1)}}\left(\tilde{K}_{n}\right)=(n+1)^{N-\frac{1}{q-1}} C_{2 / q, q^{\prime}}^{B_{2}}\left(\frac{K_{n}}{\sqrt{n+1}}\right) \leq C(n+1)^{N-\frac{1}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{\sqrt{n+1}}\right)$,
we obtain (2.55) by combining this last inequality with (2.57) and (2.59).
Proof of Theorem 2.14. Step 1. We first notice that

$$
\begin{equation*}
\bar{u}_{K} \leq \sum_{0 \leq n \leq a_{K}} \sum_{a_{n, j} \in \Theta_{n}} \bar{u}_{K_{n, j}} . \tag{2.60}
\end{equation*}
$$

Actually, since $K=\bigcup_{n} \bigcup_{a_{n, j}} K_{n, j}$, for any $0<\epsilon^{\prime}<\epsilon$, there holds $\overline{K_{\epsilon^{\prime}}} \subset \bigcup_{n} \bigcup_{a_{n, j}} K_{n, j \epsilon}$. Because a finite sum of positive solutions of (1.1) is a super solution,

$$
\begin{equation*}
\bar{u}_{K_{\epsilon^{\prime}}} \leq \sum_{0 \leq n \leq a_{K}} \sum_{a_{n, j} \in \Theta_{n}} \bar{u}_{K_{n, j \epsilon}} . \tag{2.61}
\end{equation*}
$$

Letting successively ϵ^{\prime} and ϵ go to 0 implies (2.60).
Step 2. Let $n \in \mathbb{N}$. Since $K_{n, j} \subset B_{1 / \sqrt{n+1}}\left(a_{n, j}\right)$ and $\left|x-a_{n, j}\right|=\left(d_{n}+d_{n+1}\right) / 2=(\sqrt{n+1}+$ $\sqrt{n}) / 2$, we can apply the previous lemmas with $r=1 / \sqrt{n+1}$ and $\rho=r$. For $n \geq n_{N}$ there
holds $t=1 \geq(r+2 \rho)^{2}=9 /(n+1)$ and $\left|x-a_{n, j}\right|=(\sqrt{n+1}-\sqrt{n}) / 2 \geq\left(2+C_{N}\right)(3 / \sqrt{n+1})$ (notice that $n_{N} \geq 8$). Thus

$$
\begin{equation*}
u_{K_{n, j}}(0,1) \leq C e^{(\sqrt{n}-3 / \sqrt{n+1})^{2} / 4} C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right) \leq C e^{3 / 2} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right) . \tag{2.62}
\end{equation*}
$$

Using Lemma 2.15 we obtain, with $d_{n}=d_{n}(1)=\sqrt{n+1}$

$$
\begin{equation*}
\sum_{n=n_{N}}^{a_{K}} \sum_{a_{n, j} \in \Theta_{n}} u_{K_{n, j}}(0,1) \leq C \sum_{n=n_{N}}^{a_{K}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) . \tag{2.63}
\end{equation*}
$$

Finally, we apply Lemma 2.5 if $1 \leq n<n_{N}$ and get

$$
\begin{align*}
\sum_{1}^{n_{N}-1} \sum_{a_{n, j} \in \Theta_{n}} u_{K_{n, j}}(0,1) & \leq C \sum_{1}^{n_{N}-1} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) \\
& \leq C^{\prime} \sum_{1}^{n_{N}-1} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) \tag{2.64}
\end{align*}
$$

For $n=0$, we proceed similarly, in splitting K_{1} in a finite number of $K_{1, i}$, depending only on the dimension, such that diam $K_{1, i}<1 / 3$. Combining (2.63) and (2.64), we derive

$$
\begin{equation*}
\bar{u}_{K}(0,1) \leq C \sum_{n=0}^{a_{K}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) . \tag{2.65}
\end{equation*}
$$

In order to derive the same result for any $t>0$, we notice that

$$
\bar{u}_{K}(y, t)=t^{-\frac{1}{q-1}} \bar{u}_{K \sqrt{t}}(y \sqrt{t}, 1) .
$$

Going back to the definition of $d_{n}=d_{n}(K, t)=\sqrt{n t}=d_{n}(K \sqrt{t}, 1)$, we derive from (2.65) and the fact that $a_{K, t}=a_{K \sqrt{ }, 1}$

$$
\begin{equation*}
\bar{u}_{K}(0, t) \leq C t^{-\frac{1}{q-1}} \sum_{n=0}^{a_{K}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right), \tag{2.66}
\end{equation*}
$$

with $d_{n}=d_{n}(t)=\sqrt{t(n+1)}$. This is (2.54) with $x=0$, and a space translation leads to the final result.
Proof of Theorem [2.1. Let $m>0$ and $F_{m}=F \cap \bar{B}_{m}$. We denote by $U_{B_{m}^{c}}$ the maximal solution of (1.1) in Q_{∞} the initial trace of which vanishes on B_{m}. Such a solution is actually the unique solution of (2.1) which satisfies

$$
\lim _{t \rightarrow 0} u(x, t)=\infty
$$

uniformly on $B_{m^{\prime}}^{c}$, for any $m^{\prime}>m$: this can be checked by noticing that

$$
U_{B_{m}^{c} \ell}(y, t)=\ell^{\frac{1}{q-1}} U_{B_{m}^{c}}(\sqrt{\ell} y, \ell t)=U_{B_{m / \sqrt{\ell}}^{c}}(y, t) .
$$

Furthermore

$$
\lim _{m \rightarrow \infty} U_{B_{m}^{c}}(y, t)=\lim _{m \rightarrow \infty} m^{-\frac{2}{q-1}} U_{B_{1}^{c}}\left(y / m, t / m^{2}\right)=0
$$

uniformly on any compact subset of \bar{Q}_{∞}. Since $\bar{u}_{F_{m}}+U_{B_{m}^{c}}$ is a super-solution, it is larger that \bar{u}_{F} and therefore $\bar{u}_{F_{m}} \uparrow \bar{u}_{F}$. Because $W_{F_{m}}(x, t) \leq W_{F}(x, t)$ and $\bar{u}_{F_{m}} \leq C_{1} W_{F_{m}}(x, t)$, the result follows.

Theorem 2.1 admits the following integral expression.
Theorem 2.16 Assume $q \geq q_{c}$. Then there exists a positive constant $C_{1}^{*}=C^{*}(N, q, T)$ such that, for any closed subset F of \mathbb{R}^{N}, there holds

$$
\begin{equation*}
\bar{u}_{F}(x, t) \leq \frac{C_{1}^{*}}{t^{1+\frac{N}{2}}} \int_{\sqrt{t}}^{\sqrt{t\left(a_{t}+2\right)}} e^{-\frac{s^{2}}{4 t}} s^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{1}{s} F \cap B_{1}(x)\right) s d s \tag{2.67}
\end{equation*}
$$

where $a_{t}=\min \left\{n: F \subset B_{\sqrt{n+1) t}}(x)\right\}$.
Proof. We first use

$$
C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{d_{n+1}}\right) \leq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right),
$$

and we denote

$$
\begin{equation*}
\Phi(s)=C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right) \quad \forall s>0 . \tag{2.68}
\end{equation*}
$$

Step 1. The following inequality holds (see [1] and [29])

$$
\begin{equation*}
c_{1} \Phi(\alpha s) \leq \Phi(s) \leq c_{2} \Phi(\beta s) \quad \forall s>0, \quad \forall 1 / 2 \leq \alpha \leq 1 \leq \beta \leq 2 \tag{2.69}
\end{equation*}
$$

for some positive constants c_{1}, c_{2} depending on N and q. If $\beta \in[1,2]$,

$$
\Phi(\beta s)=C_{2 / q, q^{\prime}}\left(\frac{1}{\beta}\left(\frac{F}{s} \cap B_{\beta}\right)\right) \approx C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{\beta}\right) \geq c_{1} \Phi(s) .
$$

If $\alpha \in[1 / 2,1]$,

$$
\Phi(\alpha s)=C_{2 / q, q^{\prime}}\left(\frac{1}{\alpha}\left(\frac{F}{s} \cap B_{\alpha}\right)\right) \approx C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{\alpha}\right) \leq c_{2} \Phi(s) .
$$

Step 2. By (2.69)

$$
C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right) \leq c_{2} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right) \quad \forall s \in\left[d_{n+1}, d_{n+2}\right],
$$

and $n \leq a_{t}$. Then

$$
\begin{aligned}
& c_{2} \int_{d_{n+1}}^{d_{n+2}} s^{N-\frac{2}{q-1}} e^{-s^{2} / 4 t} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right) s d s \\
& \geq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right) \int_{d_{n+1}}^{d_{n+2}} s^{N-\frac{2}{q-1}} e^{-s^{2} / 4 t} s d s .
\end{aligned}
$$

Using the fact that $N-\frac{2}{q-1} \geq 0$, we get,

$$
\begin{align*}
\int_{d_{n+1}}^{d_{n+2}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} s d s & \geq e^{-\frac{n+2}{4}} d_{n+1}^{N-\frac{2}{q-1}+1}\left(d_{n+2}-d_{n+1}\right) \tag{2.70}\\
& \geq \frac{t}{4 e^{2}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} \tag{2.71}
\end{align*}
$$

Thus

$$
\begin{equation*}
\bar{u}_{F}(x, t) \leq \frac{C}{t^{1+\frac{N}{2}}} \int_{\sqrt{t}}^{\sqrt{t\left(a_{t}+2\right)}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(\frac{1}{s} F \cap B_{1}\right) s d s \tag{2.72}
\end{equation*}
$$

which ends the proof.

3 Estimate from below

If $\mu \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right) \cap \mathfrak{M}^{b}\left(\mathbb{R}^{N}\right)$, we denote by $u_{\mu}=u_{\mu, 0}$ the solution of

$$
\left\{\begin{align*}
\partial_{t} u_{\mu}-\Delta u_{\mu}+u_{\mu}^{q}=0 & \text { in } Q_{T} \tag{3.1}\\
u_{\mu}(., 0)=\mu & \text { in } \mathbb{R}^{N} .
\end{align*}\right.
$$

The maximal σ-moderate solution of (1.1) which has an initial trace vanishing outside a closed set F is defined by

$$
\begin{equation*}
\underline{u}_{F}=\sup \left\{u_{\mu}: \mu \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right) \cap \mathfrak{M}^{b}\left(\mathbb{R}^{N}\right), \mu\left(F^{c}\right)=0\right\} . \tag{3.2}
\end{equation*}
$$

The main result of this section is the next one
Theorem 3.1 Assume $q \geq q_{c}$. There exists a constant $C_{2}=C_{2}(N, q, T)>0$ such that, for any closed subset $F \subset \mathbb{R}^{N}$, there holds

$$
\begin{equation*}
\underline{u}_{F}(x, t) \geq C_{2} W_{F}(x, t) \quad \forall(x, t) \in Q_{T} . \tag{3.3}
\end{equation*}
$$

We first assume that F is compact, and we shall denote it by K. The first observation is that if $\mu \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right), u_{\mu} \in L^{q}\left(Q_{T}\right)$ (see lemma below) and $0 \leq u_{\mu} \leq \mathbb{H}[\mu]:=\mathbb{H}_{\mu}$. Therefore

$$
\begin{equation*}
u_{\mu} \geq \mathbb{H}_{\mu}-\mathbb{G}\left[\mathbb{H}_{\mu}^{q}\right], \tag{3.4}
\end{equation*}
$$

where \mathbb{G} is the Green heat potential in Q_{T} defined by

$$
\mathbb{G}[f](t)=\int_{0}^{t} \mathbb{H}[f(s)](t-s) d s=\int_{0}^{t} \int_{\mathbb{R}^{N}} H(., y, t-s) f(y, s) d y d s
$$

Since the details of the proof are very technical, we shall present its main line. The key idea is to construct, for any $(x, t) \in Q_{T}$, a measure $\mu=\mu(x, t) \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right)$ such that there holds

$$
\begin{equation*}
\mathbb{H}_{\mu}(x, t) \geq C W_{K}(x, t) \quad \forall(x, t) \in Q_{T}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{G}\left(\mathbb{H}_{\mu}\right)^{q} \leq C \mathbb{H}_{\mu} \quad \text { in } Q_{T}, \tag{3.6}
\end{equation*}
$$

with constants C depends only on N, q, and T, then to replace μ by $\mu_{\epsilon}=\epsilon \mu$ with $\epsilon=(2 C)^{-\frac{1}{q-1}}$ in order to derive

$$
\begin{equation*}
u_{\mu_{\epsilon}} \geq 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \geq 2^{-1} C W_{K} . \tag{3.7}
\end{equation*}
$$

From this follows

$$
\begin{equation*}
\underline{u}_{K} \geq 2^{-1} \mathbb{H}_{\mu_{\epsilon}} \geq 2^{-1} C W_{K} . \tag{3.8}
\end{equation*}
$$

and the proof of Theorem 3.1 with $C_{2}=2^{-1} C$.
We recall the following regularity result which actually can be used for defining the norm in negative Besov spaces [35]

Lemma 3.2 There exists a constant $c>0$ such that

$$
\begin{equation*}
c^{-1}\|\mu\|_{W^{-2 / q, q}\left(\mathbb{R}^{N}\right)} \leq\left\|\mathbb{H}_{\mu}\right\|_{L^{q}\left(Q_{T}\right)} \leq c\|\mu\|_{W^{-2 / q, q}\left(\mathbb{R}^{N}\right)} \tag{3.9}
\end{equation*}
$$

for any $\mu \in W^{-2 / q, q}\left(\mathbb{R}^{N}\right)$.

3.1 Estimate from below of the solution of the heat equation

The purely spatial slicing used is the trace on $\mathbb{R}^{N} \times\{0\}$ of an extended slicing in Q_{T} which is constructed as follows: if K is a compact subset of $\mathbb{R}^{N}, m=(x, t)$, we define d_{K}, λ, d_{n} and a_{t} as in Section 2.3. Let $\alpha \in(0,1)$ to be fixed later on, we define \mathcal{T}_{n} for $n \in \mathbb{Z}$ by

$$
\mathcal{T}_{n}= \begin{cases}\mathcal{B}_{\sqrt{t(n+1)}}^{2}(m) \backslash \mathcal{B}_{\sqrt{t n}}^{2}(m) & \text { if } n \geq 1 \\ \mathcal{B}_{\alpha^{-n} \sqrt{t}}^{2}(m) \backslash \mathcal{B}_{\alpha^{1-n} \sqrt{t}}^{2}(m) & \text { if } n \leq 0\end{cases}
$$

and put

$$
\mathcal{T}_{n}^{*}=\mathcal{T}_{n} \cap\{s: 0 \leq s \leq t\}, \text { for } n \in \mathbb{Z}
$$

We recall that for $n \in \mathbb{N}_{*}$,

$$
\mathcal{Q}_{n}=K \cap \mathcal{B}_{\sqrt{t(n+1)}}^{2}(m)=K \cap B_{d_{n}}(x)
$$

and

$$
K_{n}=K \cap \mathcal{T}_{n+1}=K \cap\left(B_{d_{n+1}}(x) \backslash B_{d_{n}}(x)\right)
$$

Let $\nu_{n} \in \mathfrak{M}_{+}\left(\mathbb{R}^{N}\right) \cap W^{-2 / q, q}\left(\mathbb{R}^{N}\right)$ be the q-capacitary measure of the set K_{n} / d_{n+1} (see [1, Sec. $2.2]$). Such a measure has support in K_{n} / d_{n+1} and

$$
\begin{equation*}
\nu_{n}\left(K_{n} / d_{n+1}\right)=C_{2 / q, q^{\prime}}\left(K_{n} / d_{n+1}\right) \text { and }\left\|\nu_{n}\right\|_{W^{-2 / q, q^{\prime}\left(\mathbb{R}^{N}\right)}}=\left(C_{2 / q, q^{\prime}}\left(K_{n} / d_{n+1}\right)\right)^{1 / q} \tag{3.10}
\end{equation*}
$$

We define μ_{n} as follows

$$
\begin{equation*}
\mu_{n}(A)=d_{n+1}^{N-\frac{2}{q-1}} \nu_{n}\left(A / d_{n+1}\right) \quad \forall A \subset K_{n}, A \text { Borel } \tag{3.11}
\end{equation*}
$$

and set

$$
\mu_{t, K}=\sum_{n=0}^{a_{t}} \mu_{n}
$$

and

$$
\begin{equation*}
\mathbb{H}_{\mu_{t, K}}=\sum_{n=0}^{a_{t}} \mathbb{H}_{\mu_{n}} \tag{3.12}
\end{equation*}
$$

Proposition 3.3 Let $q \geq q_{c}$, then there holds

$$
\begin{equation*}
\mathbb{H}_{\mu_{t, K}}(x, t) \geq \frac{1}{(4 \pi t)^{\frac{N}{2}}} \sum_{n=0}^{a_{t}} e^{-\frac{n+1}{4}} d_{n+1}^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) \tag{3.13}
\end{equation*}
$$

in $\mathbb{R}^{N} \times(0, T)$.
Proof. Since

$$
\begin{equation*}
\mathbb{H}_{\mu_{n}}(x, t)=\frac{1}{(4 \pi t)^{\frac{N}{2}}} \int_{K_{n}} e^{-\frac{|x-y|^{2}}{4 t}} d \mu_{n}, \tag{3.14}
\end{equation*}
$$

and

$$
y \in K_{n} \Longrightarrow|x-y| \leq d_{n+1},
$$

(3.13) follows because of (3.11) and (3.12).

3.2 Estimate from above of the nonlinear term

We write (3.4) under the form

$$
\begin{align*}
u_{\mu}(x, t) \geq & \sum_{n \in \mathbb{Z}} \mathbb{H}_{\mu_{n}}(x, t)-\int_{0}^{t} \int_{\mathbb{R}^{N}} H(x, y, t-s)\left[\sum_{n \in A_{K}} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s \tag{3.15}\\
& =I_{1}-I_{2}
\end{align*}
$$

since $\mu_{n}=0$ if $n \notin A_{K}=\mathbb{N} \cap\left[1, a_{t}\right]$, and

$$
\begin{align*}
I_{2} & \leq \frac{1}{(4 \pi)^{\frac{N}{2}}} \int_{0}^{t} \int_{\mathbb{R}^{N}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n \in A_{K}} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s \tag{3.16}\\
& \leq \frac{1}{(4 \pi)^{\frac{N}{2}}}\left(J_{\ell}+J_{\ell}^{\prime}\right),
\end{align*}
$$

for some $\ell \in \mathbb{N}^{*}$ to be fixed later on, where

$$
J_{\ell}=\sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n<p+\ell} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s
$$

and

$$
J_{\ell}^{\prime}=\sum_{p \in \mathbb{Z}} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n \geq p+\ell} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s
$$

The next estimate will be used several times in the sequel.
Lemma 3.4 Let $0<a<b$ and $t>0$, then,

$$
\max \left\{\sigma^{-\frac{N}{2}} e^{-\frac{\rho^{2}}{4 \sigma}}: 0 \leq \sigma \leq t, a t \leq \rho^{2}+\sigma \leq b t\right\}=e^{\frac{1}{4}} \begin{cases}t^{-\frac{N}{2}} e^{-\frac{a}{4}} & \text { if } \frac{a}{2 N}>1, \\ \left(\frac{2 N}{a t}\right)^{\frac{N}{2}} e^{-\frac{N}{2}} & \text { if } \frac{a}{2 N} \leq 1 .\end{cases}
$$

Proof. Set

$$
\mathcal{J}(\rho, \sigma)=\sigma^{-\frac{N}{2}} e^{-\frac{\rho^{2}}{4 \sigma}}
$$

and

$$
\mathcal{K}_{a, b, t}=\left\{(\rho, \sigma) \in[0, \infty) \times(0, t]: a t \leq \rho^{2}+\sigma \leq b t\right\} .
$$

We first notice that, for fixed σ, the maximum of $\mathcal{J}(., \sigma)$ is achieved for ρ minimal. If $\sigma \in[a t, b t]$ the minimal value of ρ is 0 , while if $\sigma \in(0, a t)$, the minimum of ρ is $\sqrt{a t-s}$.

- Assume first $a \geq 1$, then $\mathcal{J}(\sqrt{a t-\sigma}, \sigma)=e^{\frac{1}{4}} \sigma^{-\frac{N}{4}} e^{-\frac{a t}{4 \sigma}}$, thus, if $1 \leq a / 2 N$ the minimal value of $\mathcal{J}(\sqrt{a t-\sigma}, \sigma)$ is $e^{\frac{1-2 N}{4}}\left(\frac{2 N}{a t}\right)^{\frac{N}{2}}$, while, if $a / 2 N<1 \leq a$, the minimum is $e^{\frac{1}{4}} t^{-\frac{N}{2}} e^{-\frac{a}{4}}$.
- Assume now $a \leq 1$. Then

$$
\begin{aligned}
\max \left\{\mathcal{J}(\rho, \sigma):(\rho, \sigma) \in \mathcal{K}_{a, b, t}\right\}= & \max \left\{\max _{\sigma \in(a t, t]} \mathcal{J}(0, \sigma), \max _{\sigma \in(0, a t]} \mathcal{J}(\sqrt{a t-\sigma}, \sigma)\right\} \\
& =\max \left\{(a t)^{-\frac{N}{2}}, e^{\frac{1-2 N}{4}}\left(\frac{2 N}{a t}\right)^{\frac{N}{2}}\right\} \\
= & e^{\frac{1-2 N}{4}}\left(\frac{2 N}{a t}\right)^{\frac{N}{2}} .
\end{aligned}
$$

Combining these two estimates, we derive the result.
Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any $\theta \geq 1 / 2 N$ there holds

$$
\begin{equation*}
\max \{\mathcal{J}(\rho, \sigma):(\rho, \sigma) \in \mathcal{K}(a, b, t)\} \leq e^{\frac{1}{4}}\left(\frac{2 N \theta}{t}\right)^{\frac{N}{2}} e^{-\frac{a}{4}} \quad \text { if } \theta a \geq 1 \tag{3.17}
\end{equation*}
$$

Lemma 3.5 There exists a positive constant $C=C(N, \ell, q)$ such that

$$
\begin{equation*}
J_{\ell} \leq C t^{-\frac{N}{2}} \sum_{n=1}^{a_{t}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\left(1+(n-\ell)_{+}\right) / 4} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) . \tag{3.18}
\end{equation*}
$$

Proof. The set of p for the summation in J_{ℓ} is reduced to $\mathbb{Z} \cap[-\ell+2, \infty)$ and we write

$$
J_{\ell}=J_{1, \ell}+J_{2, \ell}
$$

where

$$
J_{1, \ell}=\sum_{p=2-\ell}^{0} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n<p+\ell} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q}
$$

and

$$
J_{2, \ell}=\sum_{p=1}^{\infty} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n<p+\ell} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q}
$$

If $p=2-\ell, \ldots, 0$,

$$
(y, s) \in \mathcal{T}_{p}^{*} \Longrightarrow t \alpha^{2-2 p} \leq|x-y|^{2}+t-s \leq t \alpha^{-2 p}
$$

and, if $p \geq 1$

$$
(y, s) \in \mathcal{T}_{p}^{*} \Longrightarrow p t \leq|x-y|^{2}+t-s \leq(p+1) t
$$

By Lemma 3.4 and (3.17), there exists $C=C(N, \ell, \alpha)>0$ such that

$$
\begin{equation*}
\max \left\{(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}:(y, s) \in \mathcal{T}_{p}^{*}\right\} \leq C t^{-\frac{N}{2}} e^{-\alpha^{2-2 p} / 4} \tag{3.19}
\end{equation*}
$$

if $p=2-\ell, \ldots, 0$, and

$$
\begin{equation*}
\max \left\{(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}:(y, s) \in \mathcal{T}_{p}^{*}\right\} \leq C t^{-\frac{N}{2}} e^{-p / 4} \tag{3.20}
\end{equation*}
$$

if $p \geq 1$. When $p=2-\ell, \ldots, 0$

$$
\begin{equation*}
\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} \leq C \sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_{n}}^{q}(y, s) \tag{3.21}
\end{equation*}
$$

for some $C=C(\ell, q)>0$, thus

$$
\begin{align*}
J_{1, \ell} & \leq C t^{-\frac{N}{2}} \sum_{p=2-\ell}^{0} e^{-\frac{\alpha^{2-2 p}}{4}} \sum_{n=1}^{p+\ell-1}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q} \\
& \leq C t^{-\frac{N}{2}} \sum_{n=1}^{\ell-1}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q} \sum_{p=n-\ell+1}^{0} e^{-\frac{\alpha^{2-2 p}}{4}} \tag{3.22}\\
& \leq C t^{-\frac{N}{2}} e^{-\frac{\alpha^{2 \ell-2}}{4}} \sum_{n=1}^{\ell-1}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q}
\end{align*}
$$

If the set of p 's is not upper bounded, we introduce $\delta>0$ to be made precise later on. Then

$$
\begin{equation*}
\left[\sum_{1}^{p+\ell-1} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} \leq\left[\sum_{1}^{p+\ell-1} e^{\delta q^{\prime} \frac{n}{4}}\right]^{q / q^{\prime}} \sum_{1}^{p+\ell-1} e^{-\frac{\delta q n}{4}} \mathbb{H}_{\mu_{n}}^{q}(y, s), \tag{3.23}
\end{equation*}
$$

with $q^{\prime}=q /(q-1)$. If, by convention $\mu_{n}=0$ whenever $n>a_{t}$, we obtain, for some $C>0$ which depends also on δ,

$$
\begin{align*}
J_{2, \ell} \leq & C t^{-\frac{N}{2}} \sum_{p=1}^{\infty} e^{\frac{\delta(p+\ell-1) q-p}{4}} \sum_{n=1}^{p+\ell-1} e^{-\frac{\delta q n}{4}}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q} \\
& \leq C t^{-\frac{N}{2}} \sum_{n=1}^{\infty}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q} e^{-\frac{\delta q n}{4}} \sum_{p=(n-\ell+1) \mathrm{V} 1}^{\infty} e^{\frac{\delta(p+\ell-1) q-p}{4}} \tag{3.24}\\
\leq & C t^{-\frac{N}{2}} \sum_{n=1}^{\infty} e^{-\frac{1+(n-\ell)_{+}}{4}}\left\|\mathbb{H}_{\mu_{n}}\right\|_{L^{q}\left(Q_{t}\right)}^{q} .
\end{align*}
$$

Notice that we choose δ such that $\delta \ell q<1$. Combining (3.22) and (3.24), we derive (3.18) from Lemma 3.2, (3.10) and (3.11).

The set of indices p for which the μ_{n} terms are not zero in J_{ℓ}^{\prime} is $\mathbb{Z} \cap\left(-\infty, a_{t}-\ell\right]$. We write

$$
J_{\ell}^{\prime}=J_{1, \ell}^{\prime}+J_{2, \ell}^{\prime},
$$

where

$$
J_{1, \ell}^{\prime}=\sum_{p=-\infty}^{0} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n=1 \vee p+\ell}^{\infty} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s
$$

and

$$
J_{2, \ell}^{\prime}=\sum_{p=1}^{a_{t}-\ell} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n=p+\ell}^{\infty} \mathbb{H}_{\mu_{n}}(y, s)\right]^{q} d y d s
$$

Lemma 3.6 There exists a constant $C=C(N, q, \ell)>0$ such that

$$
\begin{equation*}
J_{1, \ell}^{\prime} \leq C t^{1-\frac{N q}{2}} \sum_{n=0}^{a_{t}} e^{-\frac{\left(1+\beta_{0}\right)(n-h)_{+}}{4}} d_{n+1}^{N q-2 q^{\prime}} C_{2 / q, q^{\prime}}^{q}\left(\frac{K_{n}}{d_{n+1}}\right) \tag{3.25}
\end{equation*}
$$

where $\beta_{0}=(q-1) / 4$ and $h=2 q(q+1) /(q-1)^{2}$.
Proof. Since

$$
\begin{equation*}
(y, s) \in \mathcal{T}_{p}^{*}, \text { and }(z, 0) \in K_{n} \Longrightarrow|y-z| \geq\left(\sqrt{n}-\alpha^{-p}\right) \sqrt{t} \tag{3.26}
\end{equation*}
$$

there holds

$$
\mathbb{H}_{\mu_{n}}(y, s) \leq(4 \pi s)^{-\frac{N}{2}} e^{-\frac{\left(\sqrt{n}-\alpha^{-p}\right)^{2} t}{4 s}} \mu_{n}\left(K_{n}\right) \leq C t^{-\frac{N}{2}} e^{-\frac{\left(\sqrt{n}-\alpha^{-p}\right)^{2}}{4}} \mu_{n}\left(K_{n}\right),
$$

by Lemma 3.4. Let $\epsilon_{n}>0$ such that

$$
A_{\epsilon}=\sum_{n=1}^{\infty} \epsilon_{n}^{q^{\prime}}<\infty
$$

then

$$
\begin{align*}
J_{1, \ell}^{\prime} & \leq C A_{\epsilon}^{q / q^{\prime}} t^{-\frac{N q}{2}} \sum_{p=-\infty}^{0} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} \sum_{n=1 \vee(p+\ell)}^{\infty} \epsilon_{n}^{-q} e^{-q \frac{(\sqrt{n-\alpha}-p)^{2}}{4}} \mu_{n}^{q}\left(K_{n}\right) d s d y \\
& \leq C A_{\epsilon}^{q / q^{\prime}} t^{-\frac{N q}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}\left(K_{n}\right) \sum_{-\infty} e^{-\frac{q(\sqrt{n}-\alpha-p)^{2}}{4}} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} d s d y \tag{3.27}\\
& \leq C A_{\epsilon}^{q / q} t^{\prime} t^{-\frac{N q}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}\left(K_{n}\right) e^{-\frac{q(\sqrt{n}-1)^{2}}{4}} \iint_{\cup_{p \leq 0} \mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} d s d y \\
& \leq C A_{\epsilon}^{q / q q^{\prime}} t^{1-\frac{N q}{2}} \sum_{n=1}^{\infty} \epsilon_{n}^{-q} \mu_{n}^{q}\left(K_{n}\right) e^{-\frac{q(\sqrt{n}-1)^{2}}{4}} .
\end{align*}
$$

Set $h=2 q(q+1) /(q-1)^{2}$ and $Q=(1+q) / 2$, then $q(\sqrt{n}-1)^{2} \geq Q(n-h)_{+}$for any $n \geq 1$. If we choose $\epsilon_{n}=e^{-\frac{(q-1)(n-h)_{+}}{16 q}}$, there holds $\epsilon_{n}^{-q} e^{-\frac{q(\sqrt{n}-1)^{2}}{4}} \leq e^{\frac{(q+3)(n-h)_{+}}{16}}$. Finally

$$
J_{1, \ell}^{\prime} \leq C t^{1-\frac{N q}{2}} \sum_{n=1}^{\infty} e^{\frac{\left(1+\epsilon_{0}\right)(n-h)_{+}}{4}} \mu_{n}^{q}\left(K_{n}\right)
$$

with $\beta_{0}=(q-1) / 4$, which yields to (3.25) by the choice of the μ_{n}.
In order to make easier the obtention of the estimate of the term $J_{2, \ell}^{\prime}$, we first give the proof in dimension 1 .

Lemma 3.7 Assume $N=1$ and ℓ is an integer larger than 1. There exists a positive constant $C=C(q, \ell)>0$ such that

$$
\begin{equation*}
J_{2, \ell}^{\prime} \leq C t^{-1 / 2} \sum_{n=\ell}^{a_{t}} e^{-\frac{n}{4}} d_{n+1}^{\frac{q-3}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) \tag{3.28}
\end{equation*}
$$

Proof. If $(y, s) \in \mathcal{T}_{p}^{*}$ and $z \in K_{n}(p \geq 1, n \geq p=\ell)$, there holds $|x-y| \geq \sqrt{t} \sqrt{p}$ and $|y-z| \geq \sqrt{t}(\sqrt{n}-\sqrt{p+1})$. Therefore

$$
J_{2, \ell}^{\prime} \leq C \sqrt{t} \sum_{p=1}^{a_{t}-\ell} \frac{1}{\sqrt{p}} \int_{0}^{t} e^{-\frac{p t}{4(t-s)}}\left(\sum_{n=p+\ell}^{a_{t}} s^{-1 / 2} e^{-\frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} \mu_{n}\left(K_{n}\right)\right)^{q} .
$$

If $\epsilon \in(0, q)$ is some positive parameter which will be made more precise later on, there holds

$$
\begin{aligned}
& \left(\sum_{n=p+\ell}^{a_{t}} s^{-1 / 2} e^{-\frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} \mu_{n}\left(K_{n}\right)\right)^{q} \\
& \quad \leq\left(\sum_{n=p+\ell}^{a_{t}} e^{-\epsilon q^{\prime} \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}}\right)^{q / q^{\prime}} \sum_{n=p+\ell}^{a_{t}} s^{-\frac{q}{2}} e^{-(q-\epsilon) \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} \mu_{n}^{q}\left(K_{n}\right)
\end{aligned}
$$

by Hölder's inequality. By comparison between series and integrals and using Gauss integral

$$
\begin{aligned}
\sum_{n=p+\ell}^{a_{t}} e^{-\epsilon q^{\prime} \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} & \leq \int_{p+\ell}^{\infty} e^{-\epsilon q^{\prime} \frac{(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x \\
& =2 \int_{\sqrt{p+\ell}-\sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q^{\prime} x^{2} t}{4 s}}(x+\sqrt{p+1}) d x \\
& \leq \frac{4 s}{\epsilon q^{\prime} t} e^{-\epsilon q^{\prime} \frac{\left(\sqrt{p+\ell-\sqrt{p+1})^{2} t}\right.}{4 s}}+2 \sqrt{p+1} \int_{\sqrt{p+\ell}-\sqrt{p+1}}^{\infty} e^{-\frac{\epsilon q^{\prime} x^{2} t}{4 s}} d x \\
& \leq C \sqrt{\frac{(p+1) s}{t}} e^{-\epsilon q^{\prime} \frac{\left(\sqrt{p+\ell-\sqrt{p+1})^{2} t}\right.}{2 s}} \\
& \leq C \sqrt{\frac{(p+1) s}{t}} .
\end{aligned}
$$

If we set $q_{\epsilon}=q-\epsilon$, then

$$
J_{2, \ell}^{\prime} \leq C \epsilon^{-q^{\prime} / q} t^{1-\frac{q}{2}} \sum_{n=\ell+1}^{\infty} \mu_{n}^{q}\left(K_{n}\right) \sum_{p=1}^{n-\ell} p^{\frac{q-2}{2}} \int_{0}^{t}(t-s)^{-1 / 2} s^{-1 / 2} e^{-\frac{p t}{4(t-s)}} e^{-q_{\epsilon}} \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s} d s .
$$

where $C=C(\epsilon, q)>0$. Since

$$
\begin{aligned}
& \int_{0}^{t}(t-s)^{-1 / 2} s^{-1 / 2} e^{-\frac{p t}{4(t-s)}} e^{-q_{\epsilon} \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} d s \\
&=\int_{0}^{1}(1-s)^{-1 / 2} s^{-1 / 2} e^{-\frac{p}{4(1-s)}} e^{-q_{\epsilon}} \frac{(\sqrt{n}-\sqrt{p+1})^{2}}{4 s}
\end{aligned} s,
$$

we can apply Lemma A. 1 with $a=1 / 2, b=1 / 2, A=\sqrt{p}$ and $B=\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1})$. In this range of indices $B \geq \sqrt{q_{\epsilon}}(\sqrt{p+\ell}-\sqrt{p+1}) \geq \sqrt{q_{\epsilon}}(\ell-1) \sqrt{p}$, thus $\kappa=\sqrt{q_{\epsilon}}(\ell-1)$ and

$$
\sqrt{\frac{A}{A+B}} \sqrt{\frac{B}{A+B}} \leq p^{\frac{1}{4}} n^{-1 / 2}(\sqrt{n}-\sqrt{p})^{1 / 2} .
$$

Therefore

$$
\begin{equation*}
\int_{0}^{t}(t-s)^{-1 / 2} s^{-\frac{q}{2}} e^{-\frac{p t}{4(t-s)}} e^{-q \frac{(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}} d s \leq \frac{C p^{\frac{1}{4}}(\sqrt{n}-\sqrt{p})^{1 / 2}}{\sqrt{n}} e^{-\frac{(\sqrt{p}+\sqrt{q \epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}}, \tag{3.29}
\end{equation*}
$$

which implies

$$
\begin{equation*}
J_{2, \ell}^{\prime} \leq C t^{1-\frac{q}{2}} \sum_{n=\ell+1}^{a_{t}} \frac{\mu_{n}^{q}\left(K_{n}\right)}{\sqrt{n}} \sum_{p=1}^{n-\ell} p^{\frac{2 q-3}{4}}(\sqrt{n}-\sqrt{p})^{1 / 2} e^{-\frac{(\sqrt{p}+\sqrt{\epsilon \epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}}, \tag{3.30}
\end{equation*}
$$

where C depends of ϵ, q and ℓ. By Lemma A. 2

$$
\begin{equation*}
J_{2, \ell}^{\prime} \leq C t^{1-\frac{q}{2}} \sum_{n=\ell+1}^{a_{t}} n^{\frac{q-3}{2}} e^{-\frac{n}{4}} \mu_{n}^{q}\left(K_{n}\right) \tag{3.31}
\end{equation*}
$$

Because $\mu_{n}\left(K_{n}\right)=d_{n+1}^{\frac{q-3}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right)$ (remember $N=1$) and diam $\frac{K_{n}}{d_{n+1}} \leq n^{-1}$, there holds

$$
\begin{equation*}
\mu_{n}^{q}\left(K_{n}\right) \leq C\left(\frac{\sqrt{t}}{\sqrt{n}}\right)^{q-3} \mu_{n}\left(K_{n}\right)=C\left(\frac{\sqrt{t}}{\sqrt{n}}\right)^{q-3} d_{n+1}^{\frac{q-3}{q-1}} C_{2 / q, q^{\prime}}\left(K_{n} / d_{n+1}\right) \tag{3.32}
\end{equation*}
$$

and inequality (3.28) follows.
Next we give the general proof. For this task we shall use again the quasi-additivity with separated partitions.

Lemma 3.8 Assume $N \geq 2$ and ℓ is an integer larger than 1 . There exist a positive constant $C_{1}=C_{1}(q, N, \ell)>0$ such that f

$$
\begin{equation*}
J_{2, \ell}^{\prime} \leq C_{1} t^{-\frac{N}{2}} \sum_{n=\ell}^{a_{t}} e^{-\frac{n}{4}} d_{n+1}^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right) . \tag{3.33}
\end{equation*}
$$

Proof. As in the proof of Theorem [2.14, we know that there exists a finite number J, depending only on the dimension N, of separated sub-partitions $\left\{\# \Theta_{t, n}^{h}\right\}_{h=1}^{J}$ of the rescaled sets $\tilde{T}_{n}=\sqrt{\frac{n+1}{t}} T_{n}$ by the N-dim balls $B_{2}\left(\tilde{a}_{n, j}\right)$ where $\tilde{a}_{n, j}=\sqrt{\frac{n+1}{t}} a_{n, j},\left|a_{n, j}\right|=\frac{d_{n+1}+d_{n}}{2}$ and $\left|a_{n, j}-a_{n, k}\right| \geq \sqrt{\frac{4 t}{n+1}}$. Furthermore $\# \Theta_{t, n}^{h} \leq C n^{N-1}$. We denote $K_{n, j}=K_{n} \cap B \sqrt{\frac{t}{n+1}}\left(a_{n, j}\right)$. We write $\mu_{n}=\sum_{h=1}^{J} \mu_{n}^{h}$, and accordingly $J_{2, \ell}^{\prime}=\sum_{h=1}^{J} J_{2, \ell}^{\prime h}$, where $\mu_{n}^{h}=\sum_{j \in \Theta_{t, n}^{h}} \mu_{n, j}$, and $\mu_{n, j}$ are the capacitary measures of $K_{n, j}$ relative to $B_{n, j}=B_{6 t / 5 \sqrt{n}}\left(a_{n}, j\right)$, which means

$$
\begin{equation*}
\nu_{n, j}\left(K_{n, j}\right)=C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right) \quad \text { and } \quad\left\|\nu_{n, j}\right\|_{W^{-2 / q, q^{\prime}}\left(B_{n, j}\right)}=\left(C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right)\right)^{1 / q} \tag{3.34}
\end{equation*}
$$

Thus

$$
J_{2, \ell}^{\prime}=\sum_{p=1}^{a_{t}-\ell} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n=p+\ell}^{\infty} \sum_{h=1}^{J} \sum_{j \in \Theta_{t, n}^{h}} \mathbb{H}_{\mu_{n, j}}(y, s)\right]^{q} d y d s
$$

We denote

$$
J_{2, \ell}^{\prime h}=\sum_{p=1}^{a_{t}-\ell} \iint_{\mathcal{T}_{p}^{*}}(t-s)^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}\left[\sum_{n=p+\ell}^{\infty} \sum_{j \in \Theta_{t, n}^{h}} \mathbb{H}_{\mu_{n, j}}(y, s)\right]^{q} d y d s
$$

and clearly

$$
\begin{equation*}
J_{2, \ell}^{\prime} \leq C \sum_{h=1}^{J} J_{2, \ell}^{\prime} h \tag{3.35}
\end{equation*}
$$

where C depends only on N and q. For integers n and p such that $n \geq \ell+1$, we set

$$
\lambda_{n, j, y}=\inf \left\{|y-z|: z \in B_{\sqrt{t} / \sqrt{n+1}}\left(a_{n, j}\right)\right\}=\left|y-a_{n, j}\right|-\frac{\sqrt{t}}{\sqrt{n+1}} .
$$

Therefore

$$
\left.\begin{array}{rl}
\sum_{n=p+\ell}^{a_{t}} \int_{K_{n}} e^{-\frac{|y-z|^{2}}{4 s}} d \mu_{n}^{h}(z) & =\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} \int_{K_{n, j}} e^{-\frac{|y-z|^{2}}{4 s}} d \mu_{n, j}(z) \\
\leq & \left(\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} e^{-\epsilon q^{\prime}} \frac{\lambda_{n, j, y}^{2}}{4 s}\right.
\end{array}\right)^{1 / q^{\prime}}\left(\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} e^{-q \lambda_{n, j, y}^{2} \frac{1-\epsilon}{4 s}} \mu_{n, j}^{q}\left(K_{n, j}\right)\right)^{1 / q}
$$

where $\epsilon>0$ will be made precise later on.
Step 1 We claim that

$$
\begin{equation*}
\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}} e^{-\epsilon q^{\prime} \frac{\lambda_{n, j, y}^{2}}{4 s}} \leq C \sqrt{\frac{p s}{t}} \tag{3.36}
\end{equation*}
$$

where C depends on ϵ, q and N. If y is fixed in T_{p}, we denote by z_{y} the point of T_{n} which solves $\left|y-z_{y}\right|=\operatorname{dist}\left(y, T_{n}\right)$. Thus

$$
\sqrt{t}(\sqrt{n}-\sqrt{p+1}) \leq\left|y-z_{y}\right| \leq t(\sqrt{n}-\sqrt{p})
$$

Let $Y=y \sqrt{t(p+1)} /|y|$. On the axis $\overrightarrow{0 Y}$ we set $\mathbf{e}=Y /|Y|$, consider the points $b_{k}=(k \sqrt{t} / \sqrt{n}) \mathbf{e}$ where $-n \leq k \leq n$ and denote by $G_{n, k}$ the spherical shell obtain by intersecting the spherical shell T_{n} with the domain $H_{n, k}$ which is the set of points in \mathbb{R}^{N} limited by the hyperplanes orthogonal to $\overrightarrow{0 Y}$ going through $((k+1) \sqrt{t} / \sqrt{n}) \mathbf{e}$ and $((k-1) \sqrt{t} / \sqrt{n}) \mathbf{e}$. The number of points $a_{n, j} \in G_{n, k}$ is smaller than $C(n+1-|k|)^{N-2}$, where C depends only on N, and we denote by $\Lambda_{n, k}$ the set of $j \in \Theta_{t, n}$ such that $a_{n, j} \in G_{n, k}$. Furthermore, if $a_{n, j} \in G_{n, k}$ elementary geometric considerations (Pythagore's theorem) imply that $\lambda_{n, j, y}^{2}$ is greater than $t(n+p+1-2 k \sqrt{p+1} / \sqrt{n})$. Therefore

$$
\begin{equation*}
\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}} e^{-\epsilon q^{\prime} \frac{\lambda_{n, j, y}^{2}}{4 s}} \leq C \sum_{n=p+\ell}^{a_{t}} \sum_{k=-n}^{n}(n+1-|k|)^{N-2} e^{-\frac{\epsilon q^{\prime}(n+p+1-2 k \sqrt{p+1} /) t}{4 s \sqrt{n}}} \tag{3.37}
\end{equation*}
$$

Case $N=2$. Summing a geometric series and using the inequality $\frac{e^{u}}{e^{u}-1} \leq 1+u^{-1}$ for $u>0$, we obtain

$$
\begin{align*}
\sum_{k=-n}^{n} e^{\frac{\epsilon q^{\prime}(k \sqrt{p+1}) t}{2 s \sqrt{n}}} & \leq e^{\frac{\epsilon q^{\prime} t \sqrt{n(p+1)}}{2 s}} \frac{e^{\frac{\epsilon q^{\prime} t \sqrt{p+1}}{2 s \sqrt{n}}}}{e^{\frac{\epsilon q^{\prime} t \sqrt{p+1}}{2 s \sqrt{n}}-1}} \tag{3.38}\\
& \leq e^{\frac{\epsilon q^{\prime} t \sqrt{n(p+1)}}{2 s}}\left(1+\frac{2 s \sqrt{n}}{\epsilon q^{\prime} t \sqrt{p+1}}\right)
\end{align*}
$$

Thus, by comparison between series and integrals,

$$
\begin{align*}
& \sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}} e^{-\frac{\epsilon q^{\prime} \lambda_{n, j, y}^{2}}{4 s}} \leq C \sum_{n=p+\ell}^{a_{t}}\left(1+\frac{s \sqrt{n}}{t \sqrt{p}}\right) e^{-\frac{\varepsilon q^{\prime}(\sqrt{n}-\sqrt{p+1})^{2}}{4 s}} \\
& \leq C \int_{p+1}^{\infty} e^{-\frac{\varepsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x \tag{3.39}\\
& \quad+\frac{C s}{t \sqrt{p}} \int_{p+1}^{\infty} \sqrt{x} e^{-\frac{\varepsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x .
\end{align*}
$$

Next

$$
\begin{align*}
\int_{p+1}^{\infty} e^{-\frac{\epsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x & =2 \int_{\sqrt{p+1}}^{\infty} e^{-\frac{\varepsilon q^{\prime}(y-\sqrt{p+1})^{2} t}{4 s}} y d y \\
& =2 \int_{0}^{\infty} e^{-\frac{\epsilon q^{\prime} y^{2} t}{4 s}} y d y+2 \sqrt{p+1} \int_{0}^{\infty} e^{-\frac{\varepsilon q^{\prime} y^{2} t}{4 s}} d y \tag{3.40}\\
& =\frac{2 s}{t} \int_{0}^{\infty} e^{-\frac{\varepsilon q^{\prime} z^{2}}{4}} z d z+2 \sqrt{\frac{(p+1) s}{t}} \int_{0}^{\infty} e^{-\frac{\varepsilon q^{\prime} z^{2}}{4}} d z
\end{align*}
$$

and

$$
\begin{align*}
\int_{p+1}^{\infty} \sqrt{x} e^{-\frac{\epsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x & =2 \int_{\sqrt{p+1}}^{\infty} e^{-\frac{\varepsilon q^{\prime}(y-\sqrt{p+1})^{2} t}{4 s}} y^{2} d y \\
& =2 \int_{0}^{\infty} e^{-\frac{\varepsilon q^{\prime} y^{2} t}{4 s}}(y+\sqrt{p+1})^{2} d y \\
& \leq 4 \int_{0}^{\infty} e^{-\frac{\epsilon q^{\prime} y^{2} t}{4 s}} y^{2} d y+4(p+1) \int_{0}^{\infty} e^{-\frac{\epsilon q^{\prime} y^{2} t}{4 s}} d y \tag{3.41}\\
& \leq 4\left(\frac{s}{t}\right)^{3 / 2} \int_{0}^{\infty} e^{-\frac{\varepsilon z^{\prime} z^{2}}{4}} z^{2} d z+4(p+1) \sqrt{\frac{s}{t}} \int_{0}^{\infty} e^{-\frac{\varepsilon q^{\prime} z^{2}}{4}} d z
\end{align*}
$$

Jointly with (3.39), these inequalities imply

$$
\begin{equation*}
\sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}} e^{-\frac{\epsilon q^{\prime} \lambda_{n, j, y}^{2}}{4 s}} \leq C \sqrt{\frac{p s}{t}} \tag{3.42}
\end{equation*}
$$

Case $N>2$. Because the value of the right-hand side of (3.37) is an increasing value of N, it is sufficient to prove (3.36) when N is even, say $(N-2) / 2=d \in \mathbb{N}_{*}$. There holds

$$
\begin{equation*}
\sum_{k=-n}^{n}(n+1-|k|)^{d} e^{\frac{\epsilon q^{\prime}(k \sqrt{p+1}) t}{2 s \sqrt{n}}} \leq 2 \sum_{k=0}^{n}(n+1-k)^{d} e^{\frac{\epsilon q^{\prime}(k \sqrt{p+1}) t}{2 s \sqrt{n}}} . \tag{3.43}
\end{equation*}
$$

We set

$$
\alpha=\epsilon q^{\prime} \frac{t \sqrt{p+1}}{2 s \sqrt{n}} \quad \text { and } I_{d}=\sum_{k=0}^{n}(n+1-k)^{d} e^{k \alpha}
$$

Since

$$
e^{k \alpha}=\frac{e^{(k+1) \alpha}-e^{k \alpha}}{e^{\alpha}-1}
$$

we use Abel's transform to obtain

$$
\begin{aligned}
I_{d} & =\frac{1}{e^{\alpha}-1}\left(e^{(n+1) \alpha}-(n+1)^{d}+\sum_{k=1}^{n}\left((n+2-k)^{d}-(n+1-k)^{d}\right) e^{k \alpha}\right) \\
& \leq \frac{1}{e^{\alpha}-1}\left((1-d) e^{(n+1) \alpha}-(n+1)^{d}+d e^{\alpha} \sum_{k=1}^{n}\left((n+1-k)^{d-1}\right) e^{k \alpha}\right)
\end{aligned}
$$

Therefore the following induction holds

$$
\begin{equation*}
I_{d} \leq \frac{d e^{\alpha}}{e^{\alpha}-1} I_{d-1} \tag{3.44}
\end{equation*}
$$

In (3.38), we have already used the fact that

$$
\frac{d e^{\alpha}}{e^{\alpha}-1} \leq C\left(1+\frac{s \sqrt{n}}{t \sqrt{p}}\right)
$$

and

$$
I_{d} \leq C\left(1+\left(\frac{s \sqrt{n}}{t \sqrt{p}}\right)^{d+1}\right) I_{0}
$$

Thus (3.39) is replaced by

$$
\begin{align*}
& \sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}} e^{-\frac{\epsilon q^{\prime} \lambda_{n, j, y}^{2}}{4 s} \leq C \sum_{n=p+\ell}^{a_{t}}\left(1+\left(\frac{s \sqrt{n}}{t \sqrt{p}}\right)^{d+1}\right) e^{-\frac{\epsilon q^{\prime}(\sqrt{n}-\sqrt{p+1})^{2} t}{4 s}}} \begin{array}{l}
\leq C \int_{p+1}^{\infty} e^{-\frac{\epsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x \\
\quad+\left(\frac{C s}{t \sqrt{p}}\right)^{d+1} \int_{p+1}^{\infty} x^{(d+1) / 2} e^{-\frac{\epsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x .
\end{array} .
\end{align*}
$$

The first integral on the right-hand side has already been estimated in (3.40), for the second integral, there holds

$$
\begin{align*}
& \int_{p+1}^{\infty} x^{(d+1) / 2} e^{-\frac{\varepsilon q^{\prime}(\sqrt{x}-\sqrt{p+1})^{2} t}{4 s}} d x=\int_{0}^{\infty}(y+\sqrt{p+1})^{d+2} e^{-\frac{\epsilon q^{\prime} y^{2} t}{4 s}} d x \\
& \leq \leq \int_{0}^{\infty} y^{d+2} e^{-\frac{\varepsilon q^{\prime} y^{2} t}{4 s}} d y+C p^{1+\frac{d}{2}} \int_{0}^{\infty} e^{-\frac{\epsilon q^{\prime} y^{2} t}{4 s}} d y \\
& \leq C\left(\frac{s}{t}\right)^{2+\frac{d}{2}} \int_{0}^{\infty} z^{(d+1) / 2} e^{-\frac{\varepsilon q^{\prime} z^{2}}{4}} d z \tag{3.46}\\
&+C\left(\frac{s}{t}\right)^{3 / 2} p^{1+\frac{d}{2}} \int_{0}^{\infty} e^{-\frac{\epsilon q^{\prime} z^{2}}{4}} d z
\end{align*}
$$

Combining (3.40), (3.45) and (3.46), we derive (3.36).

Step 2. Since $\mathcal{T}_{p}^{*} \subset \Gamma_{p} \times[0, t]$ where $\Gamma_{p}=B_{d_{p+1}}(x) \backslash B_{d_{p-1}}(x),(y, s) \in \mathcal{T}_{p}^{*}$ implies that $|x-y|^{2} \geq(p-1) t$, thus $J_{2, \ell}^{\prime h}$ satisfies

$$
\begin{align*}
J_{2, \ell}^{\prime h} \leq & C t^{\frac{1-q}{2}} \sum_{p=1}^{\infty} p^{\frac{q-1}{2}} \int_{0}^{t} \int_{\Gamma_{p}}(t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1) / 2} e^{-\frac{|x-y|^{2}}{4(t-s)}} \\
& \times \sum_{n=p+\ell}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} e^{-\frac{q \lambda_{n, j, y}^{2}(1-\epsilon)}{4 s}} \mu_{n, j}^{q}\left(K_{n, j}\right) d s d y \\
\leq & C t^{\frac{1-q}{2}} \sum_{n=\ell+1}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} \mu_{n, j}^{q}\left(K_{n, j}\right) \tag{3.47}\\
& \times \sum_{p=1}^{n-\ell} p^{\frac{q-1}{2}} \int_{0}^{t} \int_{\Gamma_{p}}(t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1) / 2} e^{-|x-y|^{2} / 4(t-s)} e^{-\frac{q \lambda_{n, j, y}^{2}(1-\epsilon)}{4 s}} d s d y
\end{align*}
$$

and the constant C depends on N, q and ϵ. Next we set $q_{\epsilon}=(1-\epsilon) q$. Writting

$$
\left|y-a_{n, j}\right|^{2}=|x-y|^{2}+\left|x-a_{n, j}\right|^{2}-2\left\langle y-x, a_{n, j}-x\right\rangle \geq p t+\left|x-a_{n, j}\right|^{2}-2\left\langle y-x, a_{n, j}-x\right\rangle,
$$

we get

$$
\int_{\Gamma_{p}} e^{-\frac{q \epsilon\left|y-a_{n, j}\right|^{2}}{4 s}} d y=e^{-\frac{q_{\epsilon}\left|x-a_{n, j}\right|^{2}}{4 s}} \int_{\sqrt{t p}}^{\sqrt{t(p+1)}} e^{-\frac{q_{\epsilon} r^{2}}{4 s}} \int_{|x-y|=r} e^{2 q_{\epsilon}\left\langle y-x, a_{n, j}-x\right\rangle / 4 s} d S_{r}(y) d r
$$

For estimating the value of the spherical integral, we can assume that $a_{n, j}-x=\left(0, \ldots, 0,\left|a_{n, j}-x\right|\right)$, $y=\left(y_{1}, \ldots, y_{N}\right)$ and, using spherical coordinates with center at x, that the unit sphere has the representation $S^{N-1}=\left\{(\sin \phi \cdot \sigma, \cos \phi) \in \mathbb{R}^{N-1} \times \mathbb{R}: \sigma \in S^{N-2}, \phi \in[0, \pi]\right\}$. With this representation, $d S_{r}=r^{N-1} \sin ^{N-2} \phi d \phi d \sigma$ and $\left\langle y-x, a_{n, j}-x\right\rangle=\left|a_{n, j}-x\right||y-x| \cos \phi$. Therefore

$$
\int_{|x-y|=r} e^{2 q_{\epsilon} \frac{\left\langle y-x, a_{n, j}-x\right\rangle}{4 s}} d S_{r}(y)=r^{N-1}\left|S^{N-2}\right| \int_{0}^{\pi} e^{2 q_{\epsilon} \frac{\left|a_{n, j}-x\right| r \cos \phi}{4 s}} \sin ^{N-2} \phi d \phi .
$$

By Lemma A. 3

$$
\begin{align*}
\int_{|x-y|=r} e^{2 q_{\epsilon} \frac{\left\langle y-x, a_{n, j}-x\right\rangle}{4 s}} d S_{r}(y) & \leq C \frac{r^{N-1} e^{2 q_{\epsilon} \frac{r\left|a_{n, j}-x\right|}{4 s}}}{\left(1+\frac{r\left|a_{n, j}-x\right|}{s}\right)^{\frac{N-1}{2}}} \tag{3.48}\\
& \leq C s^{\frac{N-1}{2}}\left(\frac{r}{\left|a_{n, j}-x\right|}\right)^{\frac{N-1}{2}} e^{2 q_{\epsilon} \frac{r\left|a_{n, j}-x\right|}{4 s}} .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\int_{\Gamma_{p}} e^{-q_{\epsilon} \frac{\left|y-a_{n, j}\right|^{2}}{4 s}} d y \leq C t^{\frac{N-1}{4}} p^{\frac{N-3}{4}} \frac{s^{\frac{N-1}{2}} e^{-q_{\epsilon} \frac{\left(\left|a_{n, j}-x\right|-\sqrt{t(p+1)}\right)^{2}}{4 s}}}{\left|a_{n, j}-x\right|^{\frac{N-1}{2}}}, \tag{3.49}
\end{equation*}
$$

and, since $\left|a_{n, j}-x\right| \geq \sqrt{t n}$,

$$
\begin{align*}
& \int_{0}^{t} \int_{\Gamma_{p}}(t-s)^{-\frac{N}{2}} s^{-(q(N-1)+1) / 2} e^{-\frac{|x-y|^{2}}{4(t-s)}} e^{-q_{\epsilon} \frac{\lambda_{n, j, y}^{2}}{4 s}} d y d s \\
& \leq C \frac{\sqrt{t} p^{\frac{N-3}{4}}}{n^{\frac{N-1}{4}}} \int_{0}^{t}(t-s)^{-\frac{N}{2}} s^{-\frac{(q-1)(N-1)+1}{2}} e^{-\frac{p t}{4(t-s)}} e^{-q_{\epsilon}} \frac{(\sqrt{t n}-\sqrt{t(p+1)})^{2}}{4 s} \tag{3.50}
\end{align*} s t .
$$

We apply Lemma A.1, with $A=\sqrt{p}, B=\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1}), b=\frac{(q-1)(N-1)+1}{2}, a=\frac{N}{2}$ and $\kappa=\sqrt{q_{\epsilon}}(\ell-1) / 8$ as in the case $N=1$, and noticing that, for these specific values,

$$
\begin{aligned}
& A^{1-a} B^{1-b}(A+B)^{a+b-2}= p^{\frac{2-N}{4}}\left(\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1})\right)^{\frac{1-(q-1)(N-1)}{2}} \\
& \times\left(\sqrt{p}+\sqrt{q_{\epsilon}}(\sqrt{n}-\sqrt{p+1})\right)^{\frac{(q-1)(N-1)+N-3}{2}} \\
& \leq C\left(\frac{n}{p}\right)^{\frac{N}{4}-1 / 2}\left(\frac{\sqrt{n}-\sqrt{p}}{\sqrt{n}}\right)^{\frac{1-(q-1)(N-1)}{2}},
\end{aligned}
$$

where C depends on N, q and κ. Therefore

$$
\begin{align*}
& \int_{0}^{t} \int_{\Gamma_{p}}(t-s)^{-\frac{N}{2}} s^{-\frac{N}{2}} e^{-\frac{|x-y|^{2}}{4(t-s)}} e^{-q_{\epsilon}|y-z|^{2} / 4 s} d y d s \\
& \quad \leq C \frac{t^{(1-q(N-1)) / 2} p^{\frac{N-3}{4}}}{n^{\frac{N-1}{4}}}\left(\frac{n}{p}\right)^{\frac{N}{4}-1 / 2}\left(\frac{\sqrt{n}-\sqrt{p}}{\sqrt{n}}\right)^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{\bar{p}}+\sqrt{\epsilon \epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}} \tag{3.51}\\
& \quad \leq C t^{\frac{1-q(N-1)}{2}} p^{-\frac{1}{4}} n^{\frac{(q-1)(N-1)-2}{4}}(\sqrt{n}-\sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{\bar{\epsilon}}(\sqrt{n}-\sqrt{p}+1))^{2}}{4}} .
\end{align*}
$$

We derive from (3.47), (3.51),

$$
\begin{align*}
& J_{2, \ell}^{\prime} h \leq C t^{1-\frac{N q}{2}} \\
& \times \sum_{n=\ell+1}^{a_{t}} \sum_{j \in \Theta_{t, n}^{h}} n^{\frac{(q-1)(N-1)-2}{4}} \mu_{n, j}^{q}\left(K_{n, j}\right) \sum_{p=1}^{n-\ell} p^{\frac{2 q-3}{4}}(\sqrt{n}-\sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{\epsilon \epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}} . \tag{3.52}
\end{align*}
$$

By Lemma A. 2 with $\alpha=\frac{2 q-3}{4}, \beta=\frac{1-(q-1)(N-1)}{2}, \delta=\frac{1}{4}$ and $\gamma=q_{\epsilon}$, we obtain

$$
\begin{equation*}
\sum_{p=1}^{n-\ell} p^{\frac{2 q-3}{4}}(\sqrt{n}-\sqrt{p})^{\frac{1-(q-1)(N-1)}{2}} e^{-\frac{(\sqrt{p}+\sqrt{\epsilon \epsilon}(\sqrt{n}-\sqrt{p+1}))^{2}}{4}} \leq C n^{\frac{N(q-1)+q-3}{4}} e^{-\frac{n}{4}} \tag{3.53}
\end{equation*}
$$

thus

$$
\begin{equation*}
J_{2, \ell}^{\prime h} \leq C t^{1-\frac{N q}{2}} \sum_{n=\ell+1}^{a_{t}} n^{\frac{N(q-1)}{2}-1} e^{-\frac{n}{4}} \sum_{j \in \Theta_{t, n}^{h}} \mu_{n, j}^{q}\left(K_{n, j}\right) \tag{3.54}
\end{equation*}
$$

Because

$$
\mu_{n, j}\left(K_{n, j}\right)=C_{2 / q, q^{\prime}}^{B_{n, j}}\left(K_{n, j}\right),
$$

we use the rescaling procedure as in the proof of Lemma 2.15, except that the scale factor is $\sqrt{(n+1) t}$ instead of $\sqrt{n+1}$ so that the sets $\tilde{T}_{n}, \tilde{K}_{n}, \tilde{\mathcal{Q}}_{n}$ and \tilde{K}_{n} remains unchanged Using again the quasi-additivity and the fact that $J_{2, \ell}^{\prime}=\sum_{h=1}^{J} J_{2, \ell}^{\prime h}$, we deduce

$$
\begin{equation*}
J_{2, \ell} \leq C^{\prime} t^{-\frac{N}{2}} \sum_{n=\ell+1}^{a_{t}} d_{n+1}^{N-\frac{2}{q-1}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{K_{n}}{d_{n+1}}\right), \tag{3.55}
\end{equation*}
$$

which implies (3.33).
The proof of Theorem 3.1 follows from the previous estimates on J_{1} and J_{2}. Furthermore the following integral expression holds

Theorem 3.9 Assume $q \geq q_{c}$. Then there exists a positive constants C_{2}^{*}, depending on N, q and T, such that for any closed set F, there holds

$$
\begin{equation*}
\underline{u}_{F}(x, t) \geq \frac{C_{2}^{*}}{t^{1+\frac{N}{2}}} \int_{0}^{\sqrt{t a_{t}}} e^{-\frac{s^{2}}{4 t}} s^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}(x)\right) s d s, \tag{3.56}
\end{equation*}
$$

where a_{t} is the smallest integer j such that $F \subset B_{\sqrt{j t}}(x)$.
Proof. We shall distinguish according $q=q_{c}$, or $q>q_{c}$, and for simplicity we shall denote $B_{r}=B_{r}(x)$ for the various values of r.
Case 1: $q=q_{c} \Longleftrightarrow N-\frac{2}{q-1}=0$. Because $F_{n}=F \cap\left(B_{d_{n+1}} \backslash B_{d_{n}}\right)$ there holds

$$
C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{d_{n+1}}\right) \geq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right)-C_{2 / q, q^{\prime}}\left(\frac{F \cap B_{d_{n}}}{d_{n+1}}\right),
$$

Furthermore, since $d_{n+1} \geq d_{n}$,

$$
C_{2 / q, q^{\prime}}\left(\frac{F \cap B_{d_{n}}}{d_{n+1}}\right)=C_{2 / q, q^{\prime}}\left(\frac{d_{n}}{d_{n+1}} \frac{F \cap B_{d_{n}}}{d_{n}}\right) \leq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n}} \cap B_{1}\right),
$$

thus

$$
C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{d_{n+1}}\right) \geq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right)-C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n}} \cap B_{1}\right)
$$

it follows

$$
\begin{aligned}
\sum_{n=1}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{d_{n+1}}\right) & \geq \sum_{n=1}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right)-\sum_{n=1}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n}} \cap B_{1}\right) \\
& \geq \sum_{n=1}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right)-e^{-\frac{1}{4}} \sum_{n=0} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right) \\
& \geq\left(1-e^{-\frac{1}{4}}\right) \sum_{n=1}^{a_{t}-1} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right)-e^{-\frac{1}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{\sqrt{t}} \cap B_{1}\right) .
\end{aligned}
$$

Since, by (2.69),

$$
C_{2 / q, q^{\prime}}\left(\frac{F}{s^{\prime}} \cap B_{1}\right) \geq C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right) \geq C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right)
$$

for any $s^{\prime} \in\left[d_{n+1}, d_{n+2}\right]$ and $s \in\left[d_{n}, d_{n+1}\right]$, there holds

$$
\begin{aligned}
t e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{d_{n+1}} \cap B_{1}\right) & \geq C_{2 / q, q^{\prime}}\left(\frac{F}{\left.d_{n+1} \cap B_{1}\right) \int_{d_{n}}^{d_{n+1}} e^{-s^{2} / 4 t} s d s}\right. \\
& \geq \int_{d_{n}}^{d_{n+1}} e^{-s^{2} / 4 t} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right) s d s
\end{aligned}
$$

This implies

$$
W_{F}(x, t) \geq\left(1-e^{-\frac{1}{4}}\right) t^{-\left(1+\frac{N}{2}\right)} \int_{0}^{\sqrt{t a_{t}}} e^{-s^{2} / 4 t} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}\right) s d s
$$

Case 2: $q>q_{c} \Longleftrightarrow N-\frac{2}{q-1}>0$. In that case it is known [1] that

$$
C_{2 / q, q^{\prime}}\left(\frac{F_{n}}{d_{n+1}}\right) \approx d_{n+1}^{\frac{2}{q-1}-N} C_{2 / q, q^{\prime}}\left(F_{n}\right)
$$

thus

$$
W_{F}(x, t) \approx t^{-1-\frac{N}{2}} \sum_{n=0}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(F_{n}\right)
$$

Since

$$
C_{2 / q, q^{\prime}}\left(F_{n}\right) \geq C_{2 / q, q^{\prime}}\left(F \cap B_{d_{n+1}}\right)-C_{2 / q, q^{\prime}}\left(F \cap B_{d_{n}}\right)
$$

and again

$$
\begin{aligned}
t^{-\frac{N}{2}} \sum_{n=0}^{a_{t}} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(F_{n}\right) & \geq\left(1-e^{-\frac{1}{4}}\right) t^{-\frac{N}{2}} \sum_{n=0}^{a_{t}-1} e^{-\frac{n}{4}} C_{2 / q, q^{\prime}}\left(F \cap B_{d_{n+1}}\right) \\
& \geq\left(1-e^{-\frac{1}{4}}\right) t^{-\left(1+\frac{N}{2}\right)} \int_{0}^{\sqrt{t a_{t}}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(F \cap B_{s}\right) s d s
\end{aligned}
$$

Because $C_{2 / q, q^{\prime}}\left(F \cap B_{s}\right) \approx s^{N-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(s^{-1} F \cap B_{1}\right),(3.56)$ follows.

4 Applications

The first result of this section is the following
Theorem 4.1 Assume $N \geq 1$ and $q>1$. Then $\bar{u}_{K}=\underline{u}_{K}$.

Proof. If $1<q<q_{c}$, the result is already proved in [25. The proof in the super-critical case is an adaptation that we shall recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9 there exists a positive constant C, depending on N, q and T such that

$$
\bar{u}_{F}(x, t) \leq \underline{u}_{F}(x, t) \quad \forall(x, t) \in Q_{T} .
$$

By convexity $\tilde{u}=\underline{u}_{F}-\frac{1}{2 C}\left(\bar{u}_{F}-\underline{u}_{F}\right)$ is a super-solution, which is smaller than \underline{u}_{F} if we assume that $\bar{u}_{F} \neq \underline{u}_{F}$. If we set $\theta:=1 / 2+1 /(2 C)$, then $u_{\theta}=\theta \bar{u}_{F}$ is a subsolution. Therefore there exists a solution u_{1} of (1.1) in Q_{∞} such that $u_{\theta} \leq u_{1} \leq \tilde{u}<\underline{u}_{F}$. If $\mu \in \mathfrak{M}_{+}^{q}\left(\mathbb{R}^{N}\right)$ satisfies $\mu\left(F^{c}\right)=0$, then $u_{\theta \mu}$ is the smallest solution of (1.1) which is above the subsolution θu_{μ}. Thus $u_{\theta \mu} \leq u_{1}<\underline{u}_{F}$ and finally $\underline{u}_{F} \leq u_{1}<\underline{u}_{F}$, a contradiction.

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation of the capacitary potential

Proposition 4.2 Assume $q \geq q_{c}$. Then there exist two positive constants $C_{1}^{\dagger}, C_{2}^{\dagger}$, depending only on N, q and T such that

$$
\begin{align*}
C_{2}^{\dagger} t^{-\left(1+\frac{N}{2}\right)} \int_{0}^{\sqrt{t a_{t}}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}(x)\right) s d s \leq W_{F}(x, t) \\
\quad \leq C_{1}^{\dagger} t^{-\left(1+\frac{N}{2}\right)} \int_{\sqrt{t}}^{\sqrt{t\left(a_{t}+2\right)}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}(x)\right) s d s \tag{4.57}
\end{align*}
$$

for any $(x, t) \in Q_{T}$.
Definition 4.3 If F is a closed subset of \mathbb{R}^{N}, we define the $\left(2 / q, q^{\prime}\right)$-integral capacitary potential \mathcal{W}_{F} by

$$
\begin{equation*}
\mathcal{W}_{F}(x, t)=t^{-1-\frac{N}{2}} \int_{0}^{D_{F}(x)} s^{N-\frac{2}{q-1}} e^{-s^{2} / 4 t} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}(x)\right) s d s \quad \forall(x, t) \in Q_{\infty} \tag{4.58}
\end{equation*}
$$

where $D_{F}(x)=\max \{|x-y|: y \in F\}$.
An easy computation shows that

$$
\begin{align*}
0 \leq \mathcal{W}_{F}(x, t)-t^{-\left(1+\frac{N}{2}\right)} \int_{0}^{\sqrt{t a_{t}}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(\frac{F}{s}\right. & \left.\cap B_{1}(x)\right) s d s \\
& \leq C \frac{t^{(q-3) / 2(q-1)}}{D_{F}(x)} e^{-D_{F}^{2}(x) / 4 t} \tag{4.59}
\end{align*}
$$

and

$$
\begin{align*}
0 \leq t^{-\left(1+\frac{N}{2}\right)} \int_{0}^{\left.\sqrt{t\left(a_{t}\right.}+2\right)} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4 t}} C_{2 / q, q^{\prime}}\left(\frac{F}{s} \cap B_{1}(x)\right) & s d s-\mathcal{W}_{F}(x, t) \tag{4.60}\\
& \leq C \frac{t^{(q-3) / 2(q-1)}}{D_{F}(x)} e^{-\frac{D_{F}^{2}(x)}{4 t}}
\end{align*}
$$

for some $C=C(N, q)>0$. Furthermore

$$
\begin{equation*}
\mathcal{W}_{F}(x, t)=t^{-\frac{1}{q-1}} \int_{0}^{D_{F}(x) / \sqrt{t}} s^{N-\frac{2}{q-1}} e^{-\frac{s^{2}}{4}} C_{2 / q, q^{\prime}}\left(\frac{F}{s \sqrt{t}} \cap B_{1}(x)\right) s d s \tag{4.61}
\end{equation*}
$$

The following result gives a sufficient condition in order \bar{u}_{F} has not a strong blow-up at some point x.

Proposition 4.4 Assume $q \geq q_{c}$ and F is a closed subset of \mathbb{R}^{N}. If there exists $\gamma \in[0, \infty)$ such that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0} C_{2 / q, q^{\prime}}\left(\frac{F}{\tau} \cap B_{1}(x)\right)=\gamma \tag{4.62}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{\frac{1}{q-1}} \bar{u}_{F}(x, t)=C \gamma \tag{4.63}
\end{equation*}
$$

for some $C=C(N, q)>0$.
Proof. Clearly, condition (4.62) implies

$$
\lim _{t \rightarrow 0} C_{2 / q, q^{\prime}}\left(\frac{F}{\sqrt{t} s} \cap B_{1}(x)\right)=\gamma
$$

for any $s>0$. Then (4.63) follows by Lebesgue's theorem. Notice also that the set of γ is bounded from above by a constant depending on N and q.

In the next result we give a condition in order the solution remains bounded at some point x. The proof is similar to the previous one.

Proposition 4.5 Assume $q \geq q_{c}$ and F is a closed subset of \mathbb{R}^{N}. If

$$
\begin{equation*}
\limsup _{\tau \rightarrow 0} \tau^{-\frac{2}{q-1}} C_{2 / q, q^{\prime}}\left(\frac{F}{\tau} \cap B_{1}(x)\right)<\infty \tag{4.64}
\end{equation*}
$$

then $\bar{u}_{F}(x, t)$ remains bounded when $t \rightarrow 0$.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.
Lemma A. 1 Let a and b be two real numbers, $a>0$ and $\kappa>0$. Then there exists a constant $C=C(a, b, \kappa)>0$ such that for any $A>0, B>\kappa / A$ there holds

$$
\begin{equation*}
\int_{0}^{1}(1-x)^{-a} x^{-b} e^{-A^{2} / 4(1-x)} e^{-B^{2} / 4 x} d x \leq C e^{-(A+B)^{2} / 4} A^{1-a} B^{1-b}(A+B)^{a+b-2} \tag{A.1}
\end{equation*}
$$

Proof. We first notice that

$$
\begin{equation*}
\max \left\{e^{-A^{2} / 4(1-x)} e^{-B^{2} / 4 x}: 0 \leq x \leq 1\right\}=e^{-(A+B)^{2} / 4} \tag{A.2}
\end{equation*}
$$

and it is achieved for $x_{0}=B /(A+B)$. Set $\Phi(x)=(1-x)^{-a} x^{-b} e^{-A^{2} / 4(1-x)} e^{-B^{2} / 4 x}$, thus

$$
\int_{0}^{1} \Phi(x) d x=\int_{0}^{x_{0}} \Phi(x) d x+\int_{x_{0}}^{1} \Phi(x) d x=I_{a, b}+J_{a, b} .
$$

Put

$$
\begin{equation*}
u=\frac{A^{2}}{4(1-x)}+\frac{B^{2}}{4 x} \tag{A.3}
\end{equation*}
$$

then

$$
\begin{equation*}
4 u x^{2}-\left(4 u+B^{2}-A^{2}\right) x+B^{2}=0 \tag{A.4}
\end{equation*}
$$

If $0<x<x_{0}$ this equation admits the solution

$$
\begin{gathered}
x=x(u)=\frac{1}{8 u}\left(4 u+B^{2}-A^{2}-\sqrt{16 u^{2}-8 u\left(A^{2}+B^{2}\right)+\left(A^{2}-B^{2}\right)^{2}}\right) \\
\int_{0}^{x_{0}}(1-x)^{-a} x^{-b} e^{-A^{2} / 4(1-x)-B^{2} / 4 x} d x=-\int_{(A+B)^{2} / 4}^{\infty}(1-x(u))^{-a} x(u)^{-b} e^{-u} x^{\prime}(u) d u
\end{gathered}
$$

Putting $x^{\prime}=x^{\prime}(u)$ and differentiating (A.4),

$$
4 x^{2}+8 u x x^{\prime}-\left(4 u+B^{2}-A^{2}\right) x^{\prime}-4 x=0 \Longrightarrow-x^{\prime}=\frac{4 x(1-x)}{4 u+B^{2}-A^{2}-8 u x} .
$$

Thus

$$
\begin{equation*}
\int_{0}^{x_{0}} \Phi(x) d x=4 \int_{(A+B)^{2} / 4}^{\infty} \frac{(1-x(u))^{-a+1} x(u)^{-b+1} e^{-u} d u}{4 u+B^{2}-A^{2}-8 u x(u)} . \tag{A.5}
\end{equation*}
$$

Using the explicit value of the root $x(u)$, we finally get

$$
\begin{equation*}
\int_{0}^{x_{0}} \Phi(x) d x=4 \int_{(A+B)^{2} / 4}^{\infty} \frac{(1-x(u))^{-a+1} x(u)^{-b+1} e^{-u} d u}{\sqrt{16 u^{2}-8 u\left(A^{2}+B^{2}\right)+\left(A^{2}-B^{2}\right)^{2}}} \tag{A.6}
\end{equation*}
$$

and the factorization below holds

$$
16 u^{2}-8 u\left(A^{2}+B^{2}\right)+\left(A^{2}-B^{2}\right)^{2}=16\left(u-(A+B)^{2} / 4\right)\left(u-(A-B)^{2} / 4\right) .
$$

We set $u=v+(A+B)^{2} / 4$ and obtain

$$
x(u)=\frac{v+\left(A B+B^{2}\right) / 2-\sqrt{v(v+A B)}}{2\left(v+(A+B)^{2} / 4\right)},
$$

and

$$
1-x(u)=\frac{v+\left(A^{2}+A B\right) / 2+\sqrt{v(v+A B)}}{2\left(v+(A+B)^{2} / 4\right)}
$$

We introduce the relation \approx linking two positive quantities depending on A and B. It means that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

$$
\begin{gather*}
\int_{0}^{x_{0}} \Phi(x) d x=2^{a-b-4} e^{-(A+B)^{2} / 4} \int_{0}^{\infty} \tilde{\Phi}(v) d v \text { where } \\
\tilde{\Phi}(v)=\frac{\left(v+\left(A B+B^{2}\right) / 2-\sqrt{v(v+A B)}\right)^{1-b}\left(v+\left(A^{2}+A B\right) / 2+\sqrt{v(v+A B)}\right)^{1-a}}{\left(v+(A+B)^{2} / 4\right)^{2-a-b} \sqrt{v(v+A B)}} e^{-v} d v \tag{A.7}
\end{gather*}
$$

Case 1: $a \geq 1, b \geq 1$. First

$$
\begin{equation*}
\frac{\left(v+(A+B)^{2} / 4\right)^{a+b-2}}{\sqrt{v(v+A B)}} \leq \frac{\left(v+(A+B)^{2} / 4\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \approx \frac{\left(v+(A+B)^{2}\right)^{a+b-2}}{\sqrt{v(v+\kappa)}} \tag{A.8}
\end{equation*}
$$

since $a+b-2 \geq 0$ and $A B \geq \kappa$. Next

$$
\begin{equation*}
\left(v+\left(A^{2}+A B\right) / 2+\sqrt{v(v+A B)}\right)^{1-a} \approx(v+A(A+B))^{1-a} \tag{A.9}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
v+\left(A B+B^{2}\right) / 2-\sqrt{v(v+A B)} & =B^{2} \frac{v+(A+B)^{2} / 4}{v+B(A+B) / 2+\sqrt{v(v+A B)}} \tag{A.10}\\
& \approx B^{2} \frac{v+(A+B)^{2}}{v+B(A+B)} .
\end{align*}
$$

Then

$$
\begin{equation*}
\left(v+\left(A B+B^{2}\right) / 2-\sqrt{v(v+A B)}\right)^{1-b} \approx B^{2-2 b}\left(\frac{v+B(A+B)}{v+(A+B)^{2}}\right)^{b-1} \tag{A.11}
\end{equation*}
$$

It follows

$$
\begin{align*}
\tilde{\Phi}(v) & \leq C B^{2-2 b}\left(\frac{v+(A+B)^{2}}{v+A(A+B)}\right)^{a-1} \frac{(v+B(A+B))^{b-1}}{\sqrt{v(v+\kappa)}} \\
& \leq C B^{2-2 b}\left(\frac{v+(A+B)^{2}}{v+A(A+B)}\right)^{a-1} \frac{v^{b-1}+\left(B^{2}+A B\right)^{b-1}}{\sqrt{v(v+\kappa)}} \tag{A.12}
\end{align*}
$$

where C depends on a, b and κ. The function $v \mapsto\left(v+(A+B)^{2}\right) /(v+A(A+B))$ is decreasing on $(0, \infty)$. If we set

$$
C_{1}=\int_{0}^{\infty} \frac{v^{b-1} e^{-v} d v}{\sqrt{v(v+\kappa)}} \quad \text { and } \quad C_{2}=\int_{0}^{\infty} \frac{e^{-v} d v}{\sqrt{v(v+\kappa)}}
$$

then

$$
C_{1} \leq K\left(B^{2}+A B\right)^{b-1} C_{2}
$$

with $K=C_{1} \kappa^{1-b} / C_{2}$. Therefore

$$
\begin{equation*}
\int_{0}^{x_{0}} \Phi(x) d x \leq C e^{-(A+B)^{2} / 4} B^{1-b} A^{1-a}(A+B)^{a+b-2} . \tag{A.13}
\end{equation*}
$$

The estimate of $J_{a, b}$ is obtained by exchanging (A, a) with (B, b) and replacing x by $1-x$. Mutadis mutandis, this yields directely to the same expression as in A. 13 and finally

$$
\begin{equation*}
\int_{0}^{1} \Phi(x) d x \leq C e^{-(A+B)^{2} / 4} A^{1-a} B^{1-b}(A+B)^{a+b-2} \tag{A.14}
\end{equation*}
$$

Case 2: $a \geq 1, b<1$. Estimates (A.7), (A.8), (A.9), A.10) and A.11) are valid. Because $v \mapsto(v+B(A+B))^{b-1}$ is decreasing, A.12) has to be replaced by

$$
\begin{equation*}
\tilde{\Phi}(v) \leq C B^{2-2 b}\left(\frac{v+(A+B)^{2}}{v+A(A+B)}\right)^{a-1} \frac{\left(A B+B^{2}\right)^{b-1}}{\sqrt{v(v+\kappa)}} \tag{A.15}
\end{equation*}
$$

This implies (A.13) directly. The estimate of $J_{a, b}$ is performed by the change of variable $x \mapsto 1-x$. If $x_{1}=1-x_{0}$, there holds

$$
J_{a, b}=\int_{0}^{x_{1}} x^{-a}(1-x)^{-b} e^{-A^{2} / 4 x} e^{-B^{2} / 4(1-x)} d x=\int_{0}^{x_{1}} \Psi(x) d x .
$$

Then

$$
\begin{gather*}
\int_{0}^{x_{1}} \Psi(x) d x=2^{b-a-4} e^{-(A+B)^{2} / 4} \int_{0}^{x_{1}} \tilde{\Psi}(v) d v \text { where } \\
\tilde{\Psi}(v)=\frac{\left(v+\left(A B+A^{2}\right) / 2-\sqrt{v(v+A B)}\right)^{1-a}\left(v+\left(B^{2}+A B\right) / 2+\sqrt{v(v+A B)}\right)^{1-b}}{\left(v+(A+B)^{2} / 4\right)^{2-a-b} \sqrt{v(v+A B)}} e^{-v} d v \tag{A.16}
\end{gather*}
$$

Equivalence (A. 8 is unchanged; (A.9) is replaced by

$$
\begin{equation*}
\left(v+\left(B^{2}+A B\right) / 2+\sqrt{v(v+A B)}\right)^{1-b} \approx(v+B(A+B))^{1-b} \tag{A.17}
\end{equation*}
$$

(A. 10 by

$$
\begin{equation*}
v+\left(A B+A^{2}\right) / 2-\sqrt{v(v+A B)} \approx A^{2} \frac{v+(A+B)^{2}}{v+A(A+B)} \tag{A.18}
\end{equation*}
$$

and (A.11) by

$$
\begin{equation*}
\left(v+\left(A B+A^{2}\right) / 2-\sqrt{v(v+A B)}\right)^{1-a} \approx A^{2-2 a}\left(\frac{v+A(A+B)}{v+(A+B)^{2}}\right)^{a-1} \tag{A.19}
\end{equation*}
$$

Because $a>1$, A.12 turns into

$$
\begin{align*}
& \tilde{\Psi}(v) \leq C A^{2-2 b}(v\left.+(A+B)^{2}\right)^{b-1} \frac{\left(v+A^{2}+A B\right)^{a-1}\left(v+B^{2}+A B\right)^{1-b}}{\sqrt{v(v+\kappa)}} \\
& \leq C e^{-(A+B)^{2} / 4} A^{2-2 b}(A+B)^{2 b-2} \\
& \times \frac{v^{a-b}+\left(A^{2}+A B\right)^{a-1} v^{1-b}+\left(B^{2}+A B\right)^{1-b} v^{a-1}+A^{a-1} B^{1-b}(A+B)^{a-b}}{\sqrt{v(v+\kappa)}} \tag{A.20}
\end{align*}
$$

Because $A B \geq \kappa$, there exists a positive constant C, depending on κ, such that

$$
\begin{align*}
& \int_{0}^{\infty} \frac{v^{a-b}+\left(A^{2}+A B\right)^{a-1} v^{1-b}+\left(B^{2}+A B\right)^{1-b} v^{a-1}}{\sqrt{v(v+\kappa)}} e^{-v} d v \tag{A.21}\\
& \leq C A^{a-1} B^{1-b}(A+B)^{a-b} \int_{0}^{\infty} \frac{e^{-v} d v}{\sqrt{v(v+\kappa)}}
\end{align*}
$$

Combining (A.20) and A.21) yields to

$$
\begin{equation*}
\int_{0}^{x_{1}} \Psi(x) d x \leq C e^{-(A+B)^{2} / 4} A^{1-a} B^{1-b}(A+B)^{a+b-2} . \tag{A.22}
\end{equation*}
$$

This, again, implies that (A.1) holds.
Case 3: $\max \{a, b\}<1$. Inequalities (A.7)-(A.11) hold, but (A.12) has to be replaced by

$$
\begin{align*}
\tilde{\Phi}(v) & \leq C B^{2-2 b}\left(\frac{v+(A+B)^{2}}{v+A(A+B)}\right)^{a-1} \frac{\left(v+B^{2}+A B\right)^{b-1}}{\sqrt{v(v+\kappa)}} \\
& \leq C B^{1-b}(A+B)^{2 a+b-3} \frac{v^{1-a}+\left(A^{2}+A B\right)^{1-a}}{\sqrt{v(v+\kappa)}} \tag{A.23}
\end{align*}
$$

Noticing that

$$
\int_{0}^{\infty} \frac{v^{1-a} e^{-v} d v}{\sqrt{v(v+\kappa)}} \leq C\left(A^{2}+A B\right)^{1-a} \int_{0}^{\infty} \frac{e^{-v} d v}{\sqrt{v(v+\kappa)}}
$$

it follows that (A.13) holds. Finally (A.14) holds by exchanging (A, a) and (B, b).
Lemma A. 2 . Let $\alpha, \beta, \gamma, \delta$ be real numbers and ℓ an integer. We assume $\gamma>1, \delta>0$ and $\ell \geq 2$. Then there exists a positive constant C such that, for any integer $n>\ell$

$$
\begin{equation*}
\sum_{p=1}^{n-\ell} p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} e^{-\delta(\sqrt{p}+\sqrt{\gamma}(\sqrt{n}-\sqrt{p+1}))^{2}} \leq C n^{\alpha-\beta / 2} e^{-\delta n} \tag{A.24}
\end{equation*}
$$

Proof. The function $x \mapsto(\sqrt{x}+\sqrt{\gamma}(\sqrt{n}-\sqrt{x+1}))^{2}$ is decreasing on $\left[(\gamma-1)^{-1}, \infty\right)$. Furthermore there exists $C>0$ depending on ℓ, α and β such that $p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} \leq C x^{\alpha}(\sqrt{n}-\sqrt{x+1})^{\beta}$ for $x \in[p, p+1]$ If we denote by p_{0} the smallest integer larger than $(\gamma-1)^{-1}$, we derive

$$
\begin{aligned}
& S=\sum_{\substack{p=1 \\
p_{0}-1}}^{n-\ell} p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} e^{-(\sqrt{p}+\sqrt{\gamma}(\sqrt{n}-\sqrt{p+1}))^{2} / 4}=\sum_{p=1}^{p_{0}-1}+\sum_{p_{0}}^{n-\ell} p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} e^{-\delta(\sqrt{p}+\sqrt{\gamma}(\sqrt{n}-\sqrt{p+1}))^{2}} \\
& \leq \sum_{p=1} p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} e^{-\delta(\sqrt{p}+\sqrt{\gamma}(\sqrt{n}-\sqrt{p+1}))^{2}} \\
& \quad+C \int_{p_{0}}^{n+1-\ell} x^{\alpha}(\sqrt{n}-\sqrt{x})^{\beta} e^{-\delta(\sqrt{x}+\sqrt{\gamma}(\sqrt{n}-\sqrt{x+1}))^{2}} d x
\end{aligned}
$$

(notice that $\sqrt{n}-\sqrt{x} \approx \sqrt{n}-\sqrt{x+1}$ for $x \leq n-\ell$). Clearly

$$
\begin{equation*}
\sum_{p=1}^{p_{0}-1} p^{\alpha}(\sqrt{n}-\sqrt{p})^{\beta} e^{-\delta(\sqrt{p}+\sqrt{\gamma}(\sqrt{n}-\sqrt{p+1}))^{2}} \leq C_{0} n^{\alpha}(\sqrt{n}-\sqrt{n-\ell})^{\beta} e^{-\delta n} \tag{A.25}
\end{equation*}
$$

for some C_{0} independent of n. We set $y=y(x)=\sqrt{x+1}-\sqrt{x} / \sqrt{\gamma}$. Obviously

$$
y^{\prime}(x)=\frac{1}{2}\left(\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{\gamma} \sqrt{x}}\right) \quad \forall x \geq p_{0}
$$

and their exists $\epsilon=\epsilon(\delta, \gamma)>0$ such that $\sqrt{2} \sqrt{x} \geq y(x) \geq \epsilon \sqrt{x}$ and $y^{\prime}(x) \geq \epsilon / \sqrt{x}$. Furthermore

$$
\begin{gathered}
\sqrt{x}=\frac{\sqrt{\gamma}\left(y+\sqrt{\gamma y^{2}+1-\gamma}\right)}{\gamma-1}, \\
\sqrt{n}-\sqrt{x}=\frac{\sqrt{n}(\gamma-1)-\sqrt{\gamma} y-\sqrt{\gamma} \sqrt{\gamma y^{2}+1-\gamma}}{\gamma-1} \\
\\
=\frac{n(\gamma-1)+\gamma-2 y \sqrt{\gamma n}-\gamma y^{2}}{\sqrt{n}(\gamma-1)-\sqrt{\gamma} y+\sqrt{\gamma} \sqrt{\gamma y^{2}+1-\gamma}} \\
\\
\approx \frac{n(\gamma-1)+\gamma-2 y \sqrt{\gamma n}-\gamma y^{2}}{\sqrt{n}}
\end{gathered}
$$

since $y(x) \leq \sqrt{n}$. Furthermore

$$
\begin{aligned}
n(\gamma-1)+\gamma-2 y \sqrt{\gamma n}-\gamma y^{2} & =\gamma(\sqrt{n+1}+\sqrt{n} / \sqrt{\gamma}+y)(\sqrt{n+1}-\sqrt{n} / \sqrt{\gamma}-y) \\
& \approx \sqrt{n}(\sqrt{n+1}-\sqrt{n} / \sqrt{\gamma}-y),
\end{aligned}
$$

because y ranges between $\sqrt{n+2-\ell}-\sqrt{n+1-\ell} \sqrt{\gamma} \approx \sqrt{n}$ and $\sqrt{p_{0}+1}-\sqrt{p_{0}} \sqrt{\gamma}$. Thus

$$
(\sqrt{n}-\sqrt{x})^{\beta} \approx(\sqrt{n+1}-\sqrt{n} / \sqrt{\gamma}-y)^{\beta}
$$

This implies

$$
\begin{align*}
& \int_{p_{0}}^{n+1-\ell} x^{\alpha}(\sqrt{n}-\sqrt{x})^{\beta} e^{-\delta(\sqrt{x}+\gamma(\sqrt{n}-\sqrt{x+1}))^{2}} d x \\
& \quad \leq C \int_{y\left(p_{0}\right)}^{y(n+1-\ell)} y^{2 \alpha+1}(\sqrt{n+1}-\sqrt{n} / \sqrt{\gamma}-y)^{\beta} e^{-\gamma \delta(\sqrt{n}-y)^{2}} d y \\
& \quad \leq C n^{\alpha+\beta / 2+1} \int_{1-y(n+1-\ell) / \sqrt{n}}^{1-y\left(p_{0}\right) / \sqrt{n}}(1-z)^{2 \alpha+1}(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} d z \tag{A.26}
\end{align*}
$$

Moreover

$$
\begin{align*}
1-\frac{y\left(p_{0}\right)}{\sqrt{n}} & =1-\frac{1}{\sqrt{n}}\left(\sqrt{p_{0}+1}-\frac{\sqrt{p_{0}}}{\sqrt{\gamma}}\right) \\
1-\frac{y(n-\ell+1)}{\sqrt{n}} & =1-\frac{\sqrt{n-\ell+2}}{\sqrt{n}}+\frac{\sqrt{n-\ell+1}}{\sqrt{n \gamma}} \\
& =\frac{1}{\sqrt{\gamma}}\left(1+\frac{\sqrt{\gamma}(\ell-2)-\ell+1}{2 n}+\frac{\sqrt{\gamma}(\ell-2)^{2}-(\ell-1)^{2}}{8 n^{2}}\right)+O\left(n^{-3}\right) . \tag{A.27}
\end{align*}
$$

Let θ fixed such that $1-\frac{y(n-\ell+1)}{\sqrt{n}}<\theta<1-\frac{y\left(p_{0}\right)}{\sqrt{n}}$ for any $n>p_{0}$. Then

$$
\begin{aligned}
\int_{\theta}^{1-y\left(p_{0}\right) / \sqrt{n}}(1-z)^{2 \alpha+1}(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} d z & \leq C_{\theta} \int_{\theta}^{1-y\left(p_{0}\right) / \sqrt{n}}(1-z)^{2 \alpha+1} e^{-\gamma \delta n z^{2}} d z \\
& \leq C_{\theta} e^{-\gamma \delta n \theta^{2}} \int_{\theta}^{1-y\left(p_{0}\right) / \sqrt{n}}(1-z)^{2 \alpha+1} d z \\
& \leq C e^{-\gamma \delta n \theta^{2}} \max \left\{1, n^{-\alpha-1 / 2}\right\} .
\end{aligned}
$$

Because $\gamma \theta^{2}>1$ we derive

$$
\begin{equation*}
\int_{\theta}^{1-y\left(p_{0}\right) / \sqrt{n}}(1-z)^{2 \alpha+1}(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} d z \leq C n^{-\beta} e^{-\delta n} \tag{A.28}
\end{equation*}
$$

for some constant $C>0$. On the other hand

$$
\begin{aligned}
& \int_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}(1-z)^{2 \alpha+1}(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} d z \\
& \leq C_{\theta}^{\prime} \int_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta} e^{-\gamma \delta n z^{2}} d z
\end{aligned}
$$

The minimum of $z \mapsto(z+\sqrt{1+1 / n}-1-1 / \sqrt{\gamma})^{\beta}$ is achieved at $1-y(n+1-\ell)$ with value

$$
\frac{\sqrt{\gamma}(\ell+1)+1-\ell}{2 n \sqrt{\gamma}}+O\left(n^{-2}\right)
$$

and the maximum of the exponential term is achieved at the same point with value

$$
e^{-n \delta+((\ell-2) \sqrt{\gamma}+1-\ell) / 2}(1+\circ(1))=C_{\gamma} e^{-n \delta}(1+\circ(1)) .
$$

We denote

$$
z_{\gamma, n}=1+1 / \sqrt{\gamma}-\sqrt{1+1 / n} \text { and } I_{\beta}=\int_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}\left(z-z_{\gamma, n}\right)^{\beta} e^{-\gamma \delta n z^{2}} d z
$$

Since $1-y(n+1-\ell) \geq 1 / \sqrt{2 \gamma}$ for n large enough,

$$
\begin{aligned}
I_{\beta} & \leq \sqrt{2 \gamma} \int_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}\left(z-z_{\gamma, n}\right)^{\beta} z e^{-\gamma \delta n z^{2}} d z \\
& \leq \frac{-\sqrt{2 \gamma}}{2 n \gamma \delta}\left[\left(z-z_{\gamma, n}\right)^{\beta} e^{-\gamma \delta n z^{2}}\right]_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}+\frac{\beta \sqrt{2 \gamma}}{2 n \gamma \delta} \int_{1-y(n+1-\ell) / \sqrt{n}}^{\theta}\left(z-z_{\gamma, n}\right)^{\beta-1} z e^{-\gamma \delta n z^{2}} d z
\end{aligned}
$$

But $1-y(n+1-\ell) / \sqrt{n}-z_{\gamma, n}=(\ell-1)(1-1 / \sqrt{\gamma}) / 2 n$, therefore

$$
\begin{equation*}
I_{\beta} \leq C_{1} n^{-\beta-1} e^{-\delta n}+\beta C_{1}^{\prime} n^{-1} I_{\beta-1} . \tag{A.29}
\end{equation*}
$$

If $\beta \leq 0$, we derive

$$
I_{\beta} \leq C_{1} n^{-\beta-1} e^{-\delta n}
$$

which inequality, combined with (A.26) and (A.28), yields to (A.24). If $\beta>0$, we iterate and get

$$
I_{\beta} \leq C_{1} n^{-\beta-1} e^{-\delta n}+C_{1}^{\prime} n^{-1}\left(C_{1} n^{-\beta} e^{-\delta n}+(\beta-1) C_{1}^{\prime} n^{-1} I_{\beta-2}\right)
$$

If $\beta-1 \leq 0$ we derive

$$
I_{\beta} \leq C_{1} n^{-\beta-1} e^{-\delta n}+C_{1} C_{1}^{\prime} n^{-1-\beta} e^{-\delta n}=C_{2} n^{-\beta-1} e^{-\delta n}
$$

which again yields to (A.24). If $\beta-1>0$, we continue up we find a positive integer k such that $\beta-k \leq 0$, which again yields to

$$
I_{\beta} \leq C_{k} n^{-\beta-1} e^{-\delta n}
$$

and to (A.24).

The next estimate is fundamental in deriving the N-dimensional estimate.
Lemma A. 3 For any integer $N \geq 2$ there exists a constant $c_{N}>0$ such that

$$
\begin{equation*}
\int_{0}^{\pi} e^{m \cos \theta} \sin ^{N-2} \theta d \theta \leq c_{N} \frac{e^{m}}{(1+m)^{(N-1) / 2}} \quad \forall m>0 \tag{A.30}
\end{equation*}
$$

Proof. Put $\mathcal{I}_{N}(m)=\int_{0}^{\pi} e^{m \cos \theta} \sin ^{N-2} \theta d \theta$. Then $\mathcal{I}_{2}^{\prime}(m)=\int_{0}^{\pi} e^{m \cos \theta} \cos \theta d \theta$ and

$$
\begin{aligned}
\mathcal{I}_{2}^{\prime \prime}(m) & =\int_{0}^{\pi} e^{m \cos \theta} \cos ^{2} \theta d \theta=\mathcal{I}_{2}(m)-\int_{0}^{\pi} e^{m \cos \theta} \sin ^{2} \theta d \theta \\
& =\mathcal{I}_{2}(m)-\frac{1}{m} \int_{0}^{\pi} e^{m \cos \theta} \cos \theta d \theta \\
& =\mathcal{I}_{2}(m)-\frac{1}{m} \mathcal{I}_{2}^{\prime}(m)
\end{aligned}
$$

Thus \mathcal{I}_{2} satisfies a Bessel equation of order 0. Since $\mathcal{I}_{2}(0)=\pi$ and $\mathcal{I}_{2}^{\prime}(0)=0, \pi^{-1} \mathcal{I}_{2}$ is the modified Bessel function of index 0 (usually denoted by I_{0}) the asymptotic behaviour of which is well known, thus h.30 holds. If $N=3$

$$
\mathcal{I}_{3}(m)=\int_{0}^{\pi} e^{m \cos \theta} \sin \theta d \theta=\left[\frac{-e^{m \cos \theta}}{m}\right]_{0}^{\pi}=\frac{2 \sinh m}{m} .
$$

For $N>3$ arbitrary

$$
\begin{equation*}
\mathcal{I}_{N}(m)=\int_{0}^{\pi} \frac{-1}{m} \frac{d}{d \theta}\left(e^{m \cos \theta}\right) \sin ^{N-3} \theta d \theta=\frac{N-3}{m} \int_{0}^{\pi} e^{m \cos \theta} \cos \theta \sin ^{N-4} \theta d \theta . \tag{A.31}
\end{equation*}
$$

Therefore,

$$
\mathcal{I}_{4}(m)=\frac{1}{m} \int_{0}^{\pi} e^{m \cos \theta} \cos \theta d \theta=\mathcal{I}_{2}^{\prime}(m),
$$

and, again (A.30) holds since $I_{0}^{\prime}(m)$ has the same behaviour as $I_{0}(m)$ at infinity. For $N \geq 5$

$$
\mathcal{I}_{N}(m)=\frac{3-N}{m^{2}}\left[e^{m \cos \theta} \cos \theta \sin ^{N-5} \theta\right]_{0}^{\pi}+\frac{N-3}{m^{2}} \int_{0}^{\pi} e^{m \cos \theta} \frac{d}{d \theta}\left(\cos \theta \sin ^{N-5} \theta\right) d \theta
$$

Differentiating $\cos \theta \sin ^{N-5} \theta$ and using (A.31), we obtain

$$
\mathcal{I}_{5}(m)=\frac{4 \sinh m}{m^{2}}-\frac{4 \sinh m}{m^{3}}
$$

while

$$
\begin{equation*}
\mathcal{I}_{N}(m)=\frac{(N-3)(N-5)}{m^{2}}\left(\mathcal{I}_{N-4}(m)-\mathcal{I}_{N-2}(m)\right) \tag{A.32}
\end{equation*}
$$

for $N \geq 6$. Since the estimate (A.30) for $\mathcal{I}_{2}, \mathcal{I}_{3}, \mathcal{I}_{4}$ and \mathcal{I}_{5} has already been obtained, a straigthforward induction yields to the general result.

Remark. Although it does not has any importance for our use, it must be noticed that \mathcal{I}_{N} can be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.

References

[1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wissen. 314, Springer (1996).
[2] Aikawa H. and Borichev A.A., Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. 348, 10131030 (1996).
[3] P. Baras \& M. Pierre, Singularités éliminables pour des équations semilinéaires, Ann. Inst. Fourier 34, 185-206 (1984).
[4] P. Baras \& M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18, 111-149 (1984).
[5] H. Brezis, Semilinear equations in \mathbb{R}^{N} without condition at infinity, Appl. Math. Opt. 12, 271-282 (1985).
[6] H. Brezis \& A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62, 73-97 (1983).
[7] H. Brezis, L. A. Peletier \& D. Terman, A very singular solution of the heat equation with absorption, Arch. rat. Mech. Anal. 95, 185-209 (1986).
[8] Dynkin E. B. Superdiffusions and positive solutions of nonlinear partial differential equations, University Lecture Series 34. Amer. Math. Soc., Providence, vi+120 pp (2004).
[9] Dynkin E. B. and Kuznetsov S. E. Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49, 125-176 (1996).
[10] Dynkin E. B. and Kuznetsov S. E. Solutions of $L u=u^{\alpha}$ dominated by harmonic functions, J. Analyse Math. 68, 15-37 (1996).
[11] Dynkin E. B. and Kuznetsov S. E. Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math. 51, 897-936 (1998).
[12] Gmira A. and Véron L. Boundary singularities of solutions of some semilinear elliptic equation, Duke Math. J. 64, 271-324 (1991).
[13] G. Grillo, Lower bounds for the Dirichlet heat kernel, Quart. J. Math. Oxford Ser. 48, 203-211 (1997).
[14] Grisvard P., Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures et Appl., 45, 143-290 (1966).
[15] Khavin V. P. and Maz'ya V. G., Nonlinear Potential Theory, Russian Math. Surveys 27, 71-148 (1972).
[16] S.E. Kuznetsov, Polar boundary set for superdiffusions and removable lateral singularities for nonlinear parabolic PDEs, C. R. Acad. Sci. Paris 326, 1189-1194 (1998).
[17] S.E. Kuznetsov, σ-moderate solutions of $L u=u^{\alpha}$ and fine trace on the boundary, Comm. Pure Appl. Math. 51, 303-340 (1998).
[18] Labutin D. A., Wiener regularity for large solutions of nonlinear equations, Archiv för Math. 41, 307-339 (2003).
[19] O.A. Ladyzhenskaya, V.A. Solonnikov\& N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow (1967). English transl. Amer. Math. Soc. Providence R.I. (1968).
[20] Legall J. F., The Brownian snake and solutions of $\Delta u=u^{2}$ in a domain, Probab. Th. Rel. Fields 102, 393-432 (1995).
[21] Legall J. F., A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation, J. Appl. Math. Stochastic Anal. 9, 399-414 (1996).
[22] Lions J. L. \& Petree J. Espaces d'interpolation, Publ. Math. I.H.E.S. (1964).
[23] M. Marcus \& L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144, 201-231 (1998).
[24] Marcus M. and Véron L., The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998).
[25] M. Marcus \& L. Véron, The initial trace of positive solutions of semilinear parabolic equations, Comm. Part. Diff. Equ. 24, 1445-1499 (1999).
[26] Marcus M. and Véron L., Removable singularities and boundary trace, J. Math. Pures Appl. 80, 879-900 (2000).
[27] M. Marcus \& L. Véron, Semilinear parabolic equations with measure boundary data and isolated singularities, J. Analyse Mathématique (2001).
[28] Marcus M. and Véron L., Capacitary estimates of solutions of a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris 336, 913-918 (2003).
[29] Marcus M. and Véron L., Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Europ. Math. Soc. 6, 483-527 (2004) .
[30] M. Marcus \& L. Véron, Capacitary representation of positive solutions of semilinear parabolic equations, C. R. Acad. Sci. Paris 342 no. 9, 655-660 (2006).
[31] M. Marcus \& L. Véron, The precise boundary trace of positive solutions of the equation $\Delta u=u^{q}$ in the supercritical case, Contemp. Math. 446, 345-383 (2007).
[32] Mselati B., Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation. Mem. Amer. Math. Soc. 168 no. 798, xvi+121 pp (2004).
[33] Pierre M., Problèmes semi-linéaires avec données mesures, Séminaire Goulaouic-MeyerSchwartz (1982-1983) XIII.
[34] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press 30 (1970).
[35] Triebel H., Interpolation theory, function spaces, Differential operators, North-Holland Publ. Co., (1978).
[36] Whittaker E. T. \& Watson G. N., A course of Modern Analysis, Cambridge University Press, 4th Ed. (1927), Chapter XXI.

