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Abstract

We prove that any positive solution of dyu — Au +u? = 0 (¢ > 1) in RN x (0, 00) with
initial trace (F,0), where F is a closed subset of RY can be represented, up to two universal
multiplicative constants, by a series involving the Bessel capacity Cy/4 4. As a consequence
we prove that there exists a unique positive solution of the equation with such an initial
trace. We also characterize the blow-up set of u(z,t) when ¢ | 0 , by using the ”density” of
F expressed in terms of the Cy/, ,-capacity.
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1 Introduction

Let T € (0,00] and Q7 = RN x (0,7] (N > 1). If ¢ > 1 and u € C%(Qr) is nonnegative and
verifies

Ou—Au+u?=0 in Qr, (1.1)

it has been proven by Marcus and Véron [25] that there exists a unique outer-regular positive
Borel measure v in RY such that
limu(.,t) = v, (1.2)

t—0

in the sense of Borel measures; the set of such measures is denoted by 8" (RM). To each of its
element v is associated a unique couple (S,, u,) (we write v = (Sy, uy)) where S, the singular
part of v, is a closed subset of RY and p,,, the regular part is a nonnegative Radon measure on
R, = RM\'S,. In this setting, relation (L2]) has the following meaning :

() T [ u( t)Cds = /R Clpi, Ve € Co(R),

(1.3)
) lim ¢ / u(.,t)dr = oo, YO c RY open, ONS, # 0.
]
The measure v is by definition the initial trace of w and denoted by Trrn(u). It is wellknown
that equation (L) admits a critical exponent

N
1<q<qc:1+§.

This is due to the fact, proven by Brezis and Friedman [6], that if ¢ > ¢, isolated singularities
of solutions of (LTJ) in RY \ {0} are removable. Conversely, if 1 < ¢ < ¢, it is proven by the
same authors that for any k£ > 0, equation (I.I]) admits a unique solution ugs, with initial data
kdg. This existence and uniqueness results extends in a simple way if the initial data kdg is
replaced by any Radon measure p in RY (see [5]). Furthermore, if & — oo, uys, increases and

converges to a positive, radial and self-similar solution ue, of (L1]). Writing it under the form
1
Uso(z,t) =t =1 f(|z| /\/t), f is a positive solution of
{Af+%y.Df+qu1f—fq=O in RV "
2 .
hIn|y|—>oo ’y‘ et f(y) =0.

The existence, uniqueness and the expression of the asymptotics of f has been studied thoroughly
by Brezis, Peletier and Terman in [7]. Later on, Marcus and Véron proved in [25] that in the
same range of exponents, for any v € ’BZEQ(RN ), the Cauchy problem

ou—Au+ul=0 in Quo,
(1.5)
Tren(u) = v,

admits a unique positive solution. This result means that the initial trace establishes a one to
one correspondence between the set of positive solutions of (LI]) and B7% (RM). A key step for
proving the uniqueness is the following inequalities

£ f(|j2 — al JVE) < ula,t) < ((g— 1)) 7T (2, ) € Qoo (1.6)



valid for any a € S,. As a consequence of Brezis and Friedman’s result if ¢ > ¢, i.e. in the
supercritical range, Problem (LE5]) may admit no solution at all. If v € ’B:eg(RN ), v = (Sy, i),
the necessary and sufficient conditions for the existence of a maximal solution u = %, to Problem
(L5]) are obtained in [25] and expressed in terms of the the Bessel capacity Cy/q 4, (With
¢ = q/(q¢ — 1)). Furthermore, uniqueness does not hold in general as it was pointed out by
Le Gall [21]. In the particular case where S, = () and v is simply the Radon measure p,, the
necessary and sufficient condition for solvability is that u, does not charge Borel subsets with
Cs/q,¢-capacity zero. This result was already proven by Baras and Pierre [4] in the particular
case of bounded measures and extended by Marcus and Véron [25] to the general case. We shall
denote by M (R™) the positive cone of the space M9(RY) of Radon measures which does not

charge Borel subsets with zero Cs, ,-capacity. Notice that W=2/44RN) NG (RY) is a subset
of M7 (RM); here M5 (RY) is the cone of positive bounded Radon mesures in RY. For such
measures, uniqueness always holds and we denote u,, = u,, .

In view of the already known facts concerning the parabolic equation, it is useful to recal
the much more advanced results previously obtained for the stationary equation

—Au+u?=0 in Q, (1.7)

in a smooth bounded domain © of RY. This equation has been intensively studied since 1993,
both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The
existence of a boundary trace for positive solutions, in the class of outer-regular positive Borel
measures on Jf), is proven by Le Gall [20], [21] in the case ¢ = N = 2, by probabilistic methods,
and by Marcus and Véron in [23], [24] in the general case ¢ > 1, N > 1. The existence of
a critical exponent ¢o = (N + 1)/(N — 1) is due to Gmira and Véron [I12] who shew that, if
q > ¢e boundary isolated singularities of solutions of (I.T]) are removable, which is not the case
if 1 < ¢ < ¢e. In this subcritical case Le Gall and Marcus and Véron proved that the boundary
trace establishes a one to one correspondence between positive solutions of (LT]) in € and outer
regular positive Borel measures on 02, which is not the case in the supercritical case ¢ > q.. In
[10] Dynkin and Kuznetsov introduced the notion of o-moderate solution which means that u
is a positive solution of (L’TJ) such that there exists an increasing sequence of positive Radon
measures on 99 {u,} belonging to W=2/94(9Q) such that the corresponding solutions v = v,
of

_ q_ ;
{ Av+wv 0 in (1.8)

v =, in 0N

converges to u locally uniformly in 2. This class of solutions plays a fundamental role since
Dynkin and Kuznetsov proved that a o-moderate solution of (I.7J) is uniquely determined by
its fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena.
Later on, it is proved by Mselati (if ¢ = 2) [32] and then by Dynkin (if ¢, < ¢ < 2) []], that all
the positive solutions of (L7]) are o-moderate. The key-stone element in their proof (partially
probabilistic) is the fact that the maximal solution %y of (I7]) with a boundary trace vanishing
outside a compact subset K C 0f) is indeed o-moderate. This deep result was obtained by a
combination of probabilistic and analytic methods by Mselati [32] in the case ¢ = 2 and by
purely analytic tools by Marcus and Véron [28], [29] in the case ¢ > ¢.. Defining uy as the



largest o-moderate solution of (IL'7]) with a boundary trace concentrated on K, the crucial step
in Marcus-Véron’s proof (non probabilistic) is the bilateral estimate satisfied by ux and uy

C™lp(2)Wi (2) < u(2) < Uk (@) < Cp(a)Wi(2). (1.9)

In this expression C' = C(£2,q), p(z) = dist (x,0Q) and Wg(x) is the capacitary potential of K
defined by

e _ m(g+1)
Wic(z) =3 27701 Cyg (2" Kp(x)), (1.10)

— 00

where K,,(z) = K N{z:27™"! < |z — x| <27}, the Bessel capacity being relative to RV,
Note that, using a technique introduced in [24], inequality @ < C?ujy implies uy = .

Extending Dynkin’s ideas to the parabolic case, we introduce the following notion

Definition 1.1 A positive solution u of (L1]) is called o-moderate if their exists an increasing
sequence {p,} C W2/C4RN) N M8 (RN) such that the corresponding solution u := uy,, of

{atu—Au+uq:0 m Qoo (L.11)

u(z,0) = p, in RY,
converges to u locally uniformly in Q.

If F is a closed subset of RV, we denote by %p the maximal solution of (ILJ) with an initial
trace vanishing on F°; and by u the maximal o-moderate solution of (I.I]) with an initial trace
vanishing on F°. Thus uy is defined by

up = sup{u, : p € ML (RN), w(F°) =0}, (1.12)

where ML (RY) := W=2/29(RV) N0 9% (RY). One of the main goal of this article is to prove
that wr is o-moderate and more precisely,
Theorem 1.2 For any q > 1 and any closed subset F of RN, ip = up.

We define below a set function which will play a fundamental role in the sequel.

Definition 1.3 Let F be a closed subset of RY. The Ca/q,q -capacitary potential Wr of F is
defined by

I N_o1 _n Fy
WF(CE,t) =1t q-1 Z(TL + 1) 2 q-lg 402/(],(]/ m V(ﬂ?,t) € QOO7 (113)

n=0

where F,, = F,(z,t) == {y € F:vVnt < |z —y| </(n+ 1)t}

One of the tool for proving Theorem is the following bilateral estimate which is only
meaningful in the supercritical case, otherwhile it reduces to (L6]);



Theorem 1.4 For any q > q. there exist two positive constants C1 > Co > 0, depending only
on N and q such that for any closed subset F' of RN, there holds

CoWp(z,t) <up(z,t) <up(z,t) < C1Wg(z,t) V(z,t) € Qoo (1.14)

It is important to notice that the capacitary potential is equivariant with respect to the same
scaling transformation which let (I.I]) invariant in the sense that, for any ¢ > 0,

(FTWp (Vi ) = Wy e, 1) Y(a,t) € Que. (1.15)

This quasi representation, up to uniformly upper and lower bounded functions, is also interesting
in the sense that it indicates precisely what are the blow-up point of up = up := up. Introducing
an integral expression comparable to W we show, in particular, the following results

: F T _
ll—>mo Cojgq <? N Bl(x)> =v€[0,00) = P—I}ét —lyp(x,t) = Cy (1.16)
for some C, = C'(N,q,~) > 0, and
2 F
limsup 7410y /g o (— N Bl(:E)) < 00 = limsupup(z,t) < co. (1.17)
7—0 T t—0

Our paper is organized as follows. In Section 2 we obtain estimates from above on ugp. In
Section 3 we give estimates from below on up. In Section 4 we prove the main theorems and
expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the FEuropean RTN Contract N° HPRN-CT-
2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations. Let  be a domain in R with a compact C? boundary and T' > 0. Set B,(a)
the open ball of radius > 0 and center a (and B,(0) := B,) and

Q2 =0 x(0,T), 9,Q%=00x(0,T), Qr:=Q%, Qu:=Q%.

Let H[] (resp. H[.]) denote the heat potential in  with zero lateral boundary data (resp. the
heat potential in RY ) with corresponding kernel

N _la—yl?

(z,y,t) = H(z,y,t) (vesp.(z,y,t) — H(z,y,t) = (dnt)"2e” a ).
We denote by g, :=1+ %, the parabolic critical exponent.

Theorem 2.1 Let q > q.. Then there ezists a positive constant C; = C1(N,q) such that for
any closed subset F of RN and any u € C?(Qoo) N C(Quo \ F) satisfying

{ Ou—Au+u?l=0 in Qs

2.1
limy o u(x,t) =0 locally uniformly in F°€, 21)



there holds
u(z,t) < C1Wg(z,t) V(z,t) € Qoo, (2.2)

where Wg is the (2/q,q')-capacitary potential of F defined by (I.13]).
First we shall consider the case where F' = K is compact and
K c B, C B,, (2.3)

and then we shall extend to the general case by a covering argument.

2.1 Global Li-estimates
Let p > 0, we assume (2.3]) holds and we put

Trp(K) ={n e C5°(Br+,),0 <n < 1,7 =11in a neighborhood of K}. (2.4)
If n€ T, ,(K), we set n* =1—n, ¢ =H[n*]* and
Rln) = |VH[]|* + [0H[n) + AHn|. (2.5)

We fix T' > 0 and shall consider the equation on Qp. Throughout this paper C will denote a
generic positive constant, depending only on IV, ¢ and sometimes T', the value of which may vary
from one ocurrence to another. We shall also use sometimes the notation A ~ B for meaning
that there exists a constant C' > 0 independent of the data such that C~'A < B < CA.

Except in Lemma the only assumption on ¢ is ¢ > 1. In the sequel we shall obtain
pointwise estimate on the solution expressed in terms of the L?-norm of R[r)] for n € Tr.p(K).
Although these estimates could have been immediately turned into capacitary estimates as in
[29], the advantage of keeping them comes from the possibility of performing operations such as
dilations or summations on them. The next lemma points out the connection between R[n] and
the the Cy/, 4~ capacity of K.

Lemma 2.2 There exists C = C(N,q) > 0 such that
C Il 2 < / / o (R)? dwdt = |[R)%, < Clnll% 0y Y0 E Trp(K).  (26)
Therefore
inf {| RO, < n € Top(K) } ~ Oy (K). (2.7)

Proof. There holds 0;H[n] = AH[zn], and

q — -1/ v ﬁ% q
[, o awar= [, TSl 28)



where [Wz’q/, Lq/} y indicates the real interpolation functor of degree 1/¢ between W24 (RY)
a4

and L7 (RN) [35]. Similarly, and using the Gagliardo-Nirenberg inequality,

// (VD drde < Ol il = Ol (2.9)

Inequality (Z67]) follows from ([Z8]) and (Z3J), and 7)) from the definition of the Bessel
capacity relative to B, . O

Lemma 2.3 There exists C = C(N,q) > 0 such that for any T > 0,

// qudde/ (uC)(z, T)dx < CHR[n]H‘gq, vn € Trp(K). (2.10)
Qoo RN

Proof. We recall that there always hold

0 < ula,t) < (ﬁ) T V(@ t) € Qu, (2.11)
and (see [6] e.g.)
0 < u(z,t) < (%) T V@ t) € 0w\ B, (2.12)

Since n* vanishes in an open neighborhood N, for any open subset N5 such that K C Ny C
Ny C N there exist ¢y, > 0and Cy, > 0 such that

Hn"|(z,t) < Cy, exp(—cy, t),  V(z,t) € Q2.
Therefore

lim (u€)(z,t)dx = 0.

t—0 RN

Thus ¢ is an admissible test function and one has

//QTquda: dt + /RN (uQ)(z, T)dzx = //QTu(atC + A()dz dt. (2.13)

Notice that the three terms on the left-hand side are nonnegative. Put H,» = H[n*], then
2¢'—1 2¢' —2
O¢+AC = 2¢/H T (OH, + Ay ) +2¢'(2¢ — DH 7 [VH,- P,
2¢'—1 — 2
= 2¢H,! " (8H, + AH,) + 2¢'(2¢' — 1)H;? ~*|VH,|%,

because H,» = 1 — H,, hence

u(atc n AC) _ uHiﬁZ,/q 2q,(2q, _ 1)Hig’_2—2q//q’vﬂn‘2 o 2q/H?272’_1—2q//Q(AH7] 4 atHn)] .

7



Since 2¢' —2 —2¢'/¢=0and 0 < H,~ <1,

‘ // 0+ A0 dt‘ < Clg ( /] e dt)lxq ( / /QTRQ’m)dx dt) a

R(n) = |VH,|* + |AH, + 0,H,| .
Using Lemma [2.2] one obtains ([2.10]). O

where

Proposition 2.4 Letr >0, p> 0, T > (r + p)?
Ertp = {(z,t) : ‘x’2 +t<(r+ ,0)2}

and Qrypr = Q1 \ Ergp. There exists C = C(N,q,T) > 0 such that
/ / widz dt + / u(z,T)dz < C||R)|Y, V€ Tpu(K). (2.14)
Qr'er,T RN

Proof. Because K C B, and n* =1 outside B, , and takes value between 0 and 1,

4rt

1\ 2 2
2 lz—y]
= 1- <—> / e~ at dy.
Amt ly|<r+p

For (z,t) € Ertp, put = (r+ p)&, y = (r + p)v and ¢t = (r + p)*>7. Then (£, 7) € & and

* 1 % _\x*y\2
Hly')(z.t) > HL ~ x,, , |(z.1) = =t gy,
ly|>r+p

N

N
1 \?2 z—y|? 1 \2 —v|?
4rt ly|<r+p 4mT lv|<1
1
max —
drT

and £ = ¢(N) € (0,1]. We recall that

1 \2 le—v|?
<—> / e 1 dv<l1 V1 > 0. (2.16)
At ‘U‘Sl

If the maximum is achieved for some (£, 7) € &, it is smaller that 1 and

»

We claim that

vz

2
/ e I &, 7)€ 51} =/, (2.15)
jvl<1

Hn*](z,t) > H[1 — XBT.er](:E,t) >1—-0>0, V(z,t) € Ergp- (2.17)



Let us assume that the maximum is achieved following a sequence {(&,,7,)} with 7, — 0 and

|€4] L 1. We can assume that &, — ¢ with m =1, then

1> l&n —v]? 1
() foe 0= ()
ATy, lo|<1 Ay,

But Bl(gn) N Bl(—gn) = wv

vz

_lv?
/ e 1 dv.
Bl(gn)

2 2
v _ Il

|v)?
/ e_mdv—l—/ e_mdv</ e T du
Bi(&n) Bi(—¢n) RN
I _
/ e 4m dv:/ e 4 du.
Bi1(¢n) Bi(—¢&n)

li !
im
n—oo \ 47T,

and

This implies

oz

Jv|?
/ e Tmdv < 1/2.
Bl(fn)

If the maximum were achieved with a sequence {(§,,7,)} with |7,| — oo, it would also imply
(ZI7]), since the integral term in (2I6]) is always bounded. Therefore (ZI6]) holds. Put

C = (1-£)71 then

// uqdazdt+/ u(.. T)de < C IR, .
QT,T RN
and (2.14]) follows.

2.2 Pointwise estimates

We give first a rough pointwise estimate.
Lemma 2.5 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K),

u(z, (r +2p)?) < CHLH]”%%, Vo € RV,
(p(r+p)®

Proof. We observe first that

T
/ / uldz dt + / u(x, T)dx = / u(zx, s)dz VI > s> 0.
s JRN RN RN

(2.18)

O

(2.19)

(2.20)

By the maximum principle u is dominated by the maximal solution v which has the indicatrix
function Ip, for initial trace. The function v is the limit, as k — oo, of the solutions vy with

initial data ky, . Since vy < kH[x,, |, it follows Hence
/ u(s)de < CIRBINY, YT > s> (r+p)2,
RN

9

(2.21)



by Lemma 2.3l Using the fact that

(e, T+ 5) < Hu(., 8)](z,7) < <L>ﬂ /RN u(., 8)da,

dmr

we obtain (ZI9]) with s = (r + p)? and 7 = (r +2p)? — (r + p)? = p(r + p). O

The above estimate does not take into account the fact that u(x,0) = 0 if |z| > r. It is
mainly interesting if |x| < r. In order to derive a sharper estimate which uses the localization
of the singularity and not only the LY -norm of R[n]. For such a goal, we need some lateral
boundary estimates.

Lemma 2.6 Let v > 7+ 2p and ¢ > 0 and either N =1 or 2 and 0 < t < ¢y? for some ¢ > 0,
or N >3 and t > 0. Then, for any n € T, ,(K), there holds

t
// udSdr < Csy||R[)|?, - (2.22)
0 JoB,

where C' > 0 depends on N, q and c if N =1, 2 or depends only on N and q if N > 3.

Proof. Let us assume that N = 1 or 2. Put G7 := Bf x (—00,0) and 9,G” = 9B, x (-0, 0).
Set

y
h'Y(x) =1- m7

and let v, be the solution of
Orthy + Apy, =0 in G7,
¥y =0 on 9yG7, (2.23)
Py (.,0) = hy in BY.
Thus the function
b, ) = by (v, 777)
satisfies ~ ~
op+ AP =0 in G!
=0 on dG (2.24)
0(.,0)=h in BY,
and h(z) =1 — |z|~". By the maximum principle 0 < ¢ < 1, and by Hopf Lemma

oY

- %ale[—c,O} 2 6 > 07 (225)
where 6 = 6(N,c¢). Then 0 <1, <1 and
oY

- 8—11783“[_72,0] >0/v. (2.26)

10



Multiplying (LI) by ¢+ (z, 7 —t) = ¥} (z,7) and integrating on B x (0,t) yields to

/t/ Qi davd +/ (uh.)(z, t)d /t/ Ou e asa /t/ O dod (2.27)
ulptdxdr who)(z, t)dx — — T=— —udodr. )
0 JBe B 0 Jop, on " 0 Jop, On

Since 93 is bounded from above by 1, [2.22]) follows from ([2.261) and Proposition 2.4 (notice
that BS x (0,t) C &), first by taking t =T = 72 > (r +2p)?, and then for any t < ~2.

If N > 3, we proceed as above except that we take

h(a) =1 — <|%|>N_2.

Then v (z,t) = hy(z) and § = N — 2 is independent of the length of the time interval. This
leads to the conclusion. g

Lemma 2.7 - Let M, a > 0 and n € L=(RY) such that

0<n(z) < Mell a.e. in RY. (2.28)
Then, for any t > 0,
M _ alzl? N
0 < H[n|(x,t) < ﬁe dat+1 Ve e R™. (2.29)
dat +1)=2

II- Let M, a, b > 0 and n € L®(R"N) such that

0<n(z) < Memallal=0% a.e. in RY, (2.30)
Then, for any t > 0,
a(|z|-b)2
Me™ datti
0 < Hlp)(z,t) < (ei)N Vo e RN, Vit > 0. (2.31)
dat+1)2
Proof. For the first statement, put a = %S. Then
N 1 _l=? N
0% 7o) < Mltms) ¥ e = Cltms) VBl (019
mS)2
By the order property of the heat kernel,
N s T
0 < Hpl(o.) < Mm) Fetlil(at 4 6) = 0 () T,

and (2.29]) follows by replacing s by %a.

11



a(r— b) +ar?

For the second statement, let @ < a and R = max{e ;7 > 0}. A direct computation

adb?

gives R = e«-a, and (23T]) implies

adb?

0 < (x) < Meae el

Applying the statement I, we derive

aab?
a—a _ a\x\z
0 < H[n)(z,t) < (‘ei)Ne it Yo e RN, V> 0. (2.32)
4at +1)=2
Since for any 2 € RY and t > 0,
_ N _ a_\z\Q _ aab? _a(lz]=b)?
(dat +1)" ze att1 < e a—a (dat + 1) datl

231]) follows from (2Z32]). O

Lemma 2.8 There exists a constant C = C(N,q) > 0 such that, for any n € Ty ,(K), there
holds

r+p x| — 7 — Qp} e_(\r\f(rmp))z (2.33)

2 < 4(r+2 )2 q/
e 7+ 29)7) < Cmax { oy T A R

Ld’

for any x € RN\ B,13,.

Proof. Tt is classical that the Dirichlet heat kernel HP7 in the complement of B; satisfies, for
some C =C(N) >0

z/fy/‘z

HP (2! yf 1, s') < Co(t! — &) "N (|2 | — 1)e 30777, (2.34)

for ' > s'. By performing the change of variable 2’ +— (r + 2p)z’, t' — (r + 2p)t', for any
z € RV \ B, 49, and 0 <t < T, one obtains

eyl

(1) < (x| — r — 2p) / /a ¢ Yy $)do(y)ds. (2.35)

Br+2p t— S 1+2

The right-hand side term in ([2.35]) is smaller than

o _ (lzl=r—2p)2
max (|IE| r 2p) 4(t— .s)p . S O t / / y7 dO'( )d
(t . 8)1—1— 5 0Br+2p

We fix t = (r + 2p)? and |z| > r + 3p. Since

_ (z|=r—2p)2
4s

max

e € (0,(r +2p)?)
s

1
€ 4o

9 1o r+2p 2
= (|z| = r — 2p) 727 max N:0<0’<<7> )
oty |z| —7r —2p

12




a direct computation gives

e i? r+2p 2
max{ — :0 <o < <7>
o5 |z| —1r —2p

(2N + 4)1+% e~ (N+2)/2 if 7+ 3p < |z < (r +2p)(1 + VA + 2N),

lz| —r—2p\*TN —(‘””‘*"*2”)2 .
_ e \ 2t if |z| > (r+2p)(14++v4+2N).

T4 2p

Thus there exists a constant C'(IN) > 0 such that

_ (zl=r—2p) 2
1s _(lzl=(r+2p)
max s :s€(0,(r+ 2p)2) < C(N)p~2Ne ( 2r+dp ) (2.36)
s T2
Combining this estimate with (2227]) with v = r 4+ 2p and (2.35]), one derives (2.33]). O

Lemma 2.9 Under the assumptions of Lemma [2.8, there exists a constant C = C(N,q) > 0
such that

(r + p)? 1 - (lelorpae)? :
0< 20)2) < C 2r+4p R T, ,
<o, (r+20P) < Cmax{ - CE O e IR,
(2.37)
for every x € RN \ B3,
Proof. This is a direct consequence of the inequality
_(lzl-r=20\* 2 (lz]-r—3p\?
(|z| —r —2p)e ( 2r+4p ) < (T;‘P) e ( 2r+4p ) , Yo € B7€+2p7 (2.38)
and Lemma 2.8 O

Lemma 2.10 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K), the
following estimate holds

_ (l=l-r=3p)3
CMe™ ’
u(a,t) < —— g |IR[)IY,,  VzeRY,Vt>(r+20)% (2.39)
t2
where
N

(1—1—%)2 if |lz| <r+3p

[ = M — N+3 .

M= Miz.me) TRy ifr+3p < |z| < On(r + 2p) (2.40)
1+£ if x| > Cn(r+2p)

with Cy =14 V4 +2N.
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Proof. 1t follows by the maximum principle
u(@,t) < Hlu(., (r + 2], ¢ — (r +20)2).

for t > (r +2p)? and z € RY. By Lemma 2.5 and Lemma 2.9

~_(zl-r—3p)? ,
u(z, (r+2p)*) < CroMe 1020 ||R[p]||T,
where N
((r+pp) = if |z| <7+ 3p
M= § T (a] — 7 — 20))"* if 1+ 3p < [a] < On(r+2p)
m if |z| > Cn(r + 2p)

Applying Lemma 27 with a = (2r +4p) 2, b = r + 3p and ¢ replaced by t — (r + 2p)? implies

N 7 23002
(r+2p) Me_u |=r—3p)

N
t2

1R[]« (2.41)

u(z,t) < C L

for all z € By 5, and t > (r + 2p)2, which is (239]). O

The next estimate gives a precise upper bound for v when t is not bounded from below.

Lemma 2.11 Assume that 0 < t < (r + 2p)? for some ¢ > 0, then there exists a constant
C = C(N,q) > 0 such that the following estimate holds

1 1 _(lzl-r=3p)? /
) <00 v g i | I e
p 2

for any (x,t) € RN\ By, x (0, (r + 20)?].

Proof. By using ([222]) the following estimate is a straightforward variant of (Z33]) for any
vy =1+ 2p,

_ (z|=r—2p)*
e 4s ’
u(z,t) < Cs(|z] —r — 2p)(r + 2p) max — v 0<s <t ||R[77]H‘iq, . (2.43)
s T2
Clearly
_ (z|=r=2p)
e 4s
max & 0<s<t
81+7

N + D)5 (jz] —r — 20) N2 i 0 < |2| <7+ 20+ /2N T 2)

= _ (z|-r—2p)2

e at
e if |z > r+2p+ /2L(N + 2).
t- T2
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By elementary analysis, if € By, 3,

2

_P .
(Jo]—r—20)2 (el-r-3p2 | PE if 2t < p?
(ja] — r — 2p)e= ST < - 2
2t g4 o 2
—e T E if p* <2t <2(r +2p)°.
p
However, since
2
t p
we derive
_Ual=r=2p*  Ct _(al-r—3p)*
(|lx] —r—2p)e 1 < —e W,
p
from which inequality (2:427]) follows. O

Lemma 2.12 Assume q > q.. Let r > 0, p > 0 and K be a compact subset of B,1,. If
n € Trp(K), denote by n, the function defined by n,(x) = n(rz) and

Ry[my)(x,t) = [VH[][* + [0:H[n] + AH[n]| (ra,r*t)  V(2,t) € Que.

Then
/ N—L /
IR, =r" " (1R[]l - (2.44)
Furthermore
B, N—-2 B
Cy i (K) =" "71C, /:q, (K/r), (2.45)
and
1
2 2 q—
Py 1)) £ ) < 0 (14 D) T . a9

Proof. Estimate (2.44]) follows from the change of variable (rz,r%t) = (y,s). Thus it implies
the scaling property (Z47]), since there is a one to one correspondence between 7, ,(K) and
71,2 (K/r). In order to prove ([2.44]) set K' = K/r C By, thus
Bl+$ / . q /
Coppor (K1) = {ICU% o/ € € Tra (K}

Let ¢ € C?(RY) be a radial cut-off function such that 0 < p < 1, p = 1 on By, p = 0 on
RV \ By, e, [Vo| < Crp~ty, 5, and |D%¢| < Cr?p~2 where C' is independent of r
T 1+£

and p. Let ¢ € C2(RY). Then

\B1

V(¢9) = (Vo + V¢, D*(() = (D> + ¢D*¢ +2Vox V(.
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Thus ||C¢‘|Lq’(31+£) < ||C||Lq’(RN)7

!

! q !
[veonas <o (14 2) 1eli,

Bip
and )
q 2\ !
Lol e (1+5) 160,
Brip P

Finally

7,2

I66lhuerna < € (1+ 55 ) 1€l
Denote by T the linear mapping ¢ — (¢. Because
w2/ed — [W2,q’,Lq’} 7
1/q,9
(here we use the Lions-Petree real interpolation notations and results from [22]), it follows

r2 1/q

-
171 P

Lo @V W (B, p
.

Therefore

B1+% 7*2 q—1
CF (K < C <1 + F) Co g (K.

Thus we get the left-hand side of (2.461]). The right-hand side is a straightforward consequence
of [ZAT)). 0

Remark. In the subcritical case 1 < g < g, estimate (2.461]) becomes

By 2
Cz/qt;/(K) < C'max {rN,pN} <1 +p q,l) Co/q.q (K/T). (2.47)

By using Lemma 21T it is easy to derive from this estimate that any positive solution u of
(210), the initial trace of which vanishes outside 0, satisfies

N
u(z,t) < Ct™ 7T min {1, (%) ’ E_T} V(z,t) € Qoo (2.48)

This upper estimate corresponds to the one obtained in [7]. If F = B, the upper estimate is less
esthetic. However, it is proved in [25] by a barrier method that, if the initial trace of positive
solution u of (ZTI]), vanishes outside F, and if 1 < ¢ < 3, there holds

u(z,t) < T fi((J2] = )/VE V(@) € Qu, o] > (2.49)
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where f = fi is the unique positive (and radial) solution of
1
'+ g =0 i (0,0)

F1(0) = 0, limyo0 |y| 7T f(y) = 0.

Notice that the existence of f; follows from [7] since ¢ is the critical exponent in 1 dim. Fur-
thermore f; has the following asymptotic expansion

fily) = Cy® DD (1L g o(1)) asy — oo

(2.50)

2.3 The upper Wiener test

Definition 2.13 We define on R x R the two parabolic distances 83 and 6 by

52l(@,1), (4,9)] = le — P + |t — s, (2.51)

and
doo(2,1), (y, 5)] := max{|z — y|, /]t — s[}. (2.52)

If K c RN and i = 2, 00,

max{dist (z, K), \/m} if i = oo,

Gi[(x, 1), K] = inf{di[(, 1), (y,0)] : y € K} = : o
Vdist 2(z, K) + |¢t] ifi =2.

For 8 > 0 and i = 2, 00, we denote by Blﬁ(m) the parabolic ball of center m = (z,t) and radius
B in the parabolic distance 9;.

Let K be any compact subset of RN and 7ix the maximal solution of (L) which blows up
on K. The function T is obtained as the decreasing limit of the T, (¢ > 0) when ¢ — 0, where

K. ={z eRY : dist (z,K) < ¢}
and Ux, = limy_,o0 Ui, k. = Uk, Where uy, is the solution of the classical problem,
Opu, — Aug +uj =0 in Qr,
up =0 on 0,Qr, (2.53)
ug(-,0) = kxy, in RV,
If (x,t) = m € RN x (0,7], we set dx = dist (v,K), D = max{|r—y| : y € K} and
A= ,/d%{ +t = d3[m, K]. We define a slicing of K, by setting d,, = d,(K,t) := v/nt (n € N),
T, = Ba,,,(z) \ Ba,(z), Vn € N,
thus Ty = B\/z(a;), and
K,(r) = KNT,(x) forn € Nand Q,(x) = KN By,,, ().

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of
this section is the following discrete upper Wiener-type estimate.
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Theorem 2.14 Assume q > q.. Then there exists C = C(N,q,T) > 0 such that

C

“S—ﬂ
t2
n

K,
q 1 —102/[1[1 <K+1> V(a:,t) c QT, (254)

where a; is the largest integer j such that K; # 0.

With no loss of generality, we can first assume that x = 0. Furthermore, in considering the

1
scaling transformation wy(y,t) = ¢a—Tu(v/fy,¢t), with £ > 0, we can assume ¢ = 1. Thus the
new compact singular set of the initial trace becomes K/ V0, that we shall still denote K. We
shall also set a, = a, , Since for each n € N,

1 1
——— <dpq1 —d, < ,
2vyn+1 o= vn+1

it is possible to exhibit a collection ©,, of points a, ; with center on the sphere %, = {y € RV :
|yl = (dnt1 + dn)/2}, such that

T, C U By, mzilang)s  lan; —ankl 2 1/2vn+1 and #6, < cnN1,

Qn,j €0y,

for some constant C'= C(N). If Ky j = Kn N By, sz1(an,;), there holds

K= |J U Kus

0<n<ay an €O,
The first intermediate step is based on the quasi-additivity property of capacities [2].

Lemma 2.15 Let q > q.. There exists a constant C = C(N,q) such that

N 1 K.
An,j €0y, n+ 1

where By, j = Bz/\/m(an,j) and Cyq o stands for the capacity taken with respect to RN,

Proof. The following result is proved in [2, Th 3]: if the spheres B (b;) are disjoint in RN and
J

G is an analytic subset of | J B, (b;) where the p; are positive and smaller than some p* > 0,
there holds

Cofgq(G) £ Coyq (G By, (b)) < ACh ) (G, (2.56)
J

where § = 1 — 2/N(q — 1), for some A depending on N, ¢ and p*. This property is called
quasi-additivity. We define for n € N,

T,=vn+1T,, IN(n:\/n—l—lKn and Qn:\/n—l—lQn.
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Since K, ; C By, /mri(an;) and the Cy, o capacities are taken with respect to the balls
By, mrilan,;) = Bpj. By Lemma 12l with r = p=1/v/n+1

By, i N ~
Cojiy(Bng) < Cln+ 17172 Cogy g (Rng), (2.57)

where IN(nJ = vn+1K, ; and Bn,j = vn+1B,,. For a fixed n > 0 and each repartition
A of points a,; = v/n+1 ay; such that the balls By (a, ;) are disjoint, the quasi-additivity
property holds in the following sense: if we set

Kopa= |J Knj, Eopa=vVnt+tlKyn= |J Kn; and K,=Vn+1K,,

an,j €A an,j €A

then

Z C2/t1q na) < Acz/qq( nA) (2.58)

G jEA

The maximal cardinal of any such repartition A is of the order of Cn™~! for some positive
constant C' = C(N), therefore, the number of repartitions needed for a full covering of the set
T,, is of finite order depending upon the dimension. Because K, is the union of the K, A

Z C’2/1111 Z Z C’2/1111 n,j <CC2/qq( n)- (2.59)

an, ;€O A an €A

Since, by Lemma 2.12]

By, o Kn —&1 Kn
CQ/qq ( ) < 02/2(1(q+1) (Kn) = (n+1) OQB/qu <\/’I’L——H> é O(n+1)N a1 02/‘]7‘], < n + 1> ’

we obtain (2.557]) by combining this last inequality with (2.57]) and (2597). O
Proof of Theorem [2.14 Step 1. We first notice that

ur < Z Z HK’;L,j’ (260)

0<n<a, an, ;€O

Actually, since K = {J,, U, , K j, for any 0 < ¢’ <, there holds Koo € U, U,, , K je. Because
a finite sum of positive solutions of (LIJ) is a super solution,

Uk, < Y Uk, . (2.61)

OSTLSGK Qn,j €®7L

Letting successively ¢’ and € go to 0 implies ([2.607).

Step 2. Let n € N. Since K, ; C By mzi(an;) and |z —anj| = (dyn + dn11)/2 = (Vn+1+
\/n)/2, we can apply the previous lemmas with » = 1/y/n+1 and p = r. For n > ny there
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holds t = 1> (r+2p)2 =9/(n+1) and |z — an ;| = (Vn+1—n)/2 > (2+ Cn)(3/v/n+1)

(notice that ny > 8). Thus

uk, ;(0,1) < CeVr=3/VntD? /45 o (Knj) < CeblPe” 402/qq (Kpnj). (2.62)

Using Lemma [2.15] we obtain, with d,, = d,(1) = v/n +1
Ky
Z Z ur, ;(0,1) <C Z d e 4LC2/qq 4. ) (2.63)
NN an g€®n ntl
Finally, we apply Lemma if 1 <n < n, and get
ny—1
K,
z >k, (0.1) <€ z Cojug (—dnﬂ)

an,; €O

(2.64)

For n = 0, we proceed similarly, in splitting K7 in a finite number of K ;, depending only on
the dimension, such that diam K7 ; < 1/3. Combining (Z:63]) and (2.64]), we derive

K oN-2Z ., K,
ﬂK(Oy 1) < C E dn_i_lq*l e_ZCQ/q’q/ <d—+1> . (265)
n=0 n

In order to derive the same result for any ¢ > 0, we notice that

__1
Uk (y,t) =t Uy 4(yvt,1).

Going back to the definition of d,, = d,,(K,t) = v/nt = d,,(K+/t,1), we derive from ([2.65]) and
the fact that a,, = a

T UKV
1 K N——2_ n K,
Ui (0,t) <Ct 71y d e 1Cy 0 | —— 2.66
(00 < OIS LT Oy () (2.66)
with dy, = dp(t) = /t(n+1). This is (2Z54]) with z = 0, and a space translation leads to the
final result. O

Proof of Theorem 21l Let m > 0 and F,,, = F N B,,. We denote by U Be, the maximal solution
of (IT]) in Qo the initial trace of which vanishes on B,,. Such a solution is actually the unique
solution of ([2.I7]) which satisfies

lim u(z,t) = 0o

t—0

uniformly on B¢, for any m’ > m: this can be checked by noticing that

1
Upe, e(y,t) = eqflUB%L(\/Zy,Et) = UBfn/ﬂ(yat)-
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Furthermore ,
lim Uge (y,t) = lim m_FUBf(y/m,t/n”ﬂ) =0
m—r0o0 m—r0o0

uniformly on any compact subset of Q... Since Ug,, + Upe, is a super-solution, it is larger that
up and therefore up,, T up. Because W, (z,t) < Wg(x,t) and up,, < C1Wg,, (x,t), the result

follows. [

Theorem 2.1] admits the following integral expression.

Theorem 2.16 Assume q > q.. Then there exists a positive constant Cf = C*(N,q,T) such
that, for any closed subset F' of R, there holds

* Vit(at+2) 2 1
Ci / E_ESN_%OQ/%(]/ (;F N Bl(x)> sds, (2.67)
Vit

u <
UF(x7 t) = tl+%

where a; = min{n : F' C Bm(m)}

F, F
C2/q,q’ (d . > < C?/q,q’ <—d ﬂB1> R

Proof. We first use

n+1 n+1
and we denote

F
D(s) = Coygq <; N Bl> Vs > 0. (2.68)
Step 1. The following inequality holds (see [I] and [29])
1 P(as) < P(s) < ca®(Bs) Vs>0, V1/2<a<1<p<2, (2.69)
for some positive constants ¢, co depending on N and ¢. If 8 € [1,2],
1/(F F
@(58) = C2/q,q’ <B <; N Bﬁ)) ~ Cg/qg/ <§ N Bﬁ) > Cl(p(S).
If € [1/2,1],
1 (F F
q)(OZS) = C2/q,q’ <E <; N Ba>> ~ C2/q,q’ (; N Ba> < ng)(s).
Step 2. By (2.69))
F F
02/q,q’ <— N Bl) < 6202/1174’ <; n Bl> Vs € [dpy1, dnal,

dn—l—l

and n < a,. Then

dn42 9 F
Cg/d SN_que_sz/thCg/q’q/ (; N Bl> sds

n+1

F dn+2 N—L —32/4t

> Coqq | 5 N D1 s TaTe sds.
dnt1 dpi1
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Using the fact that N — q%l > 0, we get,

dn+2 52 nt2 N——2-41
/d sN_q%le_Esds >e i aanrl‘FlJr (dpt2 — dnt1) (2.70)
n+1
t N-2 .
Z 12 il €T (2.71)
Thus
C \ t(ar+2) N——2_ 52 1
up(z,t) < —= / s’ e Tem w0y 0 <—FﬂBl> sds, (2.72)
'tz Jvi S\
which ends the proof. O

3 Estimate from below

If pemi (RM) N MY (RY), we denote by u,, = u, the solution of

Oy, — Auy, +ul =0 in Qr,
{ 1% o i Qr (3.1)

u,(.,0)=p  in RY.

The maximal o-moderate solution of (I.I]) which has an initial trace vanishing outside a closed
set F' is defined by

wp = sup {uu L e M (RY) MO (RY), p(F) = o} . (3.2)
The main result of this section is the next one

Theorem 3.1 Assume q > q.. There exists a constant Co = Co(N,q,T) > 0 such that, for any
closed subset F C RN, there holds

up(z,t) > CoWp(z,t) V(z,t) € Qr. (3.3)

We first assume that F' is compact, and we shall denote it by K. The first observation is
that if u € ML(RY), u, € LI(Qr) (see lemma below) and 0 < u,, < H[u] := H,,. Therefore

uy, > H, — G [H], (3.4)

where G is the Green heat potential in Q7 defined by

Gl = [ BN —s)ds = [ [ At =5 s)dyas.

Since the details of the proof are very technical, we shall present its main line. The key idea
is to construct, for any (z,t) € Qr, a measure p = p(z,t) € ML (RY) such that there holds

H,(z,t) > CWk(z,t)  Y(z,t) € Qr, (3.5)
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and
G (Hu)q <CH, inQr, (3.6)

1
with constants C' depends only on N, ¢, and T, then to replace u by p. = eu with e = (2C')~ a1
in order to derive

uy, > 27 H, > 27 CW. (3.7)

From this follows
up > 271H,, > 27 CWk. (3.8)

and the proof of Theorem B.I] with Cy = 271C.

We recall the following regularity result which actually can be used for defining the norm in
negative Besov spaces [35]

Lemma 3.2 There exists a constant ¢ > 0 such that
C_l”MHWﬂ/q,q(RN) < ”HuHLq(QT) < C”MHsz/q,q(RN) (3.9)
for any p € W=2/09(RN).

3.1 Estimate from below of the solution of the heat equation

The purely spatial slicing used is the trace on RY x {0} of an extended slicing in Q7 which is
constructed as follows: if K is a compact subset of RY, m = (z,t), we define dg, A, d,, and a;
as in Section 2.3. Let v € (0,1) to be fixed later on, we define T, for n € Z by

_ i/m(m) \Bg/ﬁ(m) ifn>1,
T B\ B ) i<,

and put
Tr=T,N{s:0<s<t}, forneclZ.

We recall that for n € N,,

and
K,=Kn 7;14-1 =Kn (Bdn+1($) \Bdn(x)) .

Let v, € M, (RY) N W—2/49(RN) be the g-capacitary measure of the set K, /d,+1 (see [I, Sec.
2.2]). Such a measure has support in K, /d,+1 and

1
Vn(Kn/dnt1) = Coq,¢ (Kn/dnt1) and HVn”Wﬂ/q,q’(RN) = (02/q,q’(Kn/dn+1)) e (3.10)
We define u,, as follows

__2
pn(A) = an+1q71Vn(A/dn+1) VA C K,,, A Borel , (3.11)
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and set
at
ﬂt,K - Z Hn s
n=0

and

at
H/th,K = z :H,Ufn
n=0

Proposition 3.3 Let g > q., then there holds

1 X _n+l N‘% Kn
Hy, x (2,t) > (4m)12vn§;oe T dy " Cogy dr )

in RNV x (0,7).

Proof. Since

1 _Jo—y)?
H,, (z,t) = < e~ At duy,
(47Tt)? n

and
yEKn:> ‘x_y‘ Sdn—i-ly

BI3]) follows because of (BI1]) and (BI2]).

3.2 Estimate from above of the nonlinear term
We write (3.4]) under the form

q

¢
uy(x,t) > ZHun(x,t) —/0 RNH(:E,y,t —5) Z H,, (y,s)| dyds

nez ne€Ag
=1 — Is.

since pp, = 0if n ¢ Ax = NNl a, and

1 t _lz—yl?
I < ~ / / (t— s)_%e 1 Z H,, (y,s)| dyds
(4m)= Jo JRN neAy
1
S N (JZ + Jé)u
4m) >

for some £ € N* to be fixed later on, where
q
2

lz—y|
JEZZ// (t— S)_%e_ 19 Z H,, (y,s)| dyds,

PEZL P n<p+4
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and

q
_la—yl?
J) Z// (t—s) ge AE-9) Z H,,,(y,s)| dyds.
pEZ n>p+L
The next estimate will be used several times in the sequel.
Lemma 3.4 Let 0 <a <b andt > 0, then,
N a a

t"2e 14 if — > 1
N2 ) / 2N ’

max{a_?e_ﬂ 0<o<t, at < p? +a<bt}: 1 N

Proof. Set

2

J(p,0) =0 2e 5

=z

and
Kapt = {(p,0) €[0,00) x (0,t] : at < p*>+ 0o < bt}.
We first notice that, for fixed o, the maximum of (., o) is achieved for p minimal. If o € [at, bt]
the minimal value of p is 0, while if o € (0, at), the minimum of p is Vat — s.
- Assume first a > 1, then J(vat —o0,0) = e%a_%e_% thus, if 1 < a/2N the minimal value

N a

_ N
of 7(Vat —o,0) is et (ﬂ) while, if a/2N < 1 < a, the minimum is eit e i,

at
- Assume now a < 1. Then

max{J (p,0) : (p,0) € Kaps} = max{ max J(0,0), max J(vat— o, 0)}

o€(at,t] oe(0,at]

N 1-28 [ 2N 5
=max{ (at)"2,e 1 -
at
128 [ 2N
— e 4 _
at

Combining these two estimates, we derive the result. O

S

Remark. The following variant of Lemma [3.4] will be useful in the sequel: For any 6 > 1/2N
there holds

max{J(p,0): (p,0) € K(a,b,t)} < et <¥> B e”i if fa > 1. (3.17)

Lemma 3.5 There exists a positive constant C = C(N,¥,q) such that
Jy < Ct™ Zd T (1 n0),)/4 Cy) <ﬁ> (3.18)
= a.q )

ot
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Proof. The set of p for the summation in Jy is reduced to Z N [—¢ + 2,00) and we write
Jo=Jie+ Jou

where
_lz—=yl® \
=Y [[ -t S B
p=2—4 n<p+4
and
N _le—yl?
JN—Z// (t—s) 2e 4= ZHun(y,s)
n<p+~
Ifp=2—-4¢,...,0,
(y,8) €T, = > < |z —yP +t—s < ta"?,
and, if p > 1
(y:5) €Ty = pt < |z -y +t—s< (p+ 1),
By Lemma B4 and (BI7]), there exists C' = C(N, ¥, «) > 0 such that

_le—y)? -
max{(t - S)_%e A (y,s) € 7;,*} <Ot re A (3.19)
ifp=2—-1¢,...,0, and
_le—yf?
max {(t — s)_%e s (y,s) € 7;,*} < Ct_%e_p/‘l, (3.20)
ifp>1. Whenp=2-1¢,...,0
p+L—1 q p+{—1
[ Z H,un(yvs) é C Z an(yvs)' (321)
1 1
for some C' = C(¢,q) > 0, thus
2oy PHLTI

0
Je<Ct T Y e

> MMl

p=2—4
Nﬁ—l 0 2 2p
<ot ?ZHHMHM(@ S (3:22)
n=1 p=n—{+1
_N
<Ct 7Ze unHLq Q1)

If the set of p’s is not upper bounded, we introduce § > 0 to be made precise later on. Then

p+L—1 q p+L—1 a/d p+L—1
[ > Hy,(y,s ] [ > e&I’Z] Z e~ HY (y, 5), (3.23)
1
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with ¢ = ¢/(¢—1). If, by convention p,, = 0 whenever n > a;, we obtain, for some C' > 0 which
depends also on 4,

00 +4—
d(ptel— 1) n
Jgg < Ct™ ZE - = Z _% HHﬂnH%Q(Qt)

p=1

[oe)
_N 5qn S(p+L=1)g—p
< Ct § j||Hunqu o€ S (3.24)

p=(n—L{+1)V1
< Ct~ Ze

Notice that we choose ¢ such that §¢¢ < 1. Combining (3.227) and (B:24]), we derive (B3I8])
from Lemma 3.2] (3.107) and (B.1T]). O

1,1 0

The set of indices p for which the j,, terms are not zero in J; is Z N (—o0,a; — £]. We write

Jy=Ji0+ Jop

where
2 00 1
N _lz—ul
le— Z// (t—s)"2e 4G9 Z H,, (y,s)| dyds,
p=—00 Ty n=1Vp+{
and

q

at—¥4 2 00
_lz—y|
T30 = Z//T*(t—s)_ge i) Z H,, (y,s) |dyds.
p=1 P

n=p-+t
Lemma 3.6 There exists a constant C = C(N,q,f) > 0 such that
Jie < Ctl—%fge %dﬁfl 2 CY o <%> : (3.25)
where By = (¢ —1)/4 and h = 2q(q+1)/(q — 1)?.
Proof. Since
(y,s) €T, and (2,0) € K, = |y — 2| > (Vn — a PV, (3.26)

there holds

(Vi—a~P)? (VA—a~P)?
Hun(yas) < (4773)_%6_ 4s tﬂn(Kn) < C’t_%e_ 4 pin(Kn),

by Lemma [34l Let €, > 0 such that

o0

!
A6:Ze% < 00,

n=1
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then

/ ey X _ (Vrn—a~P)?
{xscﬂmf'ii// (t=s) 3 e T Y et (K )ds dy
p=—00 75 n=1V(p+¥)
p=0A(n—¥) (f 2 s
/ @ N —
<CAY Znun(K) Z e // (t—s) 2e it s>dsdy
n 1 T* (327)
_ atm-1? lo—yl?
< C’AQ/q t__Ze Tt (Ky)e~™ ! - // (t—s _%e 1t=9) ds dy
Up<o Ty
<Al Ze‘q 4 (K)o T

Set h =2q(q+1)/(g —1)? and Q = (1 + ¢)/2, then q(v/n — 1) > Q(n — h) 4 for any n > 1. If
_ (@=)(n—h)4 _. _alyn—1)? (q+3)(n—h) 4 )
we choose €, = ¢ 164 , there holds €, ¢ 1 <e 16 . Finally

Ng oA (He)(n—h)y
_Ng Ureo)in—h)+
T <Oy e T (),

n=1

with 8y = (¢ — 1)/4, which yields to ([8:25]) by the choice of the p,. O

In order to make easier the obtention of the estimate of the term Jé’z, we first give the proof
in dimension 1.

Lemma 3.7 Assume N =1 and £ is an integer larger than 1. There exists a positive constant
C =C(q,f) > 0 such that

K
Ty, < Ct1/2 e — . 3.28
2,0 nz:; Tap1C2/q9 (dn+1> (3.28)
Proof. 1f (y,s) € T, and z € K, (p > 1, n > p = () , there holds |z —y| > V#,/p and
ly — z| > \/_(\/_—w/p—l— 1). Therefore

at—4 at a

(Vr—/pF1)?
J2Z < C\/_Z / e —I= s) s /2~ Vo t,un(Kn)

—p+z

If € € (0, q) is some positive parameter which will be made more precise later on, there holds

q

n t
Z 8_1/2 (Wn— \gT) /Ln(Kn)
n=p+}~

a/qd
at 9 at 2
<[ 3 e sThe O MK,
n=p+~¢ n=p+~£
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by Holder’s inequality. By comparison between series and integrals and using Gauss integral

at 2, o) 2
(vVn—vptD)?t (vVa—vpFD2t
E emed T S/ et 4s dx
P

n=p+~{ +¢

o0 eqcv2t
2 = (o + VT T)do

W—\/F
4 1 (VFE—/pFT)? oo 2
__‘fe—sq P 4Sp t+2 p——l—l/ o q45tdx
€q't N SN
<c (p+ 1)se_€q,(¢p+_e;¢s pED)2t
B t
<o/t
- t
If we set ¢ = g — €, then
’ q > pt (\/ﬁfy/erl)zt
Jap < Ce? fagl=3 Z ul(K Zp 2 / —5) V25T 2T a0 T a s,

n=0(+1

where C' = C(¢,q) > 0. Since
t
/(t_s) 1/24-1/2¢= Tt gm0 D
0

1 2
__p (Vn—vp+T1)
——/ (1 —s)"12571/2¢ 3035 4 1s ds
0

9

we can apply Lemma [A. Tl with a =1/2,b=1/2, A= ,/p and B = \/q.(v/n — y/p +1). In this
range of indices B > \/qc(v/p + 0 —p+1) > \/qc(¢ — 1),/p, thus k = \/qc({ — 1) and

< 1/2 B 1/2.
\/A+B\/A+B_p4n (Vi = v/p)

Therefore

t — 2 1 — 1/2 c(v/n—+/ 2
/(t_ ) V2ot e I g o Cpi(vn — vp) o~ /AR VP D) (3.29)
0

\/ﬁ 9

which implies

(VP+ /e (va—+/pTT))>

. at M%(K )n—f -
Je<ct=i Y NCh YT (Vn—yp)Pe i , (3.30)

n=~+1 p=1

where C' depends of ¢, ¢ and /. By Lemma

at
T <O 3 n'% e (K (3.31)
n=~¢+1
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Ky
Because p,(K,) = dnjrlng Jad <K+1> (remember N = 1) and diam dffl < n~! there holds

q—3 =3 43
i) <0 (VL) = (M) dicu,tojhe) @3

and inequality ([B:28]) follows. O

Next we give the general proof. For this task we shall use again the quasi-additivity with
separated partitions.

Lemma 3.8 Assume N > 2 and £ is an integer larger than 1. There exist a positive constant
Cy = C1(q,N,¢) > 0 such that f

K
e < Cit™ ! — . :
Jye < C Eezm @mq<%ﬂ> (3.33)

Proof. As in the proof of Theorem 2.14] we know that there exists a finite number J, de-
pending only on the dimension N, of separated sub-partitions {#@?n},{zl of the rescaled sets

~ d d
T, = "THT,L by the N-dim balls By(ay, ;) where a,; = @/"H Anj, |anj| = %—i_n and
lan,; — an k| > n4—4f1. Furthermore #07, < Cn™~!. We denote K, ; = K, N B (anj)-
n+1
J
We write :Z,un, and accordingly J} Y —ZJé 7 » Where ph = Z nj, and p, ; are the
h=1 h=1 j€er,
capacitary measures of K, ; relative to By, j = Bg, /5, /m(an, j), which means
_ Bnj (B 1/q

V”vj(Kn,j) - Cg/q,q/(KnJ) and HVn,me/fz/q,q’(Bw) = <C2/q,q/(Kn,j)> . (3-34)

Thus
q
e |
Ju = Z// (t—s)” e AT Z Z Z My, ;(y,s)|dyds.
n=p+¢ h=1 ]e@t n
We denote
q
wzt =yl | &
=X f[ BT Y S ()
n=p+{ ]€@t n
and clearly
J
Jop <CY Jol, (3.35)

where C' depends only on N and ¢. For integers n and p such that n > £+ 1, we set

- Vi
)\n7j7y = 1nf{‘y — Z‘ VA B\/{/\/m(and)} = ‘y — anJ’ _ T_i_l
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Therefore

S [ ake - Y ¥ [ e

n=p+¢ n=p+4¢ j g@h
1/q 1/q
at \2
<[ 3 3 e Z N e T (Ko )
n= p+£j€®t " n= P+£g€®h,n

where € > 0 will be made precise later on.

Step 1 We claim that

Z el g C\/: (3.36)

n=p+LjEO¢ n

where C' depends on €, g and N. If y is fixed in T, we denote by z, the point of T;, which solves
ly — zy| = dist (y, T5,). Thus

—Vp+ 1) <ly—z| <tVn—yb)

Let Y = y/t(p+ 1)/ |y|. On the axis 0Y we set e = Y/ |Y|, consider the points by, = (kv/t/\/n)e
where —n < k < n and denote by G, the spherical shell obtain by intersecting the spherical
shell 7, with the domain H, j which is the set of points in RY limited by the hyperplanes
orthogonal to 0y going through ((k + 1)\/_/\/_)e and ((k —1)v/t/y/n)e. The number of points
an,j € Gk is smaller than C(n + 1 — |k])N =2, where C depends only on N, and we denote by
Ay, i, the set of j € ©4,, such that a, ; € G, . Furthermore, if a, ; € G, elementary geometric
considerations (Pythagore s theorem) imply that A2 .y 18 greater than t(n+p+1-2k\/p +1/y/n).
Therefore

eq' (n+p+1—2k/pF1/)t

Z Z e~ i n” <C’Z Z (n+1—|k)N=2e" sV (3.37)

n=p+Lj€O¢n n=p+Lk=—n
Case N = 2. Summing a geometric series and using the inequality +— < 1+ uw™! for u > 0,
we obtain
, eq’ t/pFI
€q (kvp+1)t eq'tv/n(p+1) e 2svn
e 2vn <e @ ———
- €q t\/m_l
k=—n e 2svn (3.38)
cd'ty/n(p+1) 2s54/N
S e 2s 1 + 7\/7 .
eq't/p+1
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Thus, by comparison between series and integrals,

at 6/)\%» eq’ _ 2
DI e TeDS (1450 ) eeemems
b

n=p+LjEO¢n n=p+~
(ee] / 2
_ e (Vz—/pF+T)“t
<c|[ e e dz (3.39)
p+1

Cs [ ed’ (Va—p¥D)?t
+ —/ Vaze T dx.
t/D Jpt1

Next
e (V- vpFT)? o cd’ (y=vp¥T)?
/ e TR gy :2/ R tydy
p+1 VP FT
o0 _sq/yzt o0 _equzt
= 2/ e 1s ydy+2y/p+ 1/ e s dy (3.40)
0 0
2 E /22 1 o0 € l22
?S E zdz+2\/@/ —dz
0 0
and
o0 eq’ = 2 o0 e’ (y— 2
/ \/Ee_q(\/_4;/m)td$:2/ o Z/sm)tﬁdy
p+1 p+1
e8] q/y2 9
=2 e a (y+vp+I)idy
90 © (3.41)
54/ e 2dy—i—ﬁl(p—i-l)/ e
0

IN

1 (;)3/2 /0

Jointly with ([8.39]), these inequalities imply
€q /\n
Z > e ”<C,/t (3.42)

—p-i-f jE@t n

Case N > 2. Because the value of the right-hand side of ([8.37]) is an increasing value of N, it
is sufficient to prove ([3.36]) when N is even, say (N — 2)/2 = d € N,. There holds

n €q (k\/z? eql(k\/ﬁ)t
> (41— ke 2V <2Zn—|—1— de™ 2svn | (3.43)
k=—n
We set
tvp+1 - d_ka
= nd I;=>» (n+1-k)
k=0
Since
(k+1) ko
EMI_ ,
e —1



we use Abel’s transform to obtain

1 n
lo=—— (e(”+1)°‘ —(n+1D%4+ ) (n+2-k)?—(n+1-k)7) e’m)
“ k=1
1 n (0% (0% - — (6%
<27 ((1—d)e( e — (n+1)? 4 de kZ_l((n—l—l—k’)d 1) e® ) :
Therefore the following induction holds
de”
I; < Iy 1. 44
s 2 (3.44)
In (338]), we have already used the fact that
de <cfi+ sv/n ,
e*—1 t\/p

and

d+1
L<cli+ <M> Ip.
I
Thus ([3.39]) is replaced by

at 1,2 at d+1
4Gy sv/n eq! (Vii—/BFT) 2t
E E e~ is <C E <1 + <t\/_ S Pe—
n=p+£ j€O¢ n n=p+~ \/ﬁ
o0 12 2
_ e’ (Vz—p+1)"t
<C e s d

Xz
p+1

A4l oo )
+ <§> / gl 2= LI
typ p+1
(3.45)

The first integral on the right-hand side has already been estimated in ([8.40]), for the second
integral, there holds

o cd (VE—PTT)? o0 cdy?
/ e e T / (y+VpFI)H2e 5 da
+1 0
P o0 d+-2 equzt 1 d o0 sq/yzt
SC/ y*t2e” 4 dy+ Cp +2/ e as dy
0 0
vt (3.46)
<C (;) +2/ LD 2= g
0

3/2 oo eq' 22
+C’<;> / p1+%/ e~ T dz.
0

Combining (3.407]), (8:457]) and (3.467]), we derive (3.36]).
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St6p 2. Since 7;* C Fp X [O,t] where Fp = de+1(:1}) \ de,l(x), (y,s) c 7;* lmphes that
|z —y|* > (p— 1)t, thus Jéfl% satisfies

> |z —y|2
h <C // (t—s) T s—(@N=1)+1)/2 = a0y

A2 (=€)
Y e B sy
n=p+{jcoh
7 (3.47)
<o Z D Hn (K

n= Z-i-lje@

gy (=€)

X p2 // (t—s)~ T s~ @(N=1)+1)/2—|e—y|?/A(t—s) .~ 2 “’1 dsdy

FP

and the constant C' depends on N, ¢ and e. Next we set gc = (1 — €)q. Writting

|y - an,j|2 = |l‘ - y|2 + |l‘ - an,j|2 - 2<y — Z,0an,; — l‘> > pt+ |$ - an,j|2 - 2<y — &, 0n,5 — l‘>,

we get
2 2
ae|y—an, ; ae|z—ay, t(p+1) o2
/ e_%dy _ e—% / TR / e24e (y—2,an,j _x>/45d5r(y)dr
Ip Vip le—y|=r
For estimating the value of the spherical integral, we can assume that a,, j—z = (0,...,0, |an ; — z|),
y = (y1,-..,yn) and, using spherical coordinates with center at z, that the unit sphere has the

representation SV~! = {(sinqﬁ o,co80) € RV"IxR:0 € SN2 ¢ € [0,7]}. With this repre-
sentation, dS, = rN"1sinN 2 ¢d¢do and (y — z,a,,; — ) = |an; — x| |y — 7| cos ¢. Therefore

(y—m,a, ;—) an —x rcosd)
/ equyT'Jd —TN 1|SN 2‘/ g 77T 9 nN_Q(st(b'
|z—y|=r
By Lemma [A.3]
9g. YT N12%“W”‘
et i dS,(y) <C —
= mi—z|\ 2z
|z—y|=r (1+r|ag :c|) (348)
S P
< 0s%5 <7) a1l
|an,j — |
Therefore

= v eng e Vi 2
“n,j — — 2 € 4s

/ et dy < Cttip T O = , (3.49)
Tp

|lan,; — x| 2
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and, since |a, ; — x| > Vitn,

|le—yl® 2 A2

t
// (t—s)_%s_(Q(N—l)-i-l)/?e A(t—s) g e a5 Anj dde
Tp

VipTE [t N aeneens st (i)
<C%/ (t—s)"2s P e A=) g le A ds (3.50)
n+ Jo
tLN*l) N-3 4 i | . .
? : N _(@=D(N-D+1 __p /BT
Sszr—1p/ (1—s)"2s 2z e Woe % & Py
n 4 0

We apply Lemma [AT] with A = \/p, B = \/g(vn—p+1), b= (g— 1)(N D+ 1’ o — % and
k= /qe(f —1)/8 as in the case N = 1, and noticing that, for these specific Values

1-(g=H(N-1)
2

AOBITHA + By = p S (Va(vi — VP T D))
X (VP + Va(VR = VP FT))

(a=D(V-1)+N=3
N 1—(q— 1)(N 1)

<c(Z ,

p \/ﬁ

where C depends on N, ¢ and k. Therefore

N N _la—y? 2
/ / (t—s) 25 2e 49 e~ tlv=2"/45qy ds
FP

1—(g— 1)(N D)

N-—3 N _
_ Ct(l—Q(N—l))/2pT <n> 112 <\/_ \/_> _(Wpvan—veF)?  (3.51)
ni p vn
1—q(N—1) 1 1)(N 1)—2 1—(g—1)(N-1) (VB+/@e(vVr—vpF1)?
<o (Wi—vp) TE e 4 -

We derive from (3.47]), (351]),
Tl < o=

at n—~¢
(g-DH(N-1)—2 2¢—3
x> N Tl (K )Y p T (Vi /P)
p=1

n=tt1jeoy,

1-(¢—-1)(N-1) _ (VF+v@(Vr—vpT1))?
2 e 4 .

(3.52)
29 — 3 (g— _
By Lemma [A.2] with o = q4 ,B= 1(‘112&, 0= % and v = ¢, we obtain
n—~{

_ 1—(¢—D)(N=1) _ (/P+yae(vn—vpF1))? N(g-1)+g-3 _n
SR e T <ot T e, (3.53)
p=1

thus
_Ng N~ N@-D_j _n .
B <ot=R Y T E letd i (Knj)- (3.54)
n=~(+1 je@ﬁn
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Because .
fin,j(Kn,j) = Cy s (Knj),
we use the rescaling procedure as in the proof of Lemma 2T5] except that the scale factor is

\/(n + 1)t instead of v/n+ 1 so that the sets T,, K,, O, and K,, remains unchanged Using
J

again the quasi-additivity and the fact that J; , = ZJZ; , we deduce
h=1

- Kp
oy < O3 Z T Oy (&), (3.55)
n=~¢+1
which implies ([3.33]). O
The proof of Theorem B.1] follows from the previous estimates on J; and Jy. Furthermore

the following integral expression holds

Theorem 3.9 Assume q > q.. Then there exists a positive constants C5 , depending on N ,q
and T, such that for any closed set F', there holds

* \/ﬁ $2 F
QF(x7t) > C2N / G_ESN_%CQM q <— N Bl(az)> sds, (356)
t1+? 0 ’ S

where a; is the smallest integer j such that F C B, /(x).

Proof. We shall distinguish according ¢ = ¢., or ¢ > ¢., and for simplicity we shall denote
B, = B,(z) for the various values of r.

Case 1: ¢ =q. <= N — (13_1 = 0. Because F,, = F'N (By,,, \ Ba,) there holds

F, F FN By,
una (757) 2 Come (0 21) =G (25

Furthermore, since d,4+1 > dy,

Fn Bdn FnN Bdn F
02/q7q’ < drs1 > C’2/qq < > C'2/11,q’ <% mBl) )
thus
Fr F
Cofgq <dn > 2 Coqq < N Bl) Co/gqr <% N Bl> ;
it follows

at
ZE_%C%M’ ( > Ze 402/(111
n=1
n F n F
> Ze—z%,q, <_ n Bl> T <d_+l n Bl>

n+1
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Since, by (Z.69]),

F F F
CM#<QQ&>ZCMM<£EQBOZCmM<;ﬂBO,

for any s’ € [dy41,dp12] and s € [d,,, dp11], there holds

_n F F dutr
te 402/(17(1/ <K+1 OB1> > Cg/qﬂ/ (Kﬂ ﬂBl) /d e’ /4t8 ds

dn+1 F
> / 6_52/“02/(17(1/ (; N Bl> sds.

This implies
Viar F
Wg(z,t) > (1— e_i)t_(Hg)/ e‘sz/4tC2/q 7 <— N B1> sds.
0 AN
Case 2: ¢ > q. <= N — q%l > 0. In that case it is known [I] that

F, 2N
Co/gq <—> ~ dqu+11 Ca/qq (Fr)

dn 1
thus o
Wr(z,t) m 772> e 1 Cy g () -

n=0

Since
C2/q7q’ (Fn) = C2/q7q’ (F N Bdn+1) - C2/q7q’ (F'N By,)
and again
a,—1
Ze 402/qq n) > (1—e_i)t_% Ze_%cg/%q/ (F N Ba,,,)

n=0

1 N \/ﬁ 2
>(1- 6_4)t_(1+2)/ e~ 4 Cyqq (FN By)sds.
0
Because Cy/q o (F' N Bs) ~ sN_%CQ/M/ (s7'F N By), B56)) follows.

4 Applications

The first result of this section is the following

Theorem 4.1 Assume N > 1 and g > 1. Then g = ug.
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Proof. If 1 < q < g, the result is already proved in [25]. The proof in the super-critical case is an
adaptation that we shall recall, for the sake of completeness. By Theorem 2.16] and Theorem B.9]
there exists a positive constant C, depending on N, ¢ and T such that

UF(l‘,t) < QF($775) V(l‘,t) € Qr.

. 1 . . o .
By convexity 4 = up — — (up — uy) is a super-solution, which is smaller than uy if we assume

that up # up. If we set 0 := 1/2 4 1/(2C), then uy = ur is a subsolution. Therefore there
exists a solution uy of (LI)) in Qoo such that up < uy < @ < up. If p € ML(RY) satisfies
pu(F€) = 0, then ug, is the smallest solution of (L.I]) which is above the subsolution fu,. Thus
ugy < uy < up and finally up < uy < up, a contradiction. O

If we combine Theorem [2.16] and Theorem [3.9] we derive the following integral approximation
of the capacitary potential

Proposition 4.2 Assume q > q.. Then there exist two positive constants C;r , C;r, depending
only on N, q and T such that

\/tCLt 82
C;ft_(Hg)/ SN_q%le_ECQ/qg/ <E N Bl(az)> sds < Wg(z,t)
0 > (4.57)
N Hat2) o o 2 F
< C’It_(H?)/ 57 e Tem w0y o <— N Bl(:n)) sds
Vi s

for any (z,t) € Qr.

Definition 4.3 If F is a closed subset of RN, we define the (2/q,q')-integral capacitary potential
Wr by

Dr(z)
Wr(z,t) = t—l—g/ SN—ﬁe—SZMtCQ/M/ <§ N By (a:)) sds V(z,t) € Qoo  (4.58)
0

where Dp(z) = max{|z —y|:y € F}.

An easy computation shows that

Viar 2 F
0 < Wp(z,t)— t—(1+]§7)/ SN—q%le_HCg/qﬂ/ (; N Bl(x)> sds
0

(a—3)/2(¢—1) (4.59)

t T D)/t

- Dp(z)
and
(at+2) 2
0< t_(1+%)/ sN_%e_ECQ/M/ < N Bi(x > sds — Wpg(z,t)
0 (4.60)
t(a=3)/2(a=1)  pZ()
< C e 4t

Dp(z)
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for some C' = C(N,q) > 0. Furthermore
1 (Dr@)/vi No_2 _s2 F
We(z,t) =t ql/ 57 e Tem 10y <— N Bl(x)> sds. (4.61)
0 T \svi

The following result gives a sufficient condition in order Tz has not a strong blow-up at some
point x.

Proposition 4.4 Assume q > q. and F is a closed subset of RV . If there exists v € [0,00) such
that

) F
71_11)1%) Cg/qﬂ/ (7 N Bl(az)> =, (4.62)
then )
lim teT1up(z,t) = Cvy, (4.63)
t—0

for some C = C(N,q) > 0.
Proof. Clearly, condition (4.627]) implies

) F
:tlE)I(l) CQ/q,q’ (% N Bl(.’ﬂ)) =7

for any s > 0. Then ([4.63]) follows by Lebesgue’s theorem. Notice also that the set of v is
bounded from above by a constant depending on N and gq. O

In the next result we give a condition in order the solution remains bounded at some point
x. The proof is similar to the previous one.

Proposition 4.5 Assume q > q. and F is a closed subset of RN. If

2 F
limsup 7 = Co/gq <? N Bl(:E)) < 00, (4.64)

T—0

then up(x,t) remains bounded when t — 0.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and k > 0. Then there exists a constant
C =C(a,b,k) > 0 such that for any A >0, B > /A there holds

1
/ (1 . x)_al'—be_A2/4(l_x)€_B2/4xd.’1' < Ce_(A+B)2/4A1_aBl_b(A + B)a+b_2. (Al)
0
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Proof. We first notice that

max{e‘A2/4(1_x)e_B2/4x 0<e <1} = e~ (A+B)*/4 (A.2)
and it is achieved for zg = B/(A+ B). Set ®(z) = (1 — 2) 9z~ be~A*/41-2)¢=B/4z t}yg
1 x0 1
/ O(z)dr = / O (z)dx +/ O(z)dr = Iop + Jap
0 0 xo
Put 2 B2
_ fdl A3
R TR R (A.3)
then
4ua® — (4u+ B* — A®)z + B2 =0. (A.4)
If 0 < & < x( this equation admits the solution
1
7= a(u) = o <4u + B2 — A% — /1602 — Su(A? + B2) + (A2 — 32)2)
u
o 00
/ (1 — z)~ag—be=A*/A0—2)=B* /A g, — —/ (1 — z(u) "% (u)"be™ 2 (u)du
0 (A+B)2/4
Putting 2/ = 2/(u) and differentiating (A.4]),
4x(1 — x)
2 r_ 2 A2\ A P
42° + 8uxs’ — (du+ B* — A%)2' — 4z =0 = —x W B A —8us
e (1~ )+ a(w)
o & 1 —z(w) " ta(u) e ¥du
=4 . A5
/0 (z)dx /(A+B)2/4 4u + B? — A% — Buz(u) (A.5)

Using the explicit value of the root x(u), we finally get

o [%S) _ —a+1 —b+1_—u
/ B(w)dar = 4/ (1 —2(u)) x(u) e "du 7 (A.6)
0 (A+B)2/4\/16u? — 8u(A2 + B2) + (A% — B2)2

and the factorization below holds
16u* — Su(A? + B?) + (A% — B%)? = 16(u — (A + B)?*/4)(u — (A — B)?/4).
We set u = v + (A + B)?/4 and obtain

v+ (AB+ B%)/2 — \/v(v + AB)

z(u) = 2(v+ (A+ B)?/4) ’

and

) v+ (A2 + AB)/2+ \/v(v+ AB)
— o) = 2(v+ (A+ B)%/4) '
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We introduce the relation =~ linking two positive quantities depending on A and B. It means
that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

/IO(I)(iﬂ)diE = 2a_b_46_(A+B)2/4/OO<i>(v)dv where

0 0

by AB B2 OB T (b4 (A AB)2 4 T AB)
" (v+ (A+ B)2/4)> 7" \/v(v + AB) e v,

(A.7)
Case 1: a > 1, b > 1. First
(’U + (A—I—B)2/4)a+b_2 . (’U+ (A+B)2/4)a+b—2 N (’U+ (A—I—B)2)a+b_2 (A 8)
v(v+ AB) - v(v + K) v(v + K)
sincea+b—2 >0 and AB > k. Next
l1—a
<v F (A2 AB)/2 + oo 1 AB)) ~ (v+ A(A+ B) . (A.9)
Furthermore
+(A+ B)?/4
v+ (AB + B?)/2 — \/o(v + AB) = B2 Y
L gl (At B)?
7 v+ B(A+B)
Then
1-b o (v+BA+B)\"!
2\ /9 _ ~ B2-2b -/ A1l
(v+(AB+B)/2 w/v(v+,43)) B <U+(A+B)2> (A.11)
It follows i -
B(v) < OB <v+(A+B)2> (v+B(A+ B))"”
- v+ A(A+ B) v(v + K) (A.12)
P < v+ (A+ B)? )“‘1 o'~! 4 (B% + AB)"!
- v+ A(A+ B) v(v+ k)

where C depends on a, b and k. The function v +— (v + (A + B)?)/(v + A(A+ B)) is decreasing
on (0,00). If we set

< pb=le=vdy * e dv
Ci = ——— and Cy = _—
o V(v + k) = v(v + K)

then
C) < K(B*4+ AB)" ¢,

with K = C1x'~?/Cs. Therefore

)
/ & (z)de < Ce~(ATBIP/ABI-bgl-a( 4 4 B)atd=2, (A.13)
0
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The estimate of J,; is obtained by exchanging (A,a) with (B,b) and replacing = by 1 — x.
Mutadis mutandis, this yields directely to the same expression as in [A.13] and finally

1
/ O(z)de < Ce~AHBI*/Agl-apl=b(g 4 pyatb=2, (A.14)
0

Case 2: a > 1, b < 1. Estimates (A.7]), (A.8]), (A.9]), (AI0]) and (A.IL]) are valid. Because
v+ (v+ B(A+ B))’! is decreasing, (A.I12]) has to be replaced by

(A.15)

d(v) < CB* % <L+B)2)>a—1 (AB—l——B2)b_1'

U+A(A+B 1)(1)—1—/{)

This implies (A.I3]) directly. The estimate of .J,; is performed by the change of variable
1 —x. If 1 =1 — x( , there holds

x1 xr1
Jap = / r (1 - x)_be_AQ/‘lxe_Bz/A‘(l_x)dx = / U(z)dx.
0 0
Then
xq Ty
/ U(x)dx = 2b_“_4e_(A+B)2/4/ U(v)dv where
0 0

(v (AB+ A2 (o T AB)) e (v+ (B2 + AB)/2 + /(v + AB)) o 3
)= (v+ (A+ B)2/4)> " \Ju( + AB) ¢

Equivalence (A.8]) is unchanged; (A.9]) is replaced by (410
<v—|—(B2—|—AB /2 + \/m) ~ (v+ B(A+ B))'™ (A.17)
(A.10) by s
+ (AB + A?%)/2 — \/v(v + AB) ~ 2% (A.18)
and (AIT]) by
(v+(AB+ 422~ oo T AB)) A2 <%>H (A.19)

Because a > 1, (A12]) turns into

v+ A2+ AB)*Y(v + B2 + AB)'?
v(v+K)

U(v) < CA?2 (v + (A + B)?)P~! (
< Ce—(A+B)2/4A2—2b(A + B)%»-2
0" + (A% + AB)* 1!t 4 (B? + AB)! P01 4 A* 1 B'"P(A 4 B)*?
v(v+ k)

(A.20)
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Because AB > k, there exists a positive constant C, depending on «, such that

/°° v+ (A4 AB) T+ (B2 4+ AB) TR
0 v(v + K) (A.21)
a—1pl-b a—b 0 eVdv
< CA“ 1B (A+ B) / —_.
0 v(v+K)
Combining (A.201]) and (A.21]) yields to
z1
/ U(2)dy < Ce—(A+BP/1gl=agl-b(4 | g)a+b-2, (A.22)
0

This, again, implies that (A1) holds.

Case 3: max{a,b} < 1. Inequalities (A.7])-(A.I1]) hold, but (A.12]) has to be replaced by

b(v) < OB <v +(A+ B)? )“‘1 (v + B+ AB)""

v+ A(A+ B i
( 1—a A2 Zg 1—/2) (A23)
< CBl—b(A + B)2a+b—3v + ( + )
N v(v+ k)
Noticing that
00 1—ae—vd o) e Vdv

2 —
m<O(A +AB) " et

it follows that (A.I3]) holds. Finally (A.I4]) holds by exchanging (A, a) and (B,b). O

Lemma A.2 . Let «, 3, 7, § be real numbers and £ an integer. We assume v > 1, § > 0 and
£ > 2. Then there exists a positive constant C' such that, for any integer n > /¢

n—~0
Z A — fp)Pe S WIHIVI-VIFD) < pa—B/2e=0n, (A.24)
p=1

Proof. The function z — (v/z+,/7(v/n—+/x + 1))? is decreasing on [(y—1)"!, 00). Furthermore
there exists C' > 0 depending on ¢, a and 3 such that p*(v/n — \/p)? < Cz*(y/n — Vo +1)°
for 2 € [p,p + 1] If we denote by po the smallest integer larger than (y — 1), we derive

— po—1 n—~¢
:Z \/__\/—)ﬁe (VP (Vn—/pF1))? /4 Z+Zp \/__\/’) =6(y/PHyA(Vr—/p+1))?
p= p=1 Po
Po—
gz (V1 — /P )P e 0WPHVI(Vn—VpiT)®
p=l n+1—4¢
+C (/i — T )P e S WVEIVA—VETD) gy

Ppo
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(notice that v/n — vz =~ /n—+z + 1 for z <n —{). Clearly
po—1
> (Vi = VB e WISV < Cn (/i — V= )P (A.25)

p=1
for some Cy independent of n. We set y = y(z) = V& + 1 — /z/,/7. Obviously
, 1 ( 1 1 >
T)=— — Yz > po,
and their exists € = €(8,y) > 0 such that v/2v/z > y(z) > ey/z and ¢/ (z) > ¢/y/r. Furthermore

_ ﬂ<y+m>

X

y-1 :
\/—_ﬁ:\/ﬁ(ﬁ—l)—ﬁs:ﬁ\/m

n(y — 1) +7 = 2y/Am — yy°
Vil =1) =AY+ VIV 1=
n(y —1) +v —2y/m — vy’

\/ﬁ

~

since y(z) < y/n. Furthermore

n(y—1)+v=2y/An — v =v(Vn+1+n/y7+y)Vn+1—n/y7—y)
~Vn(Vn+1-Vn/yy—y),

because y ranges between vn +2 — ¢ —v/n +1 — (/7 = +/n and \/pg + 1 — /po/7. Thus
(Vi —vz)P ~ (VaT1—va/y7-y)’.

This implies

n+1—4¢
/ 297 — /T )P VEFD) gy

Po
y(n+1-20)

<C 2ot (V1 — /)7 — y)ﬁ e=18/T=)* gy
(po)
T y)/va ;
< Cna+5/2+1/ (1—2)2T(z4+/1+1/n—1-1/,/7) e dz.
1—y(n+1-£)//n
(A.26)
Moreover
y(po) 1 ( \/p_o>
1— =1-— (vpoFi-Y2),
Vi VAN
yln—£0+1) Vn—0+2 n—0+1
Vvn Vn VY ) )
1 0—2)—(+1 —2— (-1
=—— 1+‘ﬁ( ) +\ﬁ( )~ ) +0(n=3).
Nal 2n 8n2
(A.27)
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Let 6 fixed such that 1 — yin —£+1) y(po)

T<(9<1— NG for any n > pg. Then
1=(po)/v/n ) 1—y(po) /v ,
/ (1 _ Z)2a+1(z + 1+ 1/n B 1/\/@66_75"2 dz < 00/ (1 _ z)2a+le—*y6nz dz
[%
, [1=y(po)/v/n
< Cp e 1000 / (1— 2)%tlgy
0

< C e max{1,n-"1/2},
Because 762 > 1 we derive
1—y(po)/v/n )
/ (1—2)22t 4+ \/1+1/n—1-1//7)Pe " dz < CnPe", (A.28)
0
for some constant C' > 0. On the other hand

0
/ (1 —2)%2t(z + 1—|—1/n—1—1/\/7)56_75m2dz
1—y(n+1-£)/v/n

0
< C(;/ (z4+ 1+ 1/n—1-1//7) ez,
1—y(n+1-£)/\/n

The minimum of z — (2 4+ /1 +1/n —1—1/,/7)” is achieved at 1 — y(n + 1 — £) with value

VIU+T) +1-4
2n./y

and the maximum of the exponential term is achieved at the same point with value

+0(n™?),

eTMHUE=DVIHI=0/2(1 4 o(1)) = Che ™ (1 4 o(1)).

We denote
0
Zym=1+1/y/y—+/1+1/n and Ig= / (z — z%n)ﬁe—vénﬁdz.
1—y(n+1-£)/v/n
Since 1 —y(n+1—4¢) > 1/4/2v for n large enough,
o B . ,—yonz?
Ig < \/2y (2 = 2yn) 2e7 7" dz
1—y(n+1-£)//n
-2 6 N
< 2V (o gy p)pein? + 2 (s = 2y Lz
2nyd I—y(n+1-0)/vn 2070 J1_y(nt1-0)/vn

But 1 —y(n+1—40)//n—2y,={—1)(1—1/\/7)/2n, therefore

Is < Cin Pl 4 B0 5. (A.29)
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If 8 <0, we derive
Ig < Cln_ﬁ_1€_6n,

which inequality, combined with (A.26]) and (A.28]), yields to (A.24]). If § > 0, we iterate and
get

Ig < Cln_ﬁ_le_‘sn + C{n_l(Cln_Be_én + (,8 - 1)C{n_1Ig_2)
If 5 —1 <0 we derive
Ig < Cyn Ple™om 4 ClC{n_l_Be_‘S" = an_ﬁ_le_‘sn,

which again yields to (A24]). If 3 — 1 > 0, we continue up we find a positive integer k such
that 8 — k < 0, which again yields to

IB < C’kn_ﬁ_le_‘m

and to (A.24]). O

The next estimate is fundamental in deriving the N-dimensional estimate.

Lemma A.3 For any integer N > 2 there exists a constant cy > 0 such that
em

" mcosf _:. N—2
/0 (& Sin 0 do S CNW VYm > 0. (A30)

Proof. Put Zn(m) = / emes0sinN=20dp. Then Th(m) = / e™<%% cos § df and
0 0

) (m) = /0 €m0 cos? 0 df = Ty(m) — /0 emeos0 sin2 6 df
1 s
=To(m) — — [ em™%cosf db
7{0 0

= Ty(m) — Elé(m)

Thus Z, satisfies a Bessel equation of order 0. Since Z5(0) = 7 and Z4(0) = 0, 717, is the
modified Bessel function of index 0 (usually denoted by Ij) the asymptotic behaviour of which
is well known, thus (A2300) holds. If N = 3

T __mcosf17T 2sinh
I3(m)=/ emcosf’sinede:[ ¢ ] — Zomam
0

0 m

For N > 3 arbitrary
N-3 /[T

_1i(emcose) sinV30dh = —= [ ™% cosfsinV 1 0db. (A.31)

7 = —
N(m) o m d9 m 0

Therefore,
1 ™
Zy(m) = —/ emsY cos 0 df = Th(m),
mJo
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and, again (A.30]) holds since I)(m) has the same behaviour as Ip(m) at infinity. For N > 5

_3-N

IN(m) m2

T N-3 [T d
m cos 0 : N—5 m cos 0 : N—5
e cos 0 sin 0} o + 5 /0 e 70 (cos 0 sin 0) do.

Differentiating cos #sin®™ = § and using (A.31]), we obtain

_ 4sinhm  4sinhm

I5 (m) - m2 - m3 9
while (N - 3)(V —5)
In(m) = 2 (In-a(m) = In—2(m)), (A.32)
for N > 6. Since the estimate (A30]) for 7o, Zs, Z, and Zs has already been obtained, a
straigthforward induction yields to the general result. O

Remark. Although it does not has any importance for our use, it must be noticed that Zy can
be expressed either with hyperbolic functions if IV is odd, or with Bessel functions if IV is even.
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