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A scaling limit theorem for the parabolic
Anderson model with exponential potential

Hubert Lacoin and Peter Mörters

Abstract The parabolic Anderson problem is the Cauchy problem for theheat
equation∂tu(t,z) = ∆u(t,z) + ξ (t,z)u(t,z) on (0,∞)×Zd with random potential
(ξ (t,z) : z∈ Zd) and localized initial condition. In this paper we consider potentials
which are constant in time and independent exponentially distributed in space. We
study the growth rate of the total mass of the solution in terms of weak and almost
sure limit theorems, and the spatial spread of the mass in terms of a scaling limit
theorem. The latter result shows that in this case, just likein the case of heavy tailed
potentials, the mass gets trapped in a single relevant island with high probability.

1 Introduction and main results

1.1 Overview and background

We consider the heat equation with random potential on the integer latticeZd and
study the Cauchy problem with localised initial datum,

∂tu(t,z) = ∆u(t,z)+ ξ (t,z)u(t,z), for (t,z) ∈ (0,∞)×Zd,

lim
t↓0

u(t,z) = 10(z), for z∈ Zd,

where

(∆ f )(z) = ∑
y∼z

[ f (y)− f (z)], for z∈ Zd, f : Zd →R,

is the discrete Laplacian, and the potential(ξ (t,z) : t > 0,z∈ Zd) is a random field.
This equation is known as theparabolic Anderson model.
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In the present paper we assume that the potential field is constant in time and
independent, identically distributed in space according to some nondegenerate dis-
tribution. Under this hypothesis the solutions are believed to exhibitintermittency,
which roughly speaking means that at any late time the solution is concentrated in a
small number ofrelevant islandsat large distance from each other, such that the di-
ameter of each island is much smaller than this distance, seeFigure 1 for a schematic
picture. The relevant islands are located in areas where thepotential has favourable
properties, e.g. a high density of large potential values. As time progresses new rel-
evant islands emerge in locations further and further away from the origin at places
where the potential is more and more favourable, while old islands lose their rele-
vance. The main aim of the extensive research in this model, which was initiated by
Gärtner and Molchanov in [3, 4], is to get a better understanding of the phenomenon
of intermittency for various choices of potentials.
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Fig. 1 A schematic picture of intermittency: the mass of the solution is concentrated on relevant
islands (indicated by shaded balls) with radius of orderat and distances of orderrt ≫ at .

Natural questions about the nature of intermittency are thefollowing:

• What is the diameter of the relevant islands? Are they growing in time?
• How much mass is concentrated in a relevant island?

How big is the potential on a relevant island?
• Where are the relevant islands located? What is the distanceof different islands?
• How many relevant islands are there?
• How do new relevant islands emerge? What is the lifetime of a relevant island?
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Explicit answers to these questions and, more generally, results on the precise
geometry of solutions to the parabolic Anderson model are typically very difficult
to obtain. In the related context of Brownian motion among Poissonian obstacles,
Sznitman [14] provides methodology to study properties of Brownian paths con-
ditioned on survival, which offer a possible route to the geometry of solutions,
at least in the case of bounded potentials. In a seminal paperGärtner, König and
Molchanov [2] follow a different route to analyse size and position of relevant is-
lands in the case of double exponential potentials. Their results also offer some
insight into potentials with heavier tails. In [7] and [9] a complete picture of the
geometry of the solutions is given in the case of Pareto distributed potentials, build-
ing on the work of [2]. In this case of an extremely heavy tailed potential it can
be shown that, for anyε > 0 at sufficiently late times, there exists a single point
carrying a proportion of mass exceeding 1− ε with probability converging to one.
This point constitutes the single relevant island and very precise results about the
location, lifetime and dynamics of this island can be obtained, see also [10] for a
survey of this research.

For more complicated potentials however, one has to rely on less explicit results.
A natural way forward is to investigate the growth rates of the total mass

U(t) := ∑
z∈Zd

u(t,z)

of the solution. If the potential is bounded from above we define the (quenched)
Lyapunov exponentas

λ := lim
t→∞

Lt whereLt :=
1
t

logU(t),

whenever this limit exists in the almost sure sense. If the potential is unbounded one
expects superexponential growth and is interested in an asymptotic expansion ofLt .
If the tails of the potential distribution are sufficiently light so that the logarithmic
moment generating function

H(x) := logEexξ (0)

is finite for all x≥ 0, a large deviation heuristics suggests that,we get

Lt =
H(βtα−d

t )

βtα−d
t

− 1

α2
t

(

κ +o(1)
)

, almost surely ast ↑ ∞,

whereα,β are deterministic scale functions andκ is a deterministic constant. Ac-
cording to the heuristics, the quantityαt can be interpreted as the diameter of the
relevant islands at timet, and the leading term as the size of the potential values on
the island. The constantκ is given in terms of a variational problem whose max-
imiser describes the shape of a vertically shifted and rescaled potential on an island.
More details and a classification of light-tailed potentials according to this paradigm
are given in [5].
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If the potential is such that the moment generating functions do not always exist,
this approach breaks down. Indeed, one can no longer expect the leading terms in
an expansion ofLt to be deterministic. Instead, one should expect the solutions
to be concentrated in islands consisting of single sites andthe expansion ofLt to
reflect fluctuations in the size of the potential on these sites. One would expect the
sites of the islands to be those with the largest potential insome time-dependent
centred box and the fluctuations to be similar to those seen inthe order statistics
of independent random variables. This programme is carriedout in detail in [6] for
potentials with Weibull (stretched exponential) and Pareto (polynomial) tails. In the
present paper we add the case of standard exponential potentials and present weak
(see Theorem 1) and almost sure (see Theorem 2) asymptotic expansions forLt in
this case. These results are taken from the first author’s unpublished master thesis [8]
and were announced without proof in [6].

Very little has been done so far to get a precise understanding of the number and
position of the relevant islands, the very fine results for the Pareto case being the
only exception. A natural idea to approach this with somewhat softer techniques is
to prove a scaling limit theorem. To this end we define a probability distribution νt

onZd associating to each siteza weight proportional to the solutionu(t,z), i.e.

νt := ∑
z∈Zd

u(t,z)
U(t)

δ (z), for anyt ≥ 0,

whereδ (z) denotes the Dirac measure concentrated atz∈ Rd. For a > 0, we also
define the distribution of mass at the timet in the scalea as

νa
t := νt

( ·
a

)

= ∑
z∈Zd

u(t,z)
U(t)

δ
(

z
a

)

,

which is considered as an element of the spaceM (Rd) of probability measures
onRd. Identifying the scalert of the distances between the islands and the origin,
intermittency would imply that islands are contracted to points and thatν rt

t con-
verges in law to a random probability measure, which is purely atomic with atoms
representing intermittent islands and their weights representing the proportion of
mass on the islands. In the case of Pareto potentials such a result follows easily
from the detailed geometric picture, see [9, Proposition 1.4], but in principle could
be obtained from softer arguments. It therefore seems viable that scaling limit the-
orems like the above can be obtained for a large class of potentials including some
which are harder to analyse because they have much lighter tails.

In Theorem 3 of the present paper we show that in the case of exponential poten-
tials forrt = t/ loglogt the random probability measuresν rt

t converge in distribution
to a point mass in a nonzero random point. In particular this shows that for expo-
nential potential we also haveonly one relevant island. Moreover, the solution of
the parabolic Anderson problem spreadssublinearlyin space. Our arguments can
be adapted to the easier case of Weibull, or stretched exponential, potentials, where
there is also only one relevant island but the solution has asuperlinear spread. These
results are new and open up possibilities for further research projects, which we
briefly mention in our concluding remarks.



A scaling limit theorem for the parabolic Anderson model 5

1.2 Statement of results

We now assume that(ξ (z) : z∈ Zd) is a family of independent random variables
with

P
(

ξ (z)> x
)

= e−x for x≥ 0.

Suppose(u(t,z) : t > 0,z∈ Zd) is the unique nonnegative solution to the parabolic
Anderson model with this potential, and let(U(t) : t > 0) be the total mass of the
solution. We recall that

Lt =
1
t

logU(t)

and first ask for a weak expansion ofLt up to the first nondegenerate random term.
This turns out to be the third term in the expansion, which is of constant order. In
the following we use⇒ to indicate convergence in distribution.

Theorem 1 (Weak asymptotics for the growth rate of the total mass).
We have

Lt −d logt +d logloglogt ⇒ X,

where X has a Gumbel distribution

P(X ≤ x) = exp
{

−2de−x+2d} for x∈R.

In an almost sure expansion already the second term exhibitsfluctuations.

Theorem 2 (Almost sure asymptotics for the growth rate of the total mass).
Almost surely,

limsup
t↑∞

Lt −d logt
loglogt

= 1,

and

lim inf
t↑∞

Lt −d logt
log loglogt

=−(d+1).

Remark 1.Note that neither of these almost sure asymptotics agree with the asymp-
totics

lim
t↑∞

Lt −d logt
log loglogt

=−d in probability,

which follows from Theorem 1. The almost sure results pick upfluctuations on both
sides of the second term in the weak expansion, with those above being signifi-
cantly stronger than those below the mean. This is differentin the stretched expo-
nential case studied in [6], where the liminf behaviour coincides with the weak limit
behaviour. The limsup behaviour in the exponential case is included in the results
of [6] and therefore not proved here.
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Recall that the distribution of the mass of the solution at time t > 0 and on the
scalea > 0 is defined as a (random) element of the spaceM (Rd) of probability
measures onRd by

νa
t := νt

( ·
a

)

= ∑
z∈Zd

u(t,z)
U(t)

δ
(

z
a

)

.

The following theorem is the main result of this paper.

Theorem 3 (Scaling limit theorem). Defining the sublinear scale function

rt =
t

loglogt
,

we have
lim
t↑∞

ν rt
t = δ (Y) in distribution,

whereδ (x) denotes the Dirac measure concentrated in x∈ Rd and Y is a random
variable inRd with independent coordinates given by standard exponential vari-
ables with uniform random sign.

Remark 2.In the case of a Weibull potential with parameter 0< γ < 1 given by

P
(

ξ (z)> x
)

= e−xγ
for x≥ 0,

a variant of the proof gives convergence ofν rt
t for the superballistic scale function

rt =
t(logt)

1
γ −1

loglogt
,

to a limit measureδ (Y) where the components ofY are independent exponentially
distributed with parameterd1−1/γ and uniform sign. Details are left to the reader.

2 Proof of the main results

2.1 Overview

The proofs are based on the Feynman-Kac formula

u(t,z) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{Xt = z}
]

,

where(Xs: s≥ 0) is a continuous-time simple random walk onZd started at the
origin and the probabilityP and expectationE refer only to this walk and not to the
potentials. Recall that(Xs: s≥ 0) is the Markov process generated by the discrete
Laplacian∆ featuring in the parabolic Anderson problem. It is shown in [3] that the
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Feynman-Kac formula gives the unique solution to the parabolic Anderson problem
under a moment condition on the potential, which is satisfiedin the exponential case.
By summing over all sites the Feynman-Kac formula implies that the total mass is
given by

U(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}]

.

An analysis of this formula allows us to approximateLt =
1
t logU(t) almost surely

from above and below by variational problems for the potential. These variational
problems have the structure that one optimizes over all sites z∈ Zd the difference
between the potential valueξ (z), corresponding to the reward for spending time in
the site, and a term corresponding to the cost of getting to the site, which is going to
infinity whenz→ ∞ and thus ensure that the problem is well-defined.

We can use the result for the lower bound given in [6, Lemmas 2.1 and 2.3]. Here
and throughout this paper we use| · | to denote theℓ1-norm onRd.

Lemma 1 (Lower bound on Lt ). Let

N(t) := max
z∈Zd

{

ξ (z)− |z|
t

logξ (z)
}

,

then, almost surely, for all sufficiently large t, we have

Lt ≥ N(t)−2d+o(1).

The appearance ofξ (z) in the cost term can be explained by the fact that part
of the cost arises from the fact that the optimal paths leading to z spend a positive
proportion of the overall time traveling to the site and therefore miss out on the
optimal potential value for some considerable time, see Section 1.3 in [6] for a
heuristic derivation of this formula.

The corresponding upper bound will be our main concern here.

Lemma 2 (Upper bound on Lt ). For any c> 0 let

Nc(t) := max
t/(logt)2≤|z|≤t logt

{

ξ (z)− |z|
t

(

loglog|z|+ c
)

}

.

Then, for anyε > 0 there exists c= c(ε) > 0 such that, almost surely, for all suffi-
ciently large t, we have

Lt ≤ Nc(ε)(t)−2d+ ε +o(1).

This lemma will be proved in two steps: We first remove paths that do not make
an essential contribution from the average in the Feynman-Kac formula using an
ad-hoc approach, see Lemma 7 and Lemma 8. Then we use the properties of the re-
maining paths to refine the argument and get an improved bound, see Proposition 1.
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The variational problems for the upper and lower bound can then be studied using
an extreme value analysis, which follows along the lines of [6]. It turns out that the
weak and almost sure asymptotics of the two problems coincide up to the accuracy
required to prove Theorem 1 and Theorem 2.

For the proof of the scaling limit we need to give an upper bound on the growth
rate of the contribution of all those paths ending in a site atdistance more thanδ rt ,
for someδ > 0, from the site with the largest potential among those sitesthat can
be reached by some path with the same number of jumps. This bound needs to be
strictly better than the lower bound on the overall growth rate. To this end, in a first
step, we again use Lemma 7 and Lemma 8 to eliminate some paths using ad-hoc
arguments. In the second step we remove paths that never hit the site with largest
potential that is within their reach. This is done on the basis of the gap between
the largest and the second largest value for the variationalproblem in the upper
bound. In the third step it remains to analyse the contribution of paths that hit the
optimal site but then move away by more thanδ rt . Again it turns out that the rate
of growth of the contribution of these paths is strictly smaller than the lower bound
on the growth rate of the total mass. Proposition 1 is set up insuch a way that it can
deal with both the second and third step. We conclude from this that the solution is
concentrated in a single island of diameter at mostδ rt around the optimal site. An
extreme value analysis characterizes the location of the optimal site and concludes
the proof of Theorem 3.

The remainder of the paper is structured as follows: In Section 2.2 we give some
notation and collect auxiliary results from [6]. Section 2.3 contains the required up-
per bounds and constitutes the core of the proof. Section 2.4studies the variational
problem arising in the upper bound. Using these approximations we complete the
proof of Theorem 2 in Section 2.5 and of Theorem 1 in Section 2.6. The proof of
the scaling limit theorem, Theorem 3, is completed in Section 2.7.

2.2 Auxiliary results

Let Br = {|z| ≤ r} be the ball of radiusr centered at the origin inZd. The numberlr
of points inBr grows asymptotically likerd. More precisely, there exists a constant
κd such that, limr→∞ lr r−d = κd. We defineMr = max|z|≤r ξ (z) to be the maximal
value of the potential onBr . The behavior ofMr is described quite accurately in [6,
Lemma 4.1], which we restate now.

Lemma 3 (Bounds for Mr ). Let δ ∈ (0,1) and c> 0. Then, almost surely,

Mr ≤ d logr + loglogr +(loglogr)δ for all sufficiently large r,
Mr ≥ d logr − (1+ c) logloglogr for all sufficiently large r.

In particular, for any pair of constant c1 and c2 satisfying c1 < d < c2, we have

c1 logr ≤ Mr ≤ c2 logr for all sufficiently large r.
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Let M(i)
r denote thei-th biggest value taken by the potential in the ball of radiusr

centered at the origin. The next lemma gives us estimates forupper order statistics
for the potential.

Lemma 4 (Rough asymptotic behaviour for upper order statistics). Let0< β <
1 be a fixed constant. Then, almost surely,

lim
n→∞

M(⌊nβ ⌋)
n

logn
= d−β .

Proof. Recalling thatln is the number of points in a ball of radiusn in Zd we get

P
(

M(⌊nβ ⌋)
n ≤ x

)

=
⌊nβ ⌋−1

∑
i=0

(

ln
i

)

e−xi (1−e−x)ln−i
. (1)

We fix ε > 0 and infer that

P
(

M(⌊nβ ⌋)
n ≤ (d−β − ε) logn

)

≤
⌊nβ ⌋
∑
i=0

(

lnn−d+β+ε
)i (

1−n−d+β+ε
)ln−nβ

≤
(

nβ +1
)(

(κd +o(1))nβ+ε
)nβ

exp
[

−(κd +o(1))nβ+ε
]

= exp
[

−nβ+ε(κd +o(1))
]

.

Since this sequence is summable, we can use the Borel–Cantelli lemma to obtain
the lower bound. Similarly, for the upper bound, we use (1) toget

P
(

M(⌊nβ ⌋)
n ≥ (d−β + ε) logn

)

≤
ln

∑
i=⌊nβ ⌋

(

ln
i

)

n−(d−β+ε)i. (2)

We now use a rough approximation for the binomial coefficient, namely

(

ln
i

)

≤ (ln)i

i!
≤
(

eln
i

)i

,

when i is big enough. Combining this with (2) and using that the firstterm in the
ensuing sum is the largest, we obtain, for all sufficiently largen,

P
(

M(⌊nβ ⌋)
n ≥ (d−β + ε) logn

)

≤
ln

∑
i=⌊nβ ⌋

(

eln
ind−β+ε

)i

≤ ln

(

eln
nd+ε

)nβ

≤ e−nβ
.

Using the Borel–Cantelli lemma again we obtain an upper bound, completing the
proof of our statement.
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Let 0< σ < ρ < 1
2 be some fixed constants. We define

kn = ⌊nσ⌋ and mn = ⌊nρ⌋
Combining Lemma 3 and Lemma 4, we get the following result.

Lemma 5. For any constant c> 0, for all sufficiently large n, we have

(i) M (1)
n −M(kn)

n > (σ − c) logn;
(ii) M (kn)

n −M(mn)
n > (ρ −σ − c) logn.

Finally, we use Lemma 3 to give a lower bound forN(t).

Lemma 6 (Eventual lower bound for N(t)). For any smallε > 0, we have

N(t)≥ d logt − (d+1+ ε) logloglogt,

for all sufficiently large t, almost surely.

Proof. Using Lemma 3 we get, for any fixedc> 0 andc2 > d,

N(t)≥ max
r>0

[

d logr − (1+ c) logloglogr − r
t

log logr − r
t

logc2

]

,

if the maximum of the expression in the square brackets (which we denote byft (r))
is attained at a pointrt , large enough so that Lemma 3 holds.

The solutionr = rt of f ′t (r) = 0 satisfies

d
r
=

loglogr
t

(

1+o(1)
)

.

Writing rt = tϕ(rt), whereϕ(r) = d(loglogr)−1(1+o(1)) we get that

logϕ(r) =− loglog logr + logd+o(1) (3)

and hence logrt = logt + logϕ(rt ) = logt +o(logrt), which implies logrt/ logt =
1+o(1). Note that this impliesrt → ∞ as t → ∞, which justifiesa posteriori the
application of Lemma 3. Combining this with (3) we get,

f (rt ) = d(log(tϕ(rt)))− (1+ c) logloglogrt −ϕ(rt)(log logrt + logc2)

= d logt − (1+d+ c) logloglogt +O(1).

2.3 Upper bounds

We start by showing ad-hoc bounds for the growth rates of the contribution of certain
families of paths. These can be compared to the lower bound for the growth rate of
U(t) showing that the paths can be be neglected. For a path(Xs : s≥ 0) on the
latticeZd we denote byJt the number number of jumps up to timet. Recall that
M(k)

n denotes thekth largest potential value on the sitesz∈ Zd with |z| ≤ n.
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Lemma 7. Fix 0< σ < 1
2 and kn = nσ . Let

U2(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{ t
(logt)2

≤ Jt ≤ t logt, max
0≤s≤t

ξ (Xs)≤ M
(kJt )

Jt

}]

.

Then

lim
t↑∞

1
t

log
U2(t)
U(t)

=−∞.

Proof. Simply replacingξ (Xs) in the integral by the maximum, we get

U2(t) = ∑
t/(logt)2≤n≤t logt

E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{Jt = n, max
0≤s≤t

ξ (Xs)≤ M(kn)
n

}

]

≤ ∑
t/(logt)2≤n≤t logt

etM
(kn)
n P(Jt = n)≤ max

t/(logt)2≤n≤t logt
etM

(kn)
n .

By Lemma 4 we haveM(kn)
n = (d−σ) logn+o(logn) and hence

1
t

logU2(t)≤ (d−σ) logt +o(logt),

so that the result follows by comparison with Lemma 1 and Lemma 6.

Lemma 8. Let

U3(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}(1{Jt <
t

(logt)2

}

+1{Jt > t logt
}

)]

.

Then

lim
t↑∞

1
t

log
U3(t)
U(t)

=−∞.

Proof. We first show that almost surely,

1
t

logU3(t)≤ max
n<t/(logt)2

{

Mn−
n
t

log
n

2det

}

−2d+o(1). (4)

Indeed, we have

U3(t)≤ ∑
{n<t/(logt)2}
∪{n>t logt}

etMnP(Jt = n) = ∑
{n<t/(logt)2}
∪{n>t logt}

etMn
(2dt)ne−2dt

n!

≤ ∑
{n<t/(logt)2}
∪{n>t logt}

exp
(

tMn−2dt+nlog2dt− logn!
)

. (5)

To estimaten! we use Stirling’s formula,

n! =
√

2πn
(n

e

)n
eδ (n), with lim

n↑∞
δ (n) = 0.
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Fixing someε > 0 we know from Lemma 3, thatMn ≤ (d+ ε) logn for all suffi-
ciently largen, so fort large enough, we obtain for alln> t logt,

tMn−2dt+nlog2dt− logn! ≤ t(d+ ε) logn−nlog n
2edt − δ (n)

≤ t(d+ ε) logn
(

1− 1+o(1)
(d+ε) log

(

logt
2ed

)

+o(1)
)

≤−2logn,

by noticing thatn 7→ n
t logn log n

2edt is decreasing on(t logt,∞). Hence, almost surely,

∑
n>t logt

exp(tMn−2dt+nlog2dt− logn!) = o(1),

so that using (5) the following upper bound forU3

U3(t)≤
t

(logt)2 max
n<t/(logt)2

exp(tMn−2dt+nlog2dt− logn!)+o(1)

≤ t
(logt)2 max

n<t/(logt)2
exp

(

tMn−2dt−nlog n
2edt +o(t)

)

+o(1)

and hence (4) follows. As a second step we show that

1
t

logU3(t)≤ d logt − (2d−1) loglogt +o(loglogt). (6)

Recall thatr 7→ Mr is a non-decreasing function and check that

r 7−→ r
t

log
r

2det
is decreasing on(0,2det),

hence, replacingr in the bracket byt/(logt)2

max
r<t/(logt)2

[

Mr −
r
t

log
r

2det

]

= Mt/(logt)2 +o(1).

By Lemma 3 we haveMr ≤d logr+ loglogr+o(loglogr) for all sufficiently larger,
we get, fort large enough

max
r<t/(logt)2

[

Mr −
r
t

log
r

2det

]

≤ d logt − (2d−1) loglogt +o(loglogt), (7)

and combining (4) and (7), we have proved (6). Using Lemma 1 and Lemma 6,

1
t

log
U3(t)
U(t)

≤ 1
t

logU3(t)−N(t)−2d+o(1)

≤−(2d−1) loglogt +o(loglogt)→−∞,

and hence our statement is proved.
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The following versatile upper bound is the main tool in the proof of all our the-
orems and will be used repeatedly. Note for example that, together with Lemmas 7
and 8 it implies Lemma 2 if the parameters in(ii) are chosen ask= 1 andδ = 0.

Proposition 1. For a path(Xs: s≥ 0) on the latticeZd we denote by Jt the number
of jumps up to time t. We denote by M(k)

n the kth largest potential value on the sites
z∈ Zd with |z| ≤ n, and let Z(k)n be the site where this maximum is attained. Further
fix 0< σ < 1

2 and let kn = ⌊nσ⌋ and at ↓ 0.

(a) For n∈ N let

U (n)
1 (t) = E

[

exp
{

∫ t

0
ξ (Xs)ds

}1{Jt = n}1{ max
0≤s≤t

ξ (Xs)> M(kn)
n

}

]

.

Then, for allε > 0 there exists Cε > 0 such that uniformly for all tat ≤ n≤ t logt,

1
t

logU (n)
1 (t)≤ M(1)

n − n
2t

(

loglogn−Cε
)

+ ε −2d+o(1) as t↑ ∞.

(b) For fixedδ ≥ 0 and k,n∈ N let

U (δ ,k,n)
1 (t) = E

[

exp
{

∫ t

0
ξ (Xs)ds

}1{Jt = n}1{ sup
0≤s≤t

ξ (Xs) 6∈ {M(1)
n , . . . ,M(k−1)

n }
}1{Z(k)

n ∈ {Xs: 0≤ s≤ t}, |Xt −Z(k)
n | ≥ δ rt

}

]

.

Then, almost surely,

uniformly in k≤ kn and t
(logt)2

≤ n≤ tat ,

we have that

1
t

logU (δ ,k,n)
1 (t)≤ M(k)

n − |Z(k)
n |
t

loglog|Z(k)
n |−2d− δ +o(1) as t↑ ∞.

The first step in the proof is to integrate out the waiting times of the continuous
time random walk paths. The following fact taken from [6] helps with this.

Lemma 9. Letη0, . . . ,ηn be fixed real numbers attaining their maximum only once,
i.e. there is an index0≤ k≤ n with ηk > ηi for all i 6= k. Then, for all t> 0,

∫

Rn
+

exp
{n−1

∑
i=0

tiηi +
(

t −
n−1

∑
i=0

ti
)

ηn

}1{n−1

∑
i=0

ti < t
}

dt0 . . .dtn−1 ≤ etηk ∏
i 6=k

1
ηk−ηi

.
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Proof. First, we prove the result for the casek = n, i.e. ηn > ηi for all i < n. We
have

∫

Rn
exp

{n−1

∑
i=0

tiηi +
(

t −
n−1

∑
i=0

ti
)

ηn

}1{n−1

∑
i=0

ti < t, ti ≥ 0∀i ≤ n−1
}

dt0 . . .dtn−1

= etηn

∫

Rn
+

exp
{n−1

∑
i=0

ti(ηi −ηn)
}1{n−1

∑
i=0

ti < t
}

dt0 . . .dtn−1

≤ etηn

∫

Rn
+

exp
{n−1

∑
i=0

ti(ηi −ηn)
}

dt0 . . .dtn−1 = etηn ∏
i<n

1
ηn−ηi

.

Now we show that any permutation of the indices does not change the value of the
integral above and this will be sufficient to prove the statement. First, it is obvious
that transposition ofi and j does not change the integral ifi, j ≤ n− 1. Now we
consider the case of a transpositionτ on j andn, where j < n. We change variables
such thatt ′i = ti if i 6= j, i ≤ n−1 andt ′j = t −∑n−1

i=0 ti , and get

∫

Rn
+

exp
{n−1

∑
i=0

tiηi +
(

t −
n−1

∑
i=0

ti
)

ηn

}1{n−1

∑
i=0

ti < t
}

dt0 . . .dtn−1

=
∫

Rn
exp

{n−1

∑
i=0

t ′i ητ(i)−
(

t −
n−1

∑
i=0

t ′i
)

ητ(n)

}1
×
{n−1

∑
i=0

t ′i < t, t ′i ≥ 0∀i ≤ n−1
}

dt′0 . . . dt′n−1,

which completes the proof.

For the proof of Proposition 1 (b) denote by

P
(δ ,k,n) =

{

y= (y0, . . . ,yn) : y0 = 0, |yi−1− yi|= 1,

{y0, . . . ,yn}∩{Z(1)
n , . . . ,Z(k−1)

n }= /0,Z(k)
n ∈ {y0, . . . ,yn}, |yn−Z(k)

n | ≥ δ rt

}

the set of all ‘good’ paths and let(τi) be a sequence of independent, exponentially
distributed random variables with parameter 2d.

Denote byE the expectation with respect to(τi). We have

U (δ ,k,n)
1 (t) = ∑

y∈P(δ ,k,n)
(2d)−n

E

[

exp
{n−1

∑
i=0

τiξ (yi)+
(

t −
n−1

∑
i=0

τi

)

ξ (yn)
}

×1{n−1

∑
i=0

τi < t,
n

∑
i=0

τi > t
}]

.

(8)
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In the further proof we apply Lemma 9 to the values of the potential ξ along a
pathy. However, to do so we need the maximum ofξ along the pathy to be attained
only once. Therefore we have to modify the potential along the path slightly.

We fix y∈ P (δ ,k,n) and let

i(y) = min
{

i ∈ {0, . . . ,n} : yi = Z(k)
n

}

be the index of the first instant where the maximum of the potential over the path is
attained. Now we define a slight variation ofξ ony in the following way. Fixε > 0
and defineξ y : {0, . . . ,n}→R by ξ y

i = ξ (yi) if i 6= i(y), andξ y
i(y) = ξ (yi(y))+ε. We

obtain, usingξ (yi)≤ ξ y
i , that

E

[

exp
{n−1

∑
i=0

τiξ (yi)+
(

t −
n−1

∑
i=0

τi

)

ξ (yn)
}1{n−1

∑
i=0

τi < t,
n

∑
i=0

τi > t
}]

≤ E

[

exp
{n−1

∑
i=0

τiξ y
i +

(

t −
n−1

∑
i=0

τi

)

ξ y
n

}1{n−1

∑
i=0

τi < t,
n

∑
i=0

τi > t
}]

= (2d)n+1
∫

Rd
+

exp
{n−1

∑
i=0

tiξ y
i +

(

t −
n−1

∑
i=0

ti
)

ξ y
n

}1{n−1

∑
i=0

ti < t,
n

∑
i=0

ti > t
}

e−2d∑n
i=0 ti dt0 . . .dtn−1dtn

= (2d)ne−2dt
∫

Rd
+

exp
{n−1

∑
i=0

tiξ y
i +

(

t −
n−1

∑
i=0

ti
)

ξ y
n

}1{n−1

∑
i=0

ti < t
}

dt0 . . .dtn−1

≤ (2d)ne−2dte
ξ y

i(y)t ∏
i 6=i(y)

1
ξ y

i(y)− ξ y
i
, (9)

where the last line follows from Lemma 9. Using the definitionof our functionξ y

we get

e
ξ y

i(y)t ∏
i 6=i(y)

1
ξ y

i(y)− ξ y
i
= e(ξ (yi(y))+ε)t ∏

i 6=i(y)

1
ε + ξ (yi(y))− ξ (yi)

≤ e(ξ (yi(y))+ε)tε−n ∏
(ξ (yi(y))−ξ (yi))>1

1
ξ (yi(y))− ξ (yi)

. (10)

Next recall thatρ is fixed, andmn = ⌊nρ⌋. Let

Gn =
{

Z(1)
n , . . . ,Z(mn)

n

}

⊂ {z∈ Zd : |z| ≤ n},

and call the complementGc
n the set of sites with very low potential. Note that there

are at least|Z(k)
n |+⌊δ rt⌋−mn points in the pathy that belong toGc

n. Hence there are
at least

|Z(k)
n |+ ⌊δ rt⌋−mn
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terms in the product in the left hand side of (10) that are smaller than

(

M(kn)
n −M(mn)

n
)−1

provided this is less than 1. Combining this with (8), (9) and(10), we get

U (δ ,k,n)
1 (t)≤ ∑

y∈P(δ ,k,n)
ε−ne(M

(k)
n +ε−2d)t(M(kn)

n −M(mn)
n

)−|Z(k)
n |−⌊δ rt⌋+mn

≤ (2d)nε−ne(M
(k)
n +ε−2d)t (ρ−σ

2 logn
)−|Z(k)

n |−⌊δ rt⌋+mn
.

Taking the log of the above and definingCε := log(2d
ε )− log(ρ−σ

2 ) we get

1
t

logU (δ ,k,n)
1 (t)≤ n

t log 2d
ε +M(k)

n −2d+ ε − 1
t

(

|Z(k)
n |+ ⌊δ rt⌋−mn

)

log
(ρ−σ

2 logn
)

≤ M(k)
n − 1

t |Z
(k)
n | log log|Z(k)

n |−2d+ ε + n
t Cε − δ log logn

log logt +o(1),

where we use that|Z(k)
n |+ ⌊δ rt⌋ ≤ n. Observing that log logn≥ (1+o(1)) loglogt

and n
t Cε = o(1), uniformly for all n in the given range, concludes the proof of (b).

To prove part (a) we show that regardless of the distance travelled by the path, it
hits a site with very low potential in every other step. Recall that a setH of vertices
of Zd is totally disconnectedif there is no pair of vertices(x,y) ∈ H2 such that
|x− y|= 1.

Lemma 10. Almost surely, for sufficiently large n, the set Gn is totally disconnected.

Proof. We prove the statement ford ≥ 2 first. If i and j are distinct integers in
{1, . . . ,mn}, the random pair of points(Z(i)

n ,Z( j )
n ) is uniformly distributed over all

possible pairs of points in the ball of radiusn. As no vertex has more than 2d neigh-
bours, we haveP(Z(i)

n −Z( j)
n )≤ 2d/ln. Summing over all possible pairsi, j we get

P
(

Gn not totally disconnected
)

≤ ∑
i< j

P
(

Z(i)
n −Z( j)

n

)

≤
(

mn

2

)

2d
ln

≤Cn2ρ−d. (11)

for some constantC. Sinceρ < 1
2 andd ≥ 2 we can apply the Borel-Cantelli lemma

and obtain the result. We now prove the the same result whend = 1. We introduce
a new quantity

m′
n =

⌊

nρ ′⌋
with ρ < ρ ′ < 1

2

Let G′
n be the set of them′

n vertices in the ball of radiusn where the biggest values
of ξ are taken, and letpn be the biggest integer power of 2, which is less thann.
Note that, by (11), the setG′

pn
is totally disconnected for all sufficiently largen.

We now prove that

Gn ⊆ G′
2pn

for all sufficiently largen. (12)
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For this it suffices to show that at leastmn points ofG′
2pn

are in the ball of radiusn.
Indeed, if we assume this and also thatGn * G′

2pn
we can find a vertexz0 satisfying,

|z0| ≤ n, z0 ∈G′
2pn

andz0 /∈Gn. This implies that everyz∈Gn satisfiesξ (z)> ξ (z0),
becauseGn is the set where the largest values ofξ are achieved. Then, because
z0 ∈ G′

2pn
, we have

Gn ⊆ {ξ (z)> ξ (z0)}∩Bn ⊆ {ξ (z)> ξ (z0)}∩B2pn ⊆ G′
2pn

,

which leads to a contradiction to our assumption.
In fact we will prove the slightly stronger statement that there are at leastm2pn

vertices ofG′
2pn

in the ball of radiuspn, and we will now writep instead ofpn. We
write

G′
2p =

{

a′0, . . . ,a
′
m′

2p−1

}

,

wherea′i is the vertex whereξ (a′i) = M(i+1)
2p and introduce

X = (Xi)0≤i≤m′
2p−1 with Xi = 1{|a′i |≤p} and|X|=

m′
2p−1

∑
i=0

Xi .

Observing thatm′
2p = o(p) and thatG′

2p is uniformly distributed over all possible
ordered sets and recalling that the box of radiusp contains 2p+1 vertices, it is easy
to see that forp big enough,

P
(

Xj = 1
∣

∣Xi = xi ,∀i < j
)

< 3
4 andP

(

Xj = 0
∣

∣X = xi ,∀i < j
)

< 3
4,

for all j ≤ m′
2p−1 and for all fixed(x0, ...,x j−1) ∈ {0,1} j . Hence

P
(

|X|< m2p
)

=
m2p−1

∑
i=0

∑
|x|=i

P(X = x)

≤
m2p−1

∑
i=0

(

m′
2p

i

)(

3
4

)m′
2p

≤ m2p
(

m′
2p

)m2p−1
(

3
4

)m′
2p

= exp
(

−m′
2p log(4/3)+ (m2p−1) logm′

2p+ logm2p
)

= e−(2p)ρ′ (1+o(1)) ≤ e−nρ′
asn≤ 2pn.

Using the Borel-Cantelli lemma we can prove (12), which implies the statement.

We define the set of pathsPn to be

Pn =
{

y= (y0, . . . ,yn) : y0 = 0, |yi−1− yi|= 1,

{y0, . . . ,yn}∩{Z(1)
n , . . . ,Z(kn−1)

n } 6= /0
}

,

so that
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U (n)
1 (t) = ∑

y∈Pn

(2d)−n
E

[

exp
{n−1

∑
i=0

τiξ (yi)+
(

t −
n−1

∑
i=0

τi

)

ξ (yn)
}

×1{n−1

∑
i=0

τi < t,
n

∑
i=0

τi > t
}]

.

We can now argue similarly as for part (b) but using this time the fact that for any
path inPn the number of step out ofGn is at least⌊n/2⌋. More precisely,

U (n)
1 (t)≤ ∑

y∈Pn

ε−ne(M
(1)
n +ε−2d)t(M(kn)

n −M(mn)
n

)−⌊n/2⌋
,

and taking the log of the above and definingCε := 2log(2d
ε )− log(ρ−σ

2 ) we get

1
t

logU (n)
1 (t)≤ n

t log 2d
ε +M(1)

n −2d+ ε − 1
t ⌊n/2⌋ log

(ρ−σ
2 logn

)

= M(1)
n − n

2t

(

loglogn−Cε
)

−2d+ ε +o(1),

which concludes the proof of (a).

2.4 Analysis of the variational problem

We use the point process framework established in [6, Section 2.2] adapting the
approach of [11, Chapter 3]. We only give an outline of the framework and sketched
proofs here, see [6, Section 2.2] for more details.

Observe thatµ(dy) := e−ydy is a Radon measure onG := (−∞,∞]. For any
z∈ Zd, x∈ R andr > 0, we have

rdP
(

ξ (z)−d logr ≥ x
)

= rd e−d logr−x = e−x = µ
(

[x,∞]
)

.

Define, for anyq,τ > 0 the setHq
τ := {(x,y) ∈ Ṙd ×G: y≥ q|x|+ τ}, whereṘd is

the one-point compactification ofRd. As in [6, Lemma 4.3] we see that the point
process

ζr = ∑
z∈Zd

δ
(

( z
r ,ξ (z)−d logr)

)

converges in law to the Poisson processζ with intensity Lebd ⊗µ in the sense that,
for any pairwise disjoint compact setsK1, . . . ,Kn ⊂ Hq

τ with Lebd+1(∂K) = 0, we
have that(ζr(K1), . . . ,ζr(Kn)) converge in law to

n
⊗

i=1

Poiss
(

Lebd ⊗ µ(Ki)
)

.
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We further note that forz= t1+o(1) we have

ψt(z) := ξ (z)− |z|
t

loglog|z|= ξ (z)− |z|
rt

(

1+o(1)
)

.

As in [6, Lemma 4.4] applied toTt(z,x) := (z,x−|z|) we infer from this the conver-
gence of the point process

ϖt := ∑
z∈Zd

δ
(

( z
rt
,ψt(z)−d logrt )

)

in law to a Poisson processϖ with intensity
(

Lebd ⊗ µ
)

◦T−1
t = e−|z|−ydzdy,

where now the compact setsK1, . . . ,Kn can be chosen from the setHτ := Ṙd+1 \
(Rd × (−∞,τ)). The form of these and the previous domains, and in particularthe
use of the compactification, ensure that we can use these convergence results to
analyse the right hand side of the final formula in Proposition 1.

Lemma 11. Let X(1)
t and X(2)

t be the sites corresponding to the largest and second
largest value ofψt(z), z∈ Zd. Thenψt(X

(1)
t )−ψt(X

(2)
t ) converges in law to a stan-

dard exponential random variable.

Proof. Using careful arguments in the convergence step we obtain, for anya≥ 0,

P
(

ψt(X
(1)
t )−ψt(X

(2)
t )≥ a

)

= ∑
y

P
(

ϖt
(

Rd × (y,∞)
)

= 0,ϖt(R
d ×{y}) = 1,ϖt

(

Rd × (y−a,y)
)

= 0
)

→
∫

P
(

ϖ
(

Rd × (y,∞)
)

= 0
)

P
(

ϖ
(

Rd × (y−a,y)
)

= 0
)

e−ydy

=

∫

exp(−e−y+a)e−ydy= e−a.

Lemma 12. Let X(1)
t be the site corresponding to the largest value ofψt(z), z∈ Zd.

Then X(1)t /rt converges in law to a random variable inRd with coordinates given by
independent standard exponential variables with uniform random signs.

Proof. As above we obtain, for anyA⊂ Rd Borel with Lebd(∂A) = 0,

P
(X(1)

t

rt
∈ A

)

= ∑
y

P
(

ϖt
(

Rd × (y,∞)
)

= 0,ϖt
(

A×{y}
)

= 1
)

→
∫

A
dz

∫

dye−|z|−yP
(

ϖ
(

Rd × (y,∞)
)

= 0
)

=

∫

A
dz

∫

dyexp(−e−y)e−y−|z| =
∫

A
2−d e−|z|dz.

Observe that this implies that the limit variable has the given distribution.
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2.5 Proof of the almost sure asymptotics

Note that combining Lemma 1 and Lemma 6 establishes the almost sure lower
bound for the liminf result in Theorem 2. To find a matching upper bound, recall
from Lemma 2 that, for sufficiently larget,

Lt ≤ Nε (t)−2d+ ε

for Nε(t) := Nc(ε)(t). We now approximate the distribution ofNε(t).

Lemma 13 (Approximation for the distribution of Nε(t)). Let bt ↑ ∞, then

log
(

P
(

Nε (t)≤ bt
))

=−e−bt rd
t 2d (1+o(1)).

Proof. Observe that

P(Nε (t)≤ bt) = ∏
t/(logt)2≤|z|≤t logt

F

(

bt +
|z|
t
(log log|z|−Cε)

)

.

The values which|z| can take are such that log log|z| = log logt + o(1) uniformly
for all z, and sincebt → ∞, we have,

log
(

P
(

Nε(t)≤ bt
))

= ∑
t/(logt)2≤|z|≤t logt

log
(

1−exp
(

−bt − |z|
t

(

loglogt −Cε +o(1)
))

)

=−(1+o(1)) ∑
t/(logt)2≤|z|≤t logt

e−bt− |z|
rt
(1+o(1))

=−e−bt rd
t (1+o(1))

∫

Rd
e−|x|(1+o(1))1{loglogt/(logt)2≤|x|≤logt log logt} dx

To obtain our final result, we apply the dominated convergence theorem to the inte-
gral, which converges to 2d.

We are now ready to prove the upper bound. We consider a sequence of times
tn := exp(n2) for which Nε (tn) are independent random variables, in order to use
Borel-Cantelli.

Lemma 14 (Upper bound for lower envelope of Nε (tn)). For any small c> 0,
almost surely there are infinitely many n such that

Nε (tn)≤ d logtn− (1+d− c) logloglogtn.

Proof. Note that(Nε (tn))n≥N is a sequence of independent variables ifN is large
enough. To see this it suffices to notice that the different(Nε(tn))n≥N depend on the
values of the potential on disjoints areas. Indeed
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tn+1

(logtn+1)
2 =

exp
(

n2+2n+1
)

(n+1)4 > n2exp
(

n2)= tn logtn for all largen.

Now we use Lemma 13 withbt = d logt − (1+d− c) loglog logt and we get,

log
(

P
(

Nε(tn)≤ btn

))

=−2d (log logtn)
1−c(1+o(1))≥− logn,

for all sufficiently largen. Hence the sum over the probabilities diverges and we
obtain our result by applying the converse of the Borel-Cantelli lemma.

2.6 Proof of the weak asymptotics

To prove Theorem 1 we show that the upper and lower bounds we found earlier for
Lt both satisfy the required limit statement. We first state theresult of [6, Proposition
4.12], which describes the limit result for the lower boundN(t).

Lemma 15 (Weak asymptotics for N(t)). As t tends to infinity,

N(t)−d logt +d logloglogt ⇒ X, where P(X ≤ x) = exp
(

−2de−x).

Next we check the analogous limit theorem for the upper boundNε(t) and thus
complete the proof of Theorem 1.

Lemma 16 (Weak asymptotics for Nε (t)). As t tends to infinity,

Nε(t)−d logt +d logloglogt ⇒ X, where P(X ≤ x) = exp
(

−2de−x).

Proof. Fix x∈R and apply Lemma 13 withbt = d logt −d logloglogt + x to get

log
(

P
(

Nε(t)−d logt +d logloglogt ≤ x
))

=−e−x2d (1+o(1)),

which proves our result.

2.7 Proof of the scaling limit theorem

We recall thatX(k)
t (k= 1, 2) is the site at which

ψt(z) = ξ (z)− |z|
t

loglog|z|

takes itskth largest value. Fixδ > 0 and write

U(t) =U1(t)+U2(t)+U3(t)+U4(t)+U5(t)+U6(t),
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whereU2 andU3 were defined in Lemma 7, resp. Lemma 8, and

U1(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{ 2t
(logt)2

≤ Jt ≤ tat , max
0≤s≤t

ξ (Xs)> M
(kJt )

Jt

}1{X(1)
t ∈ {Xs: 0≤ s≤ t}, |Xt −X(1)

t | ≤ δ rt
}

]

,

U4(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{tat < Jt ≤ t logt, max
0≤s≤t

ξ (Xs)> M
(kJt )

Jt

}

]

,

U5(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{ 2t
(logt)2

≤ Jt ≤ tat , max
0≤s≤t

ξ (Xs)> M
(kJt )

Jt

}1{X(1)
t 6∈ {Xs: 0≤ s≤ t}

}

]

,

U6(t) = E
[

exp
{

∫ t

0
ξ (Xs)ds

}1{ 2t
(logt)2

≤ Jt ≤ tat , max
0≤s≤t

ξ (Xs)> M
(kJt )

Jt

}1{X(1)
t ∈ {Xs: 0≤ s≤ t}, |Xt −X(1)

t |> δ rt
}

]

.

Observe that our result follows if the contributions ofUi(t) for i = 2, . . . ,6 to the
total mass are negligible, asU1(t) only contributes to the mass distributed on points
close toX(1)

t on thert scale.

Lemma 17. Suppose at ↓ 0 and at loglogt → ∞. Then we have, in probability,

lim
t↑∞

U4(t)
U(t)

= lim
t↑∞

U5(t)
U(t)

= lim
t↑∞

U6(t)
U(t)

= 0.

Proof. For the first statement we use Proposition 1 (a) to see that

1
t

logU4(t)≤ sup
n≥tat

{

M(1)
n − n

2t

(

loglogn−Cε
)

}

+ ε −2d+o(1).

By Lemmas 12 and 11 the limit of the right hand side is strictlysmaller than the
growth rate ofU(t), proving that the first limit in the statement equals zero.

Using Proposition 1 (b) withδ = 0 and summing over all 1≤ k≤ tσ with X(1)
t 6=

Z(k)
n , and over alln with 2t/(logt)2 ≤ n≤ tat we get

1
t

logU5(t)≤ max
z\{X

(1)
t }

ψt(z)−2d+o(1) = ψt(X
(2)
t )−2d+o(1) in probability.

By Lemma 11 we findε > 0 such that, with a probability arbitrarily close to one

1
t

logU5(t)≤ ψt(X
(1)
t )−2d− ε +o(1),

and a comparison with the lower boundN(t) for the growth rate ofU(t) proves the
second result.



A scaling limit theorem for the parabolic Anderson model 23

For the third statement we use Proposition 1 (b) with the choice of δ > 0 from
the statement. Summing over all 1≤ k≤ tσ andn with 2t/(logt)2 ≤ n≤ tat we get,
as above,

1
t

logU6(t)≤ ψt(X
(1)
t )−2d− δ +o(1).

We can now argue as before that this rate is strictly smaller than the lower bound
N(t) for U(t), proving the final statement.

We can now complete the proof of Theorem 3. By definition we have

1≥ lim inf
t↑∞

νt
{

z∈ Zd
∣

∣ |z−X(1)
t | ≤ δ rt

}

≥ lim inf
t↑∞

U1(t)
U(t)

= 1− limsup
t↑∞

6

∑
j=2

U j(t)

U(t)
.

Combining Lemmas 7, 8 and 17 we see that the limsup is zero, so that we get

lim
t↑∞

νt
{

z∈ Zd
∣

∣ |z−X(1)
t | ≤ δ rt

}

= 1 in probability.

Combining this with the convergence ofX(1)
t /rt given in Lemma 12 and recalling

thatδ > 0 was arbitrary concludes the proof.

3 Concluding remarks

It would be interesting to study scaling limit theorems for potentials with lighter
tails and thus shed further light on the number of relevant islands in these cases.

The techniques of the present paper appear suitable to treatcases where the rele-
vant islands are single sites, which is the case for potentials heavier than the double-
exponential distributions. For the double-exponential distribution itself and lighter
tails, arguments related to classical order statistics of i.i.d. random variables need
to be replaced by eigenvalue order statistics for the randomSchrödinger operator
∆ + ξ on ℓ2(Zd), making the problem much more complex. Work in an advanced
state of progress by Biskup and König [1] deals with the double-exponential case
and strongly hints at localization in a single island of finite size in this and other
cases of unbounded potentials.

For boundedpotentials the question of the number of relevant islands and the
formulation of a scaling limit theorem at present seems wideopen and constitutes
an attractive research project. Sznitman in [12] discussesan ‘elliptic version’ of
the Anderson problem, describing Brownian paths in a Poissonian potential condi-
tioned to reach a remote location. Sznitman’s technique of enlargement of obstacles,
described in [14], offers a possible approach to the scalinglimit theorem, leading
in [13] to a study of fluctuations of the principal eigenvalues of the operator∆ + ξ
and moreover an analysis of variational problems somewhat similar to those that we
expect to arise in the proof of a scaling limit theorem.
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In the light of our result and this discussion it would be of particular interest
to know whether there at all exist potentials which lead to more than one relevant
island, and if so, to find the nature and location of the transition between phases of
one and several islands.
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7. W. KÖNIG, H. LACOIN, P. MÖRTERSand N. SIDOROVA. A two cities theorem for the
parabolic Anderson model.Ann. Probab.37, 347–392 (2009).

8. H. LACOIN. Calcul d’asymptotique et localization p.s. pour le modèle parabolique
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