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A scaling limit theorem for the parabolic
Anderson model with exponential potential

Hubert Lacoin and Peter Morters

Abstract The parabolic Anderson problem is the Cauchy problem forhbat
equationdiu(t,z) = Au(t,z) + &(t,2)u(t,z) on (0,0) x Z% with random potential
(&(t,2): ze 79) and localized initial condition. In this paper we considetgntials
which are constant in time and independent exponentiadlyiduted in space. We
study the growth rate of the total mass of the solution in seofweak and almost
sure limit theorems, and the spatial spread of the massrimstef a scaling limit
theorem. The latter result shows that in this case, jusitilke case of heavy tailed
potentials, the mass gets trapped in a single relevandisiah high probability.

1 Introduction and main results
1.1 Overview and background

We consider the heat equation with random potential on ttegér latticeZ? and
study the Cauchy problem with localised initial datum,

au(t,z) = Au(t,2) + & (t,2) u(t, 2), for (t,2) € (0,00) x Z9,
Itif(} u(t,z) = 1o(2), forze 79,
where
af) 2 =Sty - @), forze 79, f: 729 - R,
y~z

is the discrete Laplacian, and the potenté&l(t,z): t > 0,z < Z9) is a random field.
This equation is known as thparabolic Anderson model
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In the present paper we assume that the potential field iganis time and
independent, identically distributed in space accordingdme nondegenerate dis-
tribution. Under this hypothesis the solutions are belieteeexhibitintermittency
which roughly speaking means that at any late time the swlusi concentrated in a
small number ofelevant islandst large distance from each other, such that the di-
ameter of each island is much smaller than this distancdsigeee 1 for a schematic
picture. The relevant islands are located in areas whernedteantial has favourable
properties, e.g. a high density of large potential valuestiie progresses new rel-
evant islands emerge in locations further and further away the origin at places
where the potential is more and more favourable, while dahids lose their rele-
vance. The main aim of the extensive research in this modéthwvas initiated by
Gartner and Molchanov in [3, 4], is to get a better undeditagof the phenomenon
of intermittency for various choices of potentials.
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Fig. 1 A schematic picture of intermittency: the mass of the soluis concentrated on relevant
islands (indicated by shaded balls) with radius of omeand distances of ordey > a;.

Natural questions about the nature of intermittency arédh@wing:

e What is the diameter of the relevant islands? Are they grgwirtime?
How much mass is concentrated in a relevant island?
How big is the potential on a relevant island?
e Where are the relevant islands located? What is the distafrdifferent islands?
How many relevant islands are there?
How do new relevant islands emerge? What is the lifetime elevant island?
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Explicit answers to these questions and, more generaliylteeon the precise
geometry of solutions to the parabolic Anderson model gpecaly very difficult
to obtain. In the related context of Brownian motion amongs8anian obstacles,
Sznitman [14] provides methodology to study properties mvBiian paths con-
ditioned on survival, which offer a possible route to the metry of solutions,
at least in the case of bounded potentials. In a seminal fagener, Konig and
Molchanov [2] follow a different route to analyse size andition of relevant is-
lands in the case of double exponential potentials. Thaiultg also offer some
insight into potentials with heavier tails. In [7] and [9] aroplete picture of the
geometry of the solutions is given in the case of Paretoiligtrd potentials, build-
ing on the work of [2]. In this case of an extremely heavy tifotential it can
be shown that, for ang > 0 at sufficiently late times, there exists a single point
carrying a proportion of mass exceeding £ with probability converging to one.
This point constitutes the single relevant island and vegecige results about the
location, lifetime and dynamics of this island can be ol#dirsee also [10] for a
survey of this research.

For more complicated potentials however, one has to relgssiéxplicit results.
A natural way forward is to investigate the growth rates efttital mass

u(t):= Z u(t,z)

ze74

of the solution. If the potential is bounded from above we rdethe (quenched)
Lyapunov exponers

. 1
A .:tlmLt whereL; (= i logU (t),

whenever this limit exists in the almost sure sense. If themtal is unbounded one
expects superexponential growth and is interested in anigfic expansion of;.

If the tails of the potential distribution are sufficientight so that the logarithmic
moment generating function

H(x) := logEe®©
is finite for allx > 0, a large deviation heuristics suggests that,we get

H(Ba %)

1
Lt = ——— — —(k+0(1)), almost surely a1 o,
ot @ )

wherea, 3 are deterministic scale functions ards a deterministic constant. Ac-
cording to the heuristics, the quantity can be interpreted as the diameter of the
relevant islands at timg and the leading term as the size of the potential values on
the island. The constamt is given in terms of a variational problem whose max-
imiser describes the shape of a vertically shifted and tedgmtential on an island.
More details and a classification of light-tailed poterstetcording to this paradigm
are given in [5].
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If the potential is such that the moment generating funstidmnot always exist,
this approach breaks down. Indeed, one can no longer expetgading terms in
an expansion of; to be deterministic. Instead, one should expect the salstio
to be concentrated in islands consisting of single sitestaadexpansion ok; to
reflect fluctuations in the size of the potential on thesessime would expect the
sites of the islands to be those with the largest potentigbime time-dependent
centred box and the fluctuations to be similar to those sedheirorder statistics
of independent random variables. This programme is caoigdh detail in [6] for
potentials with Weibull (stretched exponential) and Ra(pblynomial) tails. In the
present paper we add the case of standard exponential jptgeantd present weak
(see Theorem 1) and almost sure (see Theorem 2) asymptpansions fol; in
this case. These results are taken from the first authorighlighed master thesis [8]
and were announced without proof in [6].

Very little has been done so far to get a precise understgradithe number and
position of the relevant islands, the very fine results fer Bareto case being the
only exception. A natural idea to approach this with somewgbéer techniques is
to prove a scaling limit theorem. To this end we define a praihadistribution v;
on Z4 associating to each sia weight proportional to the solutiarit, ), i.e.

u(t,2)
V1=
2,00
whered(z) denotes the Dirac measure concentraterlaiR?. Fora > 0, we also
define the distribution of mass at the timia the scalea as

: ut, 2)
VEi=w(z) = Z),
(a) Zede U(t) (a)

which is considered as an element of the spa#éRY) of probability measures
onRY. Identifying the scale; of the distances between the islands and the origin,
intermittency would imply that islands are contracted tangoand that* con-
verges in law to a random probability measure, which is guagdmic with atoms
representing intermittent islands and their weights regméng the proportion of
mass on the islands. In the case of Pareto potentials sucsul fellows easily
from the detailed geometric picture, see [9, Propositidh, but in principle could
be obtained from softer arguments. It therefore seemsevidialt scaling limit the-
orems like the above can be obtained for a large class of fiatemcluding some
which are harder to analyse because they have much lighiter ta

In Theorem 3 of the present paper we show that in the case ohexyial poten-
tials forr; =t/loglogt the random probability measurg$ converge in distribution
to a point mass in a nonzero random point. In particular thes that for expo-
nential potential we also hawmnly one relevant islandVoreover, the solution of
the parabolic Anderson problem spreadblinearlyin space. Our arguments can
be adapted to the easier case of Weibull, or stretched erfiah@otentials, where
there is also only one relevant island but the solution lsagperlinear spreadrhese
results are new and open up possibilities for further reteprojects, which we
briefly mention in our concluding remarks.

d(2), foranyt > 0,
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1.2 Statement of results

We now assume tha€ (z): z< Z9) is a family of independent random variables
with
P(¢(2) > x) =e *forx>0.

Suppos€u(t,z): t > 0,ze Z9) is the unique nonnegative solution to the parabolic
Anderson model with this potential, and Igi (t): t > 0) be the total mass of the
solution. We recall that

L= %IogU(t)

and first ask for a weak expansionlgfup to the first nondegenerate random term.
This turns out to be the third term in the expansion, whichfisamstant order. In
the following we use= to indicate convergence in distribution.

Theorem 1 (Weak asymptoticsfor the growth rate of the total mass).
We have
L; —dlogt +dlogloglogt = X,

where X has a Gumbel distribution
P(X < x) = exp{ — 29e *"20} for x € R.
In an almost sure expansion already the second term exfilmtaations.

Theorem 2 (Almost sure asymptoticsfor the growth rate of the total mass).
Almost surely,
. L; — dlogt
limsup—— =
tto  lOglogt

)

and L, — dlogt
liminf —— 209 _

ts' Togloglogt —(d+1).

Remark 1Note that neither of these almost sure asymptotics agréematasymp-
totics

im =400t i robability,

ttw logloglogt
which follows from Theorem 1. The almost sure results picklugtuations on both
sides of the second term in the weak expansion, with thoseeabeing signifi-
cantly stronger than those below the mean. This is diffeirettie stretched expo-
nential case studied in [6], where the liminf behaviour cades with the weak limit
behaviour. The limsup behaviour in the exponential casedkided in the results
of [6] and therefore not proved here.



6 Hubert Lacoin and Peter Morters

Recall that the distribution of the mass of the solution mieti > 0 and on the
scalea > 0 is defined as a (random) element of the spagéR?) of probability
measures oY by
u(t,z)

—~5(2).

V= (z) = >

ze74

The following theorem is the main result of this paper.

Theorem 3 (Scaling limit theorem). Defining the sublinear scale function

t

= ——
'~ loglogt’

we have

Itip vit = 5(Y) in distribution,

whered(x) denotes the Dirac measure concentrated ia RY and Y is a random
variable in RY with independent coordinates given by standard exponieveid-
ables with uniform random sign.

Remark 21In the case of a Weibull potential with parameter ¢ < 1 given by
P(&(2) >x) =™ forx>0,
a variant of the proof gives convergencef for the superballistic scale function

11
i t(logt)¥
'~ Tloglogt

to a limit measur&(Y) where the components ¥fare independent exponentially
distributed with parametet’ /¥ and uniform sign. Details are left to the reader.

2 Proof of the main results

2.1 Overview

The proofs are based on the Feynman-Kac formula

ut.2) = [exp{ [ €00)as}1(x =]

where(Xs: s> 0) is a continuous-time simple random walk @f started at the
origin and the probability? and expectatioii refer only to this walk and not to the
potentials. Recall thatXs: s> 0) is the Markov process generated by the discrete
LaplacianA featuring in the parabolic Anderson problem. It is showrBjthat the
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Feynman-Kac formula gives the unique solution to the pdiamderson problem

under a moment condition on the potential, which is satisfidkde exponential case.
By summing over all sites the Feynman-Kac formula implied the total mass is
given by

U(t) = E[exp{ '/:E(Xs)ds}]

An analysis of this formula allows us to approximate= %IogU (t) almost surely
from above and below by variational problems for the potdniihese variational
problems have the structure that one optimizes over al siteZ¢ the difference
between the potential valuégz), corresponding to the reward for spending time in
the site, and a term corresponding to the cost of gettingaasitle, which is going to
infinity whenz — o and thus ensure that the problem is well-defined.

We can use the result for the lower bound givenin [6, LemmhasaR2d 2.3]. Here
and throughout this paper we use] to denote theé-norm onR¢.

Lemma 1 (Lower bound on Ly). Let

A

N(t) = max{&(2) - =

ze74

logé (2)},
then, almost surely, for all sufficiently large t, we have
L > N(t) —2d+0(1).

The appearance &(z) in the cost term can be explained by the fact that part
of the cost arises from the fact that the optimal paths leatbrz spend a positive
proportion of the overall time traveling to the site and #fere miss out on the
optimal potential value for some considerable time, sedi@ed.3 in [6] for a
heuristic derivation of this formula.

The corresponding upper bound will be our main concern here.
Lemma 2 (Upper bound on L;). For any c¢> O let

2

Ne(t) := max {E(z) -1

t/(logt)2<|z|<tlogt

(Ioglog|z|+c)}.

Then, for anye > 0 there exists e= c(g) > 0 such that, almost surely, for all suffi-
ciently large t, we have

Lt < Ngg)(t) —2d+£+0(1).

This lemma will be proved in two steps: We first remove patlas tto not make
an essential contribution from the average in the Feynmaofirmula using an
ad-hoc approach, see Lemma 7 and Lemma 8. Then we use thet®péthe re-
maining paths to refine the argument and get an improved heeed’roposition 1.
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The variational problems for the upper and lower bound can be studied using
an extreme value analysis, which follows along the linesflf turns out that the
weak and almost sure asymptotics of the two problems caéngidto the accuracy
required to prove Theorem 1 and Theorem 2.

For the proof of the scaling limit we need to give an upper libon the growth
rate of the contribution of all those paths ending in a sit@istance more thaar;,
for somed > 0, from the site with the largest potential among those s$itascan
be reached by some path with the same number of jumps. Thisdhoeeds to be
strictly better than the lower bound on the overall growtie rdo this end, in a first
step, we again use Lemma 7 and Lemma 8 to eliminate some psitits ad-hoc
arguments. In the second step we remove paths that nevéiehsite with largest
potential that is within their reach. This is done on the fadithe gap between
the largest and the second largest value for the variatipreddlem in the upper
bound. In the third step it remains to analyse the contriloutif paths that hit the
optimal site but then move away by more th@m. Again it turns out that the rate
of growth of the contribution of these paths is strictly simathan the lower bound
on the growth rate of the total mass. Proposition 1 is set goid a way that it can
deal with both the second and third step. We conclude froathtat the solution is
concentrated in a single island of diameter at néstaround the optimal site. An
extreme value analysis characterizes the location of thienapsite and concludes
the proof of Theorem 3.

The remainder of the paper is structured as follows: In $a@i2 we give some
notation and collect auxiliary results from [6]. SectioB 2ontains the required up-
per bounds and constitutes the core of the proof. Sectiost@dies the variational
problem arising in the upper bound. Using these approxanative complete the
proof of Theorem 2 in Section 2.5 and of Theorem 1 in Sectién Bhe proof of
the scaling limit theorem, Theorem 3, is completed in Seciia .

2.2 Auxiliary results

LetBr = {|Z <r} be the ball of radius centered at the origin ii. The numbel;

of points inB; grows asymptotically liked. More precisely, there exists a constant
Kq such that, lim_ . l,r—9 = kg. We defineM, = maXz|< ¢ (2) to be the maximal
value of the potential 0B;. The behavior oM, is described quite accurately in [6,
Lemma 4.1], which we restate now.

Lemma 3 (Boundsfor M;). Letd € (0,1) and ¢> 0. Then, almost surely,

M; < dlogr +loglogr + (loglogr)® for all sufficiently large r
M > dlogr — (1+c)logloglogr  for all sufficiently large r

In particular, for any pair of constant,cand ¢ satisfying ¢ < d < ¢, we have

c1logr <M, < cplogr for all sufficiently large r
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LetM,” denote the-th biggest value taken by the potential in the ball of radius
centered at the origin. The next lemma gives us estimatasgpioer order statistics
for the potential.

Lemma 4 (Rough asymptotic behaviour for upper order statistics). LetO < 3 <
1 be a fixed constant. Then, almost surely,

i
) M(Ln D
lim —— =d—p.
n—e logn

Proof. Recalling that, is the number of points in a ball of radinsn Z9 we get

P(M(LHBJ) < X) B LnBJ,1 (ln) eﬁXi (1_ e,X)hqfi (1)
n — - . .
i;) I
We fix € > 0 and infer that

P(M,&L”B” <(d-B—¢) Iogn) < ng (Inn"”ﬁ”s)i (1— n’d+5+£)ln7np
< (nB + 1) ((Kd + o(l))nB”) v exp[—(Kd + 0(1))n3+‘1
= exp[—n‘”e(Kd + 0(1))} .

Since this sequence is summable, we can use the Borel-{C&teha to obtain
the lower bound. Similarly, for the upper bound, we use (19d¢b

In _
P(Mr(]LnBJ) >(d-B+e¢) Iogn) < Z <|i”> n(d-B+e)i 2
i=[nf)

We now use a rough approximation for the binomial coefficiaamely

(1)<4 (%)
[ | B
wheni is big enough. Combining this with (2) and using that the fiesin in the

ensuing sum is the largest, we obtain, for all sufficientigéan,

nB

In i
(InB)) _ _h &h -
P(Mn > (d B+£)Iogn) gi Zﬁj<indﬁ+£) S'“(nme se .

:\_n

Using the Borel-Cantelli lemma again we obtain an upper dpaompleting the
proof of our statement.
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LetO<o<p< % be some fixed constants. We define
kn=[n?] and my = |nP]

Combining Lemma 3 and Lemma 4, we get the following result.
Lemma 5. For any constant ¢ 0, for all sufficiently large n, we have
(i) My =My > (o —c)logn;
(i) My =M™ > (p — g —c)logn.

Finally, we use Lemma 3 to give a lower bound Rit).
Lemma 6 (Eventual lower bound for N(t)). For any smalle > 0, we have

N(t) > dlogt — (d+ 1+ &) logloglogt,

for all sufficiently large t, almost surely.
Proof. Using Lemma 3 we get, for any fixext> 0 andc;, > d,

N(t) > max dlogr — (14 c)logloglogr — ;Iog logr — ;Iogcz ,
r>
if the maximum of the expression in the square brackets (wvie denote byf; (r))
is attained at a point, large enough so that Lemma 3 holds.
The solutiorr =r; of f/(r) = 0 satisfies

loglogr

= (1+0(1)).

r)
d
r t

Writing ry = té(r;), whereg (r) = d(loglogr)~*(1+0(1)) we get that

log¢(r) = —logloglogr +logd + o(1) (3)

and hence log = logt + log¢ (ri) = logt + o(logr), which implies log: /logt =
1+ 0(1). Note that this implies; — c ast — o, which justifiesa posteriorithe
application of Lemma 3. Combining this with (3) we get,

f(re) = d(log(tg(rt))) — (1+c)logloglogr: — ¢ (rt)(loglogr; + logc,)
=dlogt — (1+d+c)logloglogt + O(1).

2.3 Upper bounds

We start by showing ad-hoc bounds for the growth rates ofahé&ibution of certain
families of paths. These can be compared to the lower bourttiéagrowth rate of
U (t) showing that the paths can be be neglected. For a @&ths > 0) on the
lattice Z9 we denote by} the number number of jumps up to timheRecall that
M¥ denotes théth largest potential value on the sites 79 with |z <n.
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Lemma7. Fix0< o < 3 and k, = n°. Let

Ua(t) :IE{eXp{/OtE(Xs)dS}]l{m2 <J S“Ogt’ggg‘gf(xs) < thth)H-

Then
Ux(t)

1'Io =—m
theo t gU(t)_ '

Proof. Simply replacing (Xs) in the integral by the maximum, we get

t
t/(|°9t>zﬁn§t logt { { J0 } 0<s<t }
My ko)
< 5 easms  omax
t/(logt)?<n<tlogt t/(logt)2<n<tlogt

By Lemma 4 we havér ) = (d—o)logn+o(logn) and hence
;—L logU;(t) < (d — o) logt + o(logt),

so that the result follows by comparison with Lemma 1 and Lendm

Lemma 8. Let

Ua(t) :E[exp{ /:E(Xs)ds} (]l{Jt < (Iogt]—t)z} +1{X} >tlogt})}.

Then L Ust)
lim = log—- = —oco.
to T 09 U(t) °
Proof. We first show that almost surely,
1 n n
—logUs(t) < max <Mp——-log—— ¢ —2d+0(1). 4
t g 3( ) - n<t/(|ogt>2{ n t gZdet} ( ) ( )

Indeed, we have

Usy< Yy éWP@G=n= Y éMnW

|
{n<t/(logt)2} {n<t/(logt)2} h
U{n>tlogt} U{n>tlogt}
< 5 exp(tMy — 2dt+ nlog 2dt — lognt!). (5)
{n<t/(logt)2}
U{n>tlogt}

To estimaten! we use Stirling’s formula,

Nl = v/2m (2) "5 with lim &(n) = 0.

nteo
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Fixing somee > 0 we know from Lemma 3, tha#l, < (d+ €)logn for all suffi-
ciently largen, so fort large enough, we obtain for ail> tlogt,

tM — 2dt+ nlog 2dt — logn! < t(d+ &) logn — nlog & — 8(n)
<t(d+¢)logn(1- 2 log (5% ) +o(1))

< —2logn,

by noticing thain — % log »; is decreasing oftlogt, «). Hence, almost surely,

Z exp(tMy, — 2dt+ nlog2dt — logn!) = o(1),
n>tlogt

so that using (5) the following upper bound fds

t
(logt)2 n<tr2%§t>2 exp(tM,, — 2dt+ nlog 2dt — logn!) + o(1)

t
<-—— max exp(tM,—2dt—nlog»az +0(t)) +0(1
~ (logt)? n<t/(logt)2 P(tMn 9zq +0(t)) +0(2)

Us(t) <

and hence (4) follows. As a second step we show that
t} logUs(t) < dlogt — (2d — 1)loglogt + o(loglogt). (6)
Recall that — M is a non-decreasing function and check that
r ro. .
r—s 1 Iogﬁet is decreasing of0, 2det),
hence, replacingin the bracket by/(logt)?

r r
r<tr/rgg§t)2 { 9 2det} k/(logy2 +0(1)

By Lemma 3 we hav®!, < dlogr+loglogr+ o(loglogr) for all sufficiently larger,
we get, fort large enough

r r
max |M; —-log-———| <dlogt — (2d —1)loglogt + o(loglogt), (7
f<t/(logt)2{ Tt gZdeJ— gt—( )loglogt +o(loglogt),  (7)

and combining (4) and (7), we have proved (6). Using LemmadlLamma 6,

Us(t)
u(t)

}Iog < %IogU3(t)—N(t)—2d+o(1)

t
< —(2d—1)loglogt + o(loglogt) — —co,

and hence our statement is proved.
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The following versatile upper bound is the main tool in thegdrof all our the-
orems and will be used repeatedly. Note for example thagthey with Lemmas 7
and 8 it implies Lemma 2 if the parameterg(in are chosen ds=1 andd = 0.

Proposition 1. For a path(Xs: s> 0) on the latticeZd we denote bytthe number

of jumps up to time t. We denote byfMhe K" largest potential value on the sites
ze 79 with |zl < n, and let Z° be the site where this maximum is attained. Further
fix0< o< 3andletk=|n’| anda | 0.

(a) Forne N let
U<n exp / &(Xs) ds ]l{Jt_n}]l{ maxE (Xs) > M) }}
Then, for alle > 0 there exists €> 0 such that uniformly for all ta< n <tlogt,
t} logu,” (t) <MY — % (loglogn—C¢) +€—2d+0(1) astt .

(b) For fixedd > 0and kn € N let

U (t) = E[exp{ /: E(Xs)ds}
1{% = n} 1{ sup &(Xe) ¢ {Mﬁ,”,...,Mﬁ,"’”}}

0<s<t

1{Z) € {Xs: 0< s <t} P& — 2| = n} .
Then, almost surely,

uniformly in k< k, and —— < n<ta,

Iogt)

we have that

1 pas
{Iogufk’“)(t) <MY — | ? | loglog|Z¥|—2d—&+0(1) astfw.

The first step in the proof is to integrate out the waiting snoéthe continuous
time random walk paths. The following fact taken from [6]geeWith this.

Lemma9. Letnq,...,Nn be fixed real numbers attaining their maximum only once,
i.e. there is an indeR < k < n with ng > n; for all i £ k. Then, for all t> 0,

/ﬂ;’ii exp{ Tzitim n (t—?;jti)nn}l{l:z:ti < t}dto...dtn,l < @k iEL nkim'
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Proof. First, we prove the result for the cake=n, i.e. n, > n; for all i < n. We
have

/ﬂ%nexp{ hZ;LtiniJr (t—fiti)nn}l{biti <t >0vi< n—1}dto...dtn,1
=dn /ﬂ.ﬂ exp{ ?Z;Lti(m —r]n)}]l{?zzti <t}dt0...dtn,1

< g /IéH exp{ hiti("li _”n)}dto...dtn,l:emn M 1

i<n Mn—1i

Now we show that any permutation of the indices does not chémgvalue of the
integral above and this will be sufficient to prove the staatFirst, it is obvious
that transposition of and j does not change the integraliiff < n—1. Now we
consider the case of a transpositioan j andn, wherej < n. We change variables
such that! =t if i # j,i <n—1landt/ =t— 7t and get

n—-1
t
=

Lo T (=3 {3 <t} do.do
n—l/ nfl/
:/Rn exp{ izoti Ne(i) — (t— i;ti)nr(n)}ﬂ
nil/ ! H / /
x { i;;ti <t >0vi< n—1}dt0... dt,_,,

which completes the proof.

For the proof of Proposition 1 (b) denote by

9(5,1(,!’1) = {y: (yOa"'7yn): Yo = Oa |yi—l—Yi| = 17
{Y07--- ’yn}m{z'g]l)"”’zr(]kfl)} = 07Z'§]k) € {yOv"'vyn}7|yn_Zr<‘lk)| > 6“}

the set of all ‘good’ paths and Iét;) be a sequence of independent, exponentially
distributed random variables with parametdr 2
Denote byE the expectation with respect (o). We have

Uié,k.n) (t) = yea}%‘km (2d)"E {exp{ TZ: T&(yi) + (t — ?Z:Ti) '3 (Yn)} @®
n-1 n

X ]l{ ;}ri <t,;n >tH.
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In the further proof we apply Lemma 9 to the values of the piakd along a
pathy. However, to do so we need the maximun€adlong the patly to be attained
only once. Therefore we have to modify the potential alorggth slightly.

We fixy € 220%" and let

i(y) =min{i € {0,...,n}: yi =z}

be the index of the first instant where the maximum of the gatkover the path is
attained. Now we define a slight variation®bny in the following way. Fixe > 0
and defing?: {0,....n} = Rby &' = &(yi) if i #i(y), and&, = & (yiy)) +&. We
obtain, using (yi) < &, that

ol 500+ (-5 peom (e < -4
ol S (o) St S oo
_ (2d)”+1'/]1%1 exp] _Z)tiéiu( Z )&
S D

=(Zd)”e*Zdt'/@eXp{i;tiéiy ( ZJ) }{i;ti«}dto...dtn,l

1
iy E Ey’

< (2d)"e 2ty )

where the last line follows from Lemma 9. Using the definitafrour function&¥
we get

it ! (et 1
e’y 0 = e\ Vi
i;éli_(ly) Ei)(/y)_siy |¢|,_| €+ <& (Yiry) — &)
1
S e(E(yi(y))JrE)tg*n ) (10)
<s<yi<y>>|:!*<yi>>>1 & Why) =€)

Next recall thap is fixed, andm, = |n°|. Let
Gn=1{ZV,....Z™} c{zez: |4 <n},

and call the compleme@§ the set of sites with very low potential. Note that there
are at leasz\’| + | dr | — m, points in the patly that belong taGS. Hence there are
at least

|25+ [ort] —
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terms in the product in the left hand side of (10) that are Em#ian
(Mrglkm _ Mg”’h))fl

provided this is less than 1. Combining this with (8), (9) &bd), we get

UPe(t) < e M e-2d) (M) — Mr(]”h))*\zék)\*[(srtJJrﬂh
ye pBkn)
(®) _ 1z 5+
(Zd) Mn +e—2d)t (pZG Iogn) ‘ |[—[0rt] )

Taking the log of the above and definiGg := log(Z) — log(57 ) we get

IogU<“")( t) < Mog2 + MY —2d+&— 2 (|Z¥| + [ &r¢| — my) log (252 logn)

<MY - 1ZV|loglog|Z{| — 2d+ £ + C — 5 Rt + o(1),
where we use thgZ,’| + | 8r; | < n. Observing that loglog > (1+ o(1))loglogt
and{C: = o(1), uniformly for allniin the given range, concludes the proof of (b).

To prove part (a) we show that regardless of the distanceltealvby the path, it
hits a site with very low potential in every other step. Retadt a seH of vertices
of 74 is totally disconnectedf there is no pair of vertice$x,y) € H? such that
x—y|=1.

Lemma 10. Almost surely, for sufficiently large n, the seti&totally disconnected.

Proof. We prove the statement far > 2 first If i and j are distinct integers in
{1,...,my}, the random pair of pointZ)’, Z) is uniformly distributed over all
possible pairs of points in the ball of radlusAs no vertex has more thal 2eigh-
bours, we hav®(Z)) — z") < 2d/l,,. Summing over all possible pairsj we get

P(Gn not totally disconnected< ZP(ZﬁP -Z)) < ( 2) fd <cr 4. (11)

i<]

for some constar@. Sincep < % andd > 2 we can apply the Borel-Cantelli lemma
and obtain the result. We now prove the the same result wiked. We introduce
a new quantity

m, = |n?'| with p < p’ <
Let G;, be the set of thet, vertices in the ball of radius where the biggest values
of & are taken, and lep, be the biggest integer power of 2, which is less than

Note that, by (11), the s&, is totally disconnected for all sufficiently large
We now prove that

GnC G’2pn for all sufficiently largen. (12)
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For this it suffices to show that at least points ofG’2pn are in the ball of radius.
Indeed, if we assume this and also t@atf G/2pn we can find a vertex, satisfying,
|20 <N, 79 € Gy, andzy ¢ Gp. This implies that everg € Gy satisfiest (z) > & (),
becauses, is the set where the largest valueséofare achieved. Then, because
70 € G, , we have

Gn C {£(2) > &(20)} NBn € {£(2) > &(20)} N Bzp, € Gopyy,

which leads to a contradiction to our assumption.

In fact we will prove the slightly stronger statement tharthare at leasty,
vertices ofG’2pn in the ball of radiug,, and we will now writep instead ofp,. We
write

o= {2ty 1}

whereg| is the vertex wheré (&) = Mgp”) and introduce

. Myp—1
X= (Xi)ogigr&p,l with X = ]l{\a{\gp} and|X| = igo X.
Observing thatriZp =o(p) and thatG’2p is uniformly distributed over all possible
ordered sets and recalling that the box of ragie®ntains D+ 1 vertices, it is easy
to see that fop big enough,
P(Xj=1|X=x,vi<]) < ZandP(X; =0|X=x,Vi <) < 3,
for all j <m,, — 1 and for all fixed(xo, ..., Xj-1) € {0, 1}). Hence

mpp—1
P(X|<m) = 3 3 POX=x

Y ) ) i (2)”

= exp(—mp,log(4/3) + (mgp— 1) logmy, + logmyy)

— e @ o) < o gn< 2pn.
Using the Borel-Cantelli lemma we can prove (12), which iiepthe statement.

We define the set of path#®, to be

L@n = {y: (yo’...,yn): y0: O’ |y|71—)’|| — 17
Yooy} N{ZP.... 200} 0},

so that
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n—1 n—1

UM = Y (2d)"E|exp{ > 1 i)+ (- > 6)&0n |

yen i= i=
n—-1 n

X ]1{ Z}n <t’Z>Ti >t}].
i= i=

We can now argue similarly as for part (b) but using this timefact that for any
path in 22, the number of step out @, is at least n/2|. More precisely,

U{”)(t) < gfne(M,gluszd)t (Mr(]kn) B Mr(]rm))ﬂn/ZJ’
yePn

2d
&

and taking the log of the above and definiiig:= 2log(Z!) — log(252) we get

%IogU{”)(t) <MogZ + MY —2d+¢— 1 [n/2]log (252 logn)
=M’ — % (loglogn—C¢) — 2d+ £+ 0(1),

which concludes the proof of (a).

2.4 Analysis of the variational problem

We use the point process framework established in [6, Se&id] adapting the
approach of [11, Chapter 3]. We only give an outline of thefesvork and sketched
proofs here, see [6, Section 2.2] for more details.

Observe thafu(dy) := e Ydy is a Radon measure d& := (—,]|. For any
ze 729, x € R andr > 0, we have
riP(&(2) —dlogr > x) =rde 919" % — e — 14 ([x,]).

Define, for anyg, T > 0 the seH{ := {(x,y) € RY x G: y > q|x| + T}, whereRY is
the one-point compactification . As in [6, Lemma 4.3] we see that the point

process
&=y 8((2.6@ dlogr))

ze74d

converges in law to the Poisson procéssith intensity Lely ® u in the sense that,
for any pairwise disjoint compact sefs, ...,Kn C HY with Leby1(0K) =0, we
have that ¢ (K1),..., ¢ (Kn)) converge in law to

é PoisgLeby @ u(Ki)).
i—1
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We further note that foz = t1+°(Y) we have

2 loglog|z| = &(2) — 2 (1+0(2)).

W@ =E@ -7 :

Asin [6, Lemma 4.4] applied td (z X) := (z,x— |z|) we infer from this the conver-
gence of the point process

@ =y 5((7.41(2) —dlogn))

ze74d

in law to a Poisson process with intensity
(Leby@p) o Tt =e @ Vdzdy

where now the compact sefg, . ..,K, can be chosen from the st := Rd”\
(RY x (—o0,7)). The form of these and the previous domains, and in parti¢héar
use of the compactification, ensure that we can use theseigmnce results to
analyse the right hand side of the final formula in Proposifio

Lemma 11. Let X and %? be the sites corresponding to the largest and second
largest value ofjt(z), ze Z9. Thenyr (X") — gr (%) converges in law to a stan-
dard exponential random variable.

Proof. Using careful arguments in the convergence step we obtaianya > 0,

P(¢(X™) - tr(%”) > a)
— EP(m(Rd x (y,0)) = 0,m (R x {y}) = La (R x (y—a,y)) =0)
— [ P(@(R x (1.9) =O)P(@( x (y—ay)) = 0)e Vdy
_ / exp—e Y ¥)e Vdy=e?

Lemma 12. Let X be the site corresponding to the largest value(z), ze Z9.

Then )ﬁl)/rt converges in law to a random variable Rf' with coordinates given by
independent standard exponential variables with unifoamiom signs.

Proof. As above we obtain, for ank c RY Borel with Leky(dA) = 0,
X" d
P(T €A) = Y P(@ (R x (v.0)) = 0,@ (Ax {y}) = 1)
v
— / dz/dye*‘zH’P(w(Rd x (y,0)) = 0)
JA

:/dz/dyexp(—e*y)e*yf\z\ = / 2-deldgz
A JA

Observe that this implies that the limit variable has thegidistribution.



20 Hubert Lacoin and Peter Morters

2.5 Proof of the almost sure asymptotics

Note that combining Lemma 1 and Lemma 6 establishes the alsuoe lower
bound for the liminf result in Theorem 2. To find a matching eppound, recall
from Lemma 2 that, for sufficiently large

Ly <Ng(t)—2d+¢
for Ne(t) := Ng(g) (t). We now approximate the distribution i (t).
Lemma 13 (Approximation for thedistribution of Ng(t)). Let b 1 oo, then
log (P(Ng(t) <br)) = —e ™rf2% (1+0(1)).
Proof. Observe that

P(Ne(t) <hy) = J_l F <b[ + |t£| (loglog|Z| —C£)> .

t/(logt)?<[z|<tlogt

The values whichz| can take are such that log = loglogt + o(1) uniformly
for all z, and sincdy; — o, we have,

log (P(Ne(t) <bt))

= > log 1—exp(—b[—@(Ioglogt—CpLo(l))))
t/(logt)?<|z/<tlogt
——(lto) Y e riem

t/(logt)2<[z|<tlogt

—b .d " —IX(1+o(1
=-€ btrt (1+O(1))'/Rde X+ ))]l{logIogt/(logt)zg\x\glogtIoglogt} dx
To obtain our final result, we apply the dominated converge¢heorem to the inte-
gral, which converges to™2

We are now ready to prove the upper bound. We consider a segaérimes
th = exp(nz) for which Ng(t,) are independent random variables, in order to use
Borel-Cantelli.

Lemma 14 (Upper bound for lower envelope of Ng(ty)). For any small c¢> O,
almost surely there are infinitely many n such that

N (th) < dlogt, — (1+d —c)logloglogty.

Proof. Note that(N¢(tn))n>n IS @ sequence of independent variableN ifs large
enough. To see this it suffices to notice that the diffefdatt,))n>n depend on the
values of the potential on disjoints areas. Indeed
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thy1  exp(n?+2n+1)

2 2
= > n“exp(n°) = tylogt, for all largen.
(logtn1)? (n+1)4 (™) =trlogtn ’

Now we use Lemma 13 withy = dlogt — (14 d— c)logloglogt and we get,
log (P(Ng(tn) < by,)) = —2%(loglogt,)* °(1+0(1)) > —logn,

for all sufficiently largen. Hence the sum over the probabilities diverges and we
obtain our result by applying the converse of the Borel-€inemma.

2.6 Proof of the weak asymptotics

To prove Theorem 1 we show that the upper and lower bounds wlfearlier for
L: both satisfy the required limit statement. We first stateéselt of [6, Proposition
4.12], which describes the limit result for the lower boud).

Lemma 15 (Weak asymptoticsfor N(t)). As t tends to infinity,
N(t) —dlogt +dlogloglogt = X, where RX <x) =exp(—2e™).

Next we check the analogous limit theorem for the upper bawtt) and thus
complete the proof of Theorem 1.

Lemma 16 (Weak asymptoticsfor Ng(t)). As t tends to infinity,
Ng(t) — dlogt +dlogloglogt = X, where RX < x) =exp(—2%e™).
Proof. Fix x € R and apply Lemma 13 withy = dlogt — dlogloglogt + x to get
log (P(Ng(t) — dlogt + dlogloglogt < x)) = —e 2% (1+0(1)),

which proves our result.

2.7 Proof of the scaling limit theorem

We recall that¥ (k = 1, 2) is the site at which

A

WD =E@) -

loglog|Z|

takes itsk!" largest value. Fixd > 0 and write

U(t) = Ug(t) +Uz(t) +Us(t) +Ua(t) +Us(t) + Ug(t),
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whereU; andUs were defined in Lemma 7, resp. Lemma 8, and
U(t) = exp / &(Xs) ds}]l{ Tog? < % <ta, maxE(Xs) > M(le }
1{X" € {Xs: 0<s<t},[% — XY < 5rt}},

r t (ky)

Ust) =E exp{/ &(Xs)d }]l{tat < J <tlogt, maxE(Xs) > My }},
. Jo
- t

Us(t) =E exp{/O }]1{—2<Jt<tat maxE(Xs)>|\/|<th }

1{XY ¢ {X: Ogsgt}}},

Ue(t):IE exp / E(Xs) ds}]l{ Togt2 > <% gtat,orgszé( )>|\/|<th }
L{X" € {Xs: 0<s<t}, % —XY| > 5rt}]

Observe that our result follows if the contributionslft) fori =2,...,6 to the
total mass are negligible, &5 (t) only contributes to the mass distributed on points
close toX" on ther; scale.

Lemma 17. Suppose@| 0 and aloglogt — «. Then we have, in probability,

CUst) . Us(t) . Ug(t)
lim U4(t) = lim U5(t) =lm UG(t) =0

Proof. For the first statement we use Proposition 1 (a) to see that
1 N
ZlogUg(t) < sup{M,& ) — = (loglogn—C;) } +€&—2d+0(1).
t nzta{ 2t

By Lemmas 12 and 11 the limit of the right hand side is stristiyaller than the
growth rate olJ (t), proving that the first limit in the statement equals zero.

Using Proposition 1 (b) witld = 0 and summing over all & k < t% with X #
Z\¥, and over alh with 2t/(logt)? < n < ta; we get

%IogUg,( t) < max Y (2) —2d+0(1) = g (X?) —2d+0(1) in probability.
204"}

By Lemma 11 we find > 0 such that, with a probability arbitrarily close to one

% logUs(t) < gx(X™) —2d — e +0o(1),

and a comparison with the lower bouNdt) for the growth rate ol (t) proves the
second result.
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For the third statement we use Proposition 1 (b) with theahoid > 0 from
the statement. Summing over alklk < t° andn with 2t /(logt)? < n < ta; we get,
as above,

%Iogue(t) <) —2d—5+0(1).
We can now argue as before that this rate is strictly smdii@n the lower bound
N(t) for U(t), proving the final statement.

We can now complete the proof of Theorem 3. By definition weshav

Ui(t) A 6 %
U ~ P2 U

~—

1> liminf w{zez||jz- x| < o} > liminf

Combining Lemmas 7, 8 and 17 we see that the limsup is zerbasave get
Itip w{zez®||z—XY|<ér} =1 inprobability.

Combining this with the convergence le”/rt given in Lemma 12 and recalling
thatd > 0 was arbitrary concludes the proof.

3 Concluding remarks

It would be interesting to study scaling limit theorems fatgntials with lighter
tails and thus shed further light on the number of relevdahis in these cases.

The techniques of the present paper appear suitable taasaes where the rele-
vantislands are single sites, which is the case for potsritéavier than the double-
exponential distributions. For the double-exponentiafriution itself and lighter
tails, arguments related to classical order statisticsi.of random variables need
to be replaced by eigenvalue order statistics for the ran8ohrddinger operator
A + & on (3(z%), making the problem much more complex. Work in an advanced
state of progress by Biskup and Konig [1] deals with the dewdxponential case
and strongly hints at localization in a single island of #ngize in this and other
cases of unbounded potentials.

For boundedpotentials the question of the number of relevant islandstha
formulation of a scaling limit theorem at present seems wigen and constitutes
an attractive research project. Sznitman in [12] discusselliptic version’ of
the Anderson problem, describing Brownian paths in a Poiasopotential condi-
tioned to reach a remote location. Sznitman'’s techniquelargement of obstacles,
described in [14], offers a possible approach to the scdiimiy theorem, leading
in [13] to a study of fluctuations of the principal eigenvalws the operatos + &
and moreover an analysis of variational problems somevitmégs to those that we
expect to arise in the proof of a scaling limit theorem.
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In the light of our result and this discussion it would be oftalar interest
to know whether there at all exist potentials which lead taertban one relevant
island, and if so, to find the nature and location of the ttamsibetween phases of
one and several islands.
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