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Contemporary Mathematics

Cup products in Hopf cyclic cohomology with coefficients in

contramodules

Bahram Rangipour

Dedicated to Henri Moscovici, with highest admiration and appreciation .

Abstract. We use stable anti Yetter-Drinfeld contramodules to improve the
cup products in Hopf cyclic cohomology. The improvement fixes the lack of
functoriality of the cup products previously defined and show that the cup

products are sensitive to the coefficients.

1. Introduction

Hopf cyclic cohomology was invented by Alain Connes and Henri Moscovici as a
computational tool for computing the index cocycle of the hypoelliptic operators
on manifolds [6]. One of the object of the theory was to study the cyclic cocycles
generated by a symmetric system, in the sense of noncommutative geometry, which
is usually given by an action or a coaction of a Hopf algebra on an algebra or a
coalgebra. The main tool for transferring such cocycles to the cyclic complex of
algebras is a characteristic map defined in [6]. The characteristic map is based on
an invariant trace on the algebra of functions on the manifold in question. However
in many situations the invariant trace does not exist, for example see [4]. For such
cases the invariant cyclic cocycles play the role of invariant trace and one defines
a higher version of the characteristic map [7, 10]. By the generalization of Hopf
cyclic cohomology [12, 11] that allows one to take advantage of coefficients for
Hopf cyclic cohomology, the invariant cyclic cocycles are understood as examples
of Hopf cyclic cocycles. As a result, one generalizes the characteristic map to a cup
product [16]. Similarly, the ordinary cup product in algebras was also generalized
to another type of cup product in Hopf cyclic cohomology by replacing cycles and
their characters with twisted cycles and their twisted characters. In [19, 14],
by a straight application of cyclic Eilenberg-Zilber theorem ( c.f. [17, 9]), the
cup products was reconstructed and simplified. Finally, it is shown that all cup
products defined in [16, 19, 14, 10] are the same in the level of cohomology [15].
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2 BAHRAM RANGIPOUR

The suitable coefficients for Hopf cyclic cohomology mentioned above is called sta-
ble anti Yetter-Drinfeld (SAYD) module [11, 13]. It has both module and comod-
ule structure, over the Hopf algebra in question, with two compatibilities made of
composition of action and coaction. However it is proved that Hopf cyclic cohomol-
ogy works with a generalization of SAYD modules called SAYD contramodules [1].
Contramodules for a coalgebras was introduced in [8]. A right contramodule of a
coalgebra C is a vector spaceM together with a C-linear map α : hom(C,M) → M
makes the diagrams (2.2) commutative.
An SAYD contramodule M is a module and contramodule together with two com-
patibilities made of α and the action of H on M. As an example if M is a SAYD
module over H then homk(M,C) is an SAYD contramodule over H .
In this paper, building on the methods we developed in [19], we generalize the
cup products defined in the same paper by using SAYD contramodules coefficients.
By Theorem 4.2 and Theorem 4.3 we show that the cup products is sensitive to
coefficients. In Section 2 we recall Hopf cyclic cohomology with coefficients in
SAYD modules and contramodules. In Section 3 we define the cup products for
compatible pair of SAYD modules and contramodules. Here a compatible pair reads
a pair of SAYD module and contramodule endowed with a pairing with values in
the ground field and compatible with respect to actions and coactions. Finally, in
Section 4 we generalize the results of Section 3 for arbitrary coefficients without any
compatibility between them. The range of new cup products are ordinary cyclic
cohomology of algebras with coefficients in vector spaces.
In this note a Hopf algebra is denoted by a sextuple (H,µ, η,∆, ε, S), where µ, η,
∆, ε, and S are multiplication, unit, comultiplication, counit, and antipode respec-
tively. We use the Sweedler notation for comultiplications and coactions i.e., for
coalgebras we use ∆(c) = c(1) ⊗ c(2) , for comodules we use H(a) = a

<0>
⊗ a

<1>
and

for coefficients we use H(m) = m
<−1>

⊗m
<0>

. All algebras, coalgebras and Hopf
algebras are over the field of complex numbers C. The unadorn tensor product ⊗
reads ⊗C.

We would like to thank Tomasz Brzeziński for Remark 4.1. We are also grateful of
the referee for his carefully reading the manuscript and his valuable comments.

2. Hopf cyclic cohomology with coefficients

2.1. Stable anti Yetter-Drinfeld-module. For the reader’s convenience,
we briefly recall the definition of Hopf cyclic cohomology of coalgebras and algebras
under the symmetry of Hopf algebras with coefficients in SAYD modules [12], and
with coefficients in SAYD contramodules [1].
Let us recall the definition of SAYD modules over a Hopf algebra from [11]. Given
a Hopf algebra H , we say that M is a right-left SAYD module over H if M is a
right module and left module over H with the following compatibilities.

HM (m · h) = S(h(3))m
<−1>

h(1) ⊗m
<0>

· h(2)(2.1)

m
<0>

·m
<−1>

= m.(2.2)

The other three flavors i.e, left-left, left-right, and right-right are defined similarly
[11].
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Let C be a H-module coalgebra, that is a coalgebra endowed with an action, say
from left, of H such that its comultiplication and counit are H-linear, i.e,

∆(h · c) = h(1) · c(1) ⊗ h(2) · c(2) , ε(h · c) = ε(h)ε(c).(2.3)

Having the datum (H,C,M), where C is an H-module coalgebra and M an right-
left SAYD over H , one defines in [12] a cocyclic module {Cn

H(C,M), ∂i, σj , τ}n≥0

as follows.

(2.4) Cn
H(C,M) :=M ⊗H C⊗n+1, n ≥ 0,

with the following cocyclic structure,

∂i : C
n
H(C,M) → Cn+1

H (C,M), 0 ≤ i ≤ n+ 1(2.5)

σj : C
n
H(C,M) → Cn−1

H (C,M), 0 ≤ j ≤ n− 1,(2.6)

τ : Cn
H(C,M) → Cn

H(C,M),(2.7)

defined explicitly as follows, where we abbreviate c̃ := c0 ⊗ · · · ⊗ cn,

∂i(m⊗H c̃) = m⊗H c0 ⊗ · · · ⊗∆(ci)⊗ · · · ⊗ cn,(2.8)

∂n+1(m⊗H c̃) = m
<0>

⊗H c0(2) ⊗ c1 ⊗ · · · ⊗ cn ⊗m
<−1>

· c0(1) ,(2.9)

σi(m⊗H c̃) = m⊗H c0 ⊗ · · · ⊗ ǫ(ci+1)⊗ · · · ⊗ cn,(2.10)

τ(m ⊗H c̃) = m
<0>

⊗H c1 ⊗ · · · ⊗ cn ⊗m
<−1>

· c0.(2.11)

It is checked in [12] that the above graded module defines a cocyclic module.
Similarly an algebra which is a H-module and its algebra structure is H-linear is
called H-module algebra. In other words, for any a, b ∈ A and any h ∈ H we have

(2.12) h · (ab) = (h(1) · a)(h(2) · b), h · 1A = ε(h)1A.

Let A be a H-module algebra. One endows M ⊗ A⊗n+1 with the diagonal action
of H and forms Cn

H(A,M) := HomH(M ⊗ A⊗n+1,C) as the space of H-linear
maps. It is checked in [12] that the following defines a cocyclic module structure
on Cn(A,M).

(∂iϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1),

(∂n+1ϕ)(m⊗ ã) = ϕ(m
<0>

⊗ (S−1(m
<−1>

) · an+1)a0 ⊗ a1 ⊗ · · · ⊗ an),

(σiϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an−1),

(τϕ)(m ⊗ ã) = ϕ(m
<0>

⊗ S−1(m
<−1>

) · an ⊗ a0 ⊗ · · · ⊗ an−1).

The cyclic cohomology of this cocyclic module is denoted by HC∗
H(A,M).

An algebra is called a H-comodule algebra if it is a H comodule and its algebra
structure are H colinear, which means that

(2.13) (h · a)
<0>

⊗ (h · a)
<1>

= h(1) · a
<0>

⊗ h(2) · a
<1>

.

Similar to the other case, one defines HCn(A,M) to be the space of all colinear
maps from A⊗n+1 to M . One checks that the following defines a cocyclic module
structure on HCn(A,M).
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(∂iϕ)(ã) = ϕ(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1),(2.14)

(∂n+1ϕ)(ã) = ϕ(an+1
<0>

a0 ⊗ a1 · · · ⊗ an−1 ⊗ an) · an+1
<−1>

,(2.15)

(σiϕ)(ã) = ϕ(a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an−1),(2.16)

(τϕ)(a0 ⊗ · · · ⊗ an) = ϕ(an
<0>

⊗ a0 ⊗ · · · ⊗ an−1 ⊗ an−1) · an
<−1>

.(2.17)

The cyclic cohomology of this cocyclic module is denoted by HHC∗(A,M).

2.2. SAYD contramodule. Let us recall SAYD contramodules from [1]. A
right contramodule of a coalgebra H is a vector space M together with a C-linear
map α : Hom(H,M) → M making the following diagrams commutative

Hom(H,Hom(H,M)
Hom(H,α)

//

Θ

��

Hom(H,M)

α

��

Hom(H ⊗H,M)
Hom(∆,M)

// Hom(H,M)
α

// M,

(2.18) Hom(C,M)
Hom(ε,M)

//

≃
%%KKKKKKKKKK

Hom(H,M)

α
yyssssssssss

M,

where Θ is the standard isomorphism given by Θ(f)(h⊗ h′) = f(h)(h′).

Definition 2.1 ([1]). A left-right anti-Yetter-Drinfeld (AYD) contramodule M is
a left H-module (with the action denoted by a dot) and a right H-contramodule
with the structure map α, such that, for all h ∈ H and f ∈ Hom(H,M),

h·α(f) = α (h(2) ·f (S(h(3))(−)h(1) )) .

M is said to be stable, provided that, for all m ∈ M, α(rm) = m, where rm : H →
M, h 7→ h·m.

We refer the reader to [1] for more details on SAYD contramodules. If M is an
AYD module, then its dual M = M∗ is an AYD contramodule (with the sides in-
terchanged) and SAYD modules correspond to SAYD contramodules. For example,
let M be a right-left AYD module (2.1), the dual vector space M =M∗ is a right
H-module by m⊗ h 7→ m · h,

(h·f)(m) = f(m·h),

for all h ∈ H , f ∈ M = Hom(M,C) and m ∈M , and a right H-contramodule with
the structure map α(f)(m) = f(m

<−1>
)(m

<0>
), f ∈ Hom(H,M), and m ∈M [1].

Let A be a left H-module algebra and M be a left-right SAYD contramodule over
H . We let Cn

H(A,M) to be the space of left H-linear maps

(2.19) HomH(A⊗n+1,M),
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and, for all 0 ≤ i, j ≤ n, define ∂i : C
n−1
H (A,M) → Cn

H(A,M), σj : C
n+1
H (A,M) →

Cn
H(A,M), τ : Cn

H(A,M) → Cn
H(A,M), by

∂i(ϕ)(a
0 ⊗ · · · ⊗ an) = ϕ(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an), 0 ≤ i < n,(2.20)

∂n(ϕ)(a
0 ⊗ · · · ⊗ an) = α

(
ϕ
((
S−1(−)·an

)
a0 ⊗ a1 ⊗ · · · ⊗ an−1

))
,(2.21)

σj(ϕ)(a
0 ⊗ · · · ⊗ an) = ϕ(a0 ⊗ · · · ⊗ aj ⊗ 1A ⊗ aj+1 ⊗ · · · ⊗ an),(2.22)

τ(ϕ)(a0 ⊗ · · · ⊗ an) = α
(
ϕ
(
S−1(−)·an ⊗ a0 ⊗ · · · ⊗ an−1

))
.(2.23)

It is shown in [1] that the above operators define a cocyclic module on C∗
H(A,M).

We denote the cyclic cohomology of C∗
H(A,M) by HC∗

H(A,M). For M = M∗,
where M is a SAYD module over H , it is easy to see that C∗

H(A,M)≃ C∗
H(A,M).

Indeed let M be a right-left SAYD module and M := Hom(M,C) be the corre-
sponding right-left SAYD contramodule. We define the following maps

I : Cn
H(A,M) → Cn

H(A,M), J : Cn
H(A,M) → Cn

H(A,M),

I(φ)(a0 ⊗ · · · ⊗ an)(m) = φ(m ⊗ a0 ⊗ · · · ⊗ an),

J (φ)(m ⊗ a0 ⊗ · · · ⊗ an) = φ(a0 ⊗ · · · ⊗ an)(m).

Proposition 2.2. The above map I is an isomorphism of cocyclic modules.

Proof. It is obvious that I and J are inverse to one another. We shall check
that I commutes with cyclic structures. It is easy to see that faces, except possibly
the very last one, and degeneracies commutes with I. So it is suffices to check that
I commutes with the cyclic operators. Indeed,

I ◦ τ(φ)(a0 ⊗ · · · ⊗ an)(m) = τ(φ)(m ⊗ a0 ⊗ · · · ⊗ an)

= φ(m
<0>

⊗ S−1(m
<−1>

) · an ⊗ a0 ⊗ · · · ⊗ an−1)

= I(φ)(S−1(m
<−1>

) · an ⊗ a0 ⊗ · · · ⊗ an−1)(m
<0>

)

= τ ◦ I(φ)(a0 ⊗ · · · ⊗ an)(m).

�

3. Cup products in Hopf cyclic cohomology

In this section we use the same strategy as in [19, 14] to generalize the cup prod-
ucts constructed in the same references. Via these new cup products one has the
luxury to construct cyclic cocycles by using a compatible pair of SAYD modules
and contramodules rather than only a SAYD module.

3.1. Module algebras paired with module coalgebras. Let A be an H
module algebra and C be a H module coalgebra acting on A in the sense that there
is a map

(3.1) C ⊗A→ A,

such that for any h ∈ H , any c ∈ C and any a, b ∈ A one has

(h · c) · a = h · (c · a)(3.2)

c · (ab) = (c(1) · a)(c(2) · b)(3.3)

c(1) = ǫ(c)1(3.4)
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One constructs a convolution algebra B = HomH(C,A), which is the algebra of
all H-linear maps from A to C. The unit of this algebra is given by η ◦ ǫ, where
η : C → A is the unit of A. The multiplication of f, g ∈ B is given by

(3.5) (f ∗ g)(c) = f(c(1))g(c(2))

Definition 3.1. Let (M, α) be a left-right SAYD contramodule and N be a right-
left SAYD module over H . We call (N,M) compatible if there is a pairing between
M and N such that

< n · h | m >=< n | h ·m >,(3.6)

< n | α(f) >=< n
<0>

| f(n
<−1>

) >,(3.7)

for all m ∈ M, n ∈ N , f ∈ Hom(H,M), and h ∈ H .

Let (N,M) be compatible as above. We have the following cocyclic modules defined
in (2.19) . . . (2.23), and (2.4) . . . (2.8) respectively.

(3.8) (C∗
H(A,M), ∂i, σj , τ), and (C∗

H(C,N), ∂i, σj , τ).

We define a new bicocyclic module by tensoring these cocycle module over C. The
new bigraded module has in its bidegree (p, q)

(3.9) C
p,q
a−c := HomH(A⊗p+1,M)⊗ (N ⊗H C⊗q+1),

with horizontal structure
→

∂ i = Id⊗∂i,
→
σ j = Id⊗σj , and

→
τ = Id⊗τ and vertical

structure ↑∂i = ∂i ⊗ Id, ↑σj = σj ⊗ Id, and ↑τ = τ ⊗ Id. Obviously (Cp,q
a−c,

→

∂ ,
→
σ ,

→
τ , ↑

∂, ↑σ, ↑τ) defines a bicocyclic module.
Now let us define the map

Ψ : Dq(C∗,∗
a−c) → Hom(B⊗q+1,C),

(3.10)

Ψ(φ⊗ (n⊗ c0 ⊗ · · · ⊗ cq))(f0 ⊗ · · · ⊗ f q) =< n | φ(f0(c0)⊗ · · · ⊗ f q(cq)) > .

Here D(C∗,∗
a−c) denotes the diagonal of the bicocyclic module C∗,∗

a−c. It is a cocyclic
module whose qth component is Cq,q and its cocyclic structure morphisms are

∂i :=
→

∂ i◦ ↑∂i, σj :=
→
σ j◦ ↑σj , and τ :=

→
τ ◦ ↑τ .

Proposition 3.2. The map Ψ is a well-defined map of cyclic modules.

Proof. First let us show that Ψ is well-defined. Indeed, by using the facts
that M and N are compatible, f i are H-linear, φ is equivariant and (3.2) holds,
we see that,

Ψ(φ⊗ (n⊗ h(1)c0 ⊗ · · · ⊗ h(n+1)cn))(f0 ⊗ · · · ⊗ fn)

=< n | φ(f0(h(1) · c0)⊗ · · · ⊗ fn(h(n+1) · cn))

=< n | h · φ(f0(c0)⊗ · · · ⊗ fn(cn)) >

=< nh | φ(f0(c0)⊗ · · · ⊗ fn(cn)) >

= Ψ(φ⊗ (n · h⊗ c0 ⊗ · · · ⊗ cn))(f0 ⊗ · · · ⊗ fn).

Next, we show that Ψ commutes with cocyclic structure morphisms. To this end,
we need only to show the commutativity of Ψ with zeroth cofaces, the last code-
generacies and the cyclic operators because these operators generate all cocyclic
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structure morphisms. We check it only for the cyclic operators and leave the rest
to the reader. Let τB denote the cyclic operator of the ordinary cocyclic module of
the algebra B.

Ψ(τ(ϕ) ⊗ τ(n⊗ c0 ⊗ · · · ⊗ cq))(f0 ⊗ · · · ⊗ f q)

= Ψ(τϕ⊗ (n
<0>

⊗ c1 ⊗ · · · ⊗ cq ⊗ n
<−1>

c0))(f0 ⊗ · · · ⊗ f q)

=< n
<0>

| τ(ϕ)(f0(c1)⊗ · · · ⊗ f q−1(cn)⊗ f q(n
<−1>

c0)) >

=< n
<0>

| α
(

ϕ
(

S−1(−)·f q(n
<−1>

c0)⊗ f0(c1)⊗ · · · ⊗ f q−1(cn)
))

>

=< n
<0>

| ϕ
(

S−1(n
<−1>

)·f q(n
<−2>

c0)⊗ f0(c1)⊗ · · · ⊗ f q−1(cn)
)

>

=< n | ϕ
(
f q(c0)⊗ f0(c1)⊗ · · · ⊗ f q−1(cq)

)
>

= τBΨ(ϕ⊗ (n⊗ c0 ⊗ · · · ⊗ cq))(f0 ⊗ · · · ⊗ f q).

Here in the passage from fourth line to the fifth one we use (3.7). �

Let C :=
⊕

p,q≥0 C
p,q be a bicocyclic module. With Tot(C) designating the total

mixed complex Tot(C)n =
⊕

p+q=n C
p,q, we denote by Tot(C) the associated

normalized subcomplex, obtained by retaining only the elements annihilated by
all degeneracy operators. Its total boundary is bT + BT , with bT and BT defined
as follows:

→

b p =

p+1
∑

i=0

(−1)i
→

∂ i, ↑bq =

q+1
∑

i=0

(−1)i ↑∂i,

bT =
∑

p+q=n

→

b p+ ↑bq,(3.11)

→

Bp = (

p−1
∑

i=0

(−1)(p−1)i→τ
i
)
→
σ p−1

→
τ , ↑Bq = (

q−1
∑

i=0

(−1)(q−1)i ↑τ i)
→
σ q−1 ↑τ,

BT =
∑

p+q=n

→

Bp+ ↑Bq.(3.12)

The total complex of a bicocyclic module C is a mixed complex, i.e, b2T = B2
T =

bTBT+BT bT = 0. As a result its cyclic cohomology is well-defined. By means of the
analogue of the Eilenberg-Zilber theorem for bi-paracyclic modules [9, 17], the diag-
onal mixed complex (D(C), bD, BD) and the total mixed complex (TotC, bT , BT )
can be seen to be quasi-isomorphic in both Hochschild and cyclic cohomology.
Here D(C) :=

⊕

q≥0 C
q,q is a cocyclic module and therefore a mixed complex with

(co)boundaries,

bD :=

q+1
∑

i=0

(−1)q ↑∂i ◦
→

∂ i,

BD :=

(
q−1
∑

i=0

(−1)(q−1)i→τ
i
↑τ i

)

→
σ q−1 ↑σq−1

→
τ ↑τ.

(3.13)
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At the level of Hochschild cohomology the quasi-isomorphism is implemented by
the Alexander-Whitney map AW :=

⊕

p+q=n AWp,q : Tot(C)n → D(C)n,

AWp,q : Cp,q −→ Cp+q,p+q

AWp,q = (−1)p+q↑∂0 ↑∂0 . . . ↑∂0
︸ ︷︷ ︸

q times

→

∂ n

→

∂ n−1 . . .
→

∂ q+1 .(3.14)

Using a standard homotopy operator H , this can be supplemented by a cyclic
Alexander-Whitney map AW ′ := AW ◦ B ◦ H : Dn → Tot(C)n+2, and thus up-
graded to an S-map AW = (AW,AW ′), of mixed complexes. The inverse quasi-
isomorphims are provided by the shuffle maps Sh := D(C)n → Tot(C)n, resp.
Sh = (Sh, Sh′), which are discussed in detail in [9, 17].
Let c be (b, B) cocycle in Tot(C)n, n = p + q. Hence the class of AW (c) in
HCn(D(C)) is well defined.
Now we consider the inclusion ι : A→ B = HomH(C,A), defined by ι(a)(c) = c · a.
We see that ι(ab)(c) = c · (ab) = (c(1) · a)(c(2) · b) = (ι(a) ∗ ι(b))(c), and ι(1A)(c) =
c · 1A = ε(c)1A = 1B(c). Hence ι is an algebra map and in turn induces a map in
the level of cyclic cohomology groups:

ι : HC∗(B) → HC∗(A).

Theorem 3.3. Let H be a Hopf algebra, A be an H-module algebra, C be an H-

module coalgebra acting on A, and (N,M) be a compatible pair of SAYD module

and contramodule over H. Then Ψ̂ := ι ◦Ψ ◦AW defines a cup product in the level

of cyclic cohomology groups:

(3.15) Ψ̂ := ι ◦Ψ ◦AW : HCp
H(A,M)⊗HC

q
H(C,N) → HCp+q(A).

Proof. Let [φ] ∈ HC
p
H(A,M) and [ω] ∈ HC

q
H(C,N). Without loss of gener-

ality one assumes that φ and ω are both cyclic cocycles, i.e,
→

b (φ) =↑b(ω) = 0,
→
τ (φ) = (−1)pφ, ↑τ(ω) = (−1)qω.

This implies that φ ⊗ ω is a (b, B) cocycle in Tot(C∗,∗
a−c)

p+q . Hence AW (φ ⊗ ω)
defines a class in HCp+q(D(C∗,∗

a−c)). Finally, since ι and Ψ both are cyclic map, the

transferred cochain ι ◦Ψ(AW (φ ⊗ ω)) defines a class in HCp+q(A). �

3.2. Module algebras paired with comodule algebras. Let H be a Hopf
algebra, A a left H-module algebra, B a left H-comodule algebra, and (N,M) be
a compatible pair of SAYD module and contramodule over H . One constructs a
crossed product algebra whose underlying vector space is A⊗B with the 1 >⊳ 1 as
its unit and the following multiplication:

(3.16) (a >⊳ b)(a′ >⊳ b′) = a (b
<−1>

· a′) >⊳ b
<0>

b′

Now consider the two cocyclic modules

(3.17) (C∗
H(A,M), ∂i, σj , τ), and (HC∗(B,N), ∂i, σj , τ)

introduced in [1] and [12] respectively and are recalled in (2.14) . . . (2.17) and
(2.19). . . (2.23). We define a bicocyclic module by tensoring these cocyclic modules
over C. The (p, q)-bidegree component Cp,q

a−a of this new bicocyclic module is given
by

(3.18) H Hom(B⊗q+1, N)⊗HomH(A⊗p+1,M),
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with horizontal structure morphisms
→

∂ i = Id⊗∂i,
→
σ j = Id⊗σj , and

→
τ = Id⊗τ

and vertical structure morphisms ↑∂i = ∂i ⊗ Id, ↑σj = σj ⊗ Id, and ↑τ = τ ⊗ Id.
Now we define a new morphism

(3.19) Φ : D(C∗,∗
a−a)

n → Cn(A >⊳ B),

define by

Φ(ψ ⊗ φ)(a0 >⊳ b0 ⊗ · · · ⊗ an >⊳ bn) =(3.20)

=< ψ(b0
<0> ⊗ · · · ⊗ bn

<0>) | φ(S−1(b0
<−1> · · · bn

<−1>) · a
0 ⊗ · · ·

. . .⊗ S−1(bn
<−n−1>) · a

n) > .(3.21)

Proposition 3.4. The map Φ defines a cyclic map between the diagonal of C
∗,∗
a−a

and the cocyclic module C∗(A >⊳ B).

Proof. We show that Φ commutes with the cyclic structure morphisms. We
shall check it for the first face operator and the cyclic operator and leave the rest to
the reader. Let us denote the cyclic structure morphisms of the algebra A >⊳ B by
∂A>⊳B
i , σA>⊳B

j and τA>⊳B. First we show that Φ commutes with the zeroth cofaces.

Φ(
→

∂ 0 ↑∂0(ψ ⊗ φ))(a0 >⊳ b0 ⊗ · · · ⊗ an+1 >⊳ bn+1)

= Φ(∂0φ⊗ ∂0ψ))(a
0 >⊳ b0 ⊗ · · · ⊗ an+1 >⊳ bn+1)

=< ∂0ψ(b
0
<0>

⊗ · · · ⊗ bn+1
<0>

) | ∂0φ(S
−1(b0

<−1>
· · · bn+1

<−1>
) · a0 ⊗ · · ·

· · · ⊗ S−1(bn+1
<−n−2>

) · an+1) >

=< ψ(b0
<0>

b1
<0>

⊗ · · · ⊗ bn+1
<0>

)

| φ(S−1(b0
<−1>

· · · bn+1
<−1>

) · a0S−1(b1
<−2>

· · · bn+1
<−2>

) · a1 ⊗ · · ·

· · · ⊗ S−1(bn+1
<−n−2>

) · an+1) >

=< ψ(b0
<0>

b1
<0>

⊗ · · · ⊗ bn+1
<0>

)

| φ(S−1(b0
<−1>

b1
<−1>

· · · bn+1
<−1>

) · (a0b0
<−2>

· a1)⊗ · · ·

· · · ⊗ S−1(bn+1
<−n−1>) · a

n+1) >

= Φ(ψ ⊗ φ)(a0b0
<−1>a

1 >⊳ b0
<0>b

1 ⊗ a2 >⊳ b2 ⊗ · · · ⊗ an+1 >⊳ bn+1)

= ∂A>⊳B
0 Φ(ψ ⊗ φ)(a0 >⊳ b0 ⊗ · · · ⊗ an+1 >⊳ bn+1).

Now we show that Φ commutes with cyclic operators.

Φ(
→
τ ↑τ(ψ ⊗ φ))(a0 >⊳ b0 ⊗ · · · ⊗ an >⊳ bn)

= Φ(τψ ⊗ τφ)(a0 >⊳ b0 ⊗ · · · ⊗ an >⊳ bn)

=< τψ(b0
<0> ⊗ · · · ⊗ bn

<0>) | τφ(S−1(b0
<−1> · · · bn

<−1>)a
0 ⊗ · · ·

· · · ⊗ S−1(bn
<−n−1>)a

n) >

=< ψ(bn
<0> ⊗ b0

<0> ⊗ · · ·

· · · ⊗ bn−1
<0>) · b

n
<−1> | α(φ(S−1(−)S−1(bn

<−n−2>) · a
n⊗

S−1(b0
<−1> · · · bn−1

<−1>b
n
<−2>) · a

0 ⊗ · · · ⊗ S−1(bn−1
<−n>

bn
<−n−1>) · a

n−1)) > .

(3.22)
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Using (3.7), and the fact that ψ is H-colinear, one has:

(3.22) =< [ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

) · bn
<−1>

]
<0>

|

φ(S−1([ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

) · bn
<−1>

]
<−1>

)(S−1(bn
<−n−2>

) · an)⊗

⊗ S−1(b0
<1>

· · · bn−1
<−1>

bn
<−2>

) · a0 ⊗ · · · ⊗ S−1(bn−1
<−n+1>

bn
<−n−1>

) · an−1) > .

(3.23)

Using the fact that N is AYD module we have,

(3.23) =< ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

) · bn
<−3>

|

φ((S−1(S(bn
<−2>

)bn
<−1>

b0
<−1>

· · · bn−1
<−1>

)bn
<−4>

)(S−1(bn
<−n−2>

) · an)⊗

⊗ S−1(b0
<1>

· · · bn−1
<−1>

bn
<−5>

) · a0 ⊗ · · · ⊗ S−1(bn−1
<−n+1>

bn
<−n−4>

) · an−1) > .

(3.24)

Using (3.6) and the facts that φ is H-linear and M is AYD contramodule we see

(3.24) =< ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

)bn
<−1>

|

φ(S−1(b0
<−1>

· · · bn−1
<−1>

)bn
<−2>

S−1(bn
<−n−2>

)an⊗

⊗ S−1(b0
<1>

· · · bn−1
<−1>

bn
<−3>

)a0 ⊗ · · · ⊗ S−1(bn−1
<−n+1>

bn
<−n−2>

)an−1) >

=< ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

) | φ(S−1(bn
<−1>

b0
<−1>

· · · bn−1
<−1>

)an⊗

⊗ S−1(b0
<1>

· · · bn−1
<−1>

)a0 ⊗ · · · ⊗ S−1(bn−1
<−n+1>

)an−1) >

= Φ(φ ⊗ ψ)(an >⊳ bn ⊗ a0 >⊳ b0 ⊗ · · · ⊗ an−1 >⊳ bn−1)

= τA>⊳BΦ(φ⊗ ψ)(a0 >⊳ b0 ⊗ · · · ⊗ an >⊳ bn).

(3.25)

�

Theorem 3.5. Let H be a Hopf algebra, A be an H-module algebra, B be an H-

comodule algebra, (N,M) be a compatible pair of SAYD module and contramodule.

Then the map Φ̂ := Φ ◦AW defines a cup product:

(3.26) Φ̂ := Φ ◦AW : HHCq(B,N)⊗HC
p
H(A,M) → HCp+q(A >⊳ B).

Proof. The proof is similar to the proof of Theorem 3.3. Let [φ] ∈ HHCp(A,M)
and [ψ] ∈ HC

q
H(B,N). Without loss of generality one assumes that φ and ψ are

both cyclic cocycle, i.e,
→

b (φ) =↑b(ψ) = 0,
→
τ (φ) = (−1)pφ and ↑τ(ψ) = (−1)qψ

. This implies that ψ ⊗ φ is a (b, B) cocycle in Tot(C∗,∗
a−a)

p+q. Hence AW (ψ ⊗ φ)
defines a class in HCp+q(D(C∗,∗

a−a)). Finally, since Φ is cyclic map, the transferred

cochain Φ(AW (ψ ⊗ φ)) defines a class in HCp+q(A >⊳ B). �

4. Cup products for incompatible pairs

In this section we generalize the cup products defined in (3.15) and (3.26) to the
case of incompatible coefficients. The target of the cup product in the new case is
the ordinary cyclic cohomology of algebras with coefficients in a module produced
out of the two incompatible coefficients.
Let M be a SAYD contramodule and let N be a SAYD module over a Hopf algebra
H . We define L(N,M) to be the coequalizer

(4.1) N ⊗H Hom(H,M)
//
// N ⊗H M // L(N,M),
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where the equalized maps are n⊗m 7→ n⊗ α(f), and n⊗m 7→ n
<0>

⊗ f(n
<−1>

).

Remark 4.1. In fact L(N,M) is the usual (contra)tensor product defined by
Positselski [18, page 96]. One considers H-coring C := H⊗H with the usual coring
structure and identifies N with a left H ⊗ H-comodule [2]. In the same fashion
one identifies M with a right C-contramodule. Then L(N,M) is identified with the
(contra)tensor N ⊗C M.

Now let A and C satisfy (3.1)...(3.4). We recall that the algebra B is HomH(C,A)
with the convolution multiplication and that C∗,∗

a−c is the bicocyclic module defined
in (3.9). We define

Ψ̃ : D(C∗,∗
a−c)

q → Hom(B⊗q+1, L(N,M)),(4.2)

Ψ̃(φ ⊗ (n⊗ c0 ⊗ · · · ⊗ cq))(f0 ⊗ · · · ⊗ f q) = n⊗H φ(f0(c0)⊗ · · · ⊗ f q(cq)).

By a similar argument as in the proof of Proposition 3.2 one shows that Ψ̃ is a
cyclic map. One proves the following theorem with a similar proof as of Theorem
3.3

Theorem 4.2. Let H be a Hopf algebra, A be an H-module algebra, C be an H-

module coalgebra acting on A, and (N,M) be a not necessarily compatible pair of

SAYD module and contramodule over H. Then ι ◦ Ψ̃ ◦ AW defines a cup product

in the level of cyclic cohomology:

ι ◦ Ψ̃ ◦AW : HCp
H(A,M)⊗HC

q
H(C,N) → HCp+q(A,L(N,M)).

One notes that the range of this cup product is the ordinary cyclic cohomology of
the algebra A with coefficients in the vector space L(N,M). One also notes that
if (N,M) is compatible then E : L(N,M) → C defined by E(n,m) =< n,m > is
a map of vector spaces. As a result we get a cyclic map

Ẽ : Hom(A⊗∗, L(N,M)) → Hom(A⊗∗,C), Ẽ(ϕ) = E ◦ ϕ.

So we cover the old cup product as Ψ = Ψ̃ ◦ Ẽ, where Ψ is defined in (3.10).
Now let us generalize the other cup product for algebra-algebra in a similar fashion
as the case of algebra-coalgebra. Let A be a left H-module algebra, B be a left
H-comodule algebra, (N,M) be a pair of SAYD module and contramodule over
H , and A >⊳ B be the crossed product algebra defined in 3.16. Let also C∗,∗

a−a be
the bicocyclic module defined in (3.18) . We define

Φ̃ : D(C∗,∗
a−a)

q → Hom((A >⊳ B)⊗q+1, L(N,M)),

(4.3)

Φ̃(ψ ⊗ φ)(a0 >⊳ b0 ⊗ · · · ⊗ aq >⊳ bq)

= ψ(b0
<0>

⊗ · · · ⊗ bq
<0>

)⊗H φ(S−1(b0
<−1>

· · · bq
<−1>

)a0 ⊗ · · · ⊗ S−1(bq
<−q−1>

)aq).

Similarly we prove that Φ̃ is cyclic and induces a map on the level of cyclic coho-
mologies:

Theorem 4.3. Let H be a Hopf algebra, A be an H-module algebra, B be an H-

comodule algebra, (N,M) be a compatible pair of SAYD module and contramodule.

Then the map Φ̃ ◦AW defines a cup product in the level of cyclic cohomology:

Φ̃ ◦AW : HHCp(B,N)⊗HC
q
H(A,M) → HCp+q(A >⊳ B,L(N,M)).
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