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Abstract

The proposed model modifies option pricing formulas for the basic case of log-normal 

probability distribution providing correspondence to formulated criteria of efficiency 

and completeness. The model is self-calibrating by historic volatility data; it maintains 

the constant expected value at maturity of the hedged instantaneously self-financing 

portfolio. The payoff variance dependent on random stock price at maturity obtained 

under an equivalent martingale measure is taken as a condition for introduced “mirror-

time” derivative diffusion discount process. Introduced ξ-returns, correspondent to the 

found general solution of backward drift-diffusion equation and normalized by 

theoretical diffusion coefficient, don’t contain so-called “long tails” and unbiased for 

considered 2004-2007 S&P100 index data. The model theoretically yields skews 

correspondent to practical term structure for interest rate derivatives. The method allows 

increasing the number of asset price probability distribution parameters. 
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 1. Introduction

In the standard Black-Scholes-Merton option pricing model [1, 2], the delta-hedged 

portfolio growth determines the diffusive partial differential equation in the underlying 

price-time coordinates (BSM PDE). The famous BSM formula can be derived as the PDE 

particular solution with a terminal condition represented by a payoff function, or as a 

discounted expected derivative value at maturity obtained under martingale measure Q, 

equivalent, according to Girsanov [3], to the real-world log-normal probability measure P 

(see also Wilmott e.a. [4]). The BSM PDE asserts upholding constant hedged portfolio 

value for given payoff function, at that the condition at maturity is denoted by a real 

variable. Using the real variable in condition expression is inconsistent with a 

formulation of underlying stochastic process with a random variable at arbitrary time. On 

the other hand, employing random-variable condition at maturity would contradict to 

requirement of upholding the constant portfolio value at arbitrary time. The widely-used 

exponential discount from expected payoff implicitly assumes that a derivative value 

forwarded to maturity is a martingale under both measures P and Q, which is true for an 

underlying security (or forward) but not for an option with asymmetric payoff function. 

As can be shown, discounting the derivative value back to the current time under the real-

world measure P rather than under appropriate log-normal-world martingale measure Q 

causes the bias between implied and historical volatilities; that undermines the model 

efficiency. In our opinion, for corresponding the efficient market hypothesis, the BSM 

model requires modification applying Girsanov’s equivalent martingale measure to 

derivation of both expected derivative value at maturity and its value discounted to the 

current time.

The delta-hedging is practically feasible for local volatility models of Dupire [5], 

Rubinstein [6], describing the diffusion process with variable coefficients, which can be 



3

recovered from conditional probability density (“volatility smile” level, slope, and 

curvature). However, theoretically, according to Ait-Sahalia e.a. [7], the differences 

between the stock and option implied risk-neutral densities within the framework of BSM 

diffusion with exponential discount ultimately would lead to the pricing inefficiency. 

The determination of diffusion coefficients is complicated by well-known fact that 

assumed log-normality is violated in stock return distribution time-series. Besides an 

empirical phenomenon called “volatility smile” in option markets, the leptokurtic feature 

takes place. The return distribution of assets may have a higher peak and asymmetric 

tails, heavier than those of the normal distribution; this led many authors to consider 

jump-diffusion models with Levy flights (first proposed by Merton [8]). For example, 

Kou [9] assumes a double-exponential conditional distribution for the jump size; such 

many-parameter model is sufficient for description of the volatility smile parameters. The 

models with increased number of parameters price options across strikes and maturities 

more accurately; however, the issue of parameter stability arises. The mentioned long 

tails can be eliminated by using normalized distributions introduced below.

Analogously to equity derivatives, the fixed income options are priced by Black 

[10] formula as an exponentially discounted to the current time expected payoff value at 

maturity for the case of log-normally distributed forward price. Within the framework of 

Heath-Jarrow-Morton [11] term structure of interest rates expressed as functions of their 

volatilities, the bond and its derivative prices at arbitrary time are determined by 

exponential discount with integral-average rate for the period to maturity. Brace-Gatarek-

Musiela [12] Libor forward rate structure model describes the dynamics of a family of 

forward rates under a common measure. But, unlike stocks, the interest rate futures are 

derivatives. The existing differences between implied volatilities of two derivative types - 
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the interest rate futures and options, according to de Jong e.a. [13], should theoretically 

lead to the possibility of arbitrage. According to Gupta and Subrahmanyam [14], for 

improving a pricing accuracy of interest rate options, there is a need for introducing a 

second stochastic factor, mean-reversion coefficient determining the term structure 

evolution through time. For consistent pricing and hedging, a further increasing of a 

number of parameters is suggested, however, at expense of model stability and extensive 

computation resources. 

The general stochastic volatility models of Heston [15], Hull and White [16] 

introduce an additional stochastic process for underlying security's volatility, governed by 

its price level. It allows introducing necessary corrections to exponentially discounted 

expected price value, which is dependent on volatility. However, improving the pricing 

accuracy is achieved at expense of the model completeness (ability to hedge options with 

the underlying asset) as an additional degree of freedom and the market price of volatility 

risk was introduced. For providing pricing efficiency, these many-parameter models 

require frequent calibration against historical underlying security data with consequent 

fitting to an actual smile, minimizing residual errors.

Carr and Madan [17] showed that the absence of call spread, butterfly spread and 

calendar spread arbitrages for the Markovian assumption is sufficient for exclusion of all 

static arbitrages from a set of option price quotes across strikes and maturities on a single 

underlying. No-arbitrage conditions imply the risk-neutral probability measure 

conservation law for a stock price variance at maturity and a possibility of hedging 

during time-to-maturity, using static position in a set of available options for any nearer 

maturity. 
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The present paper proposes an efficient option pricing model based on a BSM 

modification maintaining the constant hedged portfolio expected value at maturity. We 

take into account supposed stock price and payoff variance at maturity obtained under an 

equivalent martingale measure, making it conditional for introduced derivative diffusion 

discount process during time-to-maturity considered also under an equivalent martingale 

measure.

2. Generalized differential equation of options pricing

2.1. Complete market and self-financing portfolio adjusted to maturity 

Let’s consider geometric Brownian motion for an asset price tS  in Ω -space with 

filtration P
tℑ  under probability measure P with stochastic differential consisting of the 

drift term and the Wiener process, Wt, in the relative time t within the interval 

corresponding to one in absolute time from instant τ  to an asset derivative maturity T:

0,]0,[,)0,()0,( 0000 <−=∈+= TtttdWStdtStdS tttt τσµ . (1)

The considered case is provided by time-invariant diffusion with an averaged 

volatilityσ  and a drift rate qr −=µ , where, r is the averaged risk-free interest rate; q - 

continuous dividend rate for the asset. According to the efficient market hypothesis, at 

any relative time t, given drift and volatility parameters, the current asset price tS  

incorporates instantaneously any information concerning the market future evolution up 

to the derivative maturity. 

The market is arbitrage-free, i.e. at any relative time 0<t  the asset price can be 

adjusted to maturity ( 0=t ) with price deflator )exp( tµ :

)exp( tSS t
T
t µ−= , (2)
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 which is a martingale, with expected value at maturity  determined by initial condition 

00
SS tt == :

].[)exp( 0,0,000 0000 == Ε≡ℑΕ=−≡ t
P

St
P
tt

P
St

T SStSS µ (3)

We define the market as complete at relative time t if, for a contingent claim 

(option) on the asset (stock) )( tt SVV = , there exists a self-financing trading strategy 

such that the expected value at maturity of a portfolio consisting of a long option position 

and short ∆ stocks remains unchanged:

TT
ttt

P
Stt

P
St SSSVrttSSSV 00000000,0, )()()exp()(])()([][ ∆−≡−Π=∆−Ε≡ΠΕ ==== , (4)

)exp()()( rtSVSV tt
T −= . (5)

The above definition of complete market imposes additional constraint on the 

instantaneously self-financing (growing with risk-free interest rate r) portfolio, 

ttt SSSVt )()()( ∆−≡Π . Since the product T
tt SS )(∆  is not a martingale for non-

symmetric ttt SVS ∂∂=∆ /)(  functions, and an adjusted to maturity option value )( t
T SV  

is never a martingale for real payoff functions. Therefore, the said definition is not 

identical and is complementary to the usual definition of market completeness at instant t.

2.2. Delta-hedged portfolio and options pricing PDE adjusted to maturity

The hedging strategy corresponding to the above definition of completeness 

considers self-financing portfolio Π , analogous to BSM, in which position on the 

derivative is delta-hedged against the risk of the random asset price depreciation. 

However, as far as )( t
T SV  in (4) is not a martingale, the option expected value at 
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maturity [ ])( 0, =t
P
St SVE  cannot be just discounted with deflator )exp(rt  like in known 

models; one can operate only with current prices tV , tS . 

Let’s consider the derivative value discounted from maturity ( 0=t ) to arbitrary 

moment ]0,[tt ∈′ . For the “dummy” random price tS ′′ , unchanged expected portfolio 

value at maturity (4) can be taken as a terminal condition determined by payoff 

),( 0 KS t =Φ  at strike K and maturity 0=′t :

tdtrSd
S
V

SVdd t
t

t
t ′′Π=′

′∂
∂

−′′≡Π ′
′

′ )()( , (6)

),()(,, 0000 KSSVSSSS ttttttt =′=′==′=′ ′Φ=′=′=′ , (7)

TT
t

tt
t

P
St SSSVS

S
KS 0000

0
0, )()(]),([ ∆−=′





′∂

Φ∂−′ΦΕ =′
=′′

=′′ . (4’)

If  tS ′′  process is also determined as a geometric Brownian motion (1), conditions 

(4) and (4’) become incompatible for portfolio (6) unless the “dummy” discounted option 

price at arbitrary time t ′  is specified as conditional on random asset value at maturity 

evaluated at relative time t:

0=′′ ′= ttt SSVV . (8)

The introduced “dummy” inversed discount process tS ′′  is directed from maturity 

to arbitrary moment 0<′t and determined not only by drift rate and the Wiener process, 

but also by supposed asset price distribution at maturity, 0=tS . So-called “risk-neutral” 

discount of 0=tV  value may be obtained as a result of continuous hedging against the 

“dummy” discount process tS ′′  such that the hedged portfolio upholds its terminal 

random value at maturity. Due to information available at relative time t, the hedging 
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dynamics can be established in so-called “mirror” time-to-maturity t ′ , as a function of a 

stochastic process tS ′′  mirrored to the underlying process tS  and specified within the 

probability space (Ω, P
t ′ℑ , P). The stochastic differential of the option pricing function 

tV ′  can be expressed according to Ito’s lemma: 

],0[,)0,()0,( ttdWSttdStSd tttt ∈′′′+′′′=′ ′′′′ σµ ; (9) 

( ) t
t

t
t

t

tt

t

t
t

t
t dW

S
V

Std
S
VS

S
V

S
t

V
Vd ′

′

′
′

′

′′

′

′
′

′
′ ′∂

∂′+′













′∂
∂′

+
′∂

∂′+
′∂

∂
−=′ σ

σ
µ 2

222

2
. (10) 

While the deterministic part of discount process tS ′′  is expressed in direct time t ′

and undistinguishable from one of the underlying process tS , the stochastic parts of 

processes (9), (10) are given in the “mirror” time t ′ . Putting (6), (9), (10) together, one 

can eliminate the relative time differentials, td ′ , and the Wiener differentials, tdW ′ . 

Using the option price adjusted to maturity (5), the strategy of hedging in “mirror” time 

t ′  can be expressed by derivative discount PDE:

t

T
t

t
t

T
tt

T
t

S
VSr

S
VS

t
V

′

′
′

′

′′′

′∂
∂′+

′∂
∂′

=
′∂

∂
2

222

2
σ

. (11)

PDE (11) expresses drift-diffusion in the moving logarithmic coordinates tS ′  with 

the system drift rate r , analogous to well-known BSM PDE in inversed time (see Wilmott 

[4]). However, in the standard BSM PDE, despite the time reversion to –t, the stochastic 

parts of both processes - for stock tS −  and for derivative tV−  - remain being co-directed 
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in time, from t to maturity. By simple time reversing in (1), the resulting direction of the 

diffusion expressed by Wiener process cannot be changed ( tt dWdW =− − ):

],0[,)0,()0,( 000 ttdWStdtStdS tttt −∈−−−= −−−− σµ . (1’)

 The unchanged direction of the stochastic part of process (1’) is just opposite to 

the drift-diffusion direction stated by BSM PDE in inversed time and supposed in BSM 

solution. Moreover, the sign ought to be changed not only for the time-derivative BSM 

PDE term, but also for the gradient term containing the system velocity (i.e. the drift rate

µ  should change sign, too - see Carslaw and Jaeger [18]); that would lead to irrelevant 

results. In contrast to the simple time-inversion for underlying process (1), introducing 

the separate “dummy” process in the “mirror” time-to-maturity t ′  ( 0<′t ; tt dWdW ′′ −=

), really changes direction of the stochastic part of tV ′ -diffusion, as expressed in (9), (10). 

2.3. The solution of derivative discount PDE 

PDE (11) governs geometric Brownian motion, which marginal density function 

corresponds to log-normal distribution. It can be solved after well-known logarithmic 

coordinate transformation, related here to the asset price adjusted to maturity (2):

( ) ( ) tSS T
tt

Q
t ′−+′= ′′′ 2ln 2σµζ , (12)

Transformation (12) leads to equivalent standard diffusion equation reducing 

stochastic process T
tV ′ , which is not a martingale under P and, therefore, is not identical 

to expected payoff, [ ])( 0, =′′′ ′t
P

St SVE , from maturity back to time t ′  under equivalent 

measure Q (filtration Qℑ , with diffusion coefficient D): 
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( ) 2

2

Q
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T
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=

′∂
∂

ζ
. (13)

An equivalent PDE (13) describes a normal distribution in ( t ′ , Q
t ′ζ )-space, which 

corresponds to the log-normal probability distribution in ( t ′ , tS ′′ ) and ( t , tS )-spaces. The 

stock price variance at maturity is determined by its probability density, a function of 

random variable 0=tS  with its currently expected value T
tS  as a parameter:

( )[ ]










 +

−= =

=

= t
tSS

tS
Sf

T
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t

t
Q
St 2

22
0

2
0

0, 2
2log

exp
2

1)(
σ

σ

σ
. (14)

The stochastic process T
tV ′  is a martingale under equivalent probability measure Q 

with correspondent expected value:

00,
0

00, )(),()]([ ==

∞

==′′′ ∫ Φ=≡ tt
Q
Sttt

Q
St

T
t dSSfKSSVEV . (15)

Substitution of log-normal probability density (14) into integral (15) yields 

famous BSM formula, which represents an expected option value at maturity and initial 

condition for inversed “mirrored” discount processes (9), (10) and correspondent PDE 

(11). The expected option value at maturity )]([ 0, =t
Q

St SVE  can be related to the currently 

expected underlying value T
tS  by means of an existing equivalent martingale measure Q; 

the same is true for the option value tV ′  discounted from maturity to arbitrary time t ′ .

The initial condition of PDE (11) and equivalent PDE (13) represented by integral 

(15) includes payoff function Φ  of random variable, 0=tS , and not identical to payoff 

function of the real variable, which is commonly accepted for the option pricing PDE in 

inversed time [4]. Generally saying, Vd ′  in (10) could be considered as a total  
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differential only if the stock price variance at maturity is considered. The possibility of  

hedging taking into account the “mirror-time” derivative discount during given time-to-

maturity period as well as the stock price variance at maturity adds up to an option 

value. 

Analogously to the general solution of equivalent PDE (13) (see Carslaw and 

Jaeger [18]), the one of correspondent PDE (11) can be found according to Wilmott e.a. 

[4] as an integral containing initial condition in the form of a function of “dummy” 

variable, )( TT SV ′ : 
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T
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The particular solution for payoff function (15) for the case of interest, 0ttt =′= , 

00
SS tt == , )exp( 000 tSS T µ−≡ , takes the form:
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2.4. The equivalent martingale measure and correspondent coordinate transformation

The found general solution (16) contains an internal integral (15), which can be 

reduced to commonly used BSM solution, and the kernel function corresponding to the 

fundamental solution of drift-diffusion PDE (11). An equivalent PDE (13) is written in 

Qζ -coordinates defined by transformation (12) explicitly containing time; that’s not 

always convenient for econometric studies. The PDE (13) in an equivalent time-to-
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maturity Dt  can be obtained also by coordinate transformation not containing explicitly 

time accordingly to method proposed by Levin [19]:

( ) 221
0

σµξ −= SS , (18)


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According to (18), (19), the normalized ξ -returns corresponding to an equivalent 

martingale measure Q, can be expressed as ( ) ( )iiii D τττξτξ −− ++ 11 )()( ,  with 

diffusion coefficient D incorporating volatilityσ  and drift rate µ . Comparatively to 

widely used normalized log-return expression, ( ) ( )iiii ττστζτζ −− ++ 11 )()( , 

( )0ln SS=ζ , the normalized ξ -return, is more convenient for econometric studies at 

sufficient drift rates.

3. The model verification and discussion

3.1. Design of study

For practical European call equity and future options valuation, using particular 

solution (17) for the case of normal distribution, one can obtain formula in terms of time 

to maturity T and adjusted forward price TS0  (in this section we consider 0=τ ): 
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where, (.)N  is the standard cumulative normal distribution function, TS ′  is a dummy 

forward price (variable of integration).

After a computation of the call price CV  according to the proposed model for 

given historical volatility σ  for correspondent period, we express it in the terms of 

Black-Scholes implied volatility, SigI_Model, and compare with the published data on 

implied volatility, SigI_Data, for given maturity, T, and relative moneyness, 

TT SKSk 00 )( −= .

The return probability distribution was found for ξ -returns (18), 

Ksi/DIV/Sqrt(2t), normalized with current theoretical diffusion coefficient, DIV (19), with 

substituted model implied volatility data SigI_Model, corresponding to theoretical option 

price (20) based on 90-day historical volatility data. For comparison, the return 

probability distribution was expressed for ξ -returns normalized with current 30-day 

historical volatility, Ksi/D30/Sqrt(2t), as well as for normalized log-returns, 

Zta/Sig30/Sqrt(2t). 

3.2. S&P 100 data analysis based on generalized solution

Daily return data and modelling results for S&P 100 option prices with 30-day 

maturity for month/year period 4/2004 – 4/2007 are given in Fig. 1. Calculated return 

distributions of daily ξ -returns normalized with current 30-day historical volatility and 

normalized log-returns for considered annual drift rate range 1…5.25% are negligibly 

distinguishable (Fig. 1, a); that’s because the average daily drift 0.0134% is much less 

than average daily S&P 100 index volatility corresponding to average yearly volatility 

Sig30=10.3%. The difference between distributions for ξ -returns and log-returns could 
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be seen only for much larger periods (quarters and years), which are off the limits of the 

present paper. 

The density distributions for both types of normalized returns sufficiently deviate 

from the normal distribution (thin solid curve). The asymmetric leptokurtic features takes 

place: the return distribution is skewed to the right and has two heavier tails than those of 

the normal distribution. It’s interesting to note that the long tails largely correspond to 

normal distribution characterized by average Black-Scholes implied volatility 

SigI=13.2% (see Fig. 1, a, dashed curve).

The probability distribution for S&P 100 ξ -returns normalized with the 

theoretical diffusion coefficient, Ksi/DIV/Sqrt(2t), also shows a peak skewed to the right; 

however, the tails largely correspond to ones of normal distribution (Fig. 1, b). While 

deviations from normal probability distribution (skewed peak) still take place for returns 

normalized by modeled diffusion coefficient and could be addressed by introducing 

additional distribution parameters, such “long-tail-less” distribution implies no need, for 

example, in Levy flights characterizing jump-diffusion process.

BSM results based on 30-day and 90-day historical volatility SigH30, SigH90 and 

the present diffusion-discount model results for European call at the money based on 

SigH90 and expressed in terms of BS implied volatility SigI_Model were compared with 

VXO implied volatility index SigI_Data (Fig. 2). In distinction to historical volatility 

comparison to BS implied volatility, the results of diffusion-discount model for normal 

distribution (determined by formula (20) with TSK 0= ) are practically unbiased relatively 

implied volatility data (bias 1.85% comparatively to 21.1% for historical volatility). For 

given S&P 100 index 4-year data, the developed model appears to be self-calibrating with 

no need in setting up additional jump-diffusion and stochastic volatility parameters. The 



15

model accuracy, including volatility skew (“smile”) calculations for equity options, may 

be improved by increasing the number of the probability distribution parameters in (14) 

and introducing variable diffusion coefficients in discount option pricing PDE (11), (13). 

3.3. Pricing analysis for interest income derivatives

Prices of fixed income options (caps and swaptions) contain information about 

interest rate volatilities and correlations, which can be inverted in the framework of 

Heath- Jarrow-Morton [11] and Brace-Gatarek-Musiela [12] models to the option-

implied interest rate volatility term structure. The empirical analysis based on weekly 

US 1995-1999 data showed that the option-implied Black volatility is sufficiently 

higher than correspondent zero-coupon-bond-based forward interest rate volatility. Such 

a bias for different fixed income derivatives on the same underlying could theoretically 

lead to the possibility of arbitrage, see Jong e.a. [13]. That’s why proposed model result 

examination for interest income derivatives is of special interest.

Using formula (20) for different forward interest rate-based volatilities 

SigI_Forw, we calculated forward prices in terms of Black implied volatility for caps 

SigI_Model; results are given in Fig. 3. Calculations results for different maturities (Fig. 

3, a) explain the difference between interest-rate-based and option-implied term 

structure. The difference (SigI_Model - SigI_Forw) and skewness of calculated 

SigI_Model for different relative moneynesses (Fig. 3, b) correspond to the pricing error 

for caps reported by Gupta and Subrahmanyam [14]. 

The proposed model modifies basic log-normal-distribution pricing formulas 

comparatively to the Black model, explaining the volatility skew and sufficiently 

improving efficiency for different maturities and moneynesses of interest income 
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options. Achieving efficiency of one-parameter derivatives pricing model is a 

prerequisite of its stability at increasing the number of distribution parameters.

Conclusions

The proposed one-parameter option pricing model modifies formulas for the 

basic case of log-normal probability distribution providing correspondence to 

formulated criteria of efficiency and completeness. The model is self-calibrating by 

historic volatility data; it maintains the constant expected value at maturity of the 

hedged instantaneously self-financing portfolio. For this instance, it takes into account 

the random stock price and payoff variance at maturity obtained under an equivalent 

martingale measure as conditional for introduced “mirror-time” derivative diffusion 

discount process. The “risk-neutral” discount of derivative value may be obtained as a 

result of continuous hedging against the inversed “dummy” process directed back from 

maturity and specified within the same probability space as an underlying process. The 

possibility of hedging taking into account the derivative diffusion discount during time-

to-maturity period as well as the stock price variance at maturity adds up to an option 

value. The found general solution of correspondent backward drift-diffusion PDE 

contains an internal integral, which can be reduced to commonly used BSM solution, 

and the kernel function corresponding to its fundamental solution. Introduced 

normalized ξ -returns are not dependent explicitly on time and thus convenient for 

using in econometric studies at sufficient drift rates. While the probability distribution 

for ξ -returns normalized with theoretical diffusion coefficient shows some deviations 

from normal probability distribution (skewed peak), which can be addressed by 

introduction of additional distribution parameters, the tails largely correspond to ones of 
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normal distribution; thus, there is no need in consideration of jump-diffusion. For given 

S&P 100 index 4-year data, the developed one-parameter model appears to be efficient 

with bias only 1.85% comparatively to 21.1% for BSM model; therefore, there is no 

need in introducing stochastic volatility parameters and the model frequent calibration. 

The proposed model results allow matching the forward interest rate volatility structure 

with that of implied volatility of interest rate derivatives (such as caps). The model 

theoretically explains the implied volatility skew, and can be used for practical pricing 

of options with different strikes and maturities. Achieving efficiency of one-parameter 

option pricing model is a prerequisite of its stability at increasing the number of 

distribution parameters.
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Fig.1. S&P 100 options pricing with 30-day maturity for period 4/2004 –4/2007: the 

index return distribution - log-returns and ξ -returns normalized with 30-day 

historical volatility (a); ξ -returns normalized with theoretical diffusion coefficient 

found from formulas (18), (19) based on 90-day historical volatility data (b).
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Fig 2. The error distribution for BSM and proposed “mirror-time” diffusion discount 

model calculated according to (20) compared to implied volatility VXO index 

SigI_Data. Average error for the diffusion-discount model results in terms of BS 

implied volatility SigI_Model is 1.85%; for BSM results based on 30-, 90-day 

historical volatility - 21.15% and 21.13%.



22

SigI_Forw

10

12

14

16

18

20

22

24

26

0 1 2 3 4 5

Tm, yrs

S
ig

I_
O

pt
n

10

11

12

13

14

15

16

17

18

19

20

a

SigI_Forw*t^0.5

10

12

14

16

18

20

22

24

26

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

k

S
ig

I_
O

pt
n*

t^
0.

5

10

11

12

13

14

15

16

17

18

19

20

b

Fig.3. Proposed diffusion-discount model results calculated for caps according to (20) 

and expressed in terms of Black implied volatilities SigI_Model  for different 

maturities and forward interest rate-based volatilities SigI_Forw: dependencies of 

maturity Tm (a) and relative moneyness k (b).


