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HEAT KERNEL ESTIMATES FOR THE 0-NEUMANN
PROBLEM ON G-MANIFOLDS

JOE J PEREZ AND PETER STOLLMANN

ABSTRACT. We prove heat kernel estimates for the d-Neumann
Laplacian [0 acting in spaces of differential forms over noncompact
manifolds with a Lie group symmetry and compact quotient. We
also relate our results to those for an associated Laplace-Beltrami
operator on functions.

1. INTRODUCTION

We are concerned with bounds on the heat kernel of the 0-Neumann
Laplacian on manifolds with boundary possessing a Lie group sym-
metry. Heat kernel bounds are an object of intensive study and an
attempt to describe only the most important works would go well be-
yond the scope of the present article. Instead we refer to [25] and point
out the pecularities of the model we are dealing with before properly
introducing the setup. The operator we deal with is the natural Lapla-
cian coming from the PDE of several complex variables. It acts on
complex-valued differential forms on a manifold with boundary and
has non-coercive boundary conditions. Despite these differences from
the usual situation, some techniques from the theory of Dirichlet forms
remain applicable to obtain the bounds which frequently are the goal in
studies of heat estimates in very different settings. Due to the compli-
cations in our model, it comes as a nice surprise that these usual tools,
e.g. the intrinsic metric, come in so handy. Apart from the results that
will soon be mentioned, this surprise is certainly a message we want to
pass along. Since we would like to communicate our results to people
in at least two communities, we will take our time to explain certain
basics that might be obvious to some readers. We ask those to please
bear with us.
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Let M be a complex manifold, n = dim¢ M, and assume that M has
a smooth boundary bM such that M = M UbM. Assume further that
M is contained in a slightly larger complex manifold M of the same
dimension. The space of holomorphic functions on M under various
complex-geometric conditions on bM C M has been investigated from
various standpoints, beginning with Hartogs and Levi [30, 39, 40] and,
with Stein theory and sheaf-theoretic methods, culminating in the Oka-
Grauert theorem, [23].

An approach to problems in several complex variables using partial
differential equations was also developed by Morrey, Spencer, Andreotti-
Vesentini, Kohn, Nirenberg, Hérmander, and others ([I7, 53| 56]) bear-
ing fruit in Kohn’s solution to the d-Neumann problem, [36, 37]. This
method heavily involves the analysis of a self-adjoint Laplace operator
[J on differential forms in AP9 the subject of this article, which we
describe here.

For any integers p,q with 1 < p,q < n denote by C(M, AP9) the
space of all O forms of type (p,q) on M. These are the differential

forms which can be written in local complex coordinates (z1, 22, . . ., 2,)
as
(1) o= > ¢rsdz' ndz’

[I|=p,|J1=q

where dz! = dz A -+ ANdzir, dzd = dE N NdF T = (i 1),
J =1,y Jq)s b1 < o0 <y, 1 < -+ < Jg and the ¢y s are smooth
functions in local coordinates. For such a form ¢, the value of the
antiholomorphic exterior derivative 0¢ is

Ip= > > ag:,;" dzF A d' A dz”
[|=p,|J|=q k=1

s0 0 = J),, defines a linear map 9 : C>°(M, AP9) — C(M, AP+1).

With respect to a smooth measure on M and a smoothly varying
Hermitian structure in the fibers of the tangent bundle, define the
spaces L?(M,AP?). Let us extend the above O to the corresponding
maximal operator in L? (and still call it ) and let 9* be its adjoint
operator (the forms in the domain of 9* will have to satisfy certain
boundary conditions). Then

(2) dom (QP) := dom (d) N dom (0%)
(3) QP ) = (06,00)2avatry + (070, V) 2(aspra1),

defines a closed form QP on L?(M, AP4); we will frequently omit the su-
perscripts indicating the type of forms and simply write () and dom (Q)
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instead. By standard theory (see details in Section below) there is
a unique selfadjoint operator [ = [J,, ;, corresponding to ) = (7 that
we can write as
O=0,,= 00+ d0".

This Laplacian [ is elliptic but its natural boundary conditions are not
coercive, thus, in the interior of M, the operator gains two degrees in
the Sobolev scale, as a second-order operator, while in neighborhoods
of the boundary it gains less. The gain at the boundary depends on
the geometry of the boundary, and the best such situation is that in
which the boundary is strongly pseudoconver, a condition already seen
to be important in [30, B9, 40]; see [53]. In that case, the operator
gains one degree on the Sobolev scale and so global estimates including
both interior and boundary neighborhoods gain only one degree. More
precisely, one obtains a priori (called Kohn-type) estimates of the form

||U| Hs+1(M,AP»9) 5 ||Du| Hs(M,AP:9) + ||U||L2(M7Ap,q), (U c domD N COO)

when the boundary is strongly pseudoconvex and g > 0 ([46], Lemma
7.11). Such estimates are usually called subelliptic as the gain of the
operator is less than its order.

Assuming for the moment that M is compact, under various well-
investigated conditions on bM, ([T, [6], etc.) the Laplacian satisfies a
pseudolocal estimate with gain € > 0 in L*(M, AP9). That is, if U C
M is a neighborhood with compact closure, ¢,¢’ € C®(U) for which
lsupp(c) = 1, and a|yy € H*(U, AP9), then ((O+4 1) "'ac € H¥T(M, AP9)
and there exists a constant Cs ¢ > 0 such that

(4) 1¢@+ 1) allgsrearara) < Coge(lICal

uniformly for all « satisfying the assumption. Since M is assumed com-
pact, Rellich’s theorem provides that ((J+ 1)7! is a compact operator
and thus there exists an orthonormal basis of L?(M, AP4) consisting of
eigenforms of O, [I7, Prop. 3.1.11]. With the eigenvalues and eigen-
forms of [, one can construct the heat operator and study it. In our
case of noncompact M we will take a different approach. Still, to us,
the most important result from the PDE of several complex variables
is that a pseudolocal estimate (d]) holds even without assuming the
compactness of M, as shown in [14].

Hs(M,APa) T ||Oé||L2(M,Ap,q))

Main results: We will assume throughout this article that we have
a complex manifold M which is the total space of a principal bundle on
which a Lie group G acts by holomorphic transformations with compact
orbit space X = M /G:

G— M — X.
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Throughout this article, we will assume for simplicity that our mani-
folds are strongly pseudoconvex. That implies that a pseudolocal esti-
mate with gain € = 1 holds in L?(M, AP9) for all ¢ > 0. All the bundles
constructed in [31] and are treated in [29] are strongly pseudoconvex.
In our results, one can revert to the more general setting, in which
0 < e < 1, making inessential changes.

The first of our principal results is a Nash-type inequality, cf. [45]:

Theorem 1. (Nash inequality) Let M be a strongly pseudoconvex
G-manifold on which G acts freely by holomorphic transformations with
compact quotient M /G. For integer s > dim¢ M

(u € dom (QP7) N L*(M, AP9)).

241 1
||u||L2(SM7Ap,q) 5 Q(u)Hu zl(M,Ap,q)?

Defining the heat semigroup by P, = e~*, we obtain operator norm

estimates in LP spaces as well as Sobolev spaces:

1Pll2sroe, N Bllisre, [Pl —ms,

valid for t > 0, r, s € R. This last property can be used to obtain that
the Schwartz kernel of the heat operator is smooth for ¢ > 0.

We also obtain an off-diagonal estimate for the heat semigroup in
terms of the intrinsic metric dg induced by 9 : C=(M,R) — C>(M, A*!)
and a G-invariant Hermitian structure on A%!. It turns out that dg is
equivalent to the intrinsic metric d;p induced by the Laplace-Beltrami
operator of a Riemannian metric simply related to the metric on A%!.

The off-diagonal estimate is

Theorem 2. (Off-diagonal heat kernel estimate) Let M be as
above. For measurable subsets A, B of M it follows that the heat semi-
group satisfies

do(4; B)Q} .

| 15P; 1 4]l2—2 < exp [— 1

Note the following peculiarity: as already pointed out, the J-Neumann
problem is not elliptic in the sense that inverse of [J does not gain two
degrees in the Sobolev scale. This is due to the boundary conditions,
which, even in the strictly pseudoconvex case, give a gain of only one
order of differentiability. Our method of proof does not make use of
the better estimates that are valid in the interior, where the gain is two
as in [I7, Thm. 2.2.9]. The resulting Sobolev estimates make our Nash
inequality somewhat weaker than what would be true for an elliptic
operator with coercive boundary conditions.
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On the other hand, the off-diagonal bound is not affected at all by
this. The intrinsic metric gives just the kind of decay that one would
expect for an elliptic problem.

Part of what is happening here is that the pseudolocal estimate that
we use is given in terms of isotropic Sobolev norms while the problem is
inherently anisotropic. In the compact case, anisotropic estimates have
been worked out [I8], 24] and it happens that the Laplacian gains two
orders of differentiability in all directions except one “bad” direction
in the boundary.

The pseudolocal and Kohn-type estimates that we use here were de-
veloped in the noncompact case in [I4] [46] and applied in [47] and [11]
to construct L? holomorphic functions in some cases, in a manner anal-
ogous to that of Kohn and Gromov, Henkin, Shubin, [36] 37, 17, 29].
This last reference contains other examples (regular covering spaces of
compact, strongly pseudoconvex complex manifolds and two nonuni-
modular G-manifolds) to which our methods here apply.

The spectral theory of the O-Neumann problem has been previously
investigated in [43] 19, 20] in the compact situation and in [54, 57, [1], 2|
3], methods involving pseudodifferential operators are brought to bear
on the problem, still in the compact case. In [12], heat kernel asymp-
totics are developed for subelliptic operators on noncompact groups.
In [42], an asymptotic expansion is developed for the heat kernel of a
general elliptic operator with noncoercive boundary conditions.

The contents of the rest of this article are as follows. In Section 2
we will describe the basic constructions on M and review the principal
properties of the d-Neumann problem relevant to our investigation.
Also, we will draw the more directly accessible conclusions of these
properties. In Section 3 we describe the intrinsic geometry carried by
M and derive the heat estimates for the 0-Neumann Laplacian.

2. THE O-NEUMANN PROBLEM

2.1. The geometry. We will introduce some complex-geometric con-
cepts in this section, basically following [17]; see also [34], 35]. On a
real, 2n-dimensional C'*° manifold M, an almost complex structure on
M is a splitting of the complexification T'M ®g C of the real tangent
bundle T'M,

TM @z C =Ty oM & Ty, M,

with the following property; denoting the projections onto 7T oM and
To1 M by 11, o and Il ;, respectively:

(5) HO,lC = H1,0§>
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where ~ denotes complex conjugation.

We can also describe an almost complex structure by a fibrewise
linear mapping J : TM — TM with J?> = — 1. These two descriptions
are related via:

(6) TioM ={X —iJX | X € TM} = ker(J —1)
and
(7) ToaM ={X +iJX | X € TM} = ker(J + 1),

see [34, Chapter I, §7]. For a vector field X € T'M, a complex vector
field in TM ®g C of the form X —iJX € T is called a holomorphic
vector field while one of the form X +iJX € Tj; is called antiholo-
morphic.

Dually, the projections Il i, II; o induce a splitting of the exterior
powers of the complexified cotangent bundle, A*T*M ®g C into holo-
morphic and antiholomorphic parts so that AF = @p gk NP9 The
exterior derivative in A*T*M can be combined with the splittings of
the complexified cotangent bundle of M to obtain holomorphic and an-
tiholomorphic exterior derivatives 0 and 0, respectively. The relations
among these operators are given by

51 C(M, APT) = CS(M, AP, 3 = T, 411d0
and
0 O (M, APY) — C¥(BI, AP, 9 = Ty ,do

for ¢ € C°(M, AP9). B
On a complex manifold, it is true that d = 0+ 0, see [17, Prop. 1.2.1]
and that 0 = 0, which gives rise to the 9-complez,

0 — (8, AP0) & coo (31, APty D o 2 oo (81, AP 5 0

which is the starting point for various cohomology theories due to Dol-
beault, Hodge-Kodaira, and unified by Spencer, cf. [38]. See also [40]
for some results related to our current setting.

2.2. Sobolev spaces. We will have to describe smoothness of func-
tions, forms, and sections of vector bundles using G-invariant Sobolev
spaces which we describe here.

If F is a vector G-bundle over M, then we may introduce a G-
invariant pointwise inner product structure (-,-)g on E. Together with
a G-invariant measure on M, we define the Hilbert space of sections of
E which we denote L?(M, E). Note that, in particular, spaces of sec-
tions in natural tensor bundles on a GG-manifold have natural, invariant



HEAT ESTIMATES ON G-MANIFOLDS 7

Hermitian structures associated to a Riemannian structure on the un-
derlying manifold; below we will provide more detail. We denote by
C*>(M, AP%) the space of smooth (p, q)-forms on M, by C°(M, AP9)
the subspace of those forms that can be smoothly extended to M and
by C%°(M, AP%) the subspace of the latter consisting of those smooth
forms with compact support. Given any G-invariant, pointwise Her-
mitian structure

O (M, AP) 5,0 — (u(z), v(@))pze € C, (v € M),

we define the LP-spaces LP(M,A?") of forms as the completions of

C®(M,A?") in the norms
/2 1/p
lull o, a0y = [/ <“vU>ZX‘“} '
M

As in [26] [51] we may construct appropriate partitions of unity and,
by differentiating componentwise with respect to local geodesic coor-
dinates, assemble G-invariant integer Sobolev spaces H*(M, AP?), for
s=0,1,2,.... Because X = M /G is compact, the spaces H*(M, AP+7)
do not depend on the choices of an invariant metric on M or of an in-
variant inner product on A”?. The usual duality relations for LP spaces
hold (polarizing the above norm) as well as the Sobolev lemma, etc.
Background on this is provided in [22]. There, the Hermitian structure
is defined in terms of the Hodge operator so our (u,v), translates to
u A xv. See p82 of [17] and Lemma B.I0 below.

2.3. Operators and forms. As we said in the introduction, [J will be
defined in terms of an associated quadratic form. Good references for
background on the general concept of closed forms and their associated
operators are [15] 32, 49], among others. Here we will give more details
concerning the case at hand and also describe certain subsets of smooth
forms that belong to the respective form and operator domains. We
begin by collecting some information concerning the building blocks of
0, 9 and 0*.

Remark 2.1. Let M be as above.
(1) The maximal operator 0 in L?(M, AP9) is given by: a € dom (9)

whenever da € L*(M, AP%1) in the distributional sense. It acts
from L*(M, AP?) to L*(M, AP9*1) and is a closed operator.

(2) The operator 0* in L*(M, AP4) is the adjoint of J (in L?(M, AP71)
it is given by: o € dom (9*) whenever there exists § € L*(M, A»4~1

so that

(5% 04>L2(M,Ap»q) = (% 5>L2(M,AW1*1)

)
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for all y € L*(M, AP ") and 9*a = S.
(3) Since 0 is closed, the form

dom (9) x dom (9) > (e, 8) — (Dcx, OB) r2(ar avatry
is a closed form in L?(M, AP9); cf [15, 32].
(4) Since 0* is closed, the form
dom (9%) x dom (9") > (e, B) — (9", 0" B) r2(as awa—1)

is a closed form in L?(M, AP9), provided, ¢ > 1.

(5) @ = Q™1 is the sum of the closed forms defined in (3), (4) above
and therefore a closed form as well for ¢ > 1. QP is the form
defined in (3).

Recall that a closed operator is one whose graph is closed, while a
form @ is closed whenever its domain dom (@) is a Hilbert space with
respect to the form inner product

The stage is now set for the first form representation theorem, cf. [32],
that asserts that for every semibounded closed form there is a unique

selfadjoint operator associated with the form. In our case, there is a
unique selfadjoint operator U, , associated with P9, meaning that

dom (O,,) C dom (@) and Q(a, 8) = (L, B),

whenever a € dom (00, ,) and 5 € dom (Q™9). In fact, more is known:

dom (Oy,g) = {ar | Iy € LM, AP) VB € dom (Q™) : QP(av, B) = (7, 8)}
and, obviously, v = 0, ;& is uniquely determined. Moreover, defining
1

the square root [J2, by the functional calculus, we have that

dom (Q79) = dom (CZ,) and Q(a, 8) = (D, 3 6).

We note that [J can be seen as the form sum of the operators 9*0 and
00*. In fact, the former operator is the selfadjoint operator associated
with the form in part (3) of the preceding remark and the latter is
the selfadjoint operator associated with the form in part (4) of the
preceding remark. In that sense, the formula

0 =00 + 00"
has now a precise meaning, interpreting the +-sign as the form sum,
cf. [15, 32].
In principle, all domain questions are settled now and we have defined
the forms and operators we will be dealing with. However, the results
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above give a rather implicit description so it is quite useful to have
explicit subspaces of the operator and form domains given above.

We speak of a core of a form meaning a subspace of its domain that
is dense in the domain with respect to the form norm. Similarly, a core
of an operator is a subspace of its domain that is dense with respect to
the graph norm.

The following lemma is from [29, Lemma 1.1] and [I7, Lemma 2.3.2];
serves the purpose to get our hands on the smooth elements of certain
form and operator domains.

Lemma 2.2. Let M be as above, let ¥ be the formal adjoint operator
to 0, and denote by o = o(4, ) its principal symbol.

(i) {u € C(M,A*) | o(d,dp)ulpr = 0} is a core for 0* and on this
space 0" agrees with 1.

(ii) DP9 = {u € C°(M,A*) | (9, dp)ulprs = 0} is a core for QP.
(iii) The domains of O* and Q are preserved by multiplication by cutoff
functions.

2.4. Estimates for the Laplacian. In this section we give our re-
quirements on the boundary geometry and state the pseudolocal es-
timate in more precise language than in the introduction. As before,
assume M to be a complex manifold with nonempty smooth boundary
bM, M = M UbM, so that M is the interior of M, and dimc (M) = n.
We will also assume for simplicity that M is a closed subset in ,;M , a
complex neighborhood of M so that the complex structure on M ex-
tends that of M, and every point of M is an interior point of M. Let
us choose a smooth function p : M — R so that

M ={z]p(z) <0}, bM = {z|p(z) = 0},

and for all z € bM, we have dp(x) # 0. In local coordinates near any
x € bM define the holomorphic tangent plane to the boundary at = by

and define the Levi form L, by
02107k |

L.(w,w) = wo®,  (we TE(bM)).

k=1
Then M is said to be strongly pseudoconver if for every x € bM, the
form L, is positive definite.
The following theorem will be our principal tool from the PDE of
several complex variables.
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Theorem 2.3. (Pseudolocal estimate) Let M be strongly pseu-
doconvex, U an open subset of M with compact closure, and (,( €
C2(U) for which (| suppcy = 1. If ¢ > 0 and a|y € H*(U, AP9), then
C(O+1)"ta € HTY (M, AP9) and there exist constants Cy > 0 so that

(8) <@+ 1) "o

Proof. This is Prop. 3.1.1 from [17] extended to the noncompact case
in [I4]. ¢

asrianaray < Cs(IC | s (varay + el 22(ar,av0))-

Remark 2.4. Boundary geometries giving more general subelliptic
estimates are harder to define, so we refer the interested reader to [7, [6]
instead of pursuing this issue here. For completeness, we mention that
the theorem holds when M satisfies these weaker estimates, mutatis
mutandis [14].

A word on notation: For two norms || - || and |- |, we write |¢| < ||¢]|
to mean that there exists a constant C' > 0 such that |¢| < C/||¢|| for
¢ in whatever set relevant to the context.

Corollary 2.5. For s €N, ¢ > 0, and ¢ € C=(M),
9) 6@+ 1) allauarey S lallizararsy, (o € LM, AP)).
Proof. By induction. Putting s = 0 in the theorem, we have

IO+ 1) allm SlCal: + llall: S el (o€ LA(M)).
Assuming the result for s — 1, it follows that (0 + 1)'~*a € HZ 1(M)

loc

for all « € L?(M). Applying the theorem to this form, we have
IO+ 1) O+ D' allas S IO+ 1) oo +[[(E+ 1) al| 2,

and

IO+ D)~ allm SO+ 1) a2 < llare.
¢

Corollary 2.6. Let M be a strongly pseudoconver G-manifold on which
G acts freely by holomorphic transformations with compact quotient
M/G. For integer s > dimc M and q > 0 we have the estimate

(10) O+ D allimiarn S lallpoann, (@€ L(M, A7),

Proof. Choose B C M compact and sufficiently large so that B - G
covers M. This is possible since X is compact. Choose ¢ € C®(M)
such that supp ¢ D B in ([@). Now, the Sobolev lemma provides that if
s > k+m/2, then H*(R™) C C¥(R™) and there is a constant C' = C
such that

(11) sup sup [0%u(z)| < Cllu|
|a| <k z€R™

Hs(R™),
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thus, if we take s > k + 1/2dimg M = k + dim¢ M, we have
1O+ VD) allerony SICO+ D)7 %allgs S llallz,  (a € L2(M))

by the G-invariance of M and our choice of local geodesic coordinates.

¢

Remark 2.7. Note that the exact invariances furnished by the group
action assumed here are not essential and can be relaxed to assumptions
on the uniformity of the estimates in (), etc.

3. HEAT KERNEL ESTIMATES AND INTRINSIC GEOMETRY

Definition 3.1. Let (1 = fooo AdFE)\ be the spectral resolution of the
Laplacian and for ¢ > 0 put

P, = / e E,).
0

That is, P, = e~ and we would write P/*? = e~™"ra to be completely
explicit.

Remark 3.2. The semigroup (e~ ;¢ > 0) of a selfadjoint operator H
contains a wealth of information about its generator H and satisfies
the semigroup property e~ (+9)H = ¢t e=sH 'see [§ 21] for the general
theory and [52] for the case of Schrédinger operators. In the case
at hand, where H > 0, the semigroup consists of contractions, i.e.,
le7t |5 < 1. The symbol || - |22 denotes the operator norm of an
operator from L? to L?. Similar to what is known for the Laplacian,
the semigroup of the O-Neumann Laplacian [ is ultracontractive. That
is, it maps L? into L® continuously. This is equivalent to the validity
of a Nash-type inequality and will be discussed below.

3.1. Ultracontractivity and Nash inequalities. The heat opera-
tor’s ultracontractivity (i.e. boundedness from L? — L*) follows im-
mediately from the Sobolev estimate in Cor. above. The proof is
formally very similar to that from Davies [9]. The difference between
the two cases is that our basic spaces consist of vector-valued functions
and so certain concepts and manipulations are not available. For ex-
ample, we cannot identify nonnegative elements or take the absolute
value in a naive way.

Proposition 3.3. Let M be a strongly pseudoconvex G-manifold on
which G acts freely by holomorphic transformations with compact quo-
tient M /G. For integer s > dim¢ M and q > 0, we have

(12) |Pallzeqarare S max(L,t )|l zaiann, (o € L(M,AP9)).
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Proof. We plug (+ 1)° P;«v into the inequality (I0) from Cor. and
obtain:
[P = [[(B+ 1)7*(0+ 1)* Rl
S 1@+ 1)°FRallr:
S el
for any 0 < t < 1, by functional calculus, since the maximum of the

function A — (A + 1)%e™* goes like t=% for ¢ > 0. This gives the result
for arbitrary ¢ > 0, as the semigroup is a contraction on L2 ¢

We mention here that the usual duality properties of the LP spaces
hold in our setting, [22].

Corollary 3.4. Let M be as in the previous proposition. Then, for

integer s > dime M and q¢ > 0 we have

(13) 1Pl Lo aramay S max(L, 672 [[l| 2 (ar,am),

uniformly for o € L* N L2(M, AP9).

Proof. Since P, is symmetric, ||P;|la—00 = ||P;||1-2 by duality, and
[Pl 200 S max(1,£77),

from the previous statement, we have
1

1P ]li500 < NIPill2-sool| Pellisz < 1Pr2ll3ooe S e

by the semigroup property. ¢

Remark 3.5. The basic tool in the estimates to come is the funda-
mental theorem of calculus applied to the function t — | Pul/2, or
variants thereof. This rests on the following immediate consequence of
functional calculus: For any u € dom [:

d
P € domO and 7 [Pu] = —OPu.

Proposition 3.6. Let M be as in the previous proposition. For any
real-valued function w € C*°(M) N L*(M) for which (Ow,0w) o is
bounded in M and v € L*(M, AP9),

d
ﬁllethUH%z(M,Ap,q) = —2Re Q(Pu, €2thU)-

In particular, for w =0 we get:

d
EHPtuH%?(M,AP’q) = —2Q(FPu).
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Proof. For any t > 0 we have

d .1 w w
EHQWPtUH%Z = hmﬁ [(Prsnu, € Pypu) — (P, e Pou)]

h—0

. 1 w w 1
= lim [(+(Punu— Pu), e Pryyu) + (€2 P, — (Pipu — Pou))
h—0 | ‘h h

= (—0OPu, e* Pu) + (e** P, —OPu)
= —Q(Pu,e*Pu) — Q(e* P, Pu),

where, in the last step we used that e*u is in the domain of @, by
part (iii) of Lemma 2.2 ¢

Proof of Theorem [1. From Prop. 3.3 and duality we get
|l > (P, Pu) 2 = [| Pl 7.

We use the fundamental theorem of calculus and the above Prop. [3.6
in

== 22 - 2 t Ps d
Jul2 / Q(Pu)ds
(14) > Jull2 — 2Q(u)

where, in the last inequality we use the following straightforward con-
sequence of functional calculus:

Q(Pyu) = [|0ze u|2: < ||0zul2..

_2
2s+1

Putting t = Q(u)_ﬁ [wll 153 aray I ([I4]) gives the assertion. ¢

3.2. The intrinsic metric. We will measure the bounds on off-diagonal
terms in the heat kernel with respect to the metric given by

Definition 3.7. We define the G-invariant pseudo-metric dg on M by
do(w,y) = sup{w(y) — w(x) | w € L N C>®(M,R), (Ow, Ow) o1 < 1}.
The distance between sets is given by

do(A; B) == sup{i%fw—sgpw | w € L®°NC™(M,R), (Ow, Ow) por < 1}

for arbitrary A, B C M.

The definition above is geared to the intrinsic metric of Dirichlet
forms, as used in slightly different versions, e.g. in [5] [10] 13} 58, 59} [55]
as well as the metrics considered in [16], 33, 44] and see [27], 28] as
well. Note however, that our application of this concept is somewhat
nonstandard. We use this metric, defined on functions, to estimate the
heat kernels acting on forms! We now show that the metric above is
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equivalent to an associated Riemannian distance. To this end, let us
describe the metric structure of M in more detail, in the notation of
Sect. 2.1 above.

On the tangent bundle T'M of the 2n-dimensional real G-manifold
underlying M, we have a G-invariant almost-complex structure J :
TM — TM, induced by the complex structure on M. Assume that
we also have a G-invariant Riemannian metric g on T'M so that J is
an isometry with respect to g; g(X,Y) = ¢g(JX, JY). Note that with
respect to any such metric, X 1 JX. Indeed,

9(X,JX) = g(JX,—X) = —g(JX,X) = —g(X, JX) = 0.

We may extend any Riemannian structure for which J is an isometry
by complex sesquilinearity (linear in the first slot, conjugate-linear in
the second slot) to obtain Hermitian inner products which we say are
associated to g in 119,Tp1 C TM ®g C:

(X —iJX,Y —iJY)g, = g(X,Y) +ig(X, JY),
(X +iJX,Y +iJY)p, = g(X,Y) +ig(JX,Y).

By duality, these structures extend naturally to AM® and A%! and by
tensoriality to each of the spaces AP?. We will also metrize the bundle
of complex k-forms as an orthogonal sum

(15) A= A (k=0,1,...,n).
pt+q=k

Let us describe the (0, 1)-forms in terms of J analogously to our vector
fields in (@), (@). Since A% is the dual of Ty in the Hermitian metric
above, we have £x € A%, the dual of X +4JX € Tp 1, naturally of the
form

(16)  &x (Y +iJY) =(Y +iJY, X +iJ X) g,
—g(Y, X) +ig(JY, X) = g(X,Y) —ig(JX,Y).

We compute the last term in coordinates. Since by assumption we have
9(X,Y)=g(JX,JY), it is true that

gt T = gij,

with the convention that repeated indices be summed over. Multiplying
this identity by J and using J;J,g = —4!, the Kronecker ¢, we get

gijij = _gijJ]za
from which it follows that g(JX, ) = —Jg(X,-) since
g(JX, ) = gy JI X dx' and  Jg(X,-) = J g X*da'.
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Going back to (I8) and writing Jg(X, )|y too simply “Jg(X,Y),” we
see that
Ex(Y +1JY) = g(X,Y) +iJg(X,Y)

thus A% 3 &y = ¢x +iJ¢x for the real 1-form ¢x = g(X, ). Similarly,
a form A0 3 &x = ¢ox — iJpx again for the real 1-form ¢x = g(X, )

Now we return to the description of the intrinsic metric. For w €
C>(M,R), consider the following computation:

(dw, dw)Al = <((§ + 8)11}, (5 + 8)11})1\1 = <5w, 5w>A0,1 + (8w, 8w>A1,0

since Ow € A% and Ow € A0 are orthogonal by the decomposition
@. )

Now, w is real so Qw is the complex conjugate of dw by (H), thus
there is a single real 1-form ¢ such that Ow = ¢+iJ¢ and Ow = ¢p—iJ¢.
In fact, ¢ = %dw since d = 0 + 0. Computing the inner products,

(0w, dw) po.r = (Ow, dw) 1o = 29(¢, ¢)
since g(¢, J¢) = 0. Thus (dw, dw) 1 = 2(0w, Ow)ro1 = 4g(¢, ¢) in our

metric.
Since the Laplace-Beltrami operator on functions is induced by the
quadratic form w — [(dw,dw) 1, ¢f. [50, 59], we have shown

Proposition 3.8. For a J-invariant Riemannian structure g, let App
be the corresponding Laplace-Beltrami operator. Given the Hermitian
structure on A% associated to g, the intrinsic metric do is equivalent
to the one induced by the intrinsic metric of —Apg on functions.

Remark 3.9. (1) At least in the case of complete manifolds without
boundary it is well-known, cf. [59] that the intrinsic metric dp of the
Laplace-Beltrami operator coincides with the Riemannian distance, i.e.,

drp(x,y) =1inf{L(y) | v: I — M a curve joining =,y € M}.

In view of [55], the presence of a boundary should not change this

picture.
(2) For Kihler manifolds, 00 = 1A, cf. [34, Chap. III, §2], acting

)
componentwise on forms, therefore it is clear in this case that we recover

the intrinsic metric of the Laplacian up to a factor of v/2.

3.3. Off-diagonal heat kernel estimates. Here, we basically use the
proof from [I3], pointing out once more that our setup is substantially
different as our spaces are spaces of differential forms rather than func-
tions. Let us also remind the reader that multiplication by functions
preserves the domain of () and this is crucial to our treatment.
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Lemma 3.10. For w € L* N CY(M,R), we have
Qu,u) = Qe "u, e™u)—2ie Im {{Ou, Ow A u)r2 + (x(Ow A xu), 0" u) 12}
+ € {[|0w A ul|72 + [[Ow A xul|7.}
for all w € dom Q.
Proof. By definition,
Q(e™“u, e™u) = (Je™“u, de™u) + (e~ “u, 0" e u).
The first term simplifies as follows

(e~ u, Deu) = (Ou, Qu) + 2ie Jm(du, Ow A u) — (0w A u, Ow A u).

For the second term, note that 0" = — x 0% where * is the Hodge
operator and 0 = d — 0, (cf. Prop. 5.1.1, [I7]). Thus
O u = —%0*(e7"u) = —x [0 (%u)] = —x [0 Axu+e O ul

= — % [0 Axu) 4+ e 0% u = e x [Ow A xu] + e 0% u.
With the corresponding expression
e u = —e" x [Ow A xu] + €0 u,
we obtain
(0 e "u, 0% u) =(0u, 0*u) + 2i Jm (x(dw A *u), 0*u)
— {((Ow A xu), (Ow A *u)),
where we have used the fact that the Hodge «x is an isometry. ¢
Corollary 3.11. Assuming (Ow,0w)pon < 1, we have
—Re Qe u, e’u) < 2”“”%2(M,AP,Q)-
Proof. The previous assertion implies
—Re Qe “u, e™u) = € {||ow A ul|* + |ow A *u*} — Q(u,u)

and since we have assumed (Jw, dw) 1.0 = (Ow, dw) o1 < 1, (see Sect.
B2) we have the result by Cauchy-Schwarz and again the fact that the
Hodge * is an isometry. ¢

Proof of Theorem [2l For arbitrary f € dom @, the computation in
Prop. gives

t
w w d w
e Pufl ~ e f e = [ Sl Pufds
0 S

(17) = — 20e¢ /t ds Q(P,f,e* P, f).
0
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Writing
Q(Psf,e® P.f) = Q(e e P, f, e“e" P,f)
and applying Cor. 311l the integrand in (7)) satisfies

(18) — Re Q(Pyf, e Psf) < | €” Py f |22,

as usual, assuming that (Ow, Ow) o1 < 1. It follows that

t
e Puflfs = e F I <2 [ ds [l PufIe
0
Gronwall’s inequality implies that
le” Pifll72 < €*[le” f17:
L L

and replacing w by 6w we obtain ||e® P, |12 < ?°t[|e™ f|| ;2 by inspec-
tion in (I8)). This implies that

— 2
||66th€ 6w||2_)2 S eét

since f was arbitrary in the domain.
Now, for arbitrary «, 3 € L?

(1P 140, B)| = ‘(e‘sthe_‘;we‘sw 1aa, e lBﬁﬂ
< e Pie™e™ 1aal| 2 lle ™ 18]l 2o
< [[€? Pie™|lamalle™ Lacr]|2qan e~ 1Bl 2(ary.
< e”!|e™ a2 an lle™" LoBl| 2an)-

For € > 0 choose a weight function w like in the definition of d(A; B)
above, with (Ow, Qw)on < 1 and so that

do(A;B) —e <infw —supw and supw =0
B A A

(we can achieve the latter by adding a suitable constant). This gives
i%fw >dn(A;B) —e.
Inserting gives
(157140, B)] < e™le M OED D) a]||]
so that (since ¢ is arbitrary)
1 1P 14]| < (B,
For dn(A; B) < oo, choose 6 = dp(A; B)/(2t). ¢

Remark 3.12. In light of Prop. B.8 we may replace do with d g,
making the necessary changes.
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3.4. Sobolev estimates for the Heat Operator. Here we extend
some LP results from the preceding treatment to Sobolev spaces. First
note that for t > 0 and k € N arbitrary, we have P, : L? — dom ¥,

Proposition 3.13. Fort > 0 and ¢ > 0 we have
Pyt L2 (M, AP9) — C°°(M, AP9).

Proof. We will proceed by induction and use the Sobolev lemma, (1))
above. Fix t > 0. For any a € L?, since im P, C dom [, and (O +
1)~ : L? — dom0 is onto, we may apply Thm. 23| to the form
a=(0O+1)Rg, f € dom, to obtain

1CPAlm S NIC(@A+ DPBl 2 + (O + D) PB 2 S (18]l z2,

and conclude that im P, € H. .. Furthermore, since P, is a function of
(], they commute and we also have
O+ 1)PB=PRO+ 1)FecH, (ael?).
Assuming now that (O + 1)P,8 € Hﬁ;l, the same theorem provides
ICPBN e S NIC B+ )Pl e + (O + 1) PB 12,
so BB € H.. ¢

We will need the following a prior: estimate for [, proven in our
setting by a variation on the methods in [38, [17], in Thm. 4.5 of [46].

Lemma 3.14. (Kohn inequality) If M is a strongly pseudoconvex
G-manifold on which G acts freely by holomorphic transformations with
compact quotient M /G and q > 0, then for every integer s > 0 there
exists a positive constant Cy so that

lullgs+r < Co(||Ou s + |ullz2), (v € dom TN C®°(M, AP))
uniformly.
Corollary 3.15. Fort >0 and g > 0 we have im P, C H® (M, AP9).
Proof. Combining the results of Prop. and Lemma [3.14] we have
s+ < Cs(|0ul| gs + ||wl|z2) (u € im F;)

but im P, C dom [0* for all powers of the Laplacian, so this estimate
can be iterated. Thus the estimates

(19)  ||OFSu| o < O | gs + |05 5u)| 2, (s =1,2,...,k)
hold for u € im P,. These imply the result. ¢

|

Proposition 3.16. If M is as above, t > 0, and q > 0, then the

heat operator Py is bounded from H—*(M, AP9) — H*(M,AP?) for any
positive integer s.
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Proof. First recall the following fact about Sobolev spaces on manifolds
with boundary from Remark 12.5 of [41]. For s > 0, the dual space
of H*(M), denoted H~*(M), consists of elements of H~*(M) whose
support is in M. Now, from Cor. we have that for all s > 0,
P, : L? — H*(M) continuously. Since P, is self-adjoint, its domain can
be extended to the dual of H*(M) so that P, : H=*(M) — L*(M). The
semigroup law P? = Py, holds on C°(M) C L*(M), a dense subspace
of all the H*(M), (s € R) so we may conclude that P, : H~*(M) —
H*(M) for all s > 0. ¢

Remark 3.17. These results have three easy consequences.

1) For an operator norm estimate, we can put « = P« in the estimates
(I9) and telescope them to find that for s € N,

S S
1Pl Y I8 Falle Yt ol

k=0 k=0

which yields an estimate analogous to that in Prop. 3.3

2) Combining Cor. BI85 with Gagliardo-Nirenberg-Sobolev embeddings,
e.g.

2n 0<s< n
n—2s = 2’
[4], one obtains results overlapping those of the previous sections in L?
spaces. With other such embeddings can obtain results for LP-Sobolev

spaces.

H*R") C LP(R"),  p=

3) One can continue the treatment in Sect. 6 of [46] to obtain that, for
t > 0, the heat operator’s Schwartz kernel K; € C*°(M x M) and

(20) / K2 <oo, (t>0),

noting that [J and thus K; are G-invariant. When G is unimodular,
(20) means that von Neumann’s G-trace of Py, is finite.
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