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Abstract

The Hermite Normal Form (HNF) is a canonical representation of matrices over any principal
ideal domain. Over the integers, the distribution of the HNFs of randomly looking matrices is far
from uniform. The aim of this article is to present an explicit computation of this distribution
together with some applications. More precisely, for integer matrices whose entries are upper
bounded in absolute value by a large bound, we compute the asymptotic number of such matrices
whose HNF has a prescribed diagonal structure. We apply these results to the analysis of some
procedures and algorithms whose dynamics depend on the HNF of randomly looking integer
matrices.
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1 Introduction

Given a principal ideal domain R, the notion of Hermite Normal Form (HNF) of a n × m matrix
with entries in R is well defined. When R = Z, which will be the case in this article, a matrix in
HNF can be defined as follows, see e.g. [5, 12]:

Definition 1 (Hermite Normal Form (HNF)) A n × m matrix H with integer entries is in

Hermite normal form if H is upper diagonal with the following properties:

1. The first r rows of H are the non-zero rows of H,

2. for each row i, if hiji is its first non-zero entry, then hiji > 0 and j1 < j2 < ... < jr,

3. for each 1 ≤ k < i ≤ r, the entries hkji of the jthi column of H satisfy 0 ≤ hkji < hiji .

The positive integers hiji are called the pivot of the matrix in HNF.

The main result about HNF, discovered by Charles Hermite, is that for all n×m integer matrix A,
there exists a (possibly non-unique) unimodular n× n matrix U and a unique n×m integer matrix
H in HNF such that A = UH . The left equivalence between A and H means that there is a sequence
of elementary row operations that will produce H when applied to A. Note that the definition of
the HNF can slightly change in the literature (e.g. lower triangular vs. upper triangular, column
operations vs. row operations). Since the matrix H is uniquely defined, we can write without
ambiguity H = HNF (A). Typically, the shape of a matrix in HNF will be the following:
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* * * * * * * * *
0 * * * * * * * *
0 0 0 * * * * * *
0 0 0 0 * * * * *
0 0 0 0 0 0 0 * *
0 0 0 0 0 0 0 0 *
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

The above example is given with (n,m, r) = (8, 9, 6) and the sequence ji of column positions
of the pivots is 1, 2, 4, 5, 8, 9. As a matter of fact, only a very small proportion of HNFs of integer
matrices has this type of shape. Anyone who had to compute the HNF of arbitrary integer matrices
more than once was forced to observe that they do not appear “randomly”, that is, the elements
hiji do not seem to follow an equiprobable law of distribution. For instance, the case ji = i and
r = min(n,m) appears predominantly, and a strongly recurring structure is that all the pivots hiji

with i < r are small and increasing with i (typically less than 10, even for matrices with very large
entries) and the last pivot hijr is large (of the order of detA when n = m). This particular point
is intrinsically interesting, but was also used in several occasions (see e.g. [1, 15, 18]) in order to
heuristically understand or analyze the behavior of an algorithm.

Our focus in this paper is set on the “probability” that the HNF of a random n × m integer
matrix has a given diagonal. We aim to obtain an explanation of the strong biases mentioned above.
For instance, Proposition 6 below gives the frequency of appearance of a given non-zero diagonal in
the HNF of a randomly looking matrix. Proposition 6 also shows that the density of HNFs with the
above shape is in fact 0. Corollary 7 shows that given strictly positive integers d1, d2, ..., dn−1, the
“probability” that a n× n integer matrix A has a HNF of the form

HNF (A) =















d1 ∗ ∗ ∗ ∗
0 d2 ∗ ∗ ∗

0 0
. . . ∗ ∗

0 0 0 dn−1 ∗
0 0 0 0 d















where d = det(A)∏
i=1..n−1

di

is given by

(

ζ(n) · ζ(n− 1)... · ζ(2) · dn1 · dn−1
2 · . . . · d2n−1

)−1
,

where ζ is the usual zeta function. Of course, the notion of “probability” and “density” used here
have to be made precise. The appropriate concept is the notion of natural density, see e.g. [22].
Different definition of densities appear naturally in analytic number theory with the study of prime
numbers and expected values of arithmetic functions, see e.g. [22] and [9] for several examples. As for
the natural density, the explicit multidimensional aspects of the question appear in e.g. [10, 13, 14]
and more implicitly in e.g. [1, 3, 4, 8, 11]. On the more specialized study of density of canonical
form of matrices, let us mention the work of Evans [6] where the density of Smith normal form over
the ring of integers of a local field is studied. The subject treated in the present article does not
seem to have been the object of a publication in the past.

The article is structured as follows. We address the question of a suitable definition of natural
density in Z

k in Section 2 below. In Section 3 we present some results linking unimodular matrices
and natural density of vectors. The main results of the article are stated and proved in Section 4
and in Section 5 we present some applications.

We will used the following notations. The set of primes in N
∗ = N \ {0} is P, Landau’s notations

f(x) = o(x) and g(x) = O(x) mean that limx→∞ f(x)/x = 0 and limx→∞ g(x)/x = c. The Riemann
zeta function ζ is ζ(s) =

∑

n≥1 n
−s =

∏

p∈P
(1 − p−s)−1. The cardinality of a set S is |S|. We will

also use the expression “randomly looking (integer) vector” in an informal way, meaning that the
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entries of the vector have been chosen uniformly at random in a large interval [−B,B[. The symbol
∗ represents an integer whose value is unimportant depending on the context.

2 Natural density in Z
k

In order to make the intuitive notion of probability in Z
k precise we first remark that the uniform

distribution over Z
k or over N

k, even when k = 1, has little meaning. For this reason researchers
often use the concept of natural density when stating probability results in N. In the following we
briefly explain this concept. Let S ⊂ N be a set. Define the upper (respectively lower) natural
density as

D(S) = lim sup
B→∞

|S ∩ [0, B[ |

B
, D(S) = lim inf

B→∞

|S ∩ [0, B[ |

B
.

When both limits are equal one defines the natural density of the set S as

D(S) := D(S) = D(S).

The notion of natural density allows to tackle questions related to the frequency of realization
of events concerning randomly looking integers, i.e., for uniformly chosen integers in [0, B[, when
B goes to infinity. A famous example in N is that the natural density of square free integers is
6/π2 = ζ(2)−1, see e.g. [9]. The extension of the above definition in higher dimension is sometimes
implicit in the literature. For example the natural density of n coprime integers, equal to ζ(n)−1,
has been studied by several authors, starting with Cesàro in 1884 [4] (1881 for the case n = 2
[2, 3]), Lehmer in 1900 [11] and Nymann [17]. For the historical fatherhood of the result see [14].
This natural density means that there are ζ(n)−1 ·Bn + o(Bn) n-vector in [0, B[n whose entries are
coprime. An explicit definition of a higher dimensional notion of natural density has been developed
in e.g. [10, 13, 14]. In these articles, the notion of natural density of a set S in Z

k is defined as a
“centered symmetric cube” version of the unidimensional definition, i.e., as the limit, when it exists,

D(S) = limB→∞
|S∩[−B,B[k|

(2B)k
. We will however need a stronger definition. In order to see why, let

us consider a set S in N with density δ. Since |S ∩ [0, l[| = δ · l + o(l), any interval [l, l + B[ with
l = o(B) contains δ ·B+o(B) elements of S. Being able to estimate the local density in non centered
cubes does not seem to be always possible in dimension k > 1 with the above definition of density.
In order to achieve this, we require in the definition that the cubes can lie anywhere in Z

k. In the
sequel, we call a cube any set of the form

∏k
i=1[zi −B, zi +B[k for some z ∈ Z

k and B > 0.

Definition 2 (Natural density in Z
k) Let S be a subset of Zk. If for all z ∈ Z

k, the following
limit exists

D(S) = lim
B→∞

|S ∩
∏k

i=1 [zi − B, zi +B[ |

(2B)k

and is independent of z, then it is called the natural density of S.

Let us notice that it would have been even possible to extend the definition of natural density
from Z to Z

k by using k-rectangles instead of cubes (i.e. different Bi for each dimension). However
both definition are equivalent since rectangles can be decomposed into smaller cubes. We will not use
this property in the sequel. Another direction of generalization is the spherical model. This setting
considers centered n-balls instead of n-cubes. Due to the symmetry of the balls around the origin, it
is a natural choice in the study of different asymptotic results concerning lattices, integer matrices,
and varieties in general see e.g. [16, 19]. This model suffers however from the same problem as
noted before and from the fact that the entries of the different objects of study are not independent
anymore, i.e., the “random looking aspect” is somehow lost.

In order to prove our main results, we will need the existence and the value of the natural density
of tuples of integers whose greatest common divisor is a given positive integer d. This is treated in
Lemma 3 below. As mentioned in the introduction, in the weaker form of density definition given
above, this problem has been studied several authors, see e.g. [4, 11].
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Lemma 3 The set {(x1, . . . , xk) ∈ Z
k : gcd(xi) = d} has a density equal to (ζ(k) · dk)−1.

Proof: Let x ∈ Z
k and S = {(x1, . . . , xk) ∈ Z

k : gcd(xi) = d}. Then x ∈ S if and only if xi/d ∈ Z

and gcd(xi/d) = 1. Let z′i = zi/d, B
′ = B/d and S′ = {(x1, . . . , xk) ∈ Z

k : gcd(xi) = 1}. The first
equality of the following equations is straightforward.

∣

∣

∣

∣

∣

S ∩

k
∏

i=1

[zi −B, zi +B[

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

S′ ∩

k
∏

i=1

[z′i −B′, z′i +B′[

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

S′ ∩

k
∏

i=1

[−B′, B′[

∣

∣

∣

∣

∣

+ o(Bk). (1)

In order to prove that the second equality of Equation (1) is valid, consider an element (x1, . . . , xk)
in the set of the left hand side of the equality. Let us fix all the components but the ith one,
and consider t = gcdj 6=i(xj). The integers x1, . . . , xk are coprime if and only if xi has no common
factor with t. So if P is the set of prime divisors of t, both the interval [z′i − B′, z′i + B′[ and

[−B′, B′[ contains 2B′
∏

p∈P

(

1− 1
p

)

+ o(2B′) integer coprime to the fixed xj . This shows that the

error resulting in setting zi = 0 in the mid term of Equality (1) can be adjusted by o(B′) = o(B).
Taking into account the effect of all dimensions together leads to the correction term o(Bk). Now,
as mentioned before, see e.g. [11, 14], we have

∣

∣

∣

∣

∣

S′ ∩

k
∏

i=1

[−B′, B′[

∣

∣

∣

∣

∣

= ζ(k)−1(2B′)k + o((B′)k)

which leads to

D(S) = lim
B→∞

|S ∩
∏k

i=1[zi −B, zi +B[|

(2B)k
= lim

B→∞

ζ(k)−1(2B′)k + o((B′)k)

(2B)k
= (ζ(k) · dk)−1

3 Generalities on unimodular matrices

For a matrix A ∈ Z
n×m with n < m, the following three properties are equivalent, see e.g. [12]:

1. A can be completed into a m×m invertible matrix over Z,

2. there exists a m× n integer matrix B such that AB = Idn,

3. the n× n minors of A are coprime.

In the square case, i.e. when A ∈ Z
n×n, the third condition has no real meaning and the first one

means that A is invertible. In the sequel we will adopt the usual convention and call a n×m matrix
A over Z unimodular if n ≤ m and if it fulfills one of the first two above conditions. Unimodular
matrices play a special role with respect to sets with densities as shown in the next lemma:

Lemma 4 Let S ⊂ Z
m be a set with density δ > 0 and let V be a m×m unimodular matrix. Then

V (S) = {V x : x ∈ S} has a density equal to δ.

Proof: Given a cube σ =
∏k

i=1[zi − B, zi + B[ in Z
k, let us count the number of points of the set

V (S) that lie inside σ. Since V is a bijection, this number is exactly the number of elements of S
inside V −1(σ). The map V −1 is linear, and thus V −1(σ) is a k dimensional parallelepiped whose
boundary ∂V −1(σ) is a union of parallelepipeds of dimension k − 1. Let us cover V −1(σ) with a
disjoint union of N cubes of side length B0 with B0 = o(B), where B0 is an unbounded function of
B, e.g. B0 = ln(B). Since V is unimodular, the volume of V −1(σ) is (2B)k, and taking into account
the border effect (see Figure 1), we have

N =
(2B)k +O(B0B

k−1)

(2B0)k
.
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k−1

B
0

)O(

O( )

Figure 1: The border effect on V −1(σ)

Each of the cubes contains δ(2B0)
k + o(Bk

0 ) points of S. Therefore,

|S ∩ V −1(σ)| = N · (δ(2B0)
k + o(Bk

0 ))

= δ(2B)k +O(B0B
k−1) +

(

(2B)k +O(B0B
k−1)

)

·
o(Bk

0 )

(2B0)k
.

Finally, using the conditions on B0, we see that

lim
B→∞

|V (S) ∩ σ|

(2B)k
= lim

B→∞

|S ∩ V −1(σ)|

(2B)k
= δ

which finishes the proof of the lemma.

The previous lemma can be used to prove that unimodular matrices keep the density of vectors
with entries of given greatest common divisor invariant. More precisely, we have the following
proposition.

Proposition 5 Let U ∈ Z
n×m, n ≤ m be a unimodular matrix and d ∈ N

∗. Then

D(x ∈ Z
m : gcd((Ux)i : i = 1, . . . , n)) = d) = (ζ(n) · dn)−1.

Proof: Consider S = {(y1, . . . , ym) ∈ Z
m : gcd(yi : i = 1, . . . n) = d}. Because of Lemma 3 above,

the set S has a density equal to (ζ(n) · dn)−1. Since U is unimodular, there exists a square m×m
unimodular matrix W whose first n rows equal the n rows of U . The result follows by applying
Lemma 4 with V = W−1 to S since x ∈ V (S) if and only if Wx = y ∈ S.

4 Distribution of Hermite normal forms

We start this section by noticing that the pivots hiji of the HNF of a matrix A are determined by
the greatest common divisor of the i× i minors of the matrix that consists in the jthl columns of A,
for l = 1, . . . , i. This is true because these gcd’s are left invariant when A is multiplied on the left
by any unimodular matrix, and because the gcd of the i × i minors of the matrix that consists in
the jthl columns of the HNF of A, for l = 1, . . . , i, is precisely equal to

∏

l=1,...,i hiji (all the other
determinants are zero due to the shape of the HNF of A). Note that when ji = i the above minors
are simply the i× i minors of the first i columns of A.

This property can be used as a basis of a basic algorithm to compute the HNF of A. We start by
computing the greatest common divisor h1 of the entries of the first non-zero column of A. Using
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the extended Euclidean algorithm we can express h1 as a linear combination of the entries of the
column. In a matrix form, this means that there exists a sequence of row operations, i.e., there
exists a unimodular matrix U1, such that the first non-zero column of U1A is [h1, 0, . . . , 0]

t. This
process can be repeated recursively as follows. There exists a unimodular matrix Uk such that the
first k columns of UkA form a matrix in HNF, as follows:

UkA =





















∗ · · · ∗ ∗ ∗ ∗ ∗ ∗

0
. . . ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗

0 x1 ∗ ∗ ∗ ∗
...

...
...

0 xs ∗ ∗ ∗ ∗





















. (2)

Let [∗, . . . , ∗, x1, . . . , xs]
t be the (k + 1)-th column of UkA. If xi = 0, i = 1, . . . , s, then this

column is disregarded. The next column for which one of the xi is non-zero is selected. Using
the previous remark, the next pivot hiji is given by hiji = gcd(xi), and using elementary row
operations, there exists a unimodular matrix Uk+1 such that the corresponding column of Uk+1A
is [∗, . . . , ∗, hiji , 0, . . . , 0]

t. Appropriate elementary row operations can modify Uk+1 and force the
∗ elements of the column to satisfy the conditions of the HNF, i.e., to belongs to [0, hiji [. At the
end of the process, the resulting matrix is clearly in HNF and must therefore be HNF (A). This
algorithmic approach will be useful in the proof of Proposition 6 below. The key point is that we
can can construct the HNF of A column after column, from left to right, via a sequence of left
multiplications by unimodular matrices.

In order to simplify the statement of our results, let us use the following notation. For any n×m
matrix A, the diagonal diag (A) of A is the list of elements (aii)i=1,...,min(n,m). For given n and m,
if d1, d2, ..., dk are integer, we write

∆d1,d2,...,dk
=
{

A ∈ Z
n×m : diag (HNF (A)) = (d1, ..., dk, ∗, ..., ∗)

}

whenever k ≤ min(n,m).

Proposition 6 Let n,m, k be positive integers and let d1, d2, ..., dk ∈ N .

1. Suppose n,m, k satisfy k ≤ m if m < n and k < n otherwise. If dk = 0,

D (∆d1,d2,...,dk
) = 0.

If di 6= 0, ∀i = 1, ..., k, then

D (∆d1,d2,...,dk
) =

(

ζ(n) · ζ(n− 1)... · ζ(n− k + 1) · dn1 · dn−1
2 · . . . · dn−k+1

k

)−1
.

2. Suppose n ≤ m and let 0 ≤ r < d ∈ N. Then

D
(

A ∈ ∆d1,d2,...,dn−1,a : a ≡ r mod d
)

=
1

d
· D
(

∆d1,d2,...,dn−1

)

.

The first point of the previous proposition clearly shows that the example of HNF given in the
introduction (with a 0 in the diagonal) will only rarely appear. The powers dn−i

i appearing in
the expression of the density explain the decreasing expectation to see a randomly looking n × m
matrix having elements on the top of the diagonal of its HNF larger than 1. Let us now prove the
proposition.

Proof: First, if dk = 0 for some k, then the kth column vector v of Uk−1A, see Equation (2) above,
is v = [∗, . . . , ∗, 0, . . . , 0]t. This means that there are at most O(Bk−1) choices for v in any cube of
volume (2B)n. Since n > k, this implies that D (∆d1,d2,...,0) = 0. Let us now focus on the case where
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di 6= 0, ∀i = 1, ..., k. We prove by induction on k that the expression of the density is valid. For
k = 1, the claim is true as a consequence that h11 is the greatest common divisor of the entries of
the first column vector, and this case is Proposition 5 above, when U is the identity. The induction
step is as follows. For a bound B, the number of n× (k − 1) matrices A′ with entries in a cube of
side length 2B such that diag (HNF (A′)) = (d1, ..., dk−1) is

(2B)n(k−1) ·
(

ζ(n) · ζ(n− 1)... · ζ(n− k + 2) · dn1 · dn−1
2 · . . . · dn−k+2

k−1

)−1
+ o(Bn(k−1)).

For each of these matrices, there exists an n × n unimodular matrix U such that UA′ is upper
diagonal and diag (UA′) = (d1, ..., dk−1). For any cube σ of side length 2B and dimension n, using
Proposition 5, we see that for each A′, there are (2B)n · (ζ(n− k+1) · dn−k+1)−1 + o(Bn) vectors v
in σ such that

U [A′|v] =





















d1 · · · ∗ (Uv)1

0
. . . ∗

...
0 dk−1 (Uv)k−1

0 (Uv)k
...

...
0 (Uv)n





















with gcd((Uv)i : i = k, . . . , n)) = dk. Based on the algorithmic description of the HNF given earlier,
the diagonal of the HNF of [A′|v] is (d1, ..., dk−1, dk). The number of such matrices is then, up to
an error of order o(Bn(k−1)+n),

(2B)n(k−1)+n ·
(

ζ(n) · ... · ζ(n− k + 2) · dn1 · . . . · dn−k+2
k−1

)−1
·
(

ζ(n− k + 1) · dn−k+1
)−1

.

Since n(k−1)+n = kn, the claim is correct. This argument can be continued as long as Proposition
5 can be applied, i.e. until k ≤ m if m < n or k < n otherwise. This finishes the proof of the first
statement of the proposition.

Let us concentrate now on the second statement. There exists a n×n unimodular matrix U such
that the first (n− 1) column of UA are in HNF. Clearly, if a = (UA)n,n then a = HNF (A)n,n, i.e.,
a = u · α, where u is the last row of U and α is the last column of A. For any cube σ of side length
2B and dimension n, we want to find the number of n-vectors α in σ such that u · α ≡ a mod d.
Since the entries of u are coprime, at least one is coprime to d, say ui. For each (2B)n−1 choices of
αj in σ, j 6= i, there are 2B

d + o(B) αi ∈ σ such that uiαi ≡ a−
∑

j 6=i ujαj mod d. In other words,

the density of the α’s is 1
d . The result follows by applying the same counting argument as before

and by using the previous expression of the density of ∆d1,d2,...,dn−1
. This finishes the proof of the

proposition.

Corollary 7 Let d1, d2, ..., dn−1 ∈ N
∗. The natural density of n × n integer matrices whose HNF

has diagonal
(

d1, d2, . . . , dn−1,
detA∏

i=1..n−1
di

)

is

(

ζ(n) · ζ(n− 1)... · ζ(2) · dn1 · dn−1
2 · . . . · d2n−1

)−1
.

The natural density of unimodular rectangular n × m integer matrices, with n > m, has been
computed in [14], with the weak definition of natural density presented in Section 2. Proposition 6
allows to extend the result to the stronger natural density defined in this article. With the material
in hand, the proof is straightforward.

Corollary 8 The set of n×m unimodular integer matrices, with n > m, has a natural density equal

to (ζ(n) · ζ(n− 1)... · ζ(n−m+ 1))
−1

.
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5 Applications

5.1 Selection of Random Lattices in Cryptology

In the following, we discuss the consequences of Proposition 6 above to the various shapes of lattice
bases that arise in lattice based cryptology.

An integer lattice L is a discrete Z-module of dimension n in R
m with L = Zb1+ . . .+Zbn, where

bi ∈ Z
m and Vol (L) = det([bi · bj ]i,j)

1/2 6= 0. A matrix B whose row vectors bi are independent
and generate L is called a basis of the lattice. Any matrix B′ = UB with U unimodular is a basis
of L. We refer the reader to, e.g., [16, Chapter 3] and [20] for the use of lattices in cryptology.
Several types of lattice bases naturally appear in lattice based cryptology. Among them, we find the
knapsack n× (n+1) bases (a), the NTRU 2n× 2n bases (b) and the so-called random n× n lattice
basis (c).

[

In x
]

[

In Hn

0n qIn

] [

In−1 x
0 q

]

(a) (b) (c)

A direct consequence of the previous proposition is that the density of integer matrices A with
HNF of the form (a) is 0. The density of integer matrices A with HNF of the form (c) is given
by (ζ(n) · . . . · ζ(2))

−1
. Since ζ(n) converges rapidly towards 1, the above density converges rather

fast to the limit d with d =
(

∏∞
j=2 ζ(j)

)−1

= 0.43575707677.... This translates into the facts that

the random lattice bases of type (c) have a positive density in the set of lattices with corresponding
dimension. The strict positivity of this density has been know since the work of Goldstein and Mayer
[7] (see also [1] for an elementary proof). This density being equal to d, this shows that the process
of selecting random lattice by selecting random row matrices of type (c) and large determinant q
covers almost 44% of all possible cases of randomly looking matrices.

In the case of NTRU bases (b), q = 2s, where s is a small integer and Proposition 6 suggests that

the density of such lattice bases is roughly equal to d · 2−N , with N = n2

2 s. Here again, the density
is strictly positive, but much smaller than in the random case (c).

5.2 Distribution of gcd(det([A|x], det[A|y]))

Using the weak notion of density presented in Section 2, Hafner, Sarnack and McCurley have com-
puted the probability that two randomly looking n×n matrices are coprime [8]. The situation where
the randomly looking matrices differs in one column only turns out to be interesting as well.

Let A be a randomly looking n×(n−1) integer matrix and x, y be two randomly looking n-vectors.
The distribution of the greatest common divisor g = gcd(det([A|x], det[A|y])) has been used in order
to predict the behavior of fast algorithms that compute the HNF of an integer matrix, see [15, 18].
Miccaccio and Warinschi [15] notice that g is “typically very small for randomly chosen matrices”,
and Pernet and Stein [18], based on numerical simulation, provide an histogram of the distribution
of the g’s. We propose here to exactly compute this distribution based on the natural density
distribution of Proposition 6. Suppose diag (HNF (A)) = (d1, . . . , dn−1), with UA = HNF (A), U
unimodular. Then

g = gcd(det([A|x], det[A|y])) = gcd(det([UA|Ux], det[UA|Uy]))

=
n−1
∏

i=1

di · gcd(u · x, u · y)

where u is the last row of U and u · x (resp. u · y) is the scalar product of u and x (resp. y). Note
that since U is unimodular, we have gcd(ui) = 1. The natural distribution of gcd(u ·x, u · y) in such
a case can be computed as follows. The reader will readily check that for a given modulus d, the
distribution of (u · x mod d, u · y mod d) is uniform in (Z/dZ)

2
. This means that the proportion

of pairs (u · x, u · y) that are divisible by d is d−2, and the proportion of pairs (u · x, u · y) that are
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not (0, 0) modulo a prime p is 1 − p−2. This suggests that the density of n-vectors x, y such that
d = gcd(u · x, u · y) is given by

1

d2

∏

p∈P

(

1− p−2
)

=
(

d2ζ(2)
)−1

.

This development can be made rigorous by using the methods used in Section 2 and the localization
methods presented in [14]. Finally, the natural density Dn(g) of n× (n− 1) integer matrices A and
n-vectors x, y such that g = gcd(det([A|x], det[A|y])) is given by

Dn(g) =
1

ζ(2) ·
∏n

k=2 ζ(k)

∑

d1·...·dn=g

1

dn1 · dn−1
2 · . . . · d3n−2 · d

2
n−1 · d

2
n

. (3)

If σ−k(g) =
∑

d|g d
−k, then using the Dirichlet’s convolution product ∗ of arithmetic functions, we

obtain

Dn =
1

ζ(2) ·
∏n

k=2 ζ(k)
· (σ−n ∗ σ−n+1 ∗ . . . ∗ σ−3 ∗ σ−2 ∗ σ−2) .

Since the Dirichlet series associated to σ−k is ζ(s + k) · ζ(s) (see e.g. [22]), i.e.,
∑

g≥1
σ−k(g)

gs =

ζ(s) · ζ(s+ k), the Dirichlet series associated to Dn is given by

∑

g≥1

Dn(g)

gs
= (ζ(s))

n
·
ζ(s+ 2)

ζ(2)
·

n
∏

k=2

ζ(s+ k)

ζ(k)
, ℜ(s) > 1.

If we write fn = ζ(2) ·
∏n

k=2 ζ(k) ·Dn, Equation (3) above shows that the arithmetic function fn is
multiplicative, i.e., fn(gh) = fn(g) · fn(h) when gcd(g, h) = 1. It is therefore sufficient to compute
fn(p

α) for p ∈ P, α ≥ 1 in order to determine Dn explicitly. Equation (3) with d1 = pi gives

fn(p
α) =

α
∑

i=0

1

pni
fn−1(p

α−i),

together with f1(p
α) = 1

p2α . Based on this recurrence relation, we can compute fn for the first value

of n, e.g., f2(p
α) = α+1

p2α and prove that fn converges rapidly to a limit function f that satisfies

f(1) = 1 , f(p) =
2p− 1

p2(p− 1)
, f(p2) =

3p3 − p2 − 2p+ 1

p4(p− 1)2(p+ 1)

and in general for all α ≥ 3,

f(pα) =
α+ 1

p2α
+

α

p2α+1
+

2α− 1

p2α+2
+

3α− 3

p2α+3
+

5α− 7

p2α+4
+ o

(

1

p2α+5

)

.

The first values of

D(g) = lim
n→∞

Dn(g) = lim
n→∞

(

ζ(2) ·

n
∏

k=2

ζ(k)

)−1

fn(g) =
d

ζ(2)
· f(g),

where d is the constant defined in Section 5.1, are given via

f(2) =
3

4
, f(3) =

5

18
, f(4) =

17

48
, f(5) =

9

100
, f(6) =

5

24
, f(7) =

13

276
.

Numerical simulation showed that already for small dimension n, say n > 5, the above values of
D give very good approximations of the density Dn. We end up this section by noticing that
even though the above remark of Miccancio is true, the expected size of gcd(det([A|x], det[A|y])) is
unbounded. Indeed, the real numbers D(g), g ∈ N

∗, define a probability distribution on N
∗, i.e.,

∑

g∈N∗ D(g) = 1 and since D(p) > C/p2 for some C > 0 and
∑

p∈P
1/p = ∞, the expectation of

the positive integers under this distribution law is
∑

g∈N∗ gD(g) >
∑

p∈P
C/p = ∞. Notice that

D(1) = d
ζ(2) = 0.266014... which is not far from 30%, as noted in [15].
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6 Conclusion

Numerical experiments indicate that for randomly looking integer matrices, their Hermite normal
forms are not uniformly distributed among the upper diagonal matrices. The frequency of apparition
of the different diagonals is highly structured. In this paper, we explain this phenomenon, and we
exactly compute these frequencies in terms of natural density. On the way, we define a multidimen-
sional extension of the usual natural density over N. We use this analysis in order to shed light
on the following two different situations where the expected form of the HNF of randomly looking
matrices play a role. First, the densities of three types of lattice bases that naturally appear in
lattice based cryptology has been computed. Second, a probability distribution over the positive
integer appearing in some HNF algorithms has been explicitly evaluated.
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