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QUADRATIC HARNESSES FROM GENERALIZED BETA INTEGRALS

W LODEK BRYC

Abstract. We use generalized beta integrals to construct examples of Markov processes with
linear regressions, and quadratic second conditional moments.

1. Introduction

1.1. Quadratic harnesses. In [BMW07] the authors consider square-integrable stochastic pro-
cesses on (0,∞) such that for all t, s > 0,

(1.1) E(Xt) = 0, E(XtXs) = min{t, s},
E(Xt|Fs,u) is a linear function of Xs, Xu, and Var[Xt|Fs,u] is a quadratic function of Xs, Xu.
Here, Fs,u is the two-sided σ-field generated by {Xr : r ∈ (0, s]∪ [u,∞)}. Then for all s < t < u,
(1.1) implies that

(1.2) E(Xt|Fs,u) =
u− t

u− s
Xs +

t− s

u− s
Xu,

which is sometimes referred to as a harness condition, see [MY05]. While there are numerous
examples of harnesses that include all integrable Lévy processes ([JP88, (2.8)]), the assumption
of quadratic conditional variance is more restrictive, see [Wes93]. Under certain assumptions,
[BMW07, Theorem 2.2] asserts that there exist numerical constants η, θ ∈ R σ, τ > 0 and
γ ∈ [−1, 1 + 2

√
στ ] such that for all s < t < u,

(1.3) Var[Xt|Fs,u] =
(u− t)(t− s)

u(1 + σs) + τ − γs

(
1 + η

uXs − sXu

u− s
+ θ

Xu −Xs

u− s

+σ
(uXs − sXu)

2

(u− s)2
+ τ

(Xu −Xs)
2

(u− s)2
− (1 − γ)

(Xu −Xs)(uXs − sXu)

(u− s)2

)
.

We will say that a square-integrable stochastic process (Xt)t∈T is a quadratic harness on T with
parameters (η, θ, σ, τ, γ), if it satisfies (1.1), (1.2) and (1.3) on an open interval T ⊂ (0,∞).

Our goal is to construct examples of Markov quadratic harnesses with γ = 1 − 2
√
στ . In

[BMW07, Proposition 4.4], these were called ”classical quadratic harnesses. The construction
follows [BW10, Section 2] who construct quadratic harnesses with γ < 1 − 2

√
στ from the

Askey-Wilson integral. Here we use instead some of the generalized Beta integrals from [Ask89].
The paper is organized into sections based on the number of parameters in the generalized beta

integrals. In particular, in Section 4 we exhibit explicit transition probabilities for the bridges
of the hyperbolic secant process, and for completeness in Section 5 we re-analyze the Dirichlet
process.
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1.2. Conversion to the standard form. In this section we recall a procedure that we use to
transform Markov processes with linear regressions and quadratic conditional variances into the
quadratic harnesses. The following is a specification of [BW09, Theorem 1.1] that fits our needs.

Proposition 1.1. Suppose (Yt) is a (real-valued) Markov process on an open interval T ⊂ R

such that

(1) E(Yt) = α + βt for some real α, β.
(2) For s < t in T , Cov(Ys, Yt) = M2(ψ + s)(δ + εt), where M2(ψ + t)(δ + εt) > 0 on the

entire interval T , and that δ − εψ > 0.
(3) For s < t < u,

(1.4) Var(Yt|Ys, Yu) = Ft,s,u

(
χ0 + η0

uYs − sYu
u− s

+ θ0
Yu − Ys
u− s

+
(Yu − Ys)

2

(u− s)2

)
,

where Ft,s,u is non-random and χ0, θ0, η0 ∈ R are such that χ := χ0 +αη0 +βθ0 +β2 > 0.

Denote Ỹt = Yt − E(Yt). Then there are two affine functions ℓ(t) = tδ−ψ
M(δ−ǫψ) and m(t) = 1−tǫ

M(δ−ǫψ)

and an open interval T ′ ⊂ (0,∞) such that Xt := m(t)Ỹℓ(t)/m(t) defines a process (Xt) on T
′ such

that (1.1) holds and (1.3) holds with parameters

η = M (δη0 + ǫ (2β + θ0)) /χ ,(1.5)

θ = M (2β + ψη0 + θ0) /χ ,(1.6)

σ = M2ε2/χ ,(1.7)

τ = M2/χ ,(1.8)

γ = 1 + 2ε
√
στ .(1.9)

Proof. This is [BW09, Theorem 1.1] specialized to χ = χ0, η = η0, θ = θ0, σ = 0, τ = 1, ρ = 0,
a = M , b = Mψ, c = Mǫ, d = Mδ. �

Remark 1.1. We will apply this only to ε = 0,±1, and χ0, θ0, η0 ∈ {0, 1}.
Remark 1.2. For ε ≤ 0, we see that γ ≤ 1 and η

√
τ + θ

√
σ = M2(δ − εψ)η0/χ

2 has the same
sign as η0.

Remark 1.3. The time domain T ′ is the image of T under the Möbius transformation t 7→
(t+ ψ)/(εt+ δ).

Two related transformations are sometimes useful to keep in mind, as they take care of some
additional non-uniqueness in the final form of (1.3). Firstly, if (Xt) is a quadratic harness with pa-
rameters (η, θ, σ, τ, γ) then (aXt/a2) is a quadratic harness with parameters (η/a, aθ, σ/a2, a2τ, γ).
In particular, if σ = 0 and τ > 0, then without loss of generality we may take τ = 1. And if
σ, τ > 0 then without loss of generality we may take σ = τ . (So our constructions will lead to
these two cases only.)

Secondly, time inversion (tX1/t) converts a quadratic harness with parameters (η, θ, σ, τ, γ) into
a quadratic harness with parameters (θ, η, τ, σ, γ), i.e. it swaps the entries within pairs (η, θ) and
(σ, τ). In particular, time inversion maps a quadratic harness with σ = 0, τ = 1 into a quadratic
harness with σ = 1, τ = 0. Similarly, it maps a quadratic harness with parameters σ = τ and
η2 < 4σ, θ2 ≥ 4σ into a quadratic harness with parameters σ = τ and η2 ≥ 4σ, θ < 4σ.

2. Four-parameter beta integral

This section contains the construction of Markov processes based on the four-parameter beta
integral [Ask89, (8.i)]. After a transformation, these processes become quadratic harnesses with
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arbitrary σ = τ ∈ (0, 1), γ = 1 − 2
√
στ , and with η, θ such that

√
τη +

√
σθ 6= 0; parameters

η, θ will be required to satisfy also some additional restrictions, of which ηθ ≥ 0 suffices for
all constructions to go through. Since the main steps will be repeated several times, first with
three parameters to cover the case σ = 0, and then with two parameters to cover the case√
τη +

√
σθ = 0, we give here more details so that we can suppress them in the subsequent

iterations.
The construction starts with four complex numbers a1, a2, a3, a4 with strictly positive real

parts. The generalized beta integral [dB72, Wil80] after changing the variable to
√
x is

(2.1)

∫ ∞

0

∏4
j=1 (Γ(aj + i

√
x)Γ(aj − i

√
x))

√
x |Γ(2i

√
x)|2

dx =
4π
∏

1≤k<j≤4 Γ(ak + aj)

Γ(a1 + a2 + a3 + a4)
.

Denote

(2.2) K(a, b, c, d) =
Γ(a+ b+ c+ d)

4πΓ(a+ b)Γ(a + c)Γ(b+ c)Γ(a+ d)Γ(b+ d)Γ(c+ d)
.

If a, b, c, d are positive real numbers, or come as one or two conjugate pairs with positive real
parts, identity (2.1) implies that the following function of x > 0 becomes a four-parameter
probability density function on (0,∞):

(2.3) f(x; a, b, c, d) = K(a, b, c, d)
|Γ(a+ i

√
x)Γ(b+ i

√
x)Γ(c+ i

√
x)Γ(d+ i

√
x)|2

√
x |Γ(2i

√
x)|2

.

Proposition 2.1. If a random variable X has density f(x; a, b, c, d) then

(2.4) E(X) =
abc + abd+ acd+ bcd

a + b+ c+ d

and

(2.5) Var(X) =
(a+ b)(a + c)(b+ c)(a+ d)(b+ d)(c+ d)

(a + b+ c+ d)2(a+ b+ c + d+ 1)
.

Proof. The formulas can be read out from the first two orthogonal polynomials [KS98, (1.1.4)],
but they also follow easily from the formulas

E(a2 +X) = E

(
(a+ i

√
X)(a− i

√
X)
)

=
K(a, b, c, d)

K(a+ 1, b, c, d)

and

a2b2 + (a2 + b2)E(X) + E(X2) = E
(
(a2 +X)(b2 +X)

)
=

K(a, b, c, d)

K(a+ 1, b+ 1, c, d)
.

Now using (2.2) and sΓ(s) = Γ(s+ 1), we get (2.4), and after a calculation we get (2.5). �

Next, we prove a ”convolution formula” which will be used to verify the Chapman-Kolmogorov
equations.

Proposition 2.2. If m > 0 then

(2.6) f(y; a, b, c + m, d + m) =

∫ ∞

0

f
(
y; a, b,m+ i

√
x,m− i

√
x
)
f(x; a + m, b + m, c, d) dx.

Proof. Re-arranging the factors in (2.3), we have

(2.7)
f(x, a+m, b+m, c, d)f (y, a, b,m+ i

√
x,m− i

√
x)

f(y, a, b, c+m, d+m)
= f (x,m + i

√
y,m− i

√
y, c, d) .

Formula (2.6) now follows, as
∫∞
0
f
(
x;µ+ i

√
y, µ− i

√
y, c, d

)
dx = 1. �
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We remark that (2.7) is an analog of [Jam74, (b3)] and will serve similar purposes. Related
formulas will appear again as (3.3), (4.5), (4.14), and (5.3).

2.1. The auxiliary Markov process. We now define a family of Markov processes (Yt)t∈T ,
parameterized by A,B,C,D that are either all real and positive or come as one or two complex
conjugate pairs A = B̄ or C = D̄, with positive real parts. Without loss of generality we may
assume that ℜ(A) ≤ ℜ(B) and ℜ(C) ≤ ℜ(D).

As the time domain for Markov process (Yt) we take the open interval T = (−ℜ(C),ℜ(A)),
and as the state space we take (0,∞). We define the univariate distribution of Yt by the density

(2.8) ft(x) = f(x;A− t, B − t, C + t, D + t).

For s < t, we define the transition probability L(Yt|Ys = x) by the density

(2.9) fs,t(y|x) = f
(
y;A− t, B − t, t− s+ i

√
x, t− s− i

√
x
)
.

It remains to verify that the above definitions are consistent.

Proposition 2.3. Formulas (2.8) and (2.9) determine a Markov process (Yt)t∈T . Furthermore,
E(Y0) = (ABC + ABD + ACD +BCD)/(A+B + C +D) by (2.4) and

(2.10) E(Yt) = E(Y0) + 2
AB − CD

A+B + C +D
t− t2.

For s ≤ t in T ,

(2.11) Cov(Ys, Yt) = M2(C +D + 2s)(A+B − 2t),

where

(2.12) M2 =
(A+ C)(B + C)(A+D)(B +D)

(A+B + C +D)2(A +B + C +D + 1)
> 0.

In view of (2.10), the conditional moments simplify when we express them in terms of

(2.13) Ỹt = Yt/2 + t2/4, −2ℜ(C) < t < 2ℜ(A),

with linear mean E(Ỹt) = α + βt and the covariance Cov(Ỹs, Ỹt) = M2(C + D + s)(A + B − t)
for s ≤ t. The one-sided conditional moments s ≤ t are:

(2.14) E(Ỹt|Ỹs) =
(A+B − t)

A+B − s
Ỹs +

AB(t− s)

A+B − s
,

(2.15) Var(Ỹt|Ỹs) =
(A+B − t)(t− s)

(
A2 − sA+ Ỹs

)(
B2 − sB + Ỹs

)

(A+B − s)2(A +B − s+ 1)
.

For s < t < u in T ,

(2.16) E(Ỹt|Ỹs, Ỹu) =
(u− t)Ỹs + (t− s)Ỹu

u− s
,

(2.17) Var(Ỹt|Ỹs, Ỹu) =
(u− t)(t− s)

u− s+ 1

(
(Ỹu − Ỹs)

2

(u− s)2
+
uỸs − sỸu
u− s

)
.
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Proof. To verify Chapman-Kolmogorov equations we first use (2.6) with m = t − s, a = A − t,
b = B − t, c = C + t, d = D + t. This gives

(2.18) ft(y) =

∫ ∞

0

fs,t(y|x)fs(x) dx.

Next we use (2.6) with m = u− t, a = A− u, b = B − u, c = t− s+ i
√
x, d = t− s− i

√
x to

verify the Chapman-Kolmogorov equations for the transition probabilities,

(2.19) fs,u(z|x) =

∫ ∞

0

fs,t(y|x)ft,u(z|y) dy.

Formula (2.7) can be now reinterpreted as the formula for the conditional distribution L(Yt|Ys =
x, Yu = z), given by the density

(2.20) g(y|x, z) =
ft,u(z|y)fs,t(y|x)

fs,u(z|x)
= f

(
y; u− t + i

√
z, u− t− i

√
z, t− s+ i

√
x, t− s− i

√
x
)
.

Since this is again expressed in terms of the same density (2.3), the formulas for the conditional
mean and conditional variance are recalculated from Proposition 2.1. Finally, we use (2.10), and

(2.21) Var(Yt) = M2(A+B − 2t)(C +D + 2t),

which is calculated from (2.5), and (2.14), to compute E(YsYt) and we get (2.11). �

Corollary 2.4. (Ỹt) can be transformed into a quadratic harness with covariance (1.1) and the
conditional variance (1.3) with parameters

η + θ =
(A +B + C +D)2√

(A + C)(B + C)(A+D)(B +D)(A+B + C +D + 1)
,(2.22)

θ − η =
(C −D)2 − (A− B)2√

(A + C)(B + C)(A+D)(B +D)(A+B + C +D + 1)
,(2.23)

σ = τ =
1

A+B + C +D + 1
,(2.24)

and γ = 1 − 2
√
στ = (A+B + C +D − 1)/(A+B + C +D + 1).

Proof. We apply Proposition 1.1 with parameters

α =
ABC + ADC +BDC + ABD

A+B + C +D
, β =

AB − CD

A+B + C +D
, ǫ = −1, ψ = C +D, δ = A+B.

The only non-zero parameters in (1.4) are η0 = τ0 = 1. �

Remark 2.1. The quadratic harness is defined on the interval

T ′ =

(
C +D − 2ℜ(C)

A +B + 2ℜ(C)
,
C +D + 2ℜ(A)

A +B − 2ℜ(A)

)
.

In particular, T ′ = (0,∞) if A = B̄ and C = D̄. It is plausible that by allowing transition
probabilities and univariate laws with discrete components, this interval could be extended to
(0,∞) in all cases when ℜ(A+B) > 0 and ℜ(C +D) > 0.
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2.2. The admissible range of η, θ. In this section we study which collections of parameters
correspond to quadratic harnesses from the previous construction. Given σ = τ, γ = 1 − 2σ and
η, θ such that η+ θ 6= 0, without loss of generality we may assume that η+ θ > 0. For if we can
find a quadratic harness (Xt) for one such set of parameters, then (−Xt) is a quadratic harness
on the same time domain, with the same σ, τ, γ, but with −η,−θ instead of η, θ.

Once we restrict ourselves to the case η+θ > 0, we want to know for which η, θ, σ = τ, γ = 1−2σ
we can find A,B,C,D that satisfy the equations from Corollary 2.4 and satisfy the constraints for
the construction of the Markov process (Yt). We will see that we can always find such A,B,C,D
if either ηθ ≥ 0 (which under the assumption η + θ > 0, is equivalent to η ≥ 0, θ > 0 or vice
versa) or when the sign of ηθ is arbitrary but η2 < 4σ and θ2 < 4τ .

To proceed, we rewrite the equations from Corollary 2.4 in equivalent form:

A+B + C +D = (1 − σ)/σ ,(2.25)

(A+ C)(B + C)(A+D)(B +D) =
(1 − σ)4

(η + θ)2σ3
,(2.26)

(C −D)2 − (A−B)2 =
(θ − η)(1 − σ)2

(η + θ)σ2
.(2.27)

2.2.1. Hyperbolic case. We first show that quadratic harnesses exist for any η, θ such that η+θ >
0, η2 < 4σ and θ2 < 4σ. This is because in this case the system of equations (2.25-2.27) is solved
by two conjugate pairs A = B̄ and C = D̄ with A,C given by

A = ℜ(A) +
i(1 − σ)

√
4σ − η2

2(η + θ)σ
, C =

1 − σ

2σ
− ℜ(A) +

i(1 − σ)
√

4σ − θ2

2(η + θ)σ

with arbitrary 0 < ℜ(A) < 1−σ
2σ

.
The apparent non-uniqueness in this solution and in others is in fact illusory, as it corresponds

to the translation of the time domain T . This translation does not affect neither the transition
probabilities of the final quadratic harness, nor the final time domain, which by Remark 2.1 is
T ′ = (0,∞).

2.2.2. Next we go over the remaining choices of pairs (η, θ), and confirm that in each case we
can always find a quadratic harness when ηθ ≥ 0.

We first consider η, θ such that η + θ > 0, η2 < 4σ and θ2 ≥ 4σ. Then quadratic harnesses
exist if 4σ+ η2 + 2ηθ > 0. Indeed, in this case the system of equations (2.25-2.27) is solved with
one conjugate pair A = B̄. The solutions are

A = ℜ(A) +
i(1 − σ)

√
4σ − η2

2(η + θ)σ
,

C =

(
η + θ −

√
θ2 − 4σ

)
(1 − σ)

2(η + θ)σ
−ℜ(A) ,

D =

(
η + θ +

√
θ2 − 4σ

)
(1 − σ)

2(η + θ)σ
− ℜ(A) .

The restriction 4σ + η2 + 2ηθ > 0 guarantees that θ2 − 4σ < (θ + η)2 so one can find ℜ(A) > 0
such that C > 0; then D > 0 follows automatically.

The restriction 4σ + η2 + 2ηθ > 0 holds, in particular, if η ≥ 0, as then 4σ + η2 + 2ηθ >
2η2 + 2ηθ = 2η(η + θ) ≥ 0.
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We remark that the left endpoint of the time domain T ′ here is 0, see Remark 2.1. This is
of interest, since for such domains the one-sided conditional moments (2.14) and (2.15) imply
uniqueness of the quadratic harness.

Finally, if η + θ > 0 are such that η2 ≥ 4σ and θ2 ≥ 4σ, then under the condition η + θ >√
η2 − 4σ +

√
θ2 − 4σ one can choose a small enough A > 0 such that

B = A+

√
η2 − 4σ(1 − σ)

(η + θ)σ
,

C =

(
η + θ −

√
η2 − 4σ −

√
θ2 − 4σ

)
(1 − σ)

2(η + θ)σ
− A ,

D =

(
η + θ −

√
η2 − 4σ +

√
θ2 − 4σ

)
(1 − σ)

2(η + θ)σ
− A ,

are all positive. In particular, if η, θ > 0 then η >
√
η2 − 4σ and θ >

√
θ2 − 4σ so the above

solution will indeed give us a quadratic harness on a finite interval T ′.

3. Three parameter beta integral

For a > 0 and b, c real positive or a complex conjugate pair with positive real part, define the
following density on [0,∞): (See [Ask89, (7.i)] or [KS98, Section 1.3])

(3.1) g(x; a, b, c) =
|Γ(a+ i

√
x)Γ(b+ i

√
x)Γ(c+ i

√
x)|2

4πΓ(a+ b)Γ(a + c)Γ(b+ c)
√
x|Γ(2i

√
x)|2 .

As previously, it is straightforward to use properties of the gamma function to get formulas for
the mean µ and the variance σ2,

(3.2) µ = ab+ ac + bc, σ2 = (a+ b)(a + c)(b+ c).

The relevant version of (2.7) is

(3.3)
g(x; a+m, b, c)g (y; a,m+ i

√
x,m− i

√
x)

g(y; a, b+m, c+m)
= f (x,m + i

√
y,m− i

√
y, b, c) ,

where x, y,m > 0.
Let A ∈ R and let B,C be either real or a complex conjugate pair, and without loss of

generality we assume that in the real case B ≥ C. Suppose in addition that A + ℜ(C) > 0
so that T = (−ℜ(C), A) is non-empty. Then from (3.3) we get again a Markov process (Yt)t∈T
with univariate distributions on the state space (0,∞) defined by the densities g(x;A − t, B +
t, C + t), with transition probabilities defined for s < t in T and x, y > 0 by the densities
g(y;A − t, t − s − i

√
x, t − s + i

√
x), and whose two-sided conditional laws are again given by

Wilson’s density (2.20). In particular, after we make substitution (2.13) formulas (2.16) and
(2.17) for the two-sided conditional mean and variance hold.

As previously, parameters A,B,C affect only the mean and the covariance of (Yt):

(3.4) E(Yt) = −t2 + 2At+ AB + AC +BC, Var(Yt) = (A+B)(A+ C)(B + C + 2t) .

Passing to the centered process (2.13), the one-sided conditional moments are:

E(Ỹt|Ỹs) = A(t− s) + Ỹs, Var(Ỹt|Ỹs) = (t− s)
(
A2 − sA + Ỹs

)
.

In particular, the above formula for E(Ỹt|Ỹs) gives

Cov(Ỹs, Ỹt) = (A+B)(A + C)(B + C + min{t, s}) .
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Then the transformation from Proposition 1.1 takes a particularly simple form. Markov process

Xt =
Ỹt−B−C − E(Ỹt−B−C)√

(A+B)(A+ C)

is a quadratic harness with parameters

η =
1√

(A+B)(A+ C)
,(3.5)

θ =
2A+B + C√

(A+B)(A+ C)
,(3.6)

σ = 0 ,(3.7)

τ = 1 .(3.8)

This gives us a family of quadratic harnesses arbitrary positive values for parameters η, θ, with
τ = 1, σ = 0. Other values of parameters are now produced by routine transformations that
were mentioned in the introduction. To swap the roles of σ, τ one uses time inversion (tX1/t).
Taking (−Xt) we get arbitrary negative values of η, θ, covering all possible non-zero values of
the same sign (ηθ > 0). Finally, transformation (Xαt/

√
α) produces arbitrary positive values for

parameter τ .

Remark 3.1. The quadratic harness is defined on

T ′ = (ℜ(C −B),∞).

In particular, T ′ = (0,∞) if B = C̄. It would be interesting to see if the construction could be
modified to yield T ′ = (0,∞) also for real B 6= C.

Remark 3.2. Formula (3.3) indicates that bridges of the three-parameter quadratic harnesses
with σ = 0 are the (transformations of) four-parameter quadratic harnesses from Corollary 2.4.
It would be interesting to see if this holds true also in the cases without densities.

4. Two-parameter beta integral

According to [Ask89, (5.i)], see also [KS98, Section 1.4], the following is a probability density
on R when c = ā, d = b̄ have positive real part.

(4.1) ϕ(x; a, b, c, d) =
Γ(a+ b+ c+ d)Γ (a+ ix) Γ (b+ ix) Γ (c− ix) Γ (d− ix)

2πΓ(a+ c)Γ(b+ c)Γ(a+ d)Γ(b+ d)
.

The analog of Proposition 2.1 is

Proposition 4.1. If a random variable X ∈ R has density ϕ(x; a, b, c, d), then

(4.2) E(X) = −ℜ(a)ℑ(b) + ℜ(b)ℑ(a)

ℜ(a+ b)
,

(4.3) Var(X) =
ℜ(a)ℜ(b) ((ℜ(a+ b))2 + (ℑ(a− b))2)

(ℜ(a+ b))2(2ℜ(a+ b) + 1)
.
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Proof. Denote by K(a, b, c, d) = Γ(a+b+c+d)
2πΓ(a+c)Γ(b+c)Γ(a+d)Γ(b+d)

the normalizing constant in (4.1). Then

(4.4)

∫ ∞

−∞
xϕ(x; a, b, c, d) dx

=
1

i(c+ b− a− d)

(∫ ∞

−∞
((a+ ix)(c− ix) − (b+ ix)(d− ix) + bd− ac)ϕ(x; a, b, c, d) dx

)

=
K(a, b, c, d)

i(c+ b− a− d)

(
1

K(a+ 1, b, c+ 1, d)
− 1

K(a, b+ 1, c, d+ 1)
+ bd − ac

)
=

i(ab− cd)

a+ b+ c+ d
.

Substituting a = ℜ(a)+ iℑ(a), b = ℜ(b)+ iℑ(b), c = ℜ(a)− iℑ(a), d = ℜ(b)− iℑ(b) we get (4.2).
The variance comes from a similar calculation:

E(X2) − (E(X))2 = K(a+ 1, b, c+ 1, d) − (c− a)E(X) − ac− (E(X))2

=
(a+ c)(b+ c)(a + d)(b+ d)

(a+ b+ c+ d)2(a + b+ c+ d+ 1)
.

�

The analog of Proposition 2.2 is based on the identity

(4.5)
ϕ(y; a,m− ix, ā,m+ ix)ϕ(x; a +m, b, ā+m, b̄)

ϕ(y; a, b+m, ā, b̄+m)
= ϕ(x; b,m− iy, b̄, m+ iy).

Thus, given complex parameters A,B, such that ℜ(A + B) > 0, let T = (−ℜ(B),ℜ(A)). For
s < t in T , the univariate densities on R

(4.6) ft(x) = ϕ(x,A− t, B + t, Ā− t, B̄ + t) ,

and the transition probabilities

(4.7) fs,t(y|x) = ϕ(x,A− t, t− s− ix, Ā− t, t− s+ ix) ,

satisfy the Chapman-Kolmogorov equations (2.18) and (2.19). Let (Yt)t∈T denote the corre-
sponding Markov process. Then from (4.2) and (4.3) we get

(4.8) E(Yt) =
ℑ(B − A)

ℜ(A+B)
t− ℜ(A)ℑ(B) + ℑ(A)ℜ(B)

ℜ(A+B)
, Var(Yt) = M2(ℜ(A) − t)(ℜ(B) + t),

where

(4.9) M2 =
(ℑ(A−B))2 + (ℜ(A+B))2

(ℜ(A+B))2(2ℜ(A+B) + 1)
.

Since (4.2) also gives

E(Yt|Ys) =
ℜ(A) − t

ℜ(A) − s
Ys −

ℑ(A)(t− s)

ℜ(A) − s

for s < t, from (4.8) we further calculate

(4.10) Cov(Ys, Yt) = M2(ℜ(A) − t)(ℜ(B) + s).

Next we compute conditional moments. For s < t < u in, the two-sided conditional density of
L(Yt|Ys = x, Yu = z) is given by

g(y|x, z) = ϕ(y; t− s− ix, u− t− iz, t− s+ ix, u− t + iz) .

So from (4.2),

E(Yt|Ys, Yu) =
(u− t)Ys + (t− s)Yu

u− s
.
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and from (4.3) we get

(4.11) Var(Yt|Ys, Yu) =
(t− s)(u− t)

(2u− 2s+ 1)

(
1 +

(Yu − Ys)
2

(u− s)2

)
.

From Proposition 1.1 applied with χ0 = 1, α = −ℑ(B)ℜ(A)+ℑ(A)ℜ(B)
ℜ(A+B)

, β = ℑ(B−A)
ℜ(A+B)

, η0 = 0,

θ0 = 0, ǫ = −1, ψ = ℜ(B), δ = ℜ(A), M =

√
(ℑ(A−B))2+(ℜ(A+B))2

ℜ(A+B)
√

2ℜ(A+B)+1
, we get

σ = τ =
1

2ℜ(A+B) + 1
,

η = −θ =
2(ℑ(A−B))√

(2ℜ(A+B) + 1) ((ℑ(A−B))2 + (ℜ(A+B))2)
.

From the first equation, we see that ℜ(A+B) = 1−σ
2σ

. The second equation determines ℑ(A−B)
as a real number iff θ2 < 4τ . This proves the following.

Proposition 4.2. For every σ ∈ (0, 1) and η ∈ (−2
√
σ, 2

√
σ), there is a quadratic harness on

(0,∞) with parameters η, θ = −η, σ, τ = σ, γ = 1 − 2σ.

4.1. Bridges of the hyperbolic secant process. Bridges of all Meixner processes are de-
scribed in [BW09, Proposition 4.2 and Remark 4.1]. According to these results, bridges of
Meixner processes are quadratic harnesses with η

√
τ + θ

√
σ = 0. When στ > 0, then depending

on the sign of θ2 − 4τ , such processes arise as bridges of negative binomial, gamma, or the hy-
perbolic secant process. In [BW09] the bridges of hyperbolic secant process were not described
explicitly, so we identify their transition probabilities here.

The following integral is due to Meixner [Mei34, page 13], and is listed as [Ask89, (4.i)]:

(4.12)

∫ ∞

−∞
|Γ(a+ ix)|2eβxdx =

2πΓ(2a)

(2 cos β
2
)2a
.

The integral is well defined for real a > 0 and −π < β < π. Denote by f(x; a, β) the corresponding
density, i.e.

(4.13) f(x; a, β) =
(2 cos β

2
)2a

2πΓ(2a)
|Γ(a+ ix)|2eβx ,

and by X the corresponding random variable.
Differentiating (4.13) with respect to β and integrating the answer we get E(X) = a tan

(
β
2

)

and Var(X) = 1
2
a sec2

(
β
2

)
. It is known that the corresponding Markov process has independent

increments: the univariate law of Yt has density ft(x) = f(x;A−t, β) and the transition densities
are fs,t(y|x) = f(y − x; t − s, β). One can verify also Chapman-Kolmogorov equations directly
from the analog of Proposition 2.2 which is based on the identity

(4.14)
f(y − x;m, β)f(x; a, β)

f(y; a+m, β)
= ϕ(x; a,m− iy, a,m+ iy).

The right hand side of (4.14) integrates to 1 because of (4.1). (This gives an ”elementary” proof
of the well known fact established by Laha and Lukacs [LL60, Lemma 2] that the hyperbolic
secant laws form a convolution semi-group.)

The following proposition describes in more detail bridges mentioned in [BW09, Remark 4.1].
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Proposition 4.3. All bridges of a hyperbolic secant process are described by formulas (4.6) and
(4.7). Conversely, all quadratic harnesses with 0 < στ < 1, γ = 1 − 2

√
στ and η, θ ∈ R such

that η
√
τ + θ

√
σ = 0 and θ2 < 4τ can be realized as such bridges.

Proof. From (4.14) we see that for a hyperbolic secant process (Yt), the two-sided conditional
law of L(Yt|Ys = x, Yu = z) is given by

(4.15) g(y|x, z) = ϕ(y − x; t− s, u− t− i(z − x), t− s, u− t+ i(z − x)).

Inspecting formula (4.1), we see that

ϕ(y−x; t−s, u− t− i(z−x), t−s, u− t+ i(z−x)) = ϕ(y; t−s− ix, u− t− iz, t−s+ ix, u− t+ iz)

= ϕ(y; u− t− iz, t− s− ix, u− t+ iz, t − s+ ix) .

So identifying this with the univariate law of the bridge at time S < t < U , conditioned at S < U ,
we can read out that the bridge corresponds to the Markov process with transition probabilities
(4.7), where A = U − iYU , B = −S − iYS.

�

5. Standard beta integral

In this section we use the well known beta density

(5.1) f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

to re-derive the quadratic harness properties of the one-parameter family of Dirichlet processes
from [BW09, Eample 4.1]. (Here, the density is on 0 < x < 1, and the parameters satisfy
a, b > 0.) It is well know that the corresponding random variable X has moments

(5.2) E(X) =
a

a+ b
, and Var(X) =

ab

(a+ b)2(a+ b+ 1)
.

The analog of (2.7) is the algebraic identity

(5.3)
1

1−xf
(
y−x
1−x ;m, b

)
f(x; a, b+m)

f(y; a+m, b)
=

1

y
f(x/y; a,m).

In particular, we have a ”convolution formula”,

(5.4)

∫ y

0

1

1 − x
f

(
y − x

1 − x
;m, b

)
f(x; a, b+m)dx = f(y; a+m, b).

Given A > 0, we now use (5.4) to define the Markov process (Yt)0<t<A by specifying its univariate
laws as

ft(x) = f(x; t, A− t), x ∈ [0, 1],

and for s < t, y ≥ x its transition probabilities as

fs,t(y|x) =
1

1 − x
f

(
y − x

1 − x
; t− s, A− t

)
.

A calculation based on (5.4) shows that these expressions indeed satisfy the Chapman-Kolmogorov
equations, so Markov process (Yt)t∈(0,A) is well defined. (The same conclusion can be reached via
probabilistic arguments, as these processes arise as bridges of the gamma process.)

From (5.2), E(Yt) = t/A and Var(Yt) = t(A−t)
A2(A+1)

, and with some more work one can read out

that Cov(Ys, Yt) = s(A−t)
A2(A+1)

for s ≤ t.
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Since (5.3) shows that two-sided conditional laws are also beta, from (5.2) we can read out the
conditional moments

E(Yt − Ys|Ys, Yu) =
t− s

u− s
(Yu − Ys),

Var(Yt|Ys, Yu) =
(t− s)(u− t)

(u− s)2((u− s) + 1)
(Yu − Ys)

2.

Applying Proposition 1.1 with M = 1
A
√
A+1

, β = 1/A, = A, ǫ → −1 (the remaining parameters

are 0), we see that (Yt) can be transformed into a quadratic harness on T ′ = (0,∞) with
parameters

η = −θ = −2/
√

1 + A, σ = τ = 1/(1 + A), γ = 1 − 2/(1 + A)2.

(This is consistent with [BW09, Eample 4.1].)
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[KS98] Roelof Koekoek and Rene F. Swarttouw. The Askey scheme of hypergeometric orthogo-

nal polynomials and its q-analogue, 1998. Delft University of Technology Report no. 98-17,
http://fa.its.tudelft.nl/ koekoek/askey.html.

[LL60] R. G. Laha and E. Lukacs. On a problem connected with quadratic regression. Biometrika, 47(300):335–
343, 1960.

[Mei34] J. Meixner. Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion. J.
London Math. Soc, 9(6), 1934.
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