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Abstract—In this paper, we propose a cross-layer scheduling
algorithm that achieves a throughput “ǫ-close” to the optimal
throughput in multi-hop wireless networks with a tradeoff of
O( 1

ǫ
) in delay guarantees. The algorithm aims to solve a joint

congestion control, routing, and scheduling problem in a multi-
hop wireless network while satisfying per-flow average end-to-
end delay guarantees and minimum data rate requirements.
This problem has been solved for both backlogged as well as
arbitrary arrival rate systems. Moreover, we discuss the design
of a class of low-complexity suboptimal algorithms, the effects of
delayed feedback on the optimal algorithm, and the extensions
of the proposed algorithm to different interference modelswith
arbitrary link capacities.

I. I NTRODUCTION

Cross-layer design of congestion control, routing and
scheduling algorithms with guaranteed quality of service
(QoS) is one of the most challenging topics in wireless
networking. Back-pressure algorithm first proposed in [1]
and its extensions have been widely employed in develop-
ing throughput guaranteed dynamic resource allocation and
scheduling algorithms for wireless systems. Back-pressure-
based scheduling algorithms have been employed in wireless
networks with time-vary channels [5][10][11]. Congestion
controllers at the transport layer have assisted the cross-
layer design of scheduling algorithms [2][3][12], so that the
admitted arrival rate is guaranteed to lie within the network
capacity region. Low-complexity distributed algorithms have
been proposed in [8][9][29][30]. Algorithms adapted to clus-
tered networks have been proposed in [4] to reduce the number
of queues maintained in the network. However, delay-related
investigations are not included in these works.

Delay issues in single-hop wireless networks have been
addressed in [20]-[25]. Especially, the scheduling algorithm in
[25] provides a throughput-utility that is inversely proportional
to the delay guarantee. But these works are not readily
extendable to multi-hop wireless networks, where we have
to consider additional arrivals from neighboring nodes and
routing. Delay analysis for fixed-routing multi-hop networks
is provided in [16]. Delay-related scheduling in multi-hop
wireless networks have been proposed in [17][18][19][26][27].
However, none of the above provide explicit end-to-end delay
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guarantees. A fixed-routing scheduling algorithm for finite-
buffer multi-hop wireless networks is proposed in [13] and
is extended to adaptive-routing with congestion controller in
[14]. Specifically, the algorithm in [14] guaranteesO(1

ǫ
)-

scaling in buffer size with aǫ-loss in throughput-utility, but
assumes a source node to have an infinite buffer in the network
layer, which may lead to large end-to-end delay.

In this paper, we propose a cross-layer algorithm to achieve
guaranteed throughputwhile satisfying network QoS require-
ments. Specifically, we construct two virtual queues, namely,
virtual queue at transport layer and virtual delay queue, to
guarantee average end-to-end delay bounds; and we construct
a virtual service queue toguarantee the minimum data rate
required by individual network flows. The cross layer design
includes a congestion controller for the input rate to the virtual
queue at transport layer, as well as a joint policy for packet
admission, routing, and resource scheduling. We show that
our algorithm can achieve a throughput arbitrarily close tothe
optimal value. In addition, the algorithm exhibits a tradeoff
of O(1

ǫ
) in the delay bound whereǫ denotes the loss in

throughput.

Our main algorithm is further extended:(1) to a set of
low-complexity suboptimal algorithms;(2) from a model with
constantly-backlogged sources to a model with sources of
arbitrary input rates at transport layer;(3) to an algorithm
employing delayed queue information;(4) from a node-
exclusive model with constant link capacities to a model with
arbitrary link capacities and interference models over fading
channels.

The rest of the paper is organized as follows. Section II
provides the the network model and corresponding approaches
for the considered multi-hop wireless networks. In SectionIII,
we propose the optimal cross-layer control and scheduling
algorithm and analyze its performance. In Section IV, we
provide a class of feasible suboptimal algorithms, consider
sources with arbitrary arrival rates at transport layer, employ
delayed queueing information in the scheduling algorithm,and
extend the model to arbitrary link capacities and interference
models over fading channels. We present numerical results in
Section V. Finally, we conclude our work in Section VI.
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II. N ETWORK MODEL

A. Network Elements

We consider a time-slotted multi-hop wireless network
consisting ofN nodes andK flows. Denote by(m,n) ∈ L a
link from nodem to noden, whereL is the set of directed
links in the network. Denoting the set of flows byF and
the set of nodes byN , we formulate the network topology
G = (N ,L). Note that we consider adaptive routing scenario,
i.e., the routes of each flow are not determineda priori, which
is more general than fixed-routing scenario. In addition, we
denote the source node and the destination node of a flow
c ∈ F as b(c) andd(c), respectively.

We assume that the source node for flowc is always
backlogged at the transport layer. Let the scheduling parameter
µc
mn(t) denote the link rate assignment of flowc for link

(m,n) at time t according to scheduling decisions and let
µc
s(c)b(c)(t) denote the admitted rate of flowc from the

transport layer of flow to the source node, wheres(c) denotes
the source at the transport layer of flowc. It is clear that
in any time slott, µc

s(c)n(t) = 0 ∀n 6= b(c). For simplicity
of analysis, we assume only one packet can be transmitted
over a link in one slot, so(µc

mn(t)) takes values in{0, 1}
∀(m,n) ∈ L. We also assume thatµc

s(c)b(c)(t) is bounded
above by a constantµM ≥ 1:

0 ≤ µc
s(c)b(c)(t) ≤ µM , ∀c ∈ F , ∀t, (1)

i.e., a source node can receive at mostµM packets from the
transport layer in any time slot. To simplify the analysis,
we prevent looping back to the source, i.e., we impose the
following constraints

∑

m∈N

(µc
mb(c)(t)) = 0 ∀c ∈ F , ∀t. (2)

We employ the node-exclusive model in our analysis, i.e., each
node can communicate with at most one other node in a time
slot. Note that our model is extended to arbitrary interference
models with arbitrary link capacities and fading channels in
Section IV.D.

We now specify the QoS requirements associated with
each flow. The network imposes anaverage end-to-end delay
threshold ρc for each flow c. The end-to-end delay period
of a packet starts when the packet is admitted to the source
node from the transport layer and ends when it reaches its
destination. Note that the delay threshold is a time-average
upperbound, not a deterministic upper-bound. In addition,each
flow c requires a minimum data rate ofac packets per time
slot.

B. Network Constraints and Approaches

For convenience of analysis, we defineLc , L ∪
{(s(c), b(c))}. We now model queue dynamics and network
constraints in the multi-hop network. LetU c

n(t) be the backlog
of the total amount of flowc packets waiting for transmission

at noden. For a flowc, if n = d(c) then we haveU c
n(t) = 0

∀t; Otherwise, the queue dynamics is as follows:

U c
n(t+ 1) ≤[U c

n(t)−
∑

i:(n,i)∈L

µc
ni(t)]

+

+
∑

j:(j,n)∈Lc

µc
jn(t), if n ∈ N\d(c),

(3)

where the operator[x]+ is defined as[x]+ = max{x, 0} so that
the number of packets transmitted for flowc from a node does
not exceed the backlog at noden, since a feasible scheduling
algorithm may not depend on the information on queue
backlogs. The terms

∑

i:(n,i)∈L µc
ni(t) and

∑

j:(j,n)∈L µc
jn(t)

represent, respectively, the departure rate from noden and
the endogenous arrival rate into noden by the scheduling
algorithm with respect to flowc. Note that (3) is an inequality
since the arrival rates from neighbor nodes may be less than
∑

j µ
c
jn(t) if some neighbor node does not have sufficient

number of packets to transmit. Since we employ the node-
exclusive model, we have

0 ≤
∑

i:(n,i)∈L

µc
ni(t) +

∑

j:(j,n)∈L

µc
jn(t) ≤ 1, ∀n ∈ N . (4)

Assuming that each node can be the source node of at most
one flow, we also have

∑

j:(j,n)∈Lc

µc
jn(t) ≤ µM , if n = b(c), (5)

if it is ensured that no packets will be looped back to the
source. Note that our analysis can be extended to a model
where a node can be the source node for multiple flows.

Now we construct three kinds of virtual queues, namely,
virtual queueU c

s(c)(t) at transport layer, virtual service queue
Zc(t) at sources, and virtual delay queueXc(t), to later assist
the development of our algorithm:
(1) For each flowc at transport layer, we construct a virtual
queueU c

s(c)(t) which will be employed in the algorithm
proposed in the next section. We denote the virtual input rate
to the queue asRc(t) at the end of time slott and we upper-
boundRc(t) by µM . Let rc denote the time-average ofRc(t).
We update the virtual queue as follows:

U c
s(c)(t+ 1) = [U c

s(c)(t)− µc
s(c)b(c)(t)]

+ +Rc(t), (6)

where the initialU c
s(c)(0) = 0. Considering the admitted rate

µc
s(c)b(c)(t) as the service rate, if the virtual queueU c

s(c)(t)
is stable, then the time-average admitted rateµc of flow c

satisfies:

µc , lim
t→∞

1

t

t−1
∑

τ=0

µc
s(c)b(c)(τ) ≥ rc , lim

t→∞

1

t

t−1
∑

τ=0

Rc(τ). (7)

(2) To satisfy the minimum data rate constraints, we construct
a virtual queueZc(t) associated with flowc as follows:

Zc(t+ 1) = [Zc(t)−Rc(t)]
+ + ac, (8)

where the initialZc(0) = 0. Consideringac as the arrival rate
andRc(t) as the service rate, if queueZc(t) is stable, we have:
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rc ≥ ac. Additionally, if U c
s(c)(t) is stable, then according to

(7), the minimum data rate for flowc is achieved.
(3) To satisfy the end-to-end delay constraints, we construct
a virtual delay queueXc(t) for any given flowc as follows:

Xc(t+ 1) = [Xc(t)− ρcRc(t)]
+ +

∑

n∈N

U c
n(t) (9)

where the initialXc(0) = 0. Considering the packets kept
in the network in time slott, i.e.,

∑

n∈N U c
n(t), as the arrival

rate andρcRc(t) as the service rate, and according to queueing
theory, if queueXc(t) is stable, we have

lim
t→∞

1

t

t−1
∑

τ=0

∑

n∈N

U c
n(τ) ≤ ρc lim

t→∞

1

t

t−1
∑

τ=0

Rc(τ) = ρcrc.

Furthermore, ifU c
s(c)(t) is stable, then according to (7), we

have:
1

µc

lim
t→∞

1

t

t−1
∑

τ=0

∑

n∈N

U c
n(τ) ≤ ρc. (10)

In addition, by Little’s Theorem, (10) ensures that the average
end-to-end delay of flowc is less than or equal to the threshold
ρc with probability (w.p.)1.

From the above description, we know that the network
is stable (i.e., each queue at all nodes is stable) and the
average end-to-end delay constraint and minimum data rate
requirement are achieved if queuesU c

n(t) and the three virtual
queues are stable for any node and flow, i.e.,

lim sup
t→∞

1

t

t−1
∑

τ=0

E{Xc(τ)} < ∞, ∀c;

lim sup
t→∞

1

t

t−1
∑

τ=0

E{U c
n(τ)} < ∞, ∀n ∈ N ∪ {s(c) : c ∈ F};

lim sup
t→∞

1

t

t−1
∑

τ=0

E{Zc(τ)} < ∞, ∀c.

Now we define the capacity region of the considered multi-
hop network. An arrival rate vector(zc) is calledadmissible
if there exists some scheduling algorithm (without congestion
control) under which the node queue backlogs (not including
virtual queues) are stable. We denoteΛ to be the capacity
region consisting of all admissible(zc), i.e., Λ consists of
all feasible rates stabilizable by some scheduling algorithm
without considering QoS requirements (i.e., delay constraints
and minimum data rate constraints). To assist the analysis in
the following sections, we let(r∗ǫ,c) denote the solutions to the
following optimization problem:

max
(rc):(rc+ǫ)∈Λ

∑

c∈F

rc (11)

s.t. rc ≤ µM , ∀c, (12)

rc ≥ ac, ∀c. (13)

whereǫ is a positive number which can be chosen arbitrarily
small. For simplicity of analysis, we assume that(ac) is in

the interior ofΛ and (µM )K×1 is large enough to be in the
exterior ofΛ. Without loss of generality, we assume that there
existsǫ′ > 0 such thatr∗ǫ,c ≥ ac + ǫ′ ∀c ∈ F . Then, we can
omit constraint (12) and according to [6] we have

lim
ǫ→0

∑

c∈F

r∗ǫ,c =
∑

c∈F

r∗c , (14)

where(r∗c ) is the solution to the following optimization:

max
(rc):(rc)∈Λ

∑

c∈F

rc. (15)

III. C ONTROL SCHEDULING ALGORITHM FOR MULTI -HOP

WIRELESSNETWORKS

Now we propose a control and scheduling algorithmALG
for the introduced multi-hop model so thatALG stabilizes
the network and satisfies the delay constraint and minimum
data rate constraint. Givenǫ, the proposedALG can achieve
a throughput arbitrarily close to

∑

c∈F r∗ǫ,c, under certain
conditions related to delay constraints which will be latergiven
in Theorem 1.

The optimal algorithmALG consists of two parts: a conges-
tion controller ofRc(t), and a joint packet admission, routing
and scheduling policy. We propose and analyze the algorithm
in the following subsections.

A. Algorithm Description and Analysis

Let qM ≥ µM be a control parameter for queue length.
We first propose a congestion controller for the input rate of
virtual queues at transport layer:

1) Congestion Controller ofRc(t):

min
0≤Rc(t)≤µM

Rc(t)(
(qM − µM )U c

s(c)(t)

qM
−Xc(t)ρc−Zc(t)−V )

(16)
where V > 0 is a control parameter. Specifically, when
qM−µM

qM
U c
s(c)(t) − Xc(t)ρc − Zc(t) − V > 0, Rc(t) is set

to zero; Otherwise,Rc(t) = µM .
After performing the congestion control, we perform the

following joint policy for packet admission, routing and
scheduling (abbreviated asscheduling policy):

2) Scheduling Policy: In each time slot, with the constraints
of the underlying interference model as described in Section
II including (1)(2)(4), the network solves the following opti-
mization problem:

max
(µc

mn(t))

∑

m,n

µ
c∗mn(t)
mn (t)wmn(t) (17)

s.t. µc
mn(t) = 0 ∀c 6= c∗mn(t), ∀(m,n) ∈ Lc,

µc
mn(t) = 0 if n = s(c), ∀c ∈ F ,

wherec∗mn(t) andwmn(t) are defined as follows:

c∗mn(t) = argmax
c∈F

wc
mn(t),

wmn(t) = [max
c∈F

wc
mn(t)]

+,
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and

wc
mn(t) =







































U c
s(c)(t)

qM
[U c

m(t)− U c
n(t)], if (m,n) ∈ L,

U c
s(c)(t)

qM
[qM − µM − U c

b(c)(t)],

if (m,n) = (s(c), b(c)),

0, otherwise.

(18)

Note thatL∪ {(s(c), b(c)) : c ∈ F} forms the(m,n) pairs
in (µc

mn(t)) over which the optimization (17) is performed.
Thus, the optimization is a typical Maximum Weight Matching
(MWM) problem. We first decouple flow scheduling from the
MWM. Specifically, for each pair(m,n), the flow c∗mn(t) is
fixed as the candidate for transmission. We then assign the
weight aswmn(t). Note that whenwmn(t) = 0, we must
haveµc

mn(t) = 0 ∀c to maximize (17). Note also that similar
approaches have been utilized in [13][14], while we employ
the virtual queueU c

s(c)(t) at transport layer as a weight on the
queue backlog differences in (18).

To analyze the performance of the algorithm, we first
introduce the following proposition.

Proposition 1: EmployingALG, each queue backlog in the
network has a deterministic worst-case bound:

U c
n(t) ≤ qM , ∀t, ∀n ∈ N , ∀c ∈ F . (19)

Proof: We use induction in the proof. Whent = 0, we
haveU c

n(0) = 0 ∀n, c. Now assume in time slott we have
U c
n(t) ≤ qM ∀n, c. In the induction step, we consider two

cases as follows:
(1) We first consider the case whenn = b(c) for some flow
c, i.e., whenn is a source node. IfU c

b(c)(t) ≤ qM − µM ,
then according to the queueing dynamics (3) and (5) we have
U c
b(c)(t + 1) ≤ qM ; Otherwise, we haveU c

b(c)(t) > qM −
µM and according to the weight assignment (18), we have
wc

s(c)b(c)(t) < 0 which leads toµc
s(c)b(c)(t) = 0, soU c

b(c)(t +

1) ≤ U c
b(c)(t) ≤ qM by (2)(3).

(2) In the second case, we haven 6= b(c) for any c, i.e., n
is not the source node of any flowc. If U c

n(t) < qM , then,
since we employ node-exclusive model, we haveU c

n(t) ≤ qM
by (3)(4); Otherwise, we haveU c

n(t) = qM , and according to
the scheduling algorithm (18) we havewc

mn(t) = 0 ∀m ∈ N ,
which inducesµc

mn(t) = 0 ∀m ∈ N , soU c
n(t + 1) ≤ qM by

the queueing dynamics (3).
Now we present our main results in Theorem 1.
Theorem 1:Given that

qM >
2N − 1 + µ2

M

2ǫ
+ µM andρc >

NqM

r∗ǫ,c
∀c ∈ F , (20)

ALG ensures that the virtual queues have a time-averaged
bound:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ)+Xc(τ)+Zc(τ)} ≤

B′

δ
, (21)

whereδ andB′ are constant positive numbers which will be
given in the next subsection.

In addition,ALG can achieve a throughput

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)} ≥
∑

c∈F

r∗ǫ,c −
B

V
, (22)

whereB is a constant positive number independent ofV which
will be given in the next subsection.

Remark 1:The results (19) and (21) indicate thatALG
stabilizes the network and satisfies the average end-to-end
delay constraint and the minimum data rate requirement. The
inequality (22) gives the lower-bound of the throughput that
ALG can achieve. Given someǫ > 0, sinceB is independent
of V , (22) also ensures thatALG can achieve a throughput
arbitrarily close to

∑

c∈F r∗ǫ,c. When ǫ tends to0, ALG can
achieve a throughput arbitrarily close to the optimal value
∑

c∈F r∗c with the tradeoff in queue backlog upper bound
qM and the delay constraints(ρc), both of which are lower
bounded by the reciprocal terms ofǫ as shown in (20) in
Theorem 1, i.e., the average end-to-end delay bound must be
of orderO(1

ǫ
), where we recall thatac + ǫ′ ≤ r∗ǫ,c ≤ µM ,

∀c ∈ F .

B. Proof of Theorem 1

Before we proceed, we present the following lemmas which
will assist us in proving Theorem 1.

Lemma 1:For nonnegative numbersA1, A2, A3, Q ∈ R

such thatQ ≤ [A1 − A2]
+ + A3, we haveQ2 ≤ A2

1 + A2
2 +

A2
3 − 2A1(A2 −A3).
The proof of Lemma 1 is trivial and omitted. We will later

use Lemma 1 to simplify virtual queue dynamics.
Lemma 2:For any feasible rate vector(θc) ∈ Λ with

θc ≥ ac ∀c ∈ F , there exists a stationary randomized
algorithm STAT that stabilizes the network with input rate
vector (µSTAT

s(c)b(c)(t)) and scheduling parameters(µc,STAT
mn (t))

independent of queue backlogs, such that the expected admit-
ted rates are:

E{µc,STAT

s(c)b(c) (t)} = θc, ∀t, ∀c ∈ F .

In addition,∀t, ∀n ∈ N , ∀c, the flow constraint is satisfied:

E{
∑

i:(n,i)∈L

µ
c,STAT
ni (t)−

∑

j:(j,n)∈Lc

µ
c,STAT
jn (t)} = 0.

Note that it is not necessary for the randomized algorithm
STAT to satisfy the average end-to-end delay constraints.
Similar formulations of STAT and their proofs have been given
in [2] and [3], so we omit the proof of Lemma 2 for brevity.

Remark 2:According to the STAT algorithm in Lemma
2, we assign the input rates of the virtual queues at trans-
port layer asRSTAT

c (t) = µ
c,STAT

s(c)b(c) (t). Thus, we also have
E{RSTAT

c (t)} = θc. According to the update equation (6),
it is easy to show that the virtual queues under STAT are
bounded above byµM and the time-average ofRSTAT

c (t)
satisfies:rSTAT

c = θc. Note that(θc) can take values as(r∗ǫ,c)
or (r∗ǫ,c + ǫ) or (r∗ǫ,c −

1
2ǫ

′), where we recall(r∗ǫ,c + ǫ) ∈ Λ
andr∗ǫ,c ≥ ac + ǫ′ ∀c ∈ F .



5

To prove Theorem 1, we first let Q(t) =
((U c

n(t)), (U
c
s(c)(t)), (Xc(t)), (Zc(t))) and define the

Lyapunov functionL(Q(t)) as follows:

L(Q(t)) =
1

2
{
∑

c∈F

qM − µM

qM
U c
s(c)(t)

2
+

∑

c∈F

Xc(t)
2

+
∑

c∈F

Zc(t)
2 +

∑

c∈F

∑

n∈N

1

qM
U c
n(t)

2U c
s(c)(t)}.

(23)

It is obvious thatL(Q(0)) = 0. We denote the Lyapunov drift
by

∆(t) = E{L(Q(t+ 1))− L(Q(t))|Q(t)}. (24)

Note that the last term of the Lyapunov function (23) takes
the same form as that in [13][14]1. From the queue dynamics
(3)(6), we have:

∑

c∈F

∑

n∈N

1

qM
U c
n(t+ 1)2U c

s(c)(t+ 1)

≤
∑

c∈F

1

qM
(Rc(t) + U c

s(c)(t))
∑

n∈N

U c
n(t+ 1)2

≤µMqMNK +
∑

c∈F

1

qM
U c
s(c)(t)

∑

n∈N

{U c
n(t)

2

+ (
∑

i:(n,i)∈L

µc
ni(t))

2 + (
∑

j:(j,n)∈Lc

µc
jn(t))

2

− 2U c
n(t)(

∑

i

µc
ni(t)−

∑

j

µc
jn(t))},

(25)

where we recall thatRc(t) ≤ µM and we employ Lemma 1
to deduce the second inequality.

From (25), we have

1

2
(
∑

c∈F

∑

n∈N

1

qM
(U c

n(t+ 1)2U c
s(c)(t+ 1)

− U c
n(t)

2U c
s(c)(t)))

≤
1

2

∑

c∈F

(2N − 1 + µ2
M )U c

s(c)(t)

qM
+

1

2
NKqMµM

−
∑

c∈F

∑

n∈N

U c
n(t)U

c
s(c)(t)

qM

(
∑

j:(n,j)∈L

µc
nj(t)−

∑

i:(i,n)∈Lc

µc
in(t)),

(26)

where we employ the fact deduced from (4)(5) that
∑

i µ
c
ni(t) ≤ 1 and

∑

j µ
c
jn(t) ≤ 1 when n 6= b(c) and

∑

j µ
c
jn(t) ≤ µM when n = b(c). Note that we use the

summation indexi and j interchangeably for convenience of
analysis.

From the queue length dynamics (6) and by employing

1Note that, however, the queue dynamics (3)(6) takes different form from
those in [13][14].

Lemma 1, we have:
1

2

∑

c∈F

qM − µM

qM
(U c

s(c)(t+ 1)
2 − U c

s(c)(t)
2
)

≤
1

2

∑

c∈F

qM − µM

qM
(µc

s(c)b(c)(t)
2 +Rc(t)

2

− 2U c
s(c)(t)(µ

c
s(c)b(c)(t)−Rc(t)))

≤K
qM − µM

qM
µ2
M

−
qM − µM

qM

∑

c∈F

U c
s(c)(t)(µ

c
s(c)b(c)(t)−Rc(t)).

(27)

From the virtual queue dynamics (9), we have:

1

2

∑

c∈F

(Xc(t+ 1)2 −Xc(t)
2)

≤
1

2

∑

c∈F

(ρ2cRc(t)
2 + (

∑

n∈N

U c
n(t))

2

− 2Xc(t)(ρcRc(t)−
∑

n∈N

U c
n(t)))

≤
1

2
µ2
M

∑

c∈F

ρ2c +
1

2
KN2q2M

−
∑

c∈F

Xc(t)ρcRc(t) +NqM
∑

c∈F

Xc(t).

(28)

From the virtual queue dynamics (8), we have:

1

2

∑

c∈F

(Zc(t+ 1)2 − Zc(t)
2)

≤
1

2

∑

c∈F

(Rc(t)
2 + a2c − 2Zc(t)(Rc(t)− ac))

≤
1

2
Kµ2

M +
1

2

∑

c∈F

a2c −
∑

c∈F

Zc(t)Rc(t) +
∑

c∈F

acZc(t).

(29)

Substituting (26)(27)(28)(29) into the Lyapunov drift (24) and
subtractingV

∑

c E{Rc(t)|Q(t)} from both sides, we then
have:

∆(t) − V
∑

c∈F

E{Rc(t)|Q(t)}

≤B +
∑

c∈F

E{Rc(t)(
(qM − µM )U c

s(c)(t)

qM

−Xc(t)ρc − Zc(t)− V )|Q(t)}

+NqM
∑

c∈F

Xc(t) +
∑

c∈F

acZc(t)

+
1

2

∑

c∈F

(2N − 1 + µ2
M )U c

s(c)(t)

qM

−E{
qM − µM

qM

∑

c∈F

U c
s(c)(t)µ

c
s(c)b(c)(t)

+
∑

c∈F

∑

n∈N

U c
n(t)U

c
s(c)(t)

qM

(
∑

j:(n,j)∈L

µc
nj(t)−

∑

i:(i,n)∈Lc

µc
in(t))|Q(t)},

(30)
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whereB , 1
2NKqMµM +K qM−µM

qM
µ2
M + 1

2µ
2
M

∑

c∈F ρ2c +
1
2KN2q2M + 1

2Kµ2
M + 1

2K
∑

c∈F a2c . We can rewrite the last
term of RHS of (30) by simple algebra as

−E{
∑

c∈F

∑

(m,n)∈L

µc
mn(t)

U c
s(c)(t)

qM
(U c

m(t)− U c
n(t))

+
∑

c∈F

µc
s(c)b(c)(t)

U c
s(c)(t)

qM
(qM − µM − U c

b(c)(t))|Q(t)}.

(31)

Then, the second term and the last term of the RHS of
(30) are minimized by the congestion controller (16) and the
scheduling policy (17), respectively, over a set of feasible al-
gorithms including the stationary randomized algorithm STAT
introduced in Lemma 2 and Remark 2, which require the input
rate to be less thanµM . We can substitute into the second
term of RHS of (30) a stationary randomized algorithm with
admitted arrival rate vector(r∗ǫ,c) and into the last term with
a stationary randomized algorithm with admitted arrival rate
vector(r∗ǫ,c + ǫ). Thus, we have:

∆(t) − V
∑

c∈F

E{Rc(t)|Q(t)}

≤B − V
∑

c∈F

r∗ǫ,c

−
∑

c∈F

U c
s(c)(t)

qM
(ǫ(qM − µM )−

2N − 1 + µ2
M

2
)

−
∑

c∈F

(r∗ǫ,c − ac)Zc(t)−
∑

c∈F

(ρcr
∗
ǫ,c −NqM )Xc(t).

(32)

When (20) holds, we can findǫ1 > 0 such thatǫ1 ≤ ρcr
∗
ǫ,c −

NqM ∀c ∈ F and ǫ1 ≤
ǫ(qM−µM )−

2N−1+µ2
M

2

qM
. Recall thatǫ′

is defined such thatr∗ǫ,c ≥ ac + ǫ′ ∀c ∈ F . Thus, we have:

∆(t)− V
∑

c∈F

E{Rc(t)|Q(t)}

≤B − δ
∑

c∈F

(Xc(t) + U c
s(c)(t) + Zc(t)) − V

∑

c∈F

r∗ǫ,c,
(33)

whereδ , min{ǫ1, ǫ′}.
We take the expectation with respect to the distribution of

Q on both sides of (33) and take the time average onτ =
0, ..., t− 1, which leads to

1

t
E{L(Q(t))} −

V

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)}

≤B − V
∑

c∈F

r∗ǫ,c

−
δ

t

t−1
∑

τ=0

∑

c∈F

E{Xc(τ) + U c
s(c)(τ) + Zc(τ)}.

(34)

Sincelim supt→∞
1
t

∑t−1
τ=0

∑

c E{Rc(τ)} is bounded above
(say, by a constantBR) andE{L(Q(t))} is nonnegative, by

taking limsup oft on both sides of (34), we have:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Xc(τ) + U c
s(c)(τ) + Zc(τ)}

≤
B

δ
+

V

δ
[lim sup

t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)} −
∑

c∈F

r∗ǫ,c]

≤
B′

δ
,

(35)

whereB′ , B + V BR. Thus, we have proved (21).
By taking liminf of t on both sides of (34), we have

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)}

≥
δ

V
lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Xc(τ) + U c
s(c)(τ) + Zc(τ)}

−
B

V
+

∑

c∈F

r∗ǫ,c,

(36)

which proves (22) since the first term of the RHS of (36) is
nonnegative.

IV. FURTHER DISCUSSIONS

A. Suboptimal Algorithms

Solving MWM optimization problem can be NP-hard de-
pending on the underlying interference model as indicated
in [7]. In this section, we introduce a group of suboptimal
algorithms that aim to achieve at least aγ fraction of the
optimal throughput. We denote the scheduling parameters of
suboptimal algorithms by(µc,SUB

mn (t)). For convenience, we
also denote the scheduling parameters ofALG by (µc,OPT

mn (t)).
Algorithms are calledsuboptimalif the scheduling parameters
(µc,SUB

mn (t)) satisfy the following:
∑

m,n

µ
c∗mn(t),SUB
mn (t)wmn(t) ≥ γ

∑

m,n

µ
c∗mn(t),OPT
mn (t)wmn(t),

(37)
where γ ∈ (0, 1) is constant and we recall thatc∗mn(t)
and wmn(t) are defined in Section III.A. In addition, the
congestion controller of suboptimal algorithms is the sameas
that of ALG (16).

Following the same analysis ofALG, Proposition 1 holds for
suboptimal algorithms, i.e., the queue backlogs are bounded
above byqM , and we derive the following theorem:

Theorem 2:Given that

qM >
2N − 1 + µ2

M

2γǫ
+ µM andρc >

NqM

γr∗ǫ,c
∀c ∈ F ,

∃ǫ2 > 0 s.t. γr∗ǫ,c ≥ ac + ǫ2 ∀c ∈ F ,

(38)

a suboptimal algorithm ensures that the virtual queues havea
time-averaged bound:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ)+Xc(τ)+Zc(τ)} ≤

B̄

δ
, (39)
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whereB̄ , B + γV BR. In addition, a suboptimal algorithm
can achieve a throughput

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)} ≥ γ
∑

c∈F

r∗ǫ,c −
B

V
. (40)

Proof: The proof is provided in Appendix A.
Remark 3:From Theorem 2, given an arbitrarily smallǫ,

we show that a suboptimal algorithm canat least achieve
a throughput arbitrarily close to a fractionγ of the optimal
results

∑

c∈F r∗ǫ,c. Suboptimal algorithms include the well-
known Greedy Maximal Matching (GMM) algorithm [15]
with γ = 1

2 as well as the solutions to the maximum
weighted independent set (MWIS) optimization problem such
as GWMAX and GWMIN proposed in [28] withγ = 1

∆ ,
where∆ is the maximum degree of the network topologyG.
The delay bound and throughput tradeoff in Theorem 1 still
hold in Theorem 2.

B. Arbitrary Arrival Rates at Transport Layer

Note that in the previous model description, we assumed
that the flow sources are constantly backlogged, that is, the
congestion controller (16) can always guaranteeRc(t) = µM

when qM−µM

qM
U c
s(c)(t) − Xc(t)ρc − Zc(t) − V ≤ 0. In this

subsection, we present an optimal algorithm when the flows
have arbitrary arrival rates at the transport layer.

Let Ac(t) denote the arrival rate of flowc packets at
the beginning of the time slott at the transport layer. We
assume thatAc(t) is i.i.d. with respect tot with meanλc. For
simplicity of analysis, we assume(λc) to be in the exterior of
the capacity regionΛ so that a congestion controller is needed
and we assume thatAc(t) is bounded above byµM ∀c ∈ F .2

Let Lc(t) denote the backlog of flowc data at the transport
layer which is updated as follows:

Lc(t+1) = min{[Lc(t)+Ac(t)−µc
s(c)b(c)(t)]

+, LM}, (41)

whereLM ≥ 0 is the buffer size for flowc at the transport
layer. Note that we haveLM = 0 andLc(t) = 0 if there is
no buffer for flowc at the transport layer.

Following the idea introduced in [2], we construct a virtual
queueYc(t) and an auxiliary variablevc(t) for each input rate
Rc(t), with queue dynamics forYc(t) as follows

Yc(t+ 1) = [Yc(t)−Rc(t)]
+ + vc(t), (42)

where initially we haveYc(0) = 0. The intuition is thatvc(t)
serves as the function ofRc(t) in congestion controller (16)
and we note that whenYc(t) is stable, we haverc ≥ vc, where
vc is the time average rate forvc(t), recalling thatrc is the
time average rate forRc(t). Thus, whenYc(t) andU c

s(c)(t) are
stable, if we can ensure the value

∑

c vc is arbitrarily close
to the optimal value

∑

c r
∗
ǫ,c, then so is the throughput

∑

c µc

sinceµc ≥ rc ≥ vc.
Now we provide the optimal algorithm for arbitrary arrival

rates at the transport layer:

2Note that our analysis also works for the case whenAc(t) is bounded
above byAM ∀c ∈ F , whereAM ≥ µM .

1) Congestion Controller:

min
0≤vc(t)≤µM

vc(t)(ηYc(t)− V ), (43)

min
Rc(t)

Rc(t)(
qM − µM

qM
U c
s(c)(t)− ηYc(t)−Xc(t)ρc − Zc(t)) (44)

s.t. 0 ≤ Rc(t) ≤ min{Lc(t) +Ac(t), µM}

where η > 0 is a weight associated with the virtual queue
Yc(t). Note that (43) and (44) can be solved independently.
Specifically, whenηYc(t) − V ≥ 0, vc(t) is set to zero;
Otherwise,vc(t) = µM . When qM−µM

qM
U c
s(c)(t) − ηYc(t) −

Xc(t)ρc − Zc(t) ≥ 0, Rc(t) is set to zero; Otherwise,
Rc(t) = min{Lc(t) +Ac(t), µM}.

2) Scheduling Policy: The scheduling algorithm is the same
as that ofALG provided in Section III.B, except for the up-
dated constraints:0 ≤ µc

s(c)b(c)(t) ≤ min{Lc(t)+Ac(t), µM}.
Since the scheduling policy is not changed, Proposition 1

still holds. And we present a theorem below for the perfor-
mance of the algorithm:

Theorem 3:Given that

qM >
2N − 1 + µ2

M

2ǫ
+ µM andρc >

NqM

r∗ǫ,c
∀c ∈ F ,

the algorithm ensures that the virtual queues have a time-
averaged bound:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ) +Xc(τ) + Zc(τ)} ≤

B2

δ′
,

whereB2 , B +Kηµ2
M + V BR and δ′ is constant positive

number. In addition, the algorithm can achieve a throughput

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)} ≥
∑

c∈F

r∗ǫ,c −
B1

V
,

whereB1 , B +Kηµ2
M .

Proof: The proof is provided in Appendix B.
Theorem 3 shows that optimality is preserved andO(1

ǫ
)

delay scaling is kept.

C. Employing Delayed Queue Backlog Information

Recall that inALG, congestion controller (16) is performed
at the transport layer and link weight assignment in (18) is
performed locally at each link. Thus, in order to account forthe
propagation delay of queue information, we employ delayed
queue backlog of(Xc(t)) in (16) and employ delayed queue
backlog of(U c

s(c)(t)) for links in L in (18). Specifically, we
rewrite (16) inALG as:

minRc(t)(
(qM − µM )U c

s(c)(t)

qM
−Xc(t−T )ρc −Zc(t)−V ),

(45)
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whereT is an integer number that is larger than the maximum
propagation delay from a source to a node, and we rewrite (18)
as:

wc
mn(t) =















































U c
s(c)(t− T )

qM
[U c

m(t)− U c
n(t)],

if (m,n) ∈ L,

U c
s(c)(t)

qM
[qM − µM − U c

b(c)(t)],

if (m,n) = (s(c), b(c)),

0, otherwise.

(46)

Proposition 1 still holds and we present a theorem for the
scheduling algorithm using delayed queue backlog informa-
tion, which maintains the throughput optimality andO(1

ǫ
)

scaling in delay bound:
Theorem 4:Given that

qM >
2N − 1 + µ2

M

2ǫ
+ µM andρc >

NqM

r∗ǫ,c
∀c ∈ F ,

the algorithm ensures that the virtual queues have a time-
averaged bound:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ) +Xc(τ) + Zc(τ)} ≤

B4

δ
,

where B4 , B3 + V BR and B3 , B + KNµMT +
NqMTµMρc + Kρ2cµ

2
MT . In addition, the algorithm can

achieve a throughput

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{Rc(τ)} ≥
∑

c∈F

r∗ǫ,c −
B3

V
.

Proof: The proof is provided in Appendix C.
On employing delayed queue backlogs, we can extend the

centralized optimization problem (17) to distributed implemen-
tations in much the same way as [8][29][30].

D. Arbitrary Link Capacities and Arbitrary Interference Mod-
els with Fading Channels

Recall that in the model description in Section II, the link
capacity is assumed constant (one packet per slot) and node-
exclusive model is employed. In this subsection, we extend the
model to arbitrary link capacities and arbitrary interference
models with fading channels of finite channel states. Thus,
instead of (4), we have(µc

mn(t))(m,n)∈L ∈ I(t), whereI(t)
is the feasible activation set for time slott determined by the
underlying interference model and current channel states,with
link capacity constraints

∑

c∈F µc
mn(t) ≤ lmn, wherelmn is

the arbitrarily chosen link capacity for a link(m,n) ∈ L.
We defineln , max(µc

mn(t))∈I(t)

∑

c∈F

∑

m:(m,n)∈L µc
mn(t).

Note that it is clear thatln ≤
∑

m:(m,n)∈L lmn. Then we
can update the optimization (17) and weight assignment (18),
respectively, as follows:

max
(µc

mn(t))

∑

m,n

µ
c∗mn(t)
mn (t)wmn(t)

s.t. (µc
mn(t))(m,n)∈L ∈ I(t) andµs(c)b(c)(t) ≤ µM ∀c ∈ L.

wc
mn(t) =







































U c
s(c)(t)

qM
[U c

m(t)− U c
n(t)− ln], if (m,n) ∈ L,

U c
s(c)(t)

qM
[qM − µM − U c

b(c)(t)],

if (m,n) = (s(c), b(c)),

0, otherwise.

It is not difficult to check that Proposition 1 still holds with
qM ≥ max{maxn∈N ln, µM} and Theorem 1 holds with a
different definition of constantB.

V. NUMERICAL RESULTS

GC

FB

H

E

D

A

Fig. 1. Network topology for simulations

In this section, we present the simulation results for the
proposed optimal algorithmALG. Simulations are run in
Matlab 2009A with results averaged over105 time slots. In
the network topology illustrated in Figure 1, there are three
source-destination pairs(A,G), (D,E) and(F,H) with same
Poisson arrival rates andµM = 2. The required minimum data
rate for the three flows are all set to0.1. We denote byBP the
back-pressure scheduling algorithm in [1] with a congestion
controller in [2], and denote byFinite Buffer the cross-layer
algorithm developed in [14] with buffer size equal to the queue
length limit qM . Note that it is shown in simulation results in
[14] that Finite Buffer algorithm ensures much smaller internal
queue length (of nodes excluding the source node) than BP
algorithm (and queue length is related to delay performance).
We set the control parameterV = 1000, where in simulations
we find that a higherV cannot further improve the throughput.

We first illustrate in Table I the throughput optimality of
ALG when the sources are constantly backlogged. We loosen
the delay constraint asρc = 30qM . As we increase the control
parameterqM , theALG achieves a throughput approaching the
throughput of BP algorithm which is known to be optimal. We
also note that this approximation in throughput results in worse
average end-to-end delay performance, which complies with
Remark 1.

We then illustrate the throughput and delay tradeoff for both
theALG and its corresponding suboptimal GMM algorithm in
Figure 2 for the case of arbitrary arrival rates at transportlayer
with LM = 0, where we setqM = 5 and ρc = 50 for each
flow c. Note that this pair ofqM andρc shows that the bound
in (20) is actually quite loose, and thus our algorithm can
achieve better delay performance than stated in (20). Figure
2 shows that the average end-to-end delay underALG is well
below the constraint (ρc = 50) and lower than that under BP
and Finite Buffer algorithms. The throughput ofALG is close
to that of the optimal BP algorithm when arrival rates are
small (≤ 0.3). Specifically, when the arrival rate is0.3, ALG
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TABLE I
THROUGHPUT PERFORMANCE OFALG WHEN SOURCES ARE BACKLOGGED AT THE TRANSPORT LAYER

ALG (ρc = 150) ALG (ρc = 300) ALG (ρc = 3000) ALG (ρc = 30000) BP

Throughput (sum for three flows) 0.9368 1.1834 1.2007 1.2305 1.2315

End-to-end delay (averaged over three flows) 45.76 131.47 1.514 × 103 1.3687× 104 3.753 × 104

achieves a throughput10% more than the GMM algorithm
and 9.0% less than BP algorithm, with an average end-to-
end delay35.2% less than the BP algorithm. In the large-
input-rate-region (> 0.3), we also observe that the delay in
both the BP and Finite Buffer algorithm violates the delay
constraints. In addition, in the above illustrated scenarios with
backlogged and arbitrary arrival rates, the minimum arrival
rates and average end-to-end delay requirements are satisfied
for individual flows underALG.
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Fig. 2. Throughput and delay tradeoff under Alg. with performances
compared to Finite Buffer algorithm and BP algorithm, with varying arrival
rates at the transport layer.

VI. CONCLUSIONS ANDFUTURE WORKS

In this paper, we proposed a cross-layer framework which
approaches the optimal throughput arbitrarily close for a gen-
eral multi-hop wireless network. We show a tradeoff between
the throughput and average end-to-end delay bound while
satisfying the minimum data rate requirements for individual
flows.

Our work aims at a better understanding of the fundamental
properties and performance limits of QoS-constrained multi-
hop wireless networks. While we show anO(1

ǫ
) delay bound

with ǫ-loss in throughput, how small the actual delay can
become still remains elusive, which is dependent on specific
network topologies. In our future work, we will investigatethe
capacity region under end-to-end delay constraints applied to
different network topologies. Our future work will also involve
power management in the scheduling policies.
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APPENDIX A
PROOF OFTHEOREM 2

Proof: Let ∆SUB(t) denote the corresponding Lyapunov
drift of a suboptimal algorithm which takes the same form as
(24). By analyzing (30)(31) which also hold for suboptimal
algorithms, we note that the second term of RHS of (30) is
always non-positive ensured by the congestion controller (16).
Employing (37) to (30)(31), we derive the following

∆SUB(t)− V
∑

c∈F

E{Rc(t)|Q(t)}

≤B + γ
∑

c∈F

E{Rc(t)(
(qM − µM )U c

s(c)(t)

qM

−Xc(t)ρc − Zc(t)− V )|Q(t)}

+NqM
∑

c∈F

Xc(t) +
∑

c∈F

acZc(t)

+
1

2

∑

c∈F

(2N − 1 + µ2
M )U c

s(c)(t)

qM

−γE{
qM − µM

qM

∑

c∈F

U c
s(c)(t)µ

c,SUB

s(c)b(c)(t)

+
∑

c∈F

∑

n∈N

U c
n(t)U

c
s(c)(t)

qM

(
∑

j

µ
c,SUB
nj (t)−

∑

i

µ
c,SUB
in (t))|Q(t)},

(47)

Following the steps in proving (32), we have from (47)

∆(t)SUB − V
∑

c∈F

E{Rc(t)|Q(t)}

≤B − V γ
∑

c∈F

r∗ǫ,c

−
∑

c∈F

U c
s(c)(t)

qM
(γǫ(qM − µM )−

2N − 1 + µ2
M

2
)

−
∑

c∈F

(γr∗ǫ,c − ac)Zc(t)−
∑

c∈F

(γρcr
∗
ǫ,c −NqM )Xc(t).

(48)

Employing the conditions (38) and following the steps in
proving (35) and (36), we can prove Theorem 2.

APPENDIX B
PROOF OFTHEOREM 3

Before we proceed to the proof, we extend the stationary
randomized algorithm STAT introduced in Lemma 2 and
Remark 2. Given(θc) introduced in Lemma 2 and given
flow c at noden, recall that (Ac(t)) is i.i.d. with mean
(λc) and (λc) > (θc) element-wise. The flow control for
STAT can be given as: Admitµc,STAT

s(c)b(c) (t) = Ac(t) w.p. θc
λc

;

otherwise,µc,STAT

s(c)b(c) (t) = 0. ThenE{µc,STAT

s(c)b(c) (t)} = θc, ∀t.

Now take vSTAT
c (t) = RSTAT

c (t) = µ
c,STAT

s(c)b(c) (t) ∀c ∈ F .
Then we also haveE{vSTAT

c (t)} = E{RSTAT
c (t)} = θc.

Note thatRSTAT
c (t) ≤ Ac(t) ≤ min{Lc(t) + Ac(t), µM}

andvSTAT
c (t) ≤ µM .

Now we present the proof.
Proof: We define the Lyapunov function asL(Q′(t)) =

L(Q(t)) + η
2

∑

c∈F Y 2
c (t) and the Lyapunov drift as

∆′(t) = E{L(Q′(t + 1)) − L(Q′(t))|Q′(t)}, whereQ′(t) =
(Q(t), (Yc(t))). From the virtual queue dynamics (42) and
Lemma 1, we have

η

2

∑

c∈F

(Yc(t+ 1)2 − Yc(t)
2)

≤
η

2

∑

c∈F

(Rc(t)
2 + vc(t)

2 − 2Yc(t)(Rc(t)− vc(t)))

≤Kηµ2
M −

∑

c∈F

ηYc(t)(Rc(t)− vc(t)).

(49)

Following the steps in deriving (30)(31), we have

∆′(t)− V
∑

c∈F

E{vc(t)|Q
′(t)}

≤B1 +
∑

c∈F

E{vc(t)(ηYc(t)− V )|Q′(t)}

+
∑

c∈F

E{Rc(t)(
(qM − µM )U c

s(c)(t)

qM

− ηYc(t)−Xc(t)ρc − Zc(t))|Q
′(t)}

+NqM
∑

c∈F

Xc(t) +
∑

c∈F

acZc(t)

+
1

2

∑

c∈F

(2N − 1 + µ2
M )U c

s(c)(t)

qM

−E{
∑

c∈F

∑

(m,n)∈L

µc
mn(t)

U c
s(c)(t)

qM
(U c

m(t)− U c
n(t))

+
∑

c∈F

µc
s(c)b(c)(t)

U c
s(c)(t)

qM
(qM − µM − U c

b(c)(t))|Q
′(t)},

(50)

The second term, third term and the last term of the RHS
of (50) are minimized by the congestion controller (43),
(44) and the scheduling policy (17), respectively, over a set
of feasible algorithms including the stationary randomized
algorithm STAT. Substitute into the second term of RHS of
(50) a stationary randomized algorithm with admitted arrival
rate vector(r∗ǫ,c−

1
2ǫ

′), the third term a stationary randomized
algorithm with admitted arrival rate vector(r∗ǫ,c) and the last



11

term a stationary randomized algorithm with admitted arrival
rate vector(r∗ǫ,c + ǫ). Then, following the steps in proving
Theorem 1, we can prove Theorem 3.

APPENDIX C
PROOF OFTHEOREM 4

Proof: According to queue dynamics (6)(9), we obtain

U c
s(c)(t)− µMT ≤ U c

s(c)(t− T ) ≤ U c
s(c)(t) + µMT,

Xc(t)−NqMT ≤ Xc(t− T ) ≤ Xc(t) + ρcµMT.
(51)

Employing the above inequalities to (30)(31), we have

∆(t) − V
∑

c∈F

E{Rc(t)|Q(t)}

≤B +
∑

c∈F

E{Rc(t)(
(qM − µM )U c

s(c)(t)

qM

−Xc(t− T )ρc − Zc(t)− V )|Q(t)}

+NqM
∑

c∈F

Xc(t) +
∑

c∈F

acZc(t) +Kρ2cµ
2
MT +

1

2
KNµMT

+
1

2

∑

c∈F

(2N − 1 + µ2
M )U c

s(c)(t)

qM

−E{
∑

c∈F

∑

(m,n)∈L

µc
mn(t)

U c
s(c)(t− T )

qM
(U c

m(t)− U c
n(t))

+
∑

c∈F

µc
s(c)b(c)(t)

U c
s(c)(t)

qM
(qM − µM − U c

b(c)(t))|Q(t)}.

The second term and the last term of the RHS of the above
inequality are minimized by the congestion controller (45)
and the scheduling policy (17) with weight assignment (46),
respectively, over a set of feasible algorithms including the
stationary randomized algorithm STAT. Substitute into the
second term of RHS a stationary randomized algorithm with
admitted arrival rate vector(r∗ǫ,c) and the last term a station-
ary randomized algorithm with admitted arrival rate vector
(r∗ǫ,c+ǫ). Then, employing the inequalities (51) and following
the steps in proving Theorem 1, we can prove Theorem 4.
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