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Abstract—In this paper, we propose a cross-layer scheduling guarantees. A fixed-routing scheduling algorithm for finite
algorithm that achieves a throughput “e-close” to the optimal puffer multi-hop wireless networks is proposed in1[13] and
throughput in multi-hop wireless networks with a tradeoff of is extended to adaptive-routing with congestion contraie

O(%) in delay guarantees. The algorithm aims to solve a joint oo . . 1
congestion control, routing, and scheduling problem in a mii-  [+4]- Specifically, the algorithm inL[14] guarante€¥()-

hop wireless network while satisfying per-flow average ende- Scaling in buffer size with a&-loss in throughput-utility, but
end delay guarantees and minimum data rate requirements. assumes a source node to have an infinite buffer in the network

This problem has been solved for both backlogged as well as|ayer, which may lead to large end-to-end delay.
arbitrary arrival rate systems. Moreover, we discuss the deign

of a class of low-complexity suboptimal algorithms, the effcts of In thi | lgorithm t hi
delayed feedback on the optimal algorithm, and the extensits n this paper, we propose a cross-layer aigorithm to achieve

of the proposed algorithm to different interference modelswith ~guaranteed throughpuvhile satisfying network QoS require-
arbitrary link capacities. ments. Specifically, we construct two virtual queues, ngmel

virtual queue at transport layer and virtual delay queue, to
[. INTRODUCTION guarantee average end-to-end delay boyrsthel we construct

Cross-layer design of congestion control, routing ard vir_tual ser_vic_e queue tguarantee the minimum data r_ate
scheduling algorithms with guaranteed quality of servic.r@qUIer by individual network flowsThe cross layer design

(QoS) is one of the most challenging topics in Wireleg&cludesacongestion controller for the input ratg to thruail
networking. Back-pressure algorithm first proposed [in [ ueue at transport layer, as well as a joint policy for packet

and its extensions have been widely employed in develd dmission, routing, and resource scheduling. We show that

ing throughput guaranteed dynamic resource allocation al ldr_algorlthm can achl_e_ve athroughput arbltra_lrl_ly closéht
scheduling algorithms for wireless systems. Back—prafssuPpt'msllI v_alue. In addition, the algonim exhibis a "aﬂ'?o
based scheduling algorithms have been employed in wirel@gsO(E) in the delay bound where denotes the loss in
networks with time-vary channels |[5][10][11]. Congestioﬁhroughpm'

controllers at the transport layer have assisted the cross- . . .

layer design of scheduling algorithnis [2][3]I12], so thhet Our mam_algorlthm_ is furthe_r extendedl) to a set _of
admitted arrival rate is guaranteed to lie within the netwoIJOW'Complm('ty suboptimal algorithms2) from a r_nodel with
capacity region. Low-complexity distributed algorithmavi coqstantly-backlogged sources fo a model with Sources of
been proposed in [8][9][29][30]. Algorithms adapted to<lu afb'”af_y Input rates at trans_port Iayg(ﬁ) to an algorithm
tered networks have been proposedin [4] to reduce the numgg}ploylng delayed queue informatiorii) from a node-

of queues maintained in the network. However deIay-rdIatSXCIUSive model with constant link capacities to a modehwit
investigations are not included in the.se works ' arbitrary link capacities and interference models oveinfgad

Delay issues in single-hop wireless networks have beglﬂannels.
addressed i [20]-[25]. Especially, the scheduling attomiin
[25] provides a throughput-utility that is inversely praopional
to the delay guarantee. But these works are not readﬁ . . i
extendable to multi-hop wireless networks, where we ha r the considered multi-hop wireless networks. In Sectlon

to consider additional arrivals from neighboring nodes aﬁﬁe propose the optimal cross-layer conirol and scheduling

routing. Delay analysis for fixed-routing multi-hop netksr agofghm a?d an?l)f/ze Ilt:)sl perEnrn:gncre. Iln Stﬁctlon v, y(;/e
is provided in [16]. Delay-related scheduling in multi-hop‘?rovI € a class ot leasible suboplimal aigorithms, conside

wireless networks have been proposedin [L7][L&] 19128 sources with arbitrary arrival rates at transport layerplem

However, none of the above provide explicit end-to-end;delgelayEd queueing information in the scheduling algoritam
' extend the model to arbitrary link capacities and interieee

An abbreviated version of this work has been submitted tEBFOCOM mOdgls over. fad'ng channels. We present_ numer.'cal results i
2011. Section V. Finally, we conclude our work in Section VI.

The rest of the paper is organized as follows. Section I
ovides the the network model and corresponding appr@ache
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Il. NETWORK MODEL at noden. For a flowe, if n = d(c) then we havdJS(t) =0
vt; Otherwise, the queue dynamics is as follows:

Us(t+1) S[Us(6) = D wig(®O]F

A. Network Elements

We consider a time-slotted multi-hop wireless network

consisting of N nodes andx flows. Denote by(m,n) € £ a ek _ 3)
link from nodem to noden, where£ is the set of directed + ) uSa(t), if ne Md(o),
links in the network. Denoting the set of flows ¥ and J:(gm)eLe

the set of nodes by, we formulate the.networ.k toPOlOgYwhere the operatdr]* is defined agz]t = max{z, 0} so that
G = (N, £). Note that we consider adaptive routing scenarigye number of packets transmitted for flevirom a node does
i.e., the routes of each flow are not determimegfiori, which ot exceed the backlog at nodesince a feasible scheduling
is more general than fixed-routing scenario. In addition, Wlgorithm may not depend on the information on queue
denote the source node and the destination node of a ﬂBﬁ’cklogs The term§”, . c (t)andY. . ¢ (1)
c € F asb(c) andd(c), respectivel ' 2L i sgmet o
' P Y- ) represent, respectively, the departure rate from nedsnd

We assume that the source node for flowis always the endogenous arrival rate into nodeby the scheduling
backlogged at the transport layer. Let the scheduling pef@m |gorithm with respect to flow. Note that[(B) is an inequality
[y (t) denote the link rate assignment of flawfor link since the arrival rates from neighbor nodes may be less than
(m,n) at time ¢ according to scheduling decisions and |er/L§n(t) if some neighbor node does not have sufficient

H(ep(e) (t) denote the admitted rate of flow from the nymper of packets to transmit. Since we employ the node-
transport layer of flow to the source node, whefe) denotes exclusive model, we have

the source at the transport layer of flaw It is clear that . .

in any time slott, u¢,,(t) = 0 Vn # b(c). For simplicity 0< D up®+ D Hu<LVneN. @)

of analysis, we assume only one packet can be transmitted  “(n9)el 3:(m)€L

over a link in one slot, squ:,,(t)) takes values inf0,1}  Assuming that each node can be the source node of at most
V(m,n) € L. We also assume that{ ., . (¢) is bounded one flow, we also have

above by a constant;; > 1: Z u}:-n(t) < par, if 1= ble), 5)

0< Mg(C)b(C) (t) < W, Ve e ]:a Vtv (1) jigm)eLe
. . if it is ensured that no packets will be looped back to the
i.e., a source node can receive at mogt packets from the soyrce. Note that our analysis can be extended to a model

transport layer in any time slot. To simplify the analysiSyhere a node can be the source node for multiple flows.
we prevent looping back to the source, i.e., we impose thengw we construct three kinds of virtual queues, namely,

following constraints virtual queuel/<  (t) at transport layer, virtual service queue
. Z.(t) at sources, and virtual delay quele(t), to later assist
Zj\[(“mb(c) (t)) =0 Ve € F,vt. @) the development of our algorithm:
me

(1) For each flowc at transport layer, we construct a virtual
We employ the node-exclusive model in our analysis, i.eheadueue Uy, (t) which will be employed in the algorithm
node can communicate with at most one other node in a tiragoposed in the next section. We denote the virtual inpet rat
slot. Note that our model is extended to arbitrary interfese to the queue a®.(t) at the end of time slot and we upper-
models with arbitrary link capacities and fading channels PoundR.(t) by yps. Letr. denote the time-average &F.(t).
Section IV.D. We update the virtual queue as follows:

We now specify the QoS requirements associated with ;¢ _ [r7e _c +
each flow. The network imposes amerage end-to-end delay @t 1) = Ui () = Hiope O + Reld) ©
threshold p. for each flowe. The end-to-end delay periodwhere the initiaIUg(c) (0) = 0. Considering the admitted rate
of a packet starts when the packet is admitted to the soureg,.(t) as the service rate, if the virtual qued,(t)
node from the transport layer and ends when it reaches igsstable, then the time-average admitted rateof flow ¢
destination. Note that the delay threshold is a time-aweragatisfies:

upperbound, not a deterministic upper-bound. In addigaich 1=t t—1
flow ¢ requires a minimum data rate of packets per time j. = lim — Zﬂi(c)b(c) (1) > 7.2 lim - R.(7). (7)
slot. tmee t 15 tmee t I

(2) To satisfy the minimum data rate constraints, we construct
a virtual queueZ,.(t) associated with flowe as follows:
For convenience of analysis, we defin&® = L U

—_ _ +
{(s(c),b(c))}. We now model queue dynamics and network Ze(t+1) = [Ze(t) = Re(O)T + ac, (®)
constraints in the multi-hop network. LB (¢) be the backlog where the initialZ.(0) = 0. Considering:. as the arrival rate
of the total amount of flow: packets waiting for transmissionandR.(t) as the service rate, if queug(t) is stable, we have:

B. Network Constraints and Approaches

A



re > a.. Additionally, if USC(C) (t) is stable, then according tothe interior of A and (uas )k x1 IS large enough to be in the
(@), the minimum data rate for flow is achieved. exterior of A. Without loss of generality, we assume that there
(3) To satisfy the end-to-end delay constraints, we construstistse’ > 0 such that? . > a. + ¢’ Ve € F. Then, we can
a virtual delay queueX.(¢) for any given flowc as follows: omit constraint[(I2) and according td [6] we have

Xe(t+1) = [Xo(t) = peRe(®)] T+ D US(E)  (9) lim » rf.=> 1, (14)

e—0
neN ceF ceF

where the initial X.(0) = 0. Considering the packets keptwhere(r*) is the solution to the following optimization:
in the network in time slot, i.e., > .\ US(t), as the arrival
rate andp. R.(t) as the service rate, and according to queueing r ;Q%%GA Z Te. (15)
theory, if queueX.(t) is stable, we have T eeF

= = [1l. CONTROL SCHEDULING ALGORITHM FORMULTI-HOP

Jim > > Ui(r) < pe lim - > Re(r) = pere. WIRELESSNETWORKS

T=0neN =0 Now we propose a control and scheduling algoritAinG

Furthermore, ing(c) (t) is stable, then according t61(7), wefor the introduced multi-hop model so thal G stabilizes

have: "y the network and satisfies the delay constraint and minimum
1 . 1 . data rate constraint. Givet) the proposedLG can achieve
e }EEO n Z Z Un(7) < pe- (10) a throughput arbitrarily close t¢_ .7}, under certain

T=0neN conditions related to delay constraints which will be lagisen

In addition, by Little’s Theorem[(10) ensures that the ager jn Theorem 1.
end-to-end delay of flow is less than or equal to the threshold The gptimal algorithmAL G consists of two parts: a conges-

pe With probability (w.p.)1. tion controller of R.(t), and a joint packet admission, routing

~ From the above description, we know that the networg scheduling policy. We propose and analyze the algorithm
is stable (i.e., each queue at all nodes is stable) and thethe following subsections.

average end-to-end delay constraint and minimum data rate
requirement are achieved if queugs(t) and the three virtual A. Algorithm Description and Analysis

queues are stable for any node and flow, i.e., Let gar > uar be a control parameter for queue length.
i1 We first propose a congestion controller for the input rate of
lim sup 1 Z E{X.(7)} < 00, Ve; virtual queues at transport layer:
t—oo t £ 1) Congestion Controller of R.(t):
t—1 _ c
. 1 . . (aar — par)Ug (1)
h?is(;gp 7 ZIE{Un(T)} <oo, YneNU{s(c):ceF} OSRICI(li)nguM Re(t)( I —Xe(t)pe—Zc(t)=V)
7=0 (16)
1 = where V' > 0 is a control parameter. Specifically, when
lim sup - > E{Zc(7)} < o0, Ve i gre (t) — Xe(t)pe — Ze(t) =V > 0, Re(t) is set
T =0 to zero; OtherwiseR,(t) = 1.

Now we define the capacity region of the considered multi- After performing the congestion control, we perform the
hop network. An arrival rate vectde.) is calledadmissible following joint policy for packet admission, routing and
if there exists some scheduling algorithm (without conigest scheduling (abbreviated asheduling policy.
control) under which the node queue backlogs (not including2) Scheduling Policy In each time slot, with the constraints
virtual queues) are stable. We denacteto be the capacity of the underlying interference model as described in Sectio
region consisting of all admissibléz.), i.e., A consists of Il including (T)(2)[3), the network solves the following tbp
all feasible rates stabilizable by some scheduling algorit mization problem:
without considering QoS requirements (i.e., delay constraints
and minimum data rate constraints). To assist the analgsis i max Z“’C’Z%n(t) ()W (£) (17)
the following sections, we lef; ) denote the solutions to the (o () 10

followi timizati blem:
ollowing optimization problem st 4 (=0 Vekc (B), Yimon) € L°,

max Te 11 .
(Tc):(rcﬂ)GA; 1) i (t) =0 if n=s(c), Ve € F,
s.t.re < par, Ve, (12) wherec;,, (t) andw,,,(t) are defined as follows:
Te 2 e, ve. (13) c:nn(t) = argmeag_c wrcnn(t)v

wheree is a positive number which can be chosen arbitrarily . N
small. For simplicity of analysis, we assume tiat) is in Wi (t) = [{fg}i(wmn(t)] :



and In addition,ALG can achieve a throughput

———[US () = Us(t)], if (m,n) €L, . B
an [ ( ) ( )] ( ) htrgg)lf Z Z E{R } > Z i, — V’ (22)
c sc(c)(t) c 7=0cEF cEF
winn(t) = am lans = par = Uy (1)) (18) whereB is a constant positive number independeritafhich
it (m,n) = (s(c),b(c)), will be given in the next subsection.
0, otherwise. Remark 1:The results [(119) and(21) indicate thALG

stabilizes the network and satisfies the average end-to-end
Note thatL U {(s(c), b(c)) : ¢ € F} forms the(m,n) pairs delay constraint and the minimum data rate requirement. The
n (xS, (t)) over which the optimization (17) is performedinequality [22) gives the lower-bound of the throughput tha
Thus, the optimization is a typical Maximum Weight MatchingALG can achieve. Given some> 0, since B is independent
(MWM) problem. We first decouple flow scheduling from theof V, (22) also ensures th#&LG can achieve a throughput
MWM. Specifically, for each pai{m,n), the flowc;,, () is arbitrarily close to) - r: .. Whene tends to0, ALG can
fixed as the candidate for transmission. We then assign thehieve a throughput arbitrarily close to the optimal value
weight aswm,,(t). Note that whenw,,,,(t) = 0, we must > -7} with the tradeoff in queue backlog upper bound
havenS, ., (t) = 0 Ve to maximize [(I¥). Note also that similarg,; and the delay constrain{.), both of which are lower
approaches have been utilized in][13][14], while we empldyounded by the reciprocal terms efas shown in[(20) in
the virtual queué]L,j(c (t) at transport layer as a weight on theTheorem 1, i.e., the average end-to-end delay bound must be
queue backlog differences ih{18). of order O(%), where we recall that. + ¢’ < r. < .,
To analyze the performance of the algorithm, we firstc € F. '
introduce the following proposition.
Proposition 1: EmployingAL G, each queue backlog in theB. Proof of Theorem 1
network has a deterministic worst-case bound: Before we proceed, we present the following lemmas which
c will assist us in proving Theorem 1.
Un(t) < an, Wt ¥n € N, Ve € F. (19) Lemma 1:For nonnegative numberd;, A5, 43,Q € R
Proof: We use induction in the proof. When= 0, we such thatQ < [A; — Ay]T + Az, we haveQ? < A? 4 A3 +
have U2 (0) = 0 Vn,c. Now assume in time slat we have A2 —2A;(A4; — A3).
US(t) < qum ¥n,c. In the induction step, we consider two The proof of Lemma 1 is trivial and omitted. We will later

cases as follows: use Lemma 1 to simplify virtual queue dynamics.
(1) We first consider the case when= b(c) for some flow Lemma 2:For any feasible rate vectoff.) € A with
c, i.e., whenn is a source node. IU; < qm — pm, 6. > a. Ve € F, there exists a stationary randomized

then according to the queueing dynamﬂas (3) @d (5) we haagorithm STAT that stabilizes the network with input rate
Usioy(t +1) < qu; Otherwise, we havd/y . (t) > qu —  vector (u5T4T (1)) and scheduling parametess;» 47 (1))
pa and according to the weight a35|gnm(18), we haugdependent of queue backlogs, such that the expected-admit
we (t) < 0 which leads tou¢ (t) =0, soUf,.,(t+ ted rates are:

S(C)b(C) s(c)b(c) b(c)
1) Ub( )( ) < qm by @)(3) E ¢,STAT
(2) In the second case, we hawe# b(c) for anyc, i.e.,n {1y ()b(e)
is not the source node of any flow If U7 (t) < g, then, | aqdition,vt, Vi € A, Ve, the flow constraint is satisfied:
since we employ node-exclusive model, we h&ifgt) < gns

by (3)@); Otherwise, we have¢(t) = qus, and according to  E{ Z T () N N e (O} )

)} = 0.,Vt,Vc € F.

the scheduling algorithni (18) we hau€,,,(t) = 0 Ym € N, ix(nyi)eL j:(jm)eLe

which inducesut,,, (t) = 0 Vm € N, soUS(t + 1) < qa by

the queueing dynamicEl(3). [ ] Note that it is not necessary for the randomized algorithm
Now we present our main results in Theorem 1. STAT to satisfy the average end-to-end delay constraints.
Theorem 1:Given that Similar formulations of STAT and their proofs have been give

Nqar in [2] and [3], so we omit the proof of Lemma 2 for brevity.
+ pa andpe > o VeeF, (20)  Remark 2:According to the STAT algorithm in Lemma

ON — 1+ p?
qM>7MM

2
‘ @ 2, we assign the input rates of the virtual queues at trans-
ALG ensures that the virtual queues have a time-averaggstt layer asRSTA7 (1) = uc’(S)Tb?)T( ). Thus, we also have
bound: E{R5TAT(t)} = 6.. According to the update equatiof] (6),
B’ it is easy to show that the virtual queues under STAT are
thUP ZZE{Us(c) Xe(r)+Ze(7)} < R (21) pounded above by:,, and the time-average aRSTAT(t)
T=0ceF satisfiesrSTAT = 4. Note that(d.) can take values a3 )
whered and B are constant positive numbers which will beor (r} . + e) or (rf . — %¢'), where we recal(r; ., +¢) € ‘A

given in the next subsection. andr? . > a.+¢ Ve e }'



To prove Theorem 1, we first letQ(¢) = Lemmal we have:

(UR(0), Uy (1)), (Xe(t)), (Ze(t)))  and  define  the .
Lyapunovfu(n)ctionL(Q(t)) as follows: ZqM MM S(C)(t+1) _Us(c)(t)z)

ce]:
qM — UM, ¢
ce]-‘ M cEF (23) cer M
(12U = 22Uy () (15 eype) (1) — Re(t))) (27)
+ zz 3 Y U U0} oo e
ceEF ceEF nEN <K7 ?\4
It is obvious thatZL(Q(0)) = 0. We denote the L drift (JM ,UM
! is obvious thatZ(Q(0)) e denote the Lyapunov dri Z o Do) (B) = Re(1).
y ceF
A(t) =E{L(Q(t+1)) — L(Q(t))|Q(t)}. (24) From the virtual queue dynamidg| (9), we have:
Note that the last term of the Lyapunov functidn](23) takes S Z (t+1)? = Xe(t)?)
the same form as that in [lB][ﬂl]From the queue dynamics ) cef
@@). we have: <5 DR + (3 Us(1)?
Z Z ceF neN
—Uct+1 S+ 1) _ c
s(c) 2X U
ce}‘ne/\/ neZN (28)
c 2 1
< Z )+ Uiy (£) D Us(t+1) < Y pt s KNQqM
ce]-‘ neN e F
1
<pmauNK + Y —Us () Y {US(t)? (25) - > X )+ Naar Y Xel
ceEF q neN ceF ceEF
+( Z ul ()% + ( Z 15, (1))? From the virtual queue dynamids| (8), we have:
i:(n,i)EL j:(gm)eLe
¢ ¢ ¢ c(t+1)% = Zc(t)%)
A J 1
§§ Z(RC(t)Q +az —2Zc(t)(Re(t) — ac)) (29)
where we recall thaR.(¢t) < up; and we employ Lemma 1 cEF
to deduce the second inequality. 1., 1 9
<-K - — Z(t)Re(t et
From [25), we have =2 HA4+2;a° Cezf ®) ()4’;@ ®)
. Substituting [(ZB)(27)(28)(29) into the Lyapunov driffjj2#hd
Z Z o (U5 (t+ 1)Uy (t+1) subtractingV’ 3" E{R.(t)|Q(t)} from both sides, we then
M (&
cEFnG/\/ have:
—UE(t)*UE,, (t
Ine) s () Al -V Y E{R.()IQM))
1 2N =1+ p3)Ug (1) 1 ceF
<§ M * iNKqMHM (26) (am — pan)Ug (1)
ceF SB+ZE{RC(t)( S(C)
. Z Z s(c)( ) cEF M
cEF neN = Xe(t)pe — Zc(t) — V)|Q(1)}
5> uzj (0~ 3 ), Nau Z Xe®) + ) acZelt)
j:(n,g)eEL i:(3,n)ELE ce]: cEF
— 1+ 13)Us(#) (30)
where we employ the fact deduced frorl] [#)(5) that +5 Z ant
doiks(t) < 1and 3 pS,(t) < 1 whenn # b(c) and 2icF
> 15, (t) < pn whenn = b(c). Note that we use the _E{M ZUﬁ(c)(t)#g(c)b(c)(t)
summation index and j interchangeably for convenience of am TF
analysis. US(t )Uﬁ(c)( )
From the queue length dynamids] (6) and by employing +Z Z -
cEF neN qm
INote that, however, the queue dynamick[{B)(6) takes diffeferm from ( Z /szj (t) - Z :u;,:n(t)”Q(t)}a

those in [13][14]. ji(n,j)eL i:(i,n)E€LE



whereB £ 1NKunM + KR 1+ 313 e r P2+ taking limsup oft on both sides of{34), we have:
SEN?q3 + 5Kp3, + 5 chef a?. We can rewrite the last

term of RHS of [[(3D) by simple algebra as lim sup — Z Z E{Xc(7) + Uy (7) + Ze(7) }

t—o0
C ( ) 7=0ceF
—E{ (Un(t) = Us(1)) BV
;(m%a w (31) =5 * g limsw 5 Z D E{R(r)} = > vl (35)
U (t) , T7=0ceF cEF
+ 2 Mot ()= (aar = par = Uiy (IR} B
ceF =75 )

Then, the second term and the last term of the RHS where B’ £ B + V Bg. Thus, we have prove@(R1).
(30) are minimized by the congestion controller](16) and the By taking liminf of ¢ on both sides of[(34), we have
scheduling policy[(T]7), respectively, over a set of feasilt
gorithms including the stationary randomized algorith®BT i1, inf ! Z Z E{R.(7)}
introduced in Lemma 2 and Remark 2, which require the input t—o ¢
rate to be less thap,,. We can substitute into the second

term of RHS of [[3D) a stationary randomized algorithm Wlth>£ lim inf — Z Z E{X(7) + Uy (7) + Zo(7)} (36)

T= Oce]:

admitted arrival rate vectar; . .) and into the last term with tmoo 1T F
a stationary randomized algorithm with admitted arrivdera B .
vector (7% . + €). Thus, we have: v + Z Teer
) ceF
which proves[(2R) since the first term of the RHS [of](36) is
— VY E{R(1)IQ(1)} nonnegative.
ceF
<B_VZ,,* IV. FURTHER DISCUSSIONS
ceF (32) A. Suboptimal Algorithms
v T ) _ 2N —1+4f, Solving MWM optimization problem can be NP-hard de-
Z (e(lgm — par) - 9 ) . A S
fer M pending on the underlying interference model as indicated
. Now )X in [[7]. In this section, we introduce a group of suboptimal
=D (e —a0)Ze(t) = Y _(peri e — Naa) Xe(2). algorithms that aim to achieve at leastvafraction of the
eer e optimal throughput. We denote the scheduling parameters of
When [20) holds, we can fing, > 0 such thatel < pert,— suboptimal algorithms by.$5U 7 (t)). For convenience, we
_ 2Nzl also denote the scheduling parameteralo® by (977 (t
Nqyr Ve € F ande; < < o= “”) . Recall thate’ ap Y (i~ (£))-

Algorithms are calleduboptimalf the scheduling parameters

is defined such that* >a.+€ VC e F. Thus we have: (1S SUB( )) satisfy the following:

— VY E{R(1)IQ(1)} i 5T (0w (1) > VZM ¢ OO () (1),
ceF (33) m,n (37)
<B-9¢ U -V .
cez; )+ Ui ® ;Te < where v € (0,1) is constant and we recall that;, (¢)
and w,,,(t) are defined in Section IlIl.A. In addition, the
whered £ min{ey, €'}. congestion controller of suboptimal algorithms is the sa@me
We take the expectation with respect to the distribution dfat of ALG (186).
Q on both sides of[(33) and take the time averageros Following the same analysis 81 G, Proposition 1 holds for
0,...,t — 1, which leads to suboptimal algorithms, i.e., the queue backlogs are balinde
above byg,,, and we derive the following theorem:
Theorem 2:Given that
_E{L }__ZZE{R 2N — 1+ p3 N
T=0ceF am > 7MM+MM and p, > qm Vee F,
SB -V Z ’f‘:yc (34) 2’}/6 '77"5 " (38)
c€.7: 3€2>05t’y7’602ac+62VC€f
_9 Z Z E{X,(1) + Ug ( )+ Zo(1)} a suboptimal algorithm ensures that the virtual queues have
. oy ¢ ' time-averaged bound:

Oq| o]

Sincelimsup, _, , 7 Ly~ ZC E{}(%c(r)} is bounded above iy sup — Z Z E{US o) (7) + Xe(7) + Zo(7)} < <, (39)

(say, by a constanBp) and E{L(Q(t))} is nonnegative, by  t—oo {7



where B £ B 4 4V Bg. In addition, a suboptimal algorithm 1) Congestion Controller.
can achieve a throughput

o min v (t)(nYe(t) — V), (43)
.. 1 « B 0<vc(t)<pm
hgggf ; Z Z E{RC(T)} > Z Teec ™ V (40)
T7=0ceF ceF
: qM — BM 77c _ _ _
Proof: The proof is provided in Appendix A. R Re(o) qm Usie(t) = n¥e(t) = Xc(t)pe — Ze(1)) (44)
Remark 3:From Theorem 2, given an arbitrarily small
we show that a suboptimal algorithm ca least achieve s.t. 0 < Rc(t) <min{L.(t) + Ac(t), par}

a throughput arbitrarily close to a fraction of the optimal _ _ _ _ _
results >~ » 7. Suboptimal algorithms include the well-wheren > 0 is a weight associated with the virtual queue
known Greedy Maximal Matching (GMM) algorithm [15] Ye(t). Note that [4B) and.(44) can be solved independently.

with v = 1 as well as the solutions to the maximunBpecifically, whennY.(t) — V' > 0, v.(t) is set to zero;
weighted independent set (MWIS) optimization problem sudBtherwise,v.(t) = pa. When LTS ((8) — nYe(t) —

as GWMAX and GWMIN proposed in[28] withy = %, Xc(t)pe — Zc(t) = 0, Rc(t) is set to zero; Otherwise,

whereA is the maximum degree of the network topolo@y Rc(t) = min{L.(t) + Ac(t), uar}.

The delay bound and throughput tradeoff in Theorem 1 still 2) Scheduling Policy The scheduling algorithm is the same

hold in Theorem 2. as that ofALG provided in Section 111.B, except for the up-

. . dated constraint$) < ¢ (t) < min{L(t)+Ac(t), piar }-
s(e)b(c) )

B. Arbitrary Arrival Rates at Transport Layer Since the scheduling policy is not changed, Proposition 1

Note that in the previous model description, we assumef nolds. And we present a theorem below for the perfor-
that the flow sources are constantly backlogged, that is, th&ince of the algorithm:

congestion controllef(16) can always guaranf&ét) = s
when %Ug(c)(t) — Xc(t)pc_— Z.(t) - V < 0. In this ,
subsection, we present an optimal algorithm when the flows e > 2N =1+ pyy,
have arbitrary arrival rates at the transport layer. ' 2¢

Let A.(¢t) denote the arrival rate of flowe packets at ) ) _
the beginning of the time slot at the transport layer. We the algorithm ensures that the virtual queues have a time-
assume thatl.(t) is i.i.d. with respect ta with mean).. For averaged bound:
simplicity of analysis, we assumg..) to be in the exterior of

t—1
. : : . 1 B
the capacity regiornk so that a congestion controller is needed 1; - c 22
pacity reg g lim sup " g g E{Ug)(7) + Xe(7) + Ze(7)} <

Theorem 3:Given that

Nam

*
€,C

+ par andp. >

Ve e F,

and we assume that.(t) is bounded above by, Vc € FB t=oo Vg ceF g
Let L.(t) denote the backlog of flow data at the transport
layer which is updated as follows: where B, £ B + Knu3, + VBgr andd’ is constant positive

) . number. In addition, the algorithm can achieve a throughput
Le(t+1) = min{[Le(t) + Ac(t) = 15 oppe) (DT L}, (41)
t—1
where L, > 0 is the buffer size for flowe at the transport lim; fl FE{R > _— &
layer. Note that we havé.,, = 0 and L.(¢t) = 0 if there is pataa Z Z {Be(n)} = Z Tee Vv’
no buffer for flowc at the transport layer.
Following the idea introduced in 2], we construct a virtuajyhere B; £ B + Knu3,.

7=0cEF ceEF

queueY,(t) and an auxiliary variable.(t) for each input rate Proof: The proof is provided in Appendix B. -
R.(t), with queue dynamics fo¥.(¢) as follows Theorem 3 shows that optimality is preserved ant)
Yo(t+1) = [Yo(t) — Re(®)]" + ve(t), (42) delay scaling is kept.

where initially we h:_;lveYc(O) :_0. The intqition is that.(t) (. Employing Delayed Queue Backlog Information

serves as the function d&.(¢) in congestion controlle (16) i ) )

and we note that whe¥i.(¢) is stable, we have, > v., where Recall that inALG, congestion co_ntrolleE(_lG) is performed_
v, is the time average rate far,(¢), recalling thatr, is the at the transport layer and link weight assignment[inl (18) is
time average rate faR.(¢). Thus, when,(¢) and o (t) are performe_d locally at each Ilnk._ Thus, in order to accountiier
stable, if we can ensure the val)€_ v, is arbitrarily close propagation delay of queue information, we employ delayed
to the optimal valué:_ r* ., then so is the throughpit, u, dueue backlog ofX.(¢)) in (18) and employ delayed queue

€,c?

sinceie > re > ve. backlog of (U, (¢)) for links in £ in (18). Specifically, we
Now we provide the optimal algorithm for arbitrary arrivaféwrite [16) inALG as:
rates at the transport layer:

C

min R (f)( (g1 — pan)Ug ) ()

2 : . _Xc(t_T)pC_ZC(t)_V)a
Note that our analysis also works for the case whkr(t) is bounded qm
above byAy; Ve € F, where Ay > . (45)




whereT is an integer number that is larger than the maximum U ® [US (t) — US(t) — L], if (m,n) € L
propagation delay from a source to a node, and we rewirite (18) qm " " " ’ ’
as: c Usc(c) (t) c

US,o(t = T) . ; Wy, , (1) = qT[CIM — par — Uiy ()],

_ske)y» 7 c t) — c t , .

o (Un® ~ U0 f (m,n) = (s(0), b{e)),
if (m,n) € L, 0, otherwise.

Winn (£) = Us(c)(t) (46) It is not difficult to check that Proposition 1 still holds Wit

————lqm — par — Uy (1)), .

M b(e) gy > max{maxpenrln, uar} @and Theorem 1 holds with a
if (m,n) = (s(c),b(c)), different definition of constanB.

0, otherwise.

Proposition 1 still holds and we present a theorem for the
scheduling algorithm using delayed queue backlog informa-
tion, which maintains the throughput optimality ar@(%)
scaling in delay bound:

Theorem 4:Given that
2N — 1+ i3y

2¢ g
the algorithm ensures that the virtual queues have a time- . ) . .
averaged bound: In this sect!on, we pr.esent the ;lmuIaF|on results for. the
By Matab 2009 wih resuls averaged ovet’ tme sios, In
) 1 c 4 .
hﬁijjp 7 DD E{UL(r) + Xelr) + Ze(n)} < 5 the network topology illustrated in Figufé 1, there are ¢hre
T=0cer source-destination paifs{, G), (D, E) and(F, H) with same
where By £ Bs; + VBr and Bs £ B + KNuyT +  Poisson arrival rates andy; = 2. The required minimum data
NauTumpe + Kp2p3,T. In addition, the algorithm can rate for the three flows are all set@al. We denote byBP the

V. NUMERICAL RESULTS

Nan

qn > -+ Unr andpc > Ve € F,

Fig. 1. Network topology for simulations

achieve a throughput back-pressure scheduling algorithm in [1] with a conge@stio
t—1 controller in [2], and denote b¥inite Bufferthe cross-layer
| Bs . . . .
lim inf = Z Z E{R.(7)} > Z (P algorithm developed in[14] with buffer size equal to the ggie
tmoo b L~ e length limit ¢5,. Note that it is shown in simulation results in
_ ) ) ) ) [14] that Finite Buffer algorithm ensures much smallerintg
Proof: The proof is provided in Appendix C. B queue length (of nodes excluding the source node) than BP

On employing delayed queue backlogs, we can extend
centralized optimization proble (117) to distributed iemplen-
tations in much the same way as [8][29][30].

orithm (and queue length is related to delay performgance
We set the control parameteér = 1000, where in simulations
we find that a higheV” cannot further improve the throughput.
D. Arbitrary Link Capacities and Arbitrary Interference Mo~ We first illustrate in Tabléll the throughput optimality of
els with Fading Channels ALG when the sources are constantly backlogged. We loosen
lghe delay constraint g&. = 30q;. As we increase the control

Recall that in the model description in Section Il, the lin | :
capacity is assumed constant (one packet per slot) and ndifdameteta, theALG achieves a throughput approaching the

exclusive model is employed. In this subsection, we extaad t'roughput of BP algorithm which is known to be optimal. We
model to arbitrary link capacities and arbitrary interfere 2SO note that this approximation in throughput resultsanse
models with fading channels of finite channel states. Thu/€rage end-to-end delay performance, which complies with
instead of [(#), we havews,,, (t)) mnec € I(t), wherel(t) Remark 1',
is the feasible activation set for time siotletermined by the = Ve then illustrate the throughput and delay tradeoff fohbot
underlying interference model and current channel statits, (N€ALG and its corresponding suboptimal GMM algorithm in
link capacity constraint§™ _, u¢, (¢) < I wherel. is Figurel2 for the case of arbitrary arrival rates at transfaye:r
ceF Fmn —= Ymny mn . o o o

the arbitrarily chosen link capacity for a linkn,n) € L. ¥;"th Lf\(j " (ihV\:hﬂe]re we SG;‘IM _d5 anr(]j Pe _th5('z tfr?r EaChd

: A c ow c. Note that this pair ofjy; andp. shows that the boun
We definel,, - max(s, . i)er(t) 2cer Lomi(mmes Hnn (1) in QZ?) is actually qlﬁte Iooj\s4e, an% thus our algorithm can
Note that it is clear thaf,, < Zm:(m,n)eﬁlmn' Then we

can update the optimizatiofi{17) and weight assignnient ( hieve better delay performance than stated ih (20). Eigur
respectively, as follows: shows that the average end-to-end delay uAdds is well

. below the constraintg. = 50) and lower than that under BP
max Zuﬁ%’#(t) () wWmn(t) and Finite Buffer algorithms. The throughput&EG is close
Wi () 55 to that of the optimal BP algorithm when arrival rates are
St (fgn (1)) (monyec € 1(t) and pgieyp(e) (1) < par Ve € L. small (< 0.3). Specifically, when the arrival rate 53, ALG



TABLE |
THROUGHPUT PERFORMANCE OALG WHEN SOURCES ARE BACKLOGGED AT THE TRANSPORT LAYER
ALG (pc = 150) | ALG (p. = 300) | ALG (p = 3000) | ALG (p. = 30000) BP
Throughput (sum for three flows) 0.9368 1.1834 1.2007 1.2305 1.2315
End-to-end delay (averaged over three flows)  45.76 131.47 1.514 x 103 1.3687 x 104 3.753 x 104
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T Inst. Technol. (MIT), Cambridge, MA, 2003.
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ing in wireless neworks”, in Proc. of the 12th Annual International
Conference on Mobile Computing and Networking (MobiCor)'@606,

' LG pp. 227-238.
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H“ it -~ -Delay constraint Y [9] P. Chaporkar, K. Kar and S. Sarkar, “Throughput guamsteéhrough
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I N pp. 1860-1873, December 2009.
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o i Then we also hav&{vTAT(t)} IE{RSgT Tt} =

Note that RSTAT (1) < A.(t) < mln{L (t) + A.(t), uM}
APPENDIXA andvaAT(t) < nar.

PROOF OFTHEOREM2 Now we present the proof.

Proof: Let ASUB (1) denote the corresponding Lyapunov Proof: We define t2he Lyapunov function ds(Q’(t?) =
drift of a suboptimal algorithm which takes the same form a(Q 3 Zcefyc (t) a”‘/j the/ Lyapunov ‘?”ft as
(4). By analyzing[[30)(31) which also hold for subopuma‘fl = E{L( (t+1)) = LIQ'(1))|Q'(t)}, whereQ'(t) =
algorithms, we note that the second term of RHS[l (30) (1) (Ye(?))). From the virtual queue dynamick {42) and

always non-positive ensured by the congestion contrd@).( -émma 1, we have

Employing [3T) to[(3D)(31), we derive the following n Z (t+1)2 — Yo(1)?)
ce]:
77
ASUB(t) — V 3 T E{R.(t)|Q(1)} Z 2 e(t)? = 2Ye(t)(Re(t) —ve(®)) (49
ceF ce]:
(ant — 1an)US ) (1) <Knpiy— Y nYe(t)(Re(t) — ve(t)).
<B+7 Y E{R.(t)( - © ;
ceF . . ..
Following the steps in derivind (80)(B1), we have
— Xc(t)pe — Zc(t) = V)IQ()} / /
N YK+ 3 0 20~V L 01Q0)
cef cEF ¢
Z 1+ HM)U;(C)( ) a7y Bt > E{ue(t)(nYe(t) = V)IQ' (1)}
_ ceF
c€.7: (qM - ,LLIW)USC(C) (t)
(4 = ru L&SUB + Z E{R.(t)(
Z s(c) b(c)( ) e F M
CEF —nYe(t) = Xe(t)pe — Ze(1))|Q' (1)}
Ugie)(®)
+ Z Z +Naum Z X () + Z acZ(t) (50)
ceEF neN CGF ceEF
> uf;fUBa) - Z/f SE )R}, Z —1+ uM>U§<c)< )
j i 9
ce]:
Following the steps in proving (82), we have from](47) UC (t) . .
AP -V Y E{R()IQ(1)} e 7 (et |
- Y oo (0 °’( )< — par = Ug (0)IQ ()}
<B - V")/ Z T:,c CE}—/LS c b(c) qM — UM b(c) s
e ce(f) ON _ 1 5 (48) The second term, third term and the last term of the RHS
_ Z _s@\/ (ve(qar — puns) — ﬂ) of (50) are minimized by the congestion controll€r](43),
ver M 2 (44) and the scheduling polic} {1L7), respectively, over 1 se
_ Z 4 Zu(t) — prc * Naw) Xo(t). of feasible algorithms including the stationary randordize

algorithm STAT. Substitute into the second term of RHS of
(50) a stationary randomized algorithm with admitted ariv
Employing the conditions[(38) and following the steps imate vector(r; . ——e) the third term a stationary randomized
proving [3%) and[(36), we can prove Theorem 2. m algorithm with admitted arrival rate vector; ) and the last

ceF ceF



term a stationary randomized algorithm with admitted atriv
rate vector(r; . + ¢). Then, following the steps in proving
Theorem 1, we can prove Theorem 3. [ ]

APPENDIXC
PROOF OFTHEOREM 4
Proof: According to queue dynamics](B)(9), we obtain
Usiey(t) = umT S Ugoy(t = T) < Ugoy () + pm T,
Xe(t) = NguT < X (t —T) < Xc(t) + pepensT.
Employing the above inequalities to {30)(31), we have

(51)

-V Z E{Rc(t) Q(t)}
ceF
<B+ X;E{Rc(t)( e - M;j:Ug(c) v

= Xe(t =T)pe — Zc(t) — )|Q( )}
+Nq]MZX —l—Zac c +Kpc/LMT+ KN,M]wT

ce]-‘ ceEF
1+MM)UC( ()
- CGZ}- "
U¢ T
“E{Y D it Q(Uﬁi(ﬂ - Us@®)

ceF (m,n)eL K

+ D Moot

ceF

The second term and the last term of the RHS of the above
inequality are minimized by the congestion controller] (45)
and the scheduling policy (1L7) with weight assignméni (46),
respectively, over a set of feasible algorithms includihg t
stationary randomized algorithm STAT. Substitute into the
second term of RHS a stationary randomized algorithm with
admitted arrival rate vectdp; .) and the last term a station-
ary randomized algorithm with admitted arrival rate vector
(rf .+¢€). Then, employing the inequalities {51) and following
the steps in proving Theorem 1, we can prove Theorerm4.

) U ><t>

(arr — pr — Uy (£))1Q(1) -
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