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Abstract—The newly emerging theory of compressed sensing
(CS) enables restoring a sparse signal from inadequate number
of linear projections. Based on compressed sensing theory,a
new algorithm of high-resolution range profiling for stepped-
frequency (SF) radar suffering from missing pulses is proposed.
The new algorithm recovers target range profile over multiple
coarse-range-bins, providing a wide range profiling capability.
MATLAB simulation results are presented to verify the proposed
method. Furthermore, we use collected data from real SF radar
to generate extended target high-resolution range (HRR) profile.
Results are compared with ‘stretch’ based least square method
to prove its applicability.

I. I NTRODUCTION

The range resolution of a radar system is determined by the
bandwidth of the transmitted signal. Stepped-frequency (SF)
pulse train obtains large signal bandwidth by linearly shifting,
step-by-step, the center frequencies of a train of pulses. It
is widely used in high-resolution radar systems and well
documented in the literature [1],[2]. In SF radars, the ‘stretch’
processing method [2], based on inverse discrete Fourier
transform (IDFT) technique, can acquire high-range resolution
(HRR) profiles with narrow instantaneous bandwidth and
low system complexity. However, SF radar suffers greatly
from missing-pulse problems due to interference or jamming
impinging on the receiver, since SF technique occupies a large
bandwidth. While some pulses missing are and hence must be
discarded, the IDFT based stretch processing will inevitably
leads to high sidelobes, thus undermining the profiling quality.
Various methods have been proposed to interpolate the missing
data (see [3] and reference therein). Theoretical analysisand
experience indicate that the longer the signal interpolation
length is, the larger the interpolation error is. If the missing
pulse number becomes bigger, the performance of existed
method will reduce rapidly [3].

Besides the missing-pulse problem, SF radar suffers from
‘ghost image’ phenomenon. This problem, mainly caused by
range ambiguity among adjacent ‘coarse-range-bins’, is deli-
cately addressed in [4], where the author solved the problem
by least square (LS) technique. But this method is applicable
on the assumption that full pulses are well received, and the
foundation of it is still IDFT. Therefore, missing-pulses also
deteriorate the profiling results. Recently, the new emerging
theory of compressed sensing (CS) [5],[6] that achieves high
resolution has been widely used in radar applications [7].
The main advantage of this theory is that, with sub-Nyquist

samples, sparse signal can still be reconstructed perfectly. CS
theory was introduced in the signal processing for SF radar
by Sagar Shahet al. [8]. With reduced number of transmitted
pulses in one coherent processing interval (CPI), their method
provides super-resolution ability in both range and Doppler do-
main. It also indicted that missing-pulse problem can be solved
with their method. However, they only discussed profiling
range of only one coarse-range-bin, limiting their application
on narrow-range-gate profiling.

This paper introduces a new profiling algorithm for SF
radar with missing pulses, and the profiling range gate extents
for multiple coarse-range-bins. We focus on profiling of a
stationary object. Unavailable data from missing pulses are
discarded; sparse recovery is used to obtain extended synthetic
range profile. We demonstrate that new algorithm can solve the
missing-pulse problem, it also has a wide profiling range gate.
The remainder of this paper is organized as follows. In Section
II, the signal model of HRR profiling for SF radar is stated.
CS based profiling with missing pulses is described in section
III. Simulation results are presented in section IV. Section V
concludes the new approach.

II. SYSTEM MODEL

In SF radar, a pulse train ofN pulses are transmitted with
stepped carrier frequencies. For thenth pulse, the carrier
frequency isfn = fc+n∆f , wherefc is the initial frequency
and ∆f the frequency step. The complex profile of the
measured scene can be represented by system functionH(td),
as has been derived in [1].td is the time domain variable,
and H(td) describes the complex reflectivity of measured
scene corresponding to time delaytd. For the convenience
of signal modeling and derivation, it is assumed that one
target falls in the range gate [R0, R0 + D] over the whole
coherent processing interval, whereR0 = cQ/2∆f , and
D = cL/2∆f (Q,L are nonnegative integers andc is the speed
of light). In the ‘stretch’ processing [1], the range resolution
is c/2N∆f [2]. Choosing this resolution as the sampling
period, thepth high-resolution range cell, which represents
the complex amplitude of the scatterer located in the range
R0 + (cp/2N∆f), is written by hp = H(p/N∆f). Thus,
the HRR profile of the target can be expressed by the vector
h = [h0, h1, , hNL−1]

T .
A target response matrix (TRM) [2] was used to organize the

echo signal of the pulse train. The TRM containsN rows and
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S columns. Thenth row consists ofS uniformly sampled time-
domain data from the baseband echo signal of thenth pulse
(If the transmitted baseband waveform is pulse compressing
waveform, the ‘baseband echo signal’ refers to the pulse-
compressed echo signal). The elements in the same column are
baseband samples of the same coarse range cell. The column
number isS = 2D/c∆t, where∆t is the sampling interval.
The TRM of a target can be denoted by

E =











E0(0) E0(∆t) · · · E0(S∆t−∆t)
E1(0) E1(∆t) · · · E1(S∆t−∆t)

...
...

.. .
...

EN−1(0)EN−1(∆t) · · · EN−1(S∆t−∆t)











. (1)

Here,En(τ) is the baseband echo signal of thenth pulse,
andτ is the baseband sampling instant. As derived in [1], the
baseband echo signal from stationary target is

En(τ) =
NL−1
∑

p=0

hpRX(τ −
2R0

c
−

p

N∆f
)e−j2π

np

N +un(τ)

(2)

where RX(τ) is the baseband pulse shape andun(τ) is
additive noise.

In the ‘stretch’ processing method, the IDFT is applied to
each TRM column to form a HRR profile in one coarse-range-
bin [1]. Missing pulse problem means data from some rows of
TRM are not available. If the missing pulse number is large,
profiling quality is greatly decreased using IDFT. Our new
method solve this problem by sparse recovery based on CS
theory, which can provide a better profiling quality. Based on
the observation that discrete system function vectorh is sparse,
we propose a new scheme for HRR profiling based on sparse
recovery in the next section.

III. HRR PROFILING WITH MISSING PULSES

We now introduce the new CS based HRR profiling method,
on condition that some pulses are missing. Suppose onlyM
pulses (M < N ) from N transmitted carrier frequencies are
valid, that the carrier frequency of themth valid pulse isFm =
fc+Cm∆f , wherem is an integer between0 andM−1, Cm

is an integer between0 andN − 1. Substituting pulse number
index n in equation (2) byCm, we derive sample output for
themth pulse at sampling instanceτ

ECm
(τ) =

NL−1
∑

p=0

hpRX(τ −
2R0

c
−

p

N∆f
)e−j2π

Cmp

N +um(τ).

(3)

We rewrite (3) in vector multiplication form:

ECm
(τ) = ϕ(Cm, τ)h + um(τ). (4)

ϕ(Cm, τ)is a row vector of lengthN ×L, thepth element of
the vector is

ϕp(Cm, τ) = RX(τ −
2R0

c
−

p

N∆f
)e−j2π

Cmp

N . (5)

Deleting the invalid data in the TRM, the row number
decreases toM .

Ẽ =











EC0
(0) EC0

(∆t) · · · EC0
(S∆t−∆t)

EC1
(0) EC1

(∆t) · · · EC1
(S∆t−∆t)

...
...

. . .
...

ECM−1
(0)ECM−1

(∆t) · · · ECM−1
(S∆t−∆t)











. (6)

The new TRM includes all available information we received.
Note that each element of the TRM is a linear projection of
system functionh. By vectorizing this matrix, we may write
the following equation

Y = vec(Ẽ) = Φh + U. (7)

The observation vectorY is of lengthM ×S. Matrix Φ is the
projection matrix ofM×S rows andN×L columns, each row
of Φ is corresponding to an observation. For an instance, the
row corresponding to pulse numberCm and sampling instance
s∆t is ϕ(Cm, s∆t). U the noise vector for all observations.
We have established a linear projection for complex profile
h. While pulses are missing,M < N holds, and inequality
MN < SL holds. Therefore, (7) becomes an underdetermined
equation. According to CS theory, recovering a sparse signal
from insufficient observation is possible byℓ1 minimization
[6]:

min ‖h̃‖1 s.t. ‖Y − Φh̃‖2 ≤ ǫ (8)

whereh̃ is an reconstruction ofh andǫ is an estimation error
that is determined by received signal noise.

IV. RESULTS

We show some primary results of simulation. The HRR
range profile of a real aircraft (Fig.1(a)) was measured by
a wideband C-band chirp radar. The chirp bandwidth was
512MHz, providing a range resolution of about 0.3m. This
measured range profile is used as the scatterer truth. For
SF radar simulation, 32 LFM pulses are transmitted in a
coherent pulse train. The frequency step size is 16MHz; and
the total effective bandwidth isN∆f =512MHz. In each
pulse, single-pulse bandwidth is 24MHz. The sampling ratefs
equals single-pulse bandwidth. The profile range gate covers
12 coarse-range-bins. We simulate the missing pulse condition
by discarding data received from randomly selected 12 pulses,
the left 20 pulses are valid. White Gaussian noise was added
to the received data, SNR is approximately 15dB.

A. Simulated Data

The results of simulation data obtained via different meth-
ods are compared in Fig.1. Fig.1(b) show the result obtained
from LS method [4], Fig.1(c) demonstrate the result from new
approach. From which it can be noted that LS method has
created high sidelobe, and the result by new method is more
similar to original target range profile.

To analyze the profiling results of the two methods quan-
titatively, we measure the similarity between the simulated
target and the reconstruction profile by normalized cross
correlation. Similarity equals1 means perfect reconstruction.
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Fig. 1. Comparison of result obtained via different methodsfor simulative
data. (a) Model of scatters. (b) LS result of missing data. (c) Sparse recovery
of missing data.
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Fig. 2. Similarity measure.

Fig.2 illustrate the comparison. We increase the number of
missing pulses from 0 to 20. The line marked by “△” denotes
the similarity by LS method, and line marked by “�” denotes
the similarity by sparse recovery. Sparse recovery has an
obvious advantage over the LS counterpart.

B. Real Radar Data

We use real radar data obtained from SF radar. An ex-
periment was carried out in a wide and flat field. A single
metal reflector was placed 1010m away from the radar an-
tenna. Experimental data of I/Q channels was collected from
the baseband of the radar receiver. All parameters in the
experiment were equal to the simulated data. We discard 12
pulses randomly to simulate the missing data condition. New
approach is applied to the missing data. Profiling results are
compared to IDFT based LS method.

Fig. 3(a) shows the profiling result of LS method with full
data. Fig. 3(b) and 3(c) compare the profiling results to the
missing data by LS method and the new method respectively.
LS method exhibits high sidelobe as predicted, while the
profiling result by new method is similar to full data profiling.
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Fig. 3. Comparison of result obtained via different methodsfor real radar
data. (a) Full pulse recovery. (b) LS result of missing data.(c) Sparse recovery
of missing data.

Sparse recovery outperforms LS using real radar data.

V. CONCLUSION

The application of sparse recovery in extended HRR profil-
ing for SF radar is illustrated. The simulated data and real data
experiments prove that the proposed method is an appropriate
tool to deal with missing data problem. Profiling quality of the
new method has an obvious advantage over IDFT based least
square method, if some pulses are missing. Moreover, it can
profile multiple coarse-range-bins simultaneously, indicating
a wide profiling range. The profiling result is not corrupted
by ghost images. Further work should consider reducing
computational load for real-time implementations.
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