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Abstract

We develop a theory of the Cauchy problem for linear evolution systems of partial
differential equations with the Caputo-Dzrbashyan fractional derivative in the time vari-
able t. The class of systems considered in the paper is a fractional extension of the class
of systems of the first order in t satisfying the uniform strong parabolicity condition.
We construct and investigate the Green matrix of the Cauchy problem. While similar
results for the fractional diffusion equations were based on the H-function representa-
tion of the Green matrix for equations with constant coefficients (not available in the
general situation), here we use, as a basic tool, the subordination identity for a model
homogeneous system. We also prove a uniqueness result based on the reduction to an
operator-differential equation.
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1 INTRODUCTION

Fractional diffusion equations of the form
(

D
(α)
t u

)

(t, x)− Au(t, x) = f(t, x), 0 ≤ t ≤ T, x ∈ R
n, (1.1)

where 0 < α < 1, D
(α)
t is the Caputo-Dzhrbashyan fractional derivative, that is

(

D
(α)
t u

)

(t, x) =
1

Γ(1− α)





∂

∂t

t
∫

0

(t− τ)−αu(τ, x) dτ − t−αu(0, x)



 ,

A is a second order elliptic operator, are among the basic subjects in the theory of fractional
differential equations. The initial motivation came from physics – the equations of the above
type were first used for modeling anomalous diffusion on fractals by Nigmatullin [28] and for
a description of Hamiltonian chaos by Zaslavsky [40]. See the survey papers [11, 26] for a
description of the present status of this research area.

The first mathematical works in this direction dealt either with the case of an abstract oper-
ator A, that is with a kind of an abstract Cauchy problem [16] (see [15] for further references),
or with the case where A = ∆ is a Laplacian. For the latter case, a fundamental solution of the
Cauchy problem (FSCP) is expressed via Fox’s H-function [17, 35]; uniqueness theorems were
proved in [17] for an equation with a general second order elliptic operator A; see also [31].
The first example of an initial-boundary value problem for this equation was considered in [39].
Later the initial-boundary value problems for fractional diffusion equations were studied in [24],
with an emphasis on the probabilistic aspects, and in [22]; for the probabilistic interpretations
see also [34, 25] and references therein.

In [8] (see also [7]), Eidelman and the author constructed and investigated a FSCP for
fractional diffusion equations with variable coefficients. We followed the classical parametrix
method using an H-function representation for the parametrix kernel and the detailed informa-
tion about asymptotic properties of the H-function available from [4, 14].

In the development of the theory of linear partial differential equations of parabolic type,
the next step after the study of second order equations was to identify a class of systems which
can be called parabolic. For such systems, there must be a well-posed Cauchy problem whose
fundamental solution is an ordinary function smooth outside the singular point t = 0. Such a
class of systems was first found by Petrowsky [30] in 1938; for the subsequent development of
this subject see [6, 7, 9, 20].

The fractional diffusion equation shares many essential properties with second order para-
bolic equations (though some properties are different, like, for example, the singularity of the
FSCP at x = 0 appearing for n ≥ 2). In this paper we follow the above line and find a fractional
analog of the class of parabolic systems.

We consider systems of the form (1.1) where u = (u1, . . . , uN) is a vector-valued function,

A = A(x,Dx) = A0(x,Dx) + A1(x,Dx), (1.2)

is a differential operator of even order 2b with matrix-valued coefficients,

(A0(x,Dx)u)i =
N
∑

j=1

∑

|β|=2b

a
ij
β (x)D

β
xuj, (1.3)
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(A1(x,Dx)u)i =

N
∑

j=1

∑

|β|<2b

a
ij
β (x)D

β
xuj, (1.4)

Dβ
x = Dβ1

x1
· · ·Dβn

xn
, Dxj

=
1

i

∂

∂xj
, |β| = β1 + · · ·+ βn.

We assume that all the coefficients aijβ (x) are bounded and satisfy the global Hölder condition

∣

∣a
ij
β (x)− a

ij
β (y)

∣

∣ ≤ C|x− y|γ

(below the letters C, c will denote various positive constants while γ > 0 will denote all the
Hölder exponents; for simplicity, we denote by | · | norms of all finite vectors and matrices). We
also assume the uniform strong parabolicity condition: for all η ∈ R

n, z ∈ C
N ,

Re〈A0(x, η)z, z〉 ≤ −δ|η|2b|z|2, δ > 0. (1.5)

In fact, the key ingredients in the construction of a FSCP for a problem with variable
coefficients are precise estimates for the model problem

(

D
(α)
t u(t, x)

)

= A0(y,Dx)u(t, x) (1.6)

containing only the homogeneous highest order differential operator in x, with “frozen” coeffi-
cients depending on a parameter point y. As the first step, one has to consider the case where
the coefficients aijβ (x), |β| = 2b, are constant. Already in this case, the study of a FSCP is far
from trivial. The approach used in [8, 7] based on the H-function representation, does not work
for systems.

Instead, we use the subordination representation [3, 1] expressing the FSCP for the model
system via the FSCP for the first-order (in t) parabolic system. At the first sight, it looks
an easy approach to all fractional problems. However the subordination identity involves the
integration in t over the half-axis (0,∞), while usually a FSCP for a parabolic equation or
system is constructed only on a finite time interval. Nevertheless, for our model case of constant
coefficients the subordination method works efficiently giving, by the way, new proofs of the
estimates known for fractional diffusion equations. Note also that the probabilistic side of
subordination, not touched here, is also an important subject of fractional analysis; see [2, 18,
27, 29].

We also prove a uniqueness theorem for general systems (1.1). Again, the method of proving
uniqueness in [17, 7] (based on a kind of the maximum principle) is applicable only for second
order equations. Here we use the reduction to an abstract equation from [16] and the regularized
resolvent estimate from [13].

The main results of this paper are collected in Section 2. Section 3 contains miscellaneous
auxiliary results used subsequently. Proofs of the estimates for the estimates for the Green
matrix of a homogeneous system with constant coefficients are given in Section 4 and are
complemented in Section 5 with some considerations regarding the parametrix kernels. In
Section 6, these results are used to substantiate the Levi method in our situation. The proof
of the uniqueness theorem is given in Section 7.
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2 Main results

In this section we introduce basic notions and formulate principal results. The proofs will be
given in subsequent sections.

2.1. The model system. Subordination. Let us consider systems of the form

(

D
(α)
t u(t, x)

)

= A0(Dx)u(t, x) (2.1)

where

(A0(Dx)u)i =
N
∑

j=1

∑

|µ|=2b

aijµD
µ
xuj,

aijµ ∈ C, and for any η ∈ Rn, z ∈ CN ,

Re〈A0(η)z, z〉 ≤ −δ|η|2b|z|2, δ > 0. (2.2)

Under the assumption (2.2) (in fact, even under a weaker assumption of parabolicity in the
sense of Petrowsky), the differential expression A0(D) defines on the space L2(Rn,CN) of square
integrable vector-functions with values in CN , an infinitesimal generator A0 of a C0-semigroup
S1(t) = etA0 (see [19]).

By the subordination theorem (see Theorem 3.1 in [3]), the system (2.1) interpreted as
an equation in L2(Rn,CN), possesses a solution operator Sα(t), such that for any element
u0 = u0(x) from the domain D(A0), the function u(t, x) = (Sα(t)u0)(x), t ≥ 0, x ∈ Rn, is a
solution of the equation (2.1) satisfying the initial condition u(0, x) = u0(x). In addition,

Sα(t) =

∞
∫

0

ϕt,α(s)S1(s) ds, t ≥ 0, (2.3)

where ϕt,α(s) = t−αΦα(st
−α),

Φα(z) =

∞
∑

k=0

(−ζ)k

k!Γ(−αk + 1− α)
,

so that Φα can be written as the Wright function

Φα(z) = 0Ψ1

[

−
(1− α,−α)

∣

∣

∣
−z

]

. (2.4)

See [15] for general information regarding the definition and properties of the Wright functions;
see also Section 3.3 below.

The function Φα is a probability density:

Φα(t) ≥ 0, t > 0;

∞
∫

0

Φα(t) dt = 1.
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It is connected also with the Mittag-Leffler function

Eα(ζ) =

∞
∑

k=0

ζk

Γ(1 + αk)
, ζ ∈ C, (2.5)

via the Laplace transform identity

Eα(−ζ) =

∞
∫

0

Φα(t)e
−ζt dt, ζ ∈ C. (2.6)

By the classical theory of parabolic equations, the semigroup S1(t) possesses the integral
representation

(S1(t)ϕ)(x) =

∫

Rn

Z(t, x− ξ)ϕ(ξ) dξ

in terms of the FSCP Z(t, x) of the parabolic system
∂u

∂t
= A0(Dx)u. It follows from the

estimates of Φα and Z (see below) that, for example, if ϕ ∈ S(Rn), then

(Sα(t)ϕ)(x) =

∫

Rn

Zα(t, x− ξ)ϕ(ξ) dξ

where

Zα(t, x) =

∞
∫

0

ϕt,α(s)Z(s, x) ds, x 6= 0 (2.7)

(as we have seen for the diffusion equations [8, 7], Zα may have a singularity at x = 0).
The kernel Zα is a FSCP for the system (2.1).
In order to obtain an integral representation of a solution u(t, x) of the inhomogeneous

equation
(

D
(α)
t u(t, x)

)

− A0(Dx)u(t, x) = f(t, x), u(0, x) = u0(x),

in the form

u(t, x) =

∫

Rn

Zα(t, x− ξ)u0(ξ) dξ +

t
∫

0

dτ

∫

Rn

Yα(t− τ, x− y)f(τ, y) dy

(the definition of a classical solution will be given below for a more general situation), we need
another kernel

Yα(t, x) =
(

D
(1−α)
t Zα

)

(t, x), x 6= 0.

As we will see,

Yα(t, x) =

∞
∫

0

ψt,α(s)Z(s, x) ds, x 6= 0 (2.8)
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where

ψt,α(s) = t−1
0Ψ1

[ −
(0,−α)

∣

∣

∣
−st−α

]

. (2.9)

Using properties of the functions Z and Φα we get the integral identities

∫

Rn

Zα(t, x) dx = 1,

∫

Rn

Yα(t, x) dx = 0.

Theorem 1. The matrix-functions Zα(t, x), Yα(t, x) are infinitely differentiable for t > 0,
x 6= 0, and satisfy the following estimates. Denote

R = t−α|x|2b, ρ(t, x) =
(

t−α|x|2b
)

1
2b−α .

(i) If R ≥ 1, then
∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α
(n+|β|)

2b exp(−σρ(t, x)), σ > 0; (2.10)
∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−α
(n+|β|)

2b
+α−1 exp(−σρ(t, x)). (2.11)

(ii) If R ≤ 1, n+ |β| < 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α
(n+|β|)

2b , (2.12)

∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−α (n+|β|)
2b

+α−1. (2.13)

(iii) If R ≤ 1, n+ |β| > 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α|x|−n+2b−|β|, (2.14)

∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−1|x|−n+2b−|β|. (2.15)

(iv) If R ≤ 1, n+ |β| = 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α, if n = 1; (2.16)

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α[| log(t−α|x|2b)|+ 1], if n ≥ 2; (2.17)

∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−1. (2.18)

(v) If R ≥ 1, then
∣

∣

∣

∣

∂Zα(t, x)

∂t

∣

∣

∣

∣

≤ Ct−
αn
2b

−1 exp(−σρ(t, x)). (2.19)
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(vi) If R ≤ 1, n < 2b, then
∣

∣

∣

∣

∂Zα(t, x)

∂t

∣

∣

∣

∣

≤ Ct−
αn
2b

−1. (2.20)

If R ≤ 1, n > 2b, then
∣

∣

∣

∣

∂Zα(t, x)

∂t

∣

∣

∣

∣

≤ Ct−α−1|x|−n+2b. (2.21)

If R ≤ 1, n = 2b, then

∣

∣

∣

∣

∂Zα(t, x)

∂t

∣

∣

∣

∣

≤ Ct−α−1[| log(t−α|x|2b)|+ 1]. (2.22)

In all the above estimates, the constants depend only on N, n, max
∣

∣aijµ
∣

∣, and the strong
parabolicity constant δ.

The estimates (2.10)-(2.22) agree with their counterparts for the fractional diffusion equa-
tions [8, 7], though in the latter case, for some values of n, there are more precise estimates of
Zα and Yα.

Note also that the fractional derivative D
(α)
t Zα satisfies the same estimate as the derivatives

Dβ
xZα, |β| = 2b.

2.2. The general case. As stated in Introduction, we consider the system (1.1)–(1.4) with
bounded Hölder continuous coefficients, under the uniform strong parabolicity condition (1.5).

We call a vector-function u(t, x), 0 ≤ t ≤ T , x ∈ Rn, a classical solution of the system (1.1),
with the initial condition

u(0, x) = u0(x), x ∈ R
n, (2.23)

if:

(i) u(t, x) is continuously differentiable in x up to the order 2b, for each t > 0;

(ii) for each x ∈ R
n, u(t, x) is continuous in t on [0, T ], and its fractional integral

(

I1−α
0+ u

)

(t, x) =
1

Γ(1− α)

t
∫

0

(t− τ)−αu(τ, x) dτ (2.24)

is continuously differentiable in t for 0 ≤ t ≤ T .

(iii) u(t, x) satisfies the equation (1.1) and the initial condition (2.23).

A classical solution u(t, x) is called a uniform classical solution, if it is continuous in t

uniformly with respect to x ∈ R
n, and the first derivative of the fractional integral (2.24) exists

uniformly with respect to x ∈ Rn.
Our main task is to construct a Green matrix for the problem (1.1), (2.23), that is such a

pair
{

Z(1)
α (t, x; ξ), Y (1)

α (t, x; ξ)
}

, t ∈ [0, T ], x, ξ ∈ R
n,

7



that for any bounded function f , jointly continuous in (t, x) and locally Hölder continuous in
x uniformly with respect to t, and any bounded locally Hölder continuous function u0, the
function

u(t, x) =

∫

Rn

Z(1)
α (t, x; ξ)u0(ξ) dξ +

t
∫

0

dλ

∫

Rn

Y (1)
α (t− λ, x; y)f(λ, y) dy. (2.25)

is a classical solution of the problem (1.1),(1.23).

Denote by Z
(0)
α (t, x − ξ; y) and Y

(0)
α (t, x − ξ; y) the kernels, similar to Zα(t, x − ξ) and

Yα(t, x− ξ), corresponding to the system (1.6) with the coefficients aijβ , |β| = 2b, “frozen” at a
point y ∈ Rn, and other coefficients set equal to zero.

Theorem 2. (a) There exists a Green matrix
{

Z
(1)
α (t, x; ξ), Y

(1)
α (t, x; ξ)

}

of the form

Z(1)
α (t, x; ξ) = Z(0)

α (t, x− ξ; ξ) + VZ(t, x; ξ),

Y (1)
α (t, x; ξ) = Y (0)

α (t, x− ξ; ξ) + VY (t, x; ξ),

where the kernels Z
(0)
α (t, x; ξ), Y

(0)
α (t, x; ξ) satisfy the estimates listed in Theorem 1 with co-

efficients independent on the parameter point ξ. The functions VZ , VY satisfy the following
estimates.

(i) If n + |β| < 2b, then

∣

∣Dβ
xVZ(t, x; ξ)

∣

∣ ≤ Ct−
α
2b

(|β|+γ0)|x− ξ|−n+γ−γ0e−σρ(t,x−ξ), 0 < γ0 < γ, σ > 0; (2.26)

∣

∣Dβ
xVY (t, x; ξ)

∣

∣ ≤ Ct−1+α−α|β|
2b |x− ξ|−n+γe−σρ(t,x−ξ). (2.27)

(ii) If n+ |β| ≥ 2b, |β| < 2b, then

∣

∣Dβ
xVZ(t, x; ξ)

∣

∣ ≤ Ct−α+
αγ0
2b |x− ξ|−n+2b−|β|+γ−γ0e−σρ(t,x−ξ); (2.28)

∣

∣Dβ
xVY (t, x; ξ)

∣

∣ ≤ Ct−1+
αγ0
b |x− ξ|−n++2b−|β|+γ−2γ0e−σρ(t,x−ξ). (2.29)

(iii) If |β| = 2b, then

∣

∣Dβ
xVZ(t, x; ξ)

∣

∣ ≤ Ct−α+µ1 |x− ξ|−n+µ2e−σρ(t,x−ξ); (2.30)

∣

∣Dβ
xVY (t, x; ξ)

∣

∣ ≤ Ct−1+µ1 |x− ξ|−n+µ2e−σρ(t,x−ξ) (2.31)

where µ1, µ2 > 0.

(b) If the functions u0(x), f(t, x) are bounded and globally Hölder continuous (for f , uni-
formly with respect to t), and f is continuous in t uniformly with respect to x ∈ Rn, then the
solution (2.25) is a uniform classical solution. All its derivatives in x, up to the order 2b, are
bounded and globally Hölder continuous, uniformly with respect to t ∈ [0, T ].
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Note that the estimates in Theorem 2 can be written in a variety of ways. For example, in
(2.26) we may write

t−
α
2b

|β| =
(

t−
α
2b |x− ξ|

)|β|
|x− ξ|−|β|

and obtain, taking 0 < σ′ < σ, that

∣

∣Dβ
xVZ(t, x; ξ)

∣

∣ ≤ Ct−
α
2b

γ0 |x− ξ|−n−|β|+γ−γ0e−σ′ρ(t,x−ξ).

This kind of transformation is often used in proofs of various estimates in this paper.

2.3. Uniqueness theorem. Here we maintain the same assumptions as in Theorem 2.

Theorem 3. Let u(t, x), 0 ≤ t ≤ T , x ∈ Rn, be a uniform classical solution of the problem
(1.1), (2.23) with f(t, x) ≡ 0, u0(x) ≡ 0. Suppose that the function u(t, x) and all its der-
rivatives of orders ≤ 2b are bounded and globally Hölder continuous. Then u(t, x) equals zero
identically.

The rest of the paper is devoted to the proofs of the above results. Some of them can
be extended easily to more general situations. For example, the coefficients of the subordinate
operator A1 may depend on t. Some of the estimates of Theorem 1 (except the case n+|β| = 2b)
remain valid for systems generalizing in an obvious way the first order systems parabolic in the
sense of Petrowsky. However for the whole range of the above results we need the condition
(1.5).

3 Some auxiliary results

3.1. The Mittag-Leffler type functions of a matrix. Let B be a complex N × N matrix. The
Mittag-Leffler function Eα of the matrix B is defined by substituting B into the power series
(2.5):

Eα(B) =
∞
∑

k=0

Bk

Γ(1 + αk)
. (3.1)

Here, as before, 0 < α < 1. For a class of matrices, we find a matrix analog of the asymptotic
representation of the Mittag-Leffler function (see e.g. [5]).

Proposition 1. Suppose that for any z ∈ CN ,

Re〈Bz, z〉 ≤ −δ|z|2, δ > 0. (3.2)

Then

Eα(B) = −
1

Γ(1− α)
B−1 +H (3.3)

where the matrix H is such that |H| ≤ Cδ−2 (the constant C does not depend on B).

9



Proof. Denote by γ(r, ω) the contour in the complex plane oriented in the direction of the
increase of arg ζ and consisting of the following parts: the rays γ± = {ζ ∈ C : arg ζ = ±ω, |ζ | ≥
r} and the arc {ζ ∈ C : −ω < arg ζ < ω, |ζ | = r}. Here r > 0, π

2
< ω ≤ π.

Let us use Hankel’s integral representation

1

Γ(s)
=

1

2πi

∫

γ(r,ω)

eζζ−s dζ, Re s > 0 (3.4)

(see e.g. [23]). In the integral (3.4), we make the change of variables ζ = η1/α. Since r > 0 is
arbitrary, we obtain the representation

1

Γ(s)
=

1

2πiα

∫

γ(r,β)

eη
1/α

η−
s
α
+ 1

α
−1 dη, (3.5)

for any β with πα
2
< β ≤ πα. For our purposes, we will assume that πα

2
< β < min(π

2
, πα), so

that the contour γ(r, ω) is located in the right half-plane, and cos β
α
< 0.

Under the condition (3.2), the resolvent (B − λI)−1 exists for Reλ > −δ, and

|(B − λI)−1| ≤
1

Reλ+ δ

(see Lemma V.6.1 in [10]). In particular, |B−1| ≤ δ−1. Substituting (3.4) into (3.1) we find
that

Eα(B) =
1

2πiα

∞
∑

k=0











∫

γ(r,β)

eη
1/α

η−k−1 dη











Bk

=
1

2πiα

∫

γ(r,β)

eη
1/α

η−1

{

∞
∑

k=0

(Bη−1)k

}

dη = −
1

2πiα

∫

γ(r,β)

eη
1/α

(B − ηI)−1 dη,

if r > |B|. Note that on the rays contained in γ(r, β),
∣

∣

∣
eη

1/α
∣

∣

∣
= exp

(

cos β
α
· |η|1/α

)

where

cos β
α
< 0.

Let us fix r = 1. The function

B 7→

∫

γ(1,β)

eη
1/α

(B − ηI)−1 dη

is an analytic function of the matrix B on the open set {B : Re〈Bz, z〉 < − δ
2
|z|2, ∀z ∈ CN\{0}}

coinciding with Eα(B) on its intersection with the open set {B : |B| < 1} (see [21] regarding
analytic functions on matrices; an analytic function on N × N matrices is in fact an analytic
function of N2 complex variables). Therefore

Eα(B) = −
1

2πiα

∫

γ(1,β)

eη
1/α

(B − ηI)−1 dη (3.6)

10



for any matrix B satisfying (3.2).
Next we use the identity

(B − ηI)−1 = B−1 + ηB−1(B − ηI)−1.

Substituting it into (3.6) and using (3.5) we get

Eα(B) = −
1

Γ(1− α)
B−1 −

B−1

2πiα

∫

γ(1,β)

eη
1/α

η(B − ηI)−1 dη,

which implies the required representation (3.3). �

We will need also and estimate of Eα,α(B) where the Mittag-Leffler type function Eα,α is
defined by the series

Eα,α(ζ) =

∞
∑

k=0

ζk

Γ(α + αk)
. (3.7)

Proposition 2. If a matrix B satisfies (3.2), then

|Eα,α(B)| ≤ Cδ−2 (3.8)

where C does not depend on B.

Proof. As in the proof of Proposition 1, we obtain the representation (with the same
notations)

Eα,α(B) = −
1

2πiα

∫

γ(1,β)

eη
1/α

η−1+ 1
α (B − ηI)−1 dη,

from which we get that

Eα,α(B) = −
1

2πiα
B−1

∫

γ(1,β)

eη
1/α

η−1+ 1
α dη −

1

2πiα
B−1

∫

γ(1,β)

eη
1/α

η−1+ 1
α (B − ηI)−1 dη. (3.9)

In the representation (3.5), we may pass to the limit, as s→ 0. As a result, the first integral
in (3.9) equals 0. Estimating the second integral we come to (3.8). �

In another result of this kind, we deal with the Mittag-Leffler type function

Eα,0(ζ) =
∞
∑

k=0

ζk

Γ(αk)
.

Proposition 3. Under the assumptions of Proposition 1,

Eα,0(B) = −
1

Γ(−α)
B−1 +H,

where |H| ≤ Cδ−2, and the constant does not depend on B.
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The proof is similar to that of Proposition 1.

3.2. Green matrices of some elliptic systems. We will need, as technical tools, estimates of
derivatives DβG(x) of the Green matrix of the elliptic operator A0(D)− I, and also estimates
of differences Dβ(G(x; y′) − G(x; y′′)) of derivatives of the Green matrices of the operators
A0(y

′, Dx)−I and A0(y
′′, Dx)−I, with coefficients “frozen” at the points y′ and y′′. Specifically,

we need to consider the case where n+ |β| = 2b. The presence of the term −I is essential – the
matrix A0(η) − I (η ∈ R

n) has, under the assumption (2.2), all the eigenvalues with nonzero
real parts. For this class of elliptic systems with constant coefficients, Eidelman [6] found an
integral representation of Green matrices, and the estimate

∣

∣DβG(x)
∣

∣ ≤ C

(

1 + log
1

|x|

)

, |x| ≤ 1, (3.10)

where it is assumed that n+ |β| = 2b (of course, other cases were considered in [6] too). It also
follows from the constructions in [6] that G ∈ C∞(Rn \ {0}).

However the estimates for the differences are not given in [6], and for completeness we have
now to apply the method from [6] to this situation.

Let N(y, t, x) be a FSCP of the parabolic system

∂u(t, x)

∂t
= (A0(Dx)− I) u(t, x).

Then [6]

G(x; y) =

∞
∫

0

N(y, t, x) dt,

so that

Dβ
x [G(x; y

′)−G(x; y′′)] =

∞
∫

0

Dβ
x [N(y′, t, x)−N(y′′, t, x)] dt.

For the FSCP N(y, t, x) we have the representation

N(y, t, x) = (2π)−n

∫

Rn

eix·ξe(A0(y,ξ)−I)t dξ = (2π)−nt−
n
2b e−t

∫

Rn

eit
−1/2bx·ξeA0(y,ξ) dξ.

Therefore, if n + |β| = 2b, then

Dβ
x [N(y′, t, x)−N(y′′, t, x)] = (2π)−nt−1e−t

∫

Rn

ξβeit
−1/2bx·ξ

[

eA0(y′,ξ) − eA0(y′′,ξ)
]

dξ. (3.11)

Following [6] we use the identity

eA0(y′,ξ)t − eA0(y′′,ξ)t =

t
∫

0

eA0(y′′,ξ)(t−τ)[A0(y
′, ξ)−A0(y

′′, ξ)]eA0(y′,ξ)τ dτ,

12



which implies the inequality
∣

∣

∣
eA0(y′,ξ) − eA0(y′′,ξ)

∣

∣

∣
≤ C|y′ − y′′|γe−δ|ξ|2b .

We can consider inequalities of this kind containing, instead of ξ ∈ Rn, a point ξ + iη,
η ∈ Rn. By a lemma from [6] (Chapter 1), the inequality (1.5) implies the inequality

Re〈A0(y, ξ + iη)z, z〉 ≤
(

−δ1|ξ|
2b + µ1|η|

2b
)

|f |2

(δ1, µ1 > 0), thus the inequality

∣

∣eA0(y,ξ+iη)
∣

∣ ≤ Ce−δ2|ξ|2b+µ2|η|2b

(δ2, µ2 > 0). Repeating the above reasoning we get the inequality
∣

∣

∣
ξβ

[

eA0(y′,ξ+iη) − eA0(y′′,ξ+iη)
]
∣

∣

∣
≤ C|y′ − y′′|γe−δ3|ξ|2b+µ3|η|2b (3.12)

(δ3, µ3 > 0).
Next we use another lemma from [6] regarding the Fourier transform of an entire function

of several complex variables satisfying an exponential estimate like (3.12). From this lemma,
(3.12), and (3.11) we obtain the estimate

∣

∣Dβ
x [N(y′, t, x)−N(y′′, t, x)]

∣

∣ ≤ Ct−1e−t|y′ − y′′|γe−ct
− 1

2b−1 |x|
2b

2b−1
,

so that

∣

∣Dβ
x [G(x, y

′)−G(x, y′′)]
∣

∣ ≤ C|y′ − y′′|γ
∞
∫

0

t−1e−t exp
(

−ct−
1

2b−1 |x|
2b

2b−1

)

dt

= C|y′ − y′′|γ
∞
∫

0

s−1 exp
(

−s|x|2b − s−
1

2b−1

)

ds = C|y′ − y′′|γ[I1(x) + I2(x)]

where

I1(x) =

1
∫

0

s−1 exp
(

−s|x|2b − s−
1

2b−1

)

ds ≤

1
∫

0

s−1 exp
(

−s−
1

2b−1

)

ds ≤ C,

I2(x) =

∞
∫

1

s−1 exp
(

−s|x|2b − s−
1

2b−1

)

ds ≤

∞
∫

1

s−1e−s|x|2b ds = |x|2b
∞
∫

1

log s · e−s|x|2b ds

≤ x|2b
∞
∫

0

| log s| · e−s|x|2b ds =

∞
∫

0

∣

∣log(|x|−2bσ)
∣

∣ e−σ dσ ≤ C(1 + | log |x|).

This results in the required estimate

∣

∣Dβ
x [G(x, y

′)−G(x, y′′)]
∣

∣ ≤ C|y′ − y′′|γ
(

1 + log
1

|x|

)

, |x| ≤ 1, n + |β| = 2b. (3.13)
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3.3. Properties of some Wright functions. The function Φα (see (2.4)) involved in the
subordination representation (2.3) is such the Φα(t) ≥ 0 for all t > 0,

Φα(t) ∼ Ct−1/2e−ct
1

1−α
, t→ +∞

(C, c > 0); see [3, 38]. Changing constants if necessary, we can write the estimate

0 ≤ ϕt,α(s) ≤ Ct−αe−cs
1

1−α t
− α

1−α
, s > 0. (3.14)

Note that ϕt,α(s) → 0, as t→ 0, for each s > 0. It is also important that

∞
∫

0

Φα(s) ds = 1. (3.15)

In order to study the kernel Yα (see (2.8)), we need the function

ψt,α(s) = D
1−α
t ϕt,α(s).

Making a change of variables in (2.6) we can write

Eα(−ζ) =

∞
∫

0

ϕt,α(σ)e
−ζσt−α

dσ,

whence

Eα(−ζt
α) =

∞
∫

0

ϕt,α(σ)e
−ζσ dσ. (3.16)

The identity (3.16) is written in part as a warning of a complicated nature of the subordina-
tion identities. As t→ +0, the left-hand side of (3.16) tends to 1, while in the right-hand side,
ϕt,α(σ) → 0 for each σ > 0. Thus, it is impossible to interchange the integration and taking
the limit. It will be reasonable here to use, instead of the Caputo-Dzhrbashyan derivative, the
Riemann-Liouville derivative

(

D1−α
0+ u

)

(t) =
1

Γ(α)

d

dt

t
∫

0

(t− τ)−1+αu(τ) dτ

coinciding with D1−αu wherever u(0) = 0. In particular, if s > 0, then

ψt,α(s) = D1−α
0+,tϕt,α(s). (3.17)

By (2.4), we have the Wright function representation

ϕt,α(s) = t−α
0Ψ1

[

−
(1− α,−α)

∣

∣

∣
−st−α

]

.
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Using the contour integral representation of the Wright function (see the equality (12.41) in
[4]) we find that

ϕt,α(s) =
1

2πi

γ+i∞
∫

γ−i∞

Γ(λ)

Γ(1− α + αλ)
s−λtαλ−α dλ, (3.18)

γ > 0, γ 6= α+ν
α

, ν = 0, 1, 2, . . ..

It is known (see, for example, [15]) that D1−α
0+ transforms tαλ−α into

Γ(1− α + αλ)

Γ(αλ)
tαλ−1.

Now we get from (3.17) and (3.18) that

ψt,α(s) =
1

2πi

γ+i∞
∫

γ−i∞

Γ(λ)

Γ(αλ)
s−λtαλ−1 dλ

(the legitimacy of this transformation follows from the asymptotics of Gamma function). Using
again the equivalence of the series and integral representations of the Wright functions ((12.41)
in [4]) we prove the representaton (2.9):

ψt,α(s) = t−1
0Ψ1

[ −
(0,−α)

∣

∣

∣
−st−α

]

, (3.19)

so that

ψt,α(s) = t−1
∞
∑

k=1

(−st−α)k

k!Γ(−αk)
. (3.20)

Using the asymptotics of the Wright function found in [38] (see also [4], Theorem 25) we
get the estimate

|ψt,α(s)| ≤ Ct−1 exp
{

−c(st−α)
1

1−α

}

, (3.21)

with c, C > 0.
Following (2.6) and (3.16), let us write a connection of the function ψt,α with the Mittag-

Leffler type functions. Apply the operator D1−α
0+,t to both sides of the equality (3.16). It is known

(see (2.1.54) in [15]) that in the left-hand side we obtain tα−1Eα,α(−ζt
α). Thus we come to the

identity

Eα,α(−ζt
α) = t−α

∞
∫

0

0Ψ1

[

−
(0,−α)

∣

∣

∣
−st−α

]

e−ζs ds, ζ > 0. (3.22)

Another transformation kernel of the above kind is

νt,α(s) =
∂

∂t
ϕt,α(s). (3.23)

Repeating the above reasoning we find that

νt,α(s) = t−α−1
0Ψ1

[

−
(−α,−α)

∣

∣

∣
−st−α

]

(3.24)
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where the Wright function has the form

0Ψ1

[

−
(−α,−α)

∣

∣

∣
z
]

=

∞
∑

k=0

(−z)k

k!Γ(−α− αk)
.

Using the asymptotics from [4, 38] we obtain, for s > 0, t > 0, the estimate

|νt,α(s)| ≤ Ct−α−1 exp
{

−c(st−α)
1

1−α

}

, c > 0. (3.25)

It is known ([15], formula (1.10.2)) that

∂

∂t
Eα(−ζt

α) = t−1Eα,0(−ζt
α)

where Eα,0(ζ) =
∞
∑

k=0

ζk

Γ(αk)
. Differentiating both sides of the identity (3.16) we find, after

elementary transformations, that

Eα,0(−ζ) =

∞
∫

0

0Ψ1

[ −
(−α,−α)

∣

∣

∣
−s

]

e−ζs ds, ζ > 0. (3.26)

4 Systems with constant coefficients

4.1. Proof of Theorem 1. Let us use the identity (2.7) which implies a representation of spatial
derivatives,

Dβ
xZα(t, x) =

∞
∫

0

ϕt,α(s)D
β
xZ(s, x) ds, x 6= 0. (4.1)

Below we use both the integral representation for Z,

Z(s, x) = (2π)−n

∫

Rn

eix·ξesA0(ξ) dξ, (4.2)

and its estimates
∣

∣Dβ
xZ(t, x)

∣

∣ ≤ Ct−
n+|β|

2b exp
{

−c|x|
2b

2b−1 t−
1

2b−1

}

(4.3)

(c > 0) valid for all x ∈ Rn, t > 0 (see [6]).
It follows from the inequalities (3.14) and (4.3) that Zα(t, x) is infinitely differentiable in

x 6= 0, and

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α

∞
∫

0

s−
n+|β|

2b exp
{

−c|x|
2b

2b−1 s−
1

2b−1

}

exp
{

−cs
1

1−α t−
α

1−α

}

ds.

After the change of variables s−
1

2b−1 = σ, we find that

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α

∞
∫

0

σ
2b−1
2b

(n+|β|)−2b exp
{

−cσ|x|
2b

2b−1

}

exp
{

−cσ− 2b−1
1−α t−

α
1−α

}

dσ. (4.4)
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In order to obtain an estimate for R ≥ 1, we use the asymptotics of the integral

Ω(ζ) =

∞
∫

0

e−ζte−dt−κ

tλ dt, ζ → ∞, (4.5)

where d > 0, κ > 0, λ ∈ R, found in [32] (formula (12.80)). Namely,

Ω(ζ) ∼ a0(dκζ
−1)

λ+1
κ+1 exp

[

−(1 +
1

κ
)ρ

]

ρ−1/2 (4.6)

where ρ = (dκζκ)
1

1+κ , a0 = 2
(

2
1+κ

)1/2
Γ(1

2
).

Making in (4.4) the change of variables σ = t−
α

2b−1 η we get, after easy calculations, the
inequality

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−αn+|β|
2b

∞
∫

0

η
2b−1
2b

(n+|β|)−2b exp
(

−cη−
2b−1
1−α

)

exp
(

−cR
1

2b−1 η
)

dη

where the integral has the form of (4.5) with ζ = R
1

2b−1 , d = c, κ =
2b− 1

1− α
, λ =

2b− 1

2b
(n +

|β|) − 2b. Using (4.6) and ignoring powers of R (changing, if necessary, the constant in the
exponential factor) we obtain the inequality (2.10).

Suppose that R ≤ 1, n+ |β| > 2b. We use again the inequality (4.4), but make the change

of variables σ = τ |x|−
2b

2b−1 and replace the exponential factor containing |x| by 1. We find that

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α|x|−n−|β|+2b

∞
∫

0

τ
2b−1
2b

(n+|β|)−2be−cτ dτ

where
2b− 1

2b
(n+ |β|)− 2b > −1. This implies (2.14).

The inequalities (2.11) and (2.15) are proved similarly, on the basis of the estimate (3.21).
Let R ≤ 1, n + |β| < 2b. Performing a change of variables we can rewrite (4.2) in the form

Z(s, x) = (2π)−ns−
n
2b

∫

Rn

eis
−1/2bx·ξeA0(ξ) dξ,

and by virtue of (4.1),

Dβ
xZα(t, x) = (2π)−nt−α

∞
∫

0

Φα(st
−α)s−

n+|β|
2b ds

∫

Rn

ξβeis
−1/2bx·ξeA0(ξ) dξ,

that is, after the change s = σtα,

Dβ
xZα(t, x) = (2π)−nt−α

n+|β|
2b

∞
∫

0

Φα(σ)σ
−

n+|β|
2b dσ

∫

Rn

ξβeit
−α/2bσ−1/2bx·ξeA0(ξ) dξ. (4.7)
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It follows from (2.2) that
∣

∣eA0(ξ)
∣

∣ ≤ e−δ|ξ|2b (4.8)

(see Sect. I.4.4 in [19]). Using the fact that Φα decays rapidly at infinity, and
n + |β|

2b
< 1, we

come to the inequality (2.12). The proof of (2.13), based on (2.8), (3.19), and (3.21), is similar.
Finally, consider the most complicated case where R ≤ 1, n+ |β| = 2b. The representation

(4.7) takes the form

Dβ
xZα(t, x) = (2π)−nt−α

∞
∫

0

Φα(σ)σ
−1 dσ

∫

Rn

ξβeit
−α/2bσ−1/2bx·ξeA0(ξ) dξ (4.9)

or, after the change ξ = σ1/2bη,

Dβ
xZα(t, x) = (2π)−nt−α

∞
∫

0

Φα(σ) dσ

∫

Rn

ηβeit
−α/2bx·ηeσA0(η) dη. (4.10)

The identity (2.6) remains valid when the matrix −A0(η) is substituted for ζ . Indeed, we
may rewrite (2.6) in the form

Eα(−ζ) =

∞
∑

k=0

(−1)kζk

k!

∞
∫

0

Φα(t)t
k dt

(the convergence of the series follows from the asymptotics of Φα and Stirling’s formula). Recall
that an entire function of a matrix is defined by substituting the matrix into the power series
expansion. Thus we set ζ = −A0(η), and then gather the power series into the exponential
(keeping in mind the inequality (4.8)). Therefore

Eα(A0(η)) =

∞
∫

0

Φα(σ)e
σA0(η) dσ. (4.11)

If we substitute (4.11) into (4.10) and change the order of integration, we obtain the repre-
sentation

Dβ
xZα(t, x) = (2π)−nt−α

∫

Rn

ηβeit
−α/2bx·ηEα(A0(η)) dη. (4.12)

However this change of the order of integration requires a justification.
It follows from (2.2) and Proposition 1 that

|Eα(A0(η))| ≤ C|η|−2b, |η| ≥ 1,

so that |η||β| |Eα(A0(η))| ≤ C|η|−n, |η| ≥ 1. Denote

Xε(t, x, β) = (2π)−nt−α

∞
∫

ε

Φα(σ)σ
−1 dσ

∫

Rn

ξβeit
−α/2bσ−1/2bx·ξeA0(ξ) dξ, ε > 0.
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Here we make the change of variables ξ = σ1/2bη, and change the order of integration (we
have moved away from the singularity!). Thus

Xε(t, x, β) = (2π)−nt−α

∫

Rn

ηβeit
−α/2bx·η dη

∞
∫

ε

Φα(σ)e
σA0(η)dσ.

Let us show that

ηβ
∞
∫

ε

Φα(σ)e
σA0(η)dσ

ε→0
−−→ ηβ

∞
∫

0

Φα(σ)e
σA0(η)dσ = Eα(A0(η))η

β, (4.13)

as functions of η, in the topology of L2(R
n).

Indeed, using the estimate (4.8) we see that

∫

Rn

|η|2|β|

∣

∣

∣

∣

∣

∣

ε
∫

0

Φα(σ)e
σA0(η)dσ

∣

∣

∣

∣

∣

∣

2

dη ≤ C

∫

Rn

|η|2|β|





ε
∫

0

e−δσ|η|2bdσ





2

dη

≤

∫

Rn

|η|−2n
(

1− e−δε|η|2b
)2

dη = C(I1 + I2)

where

I1 =

∫

|η|≤1

|η|−2n
(

1− e−δε|η|2b
)2

dη,

∫

|η|>1

|η|−2n
(

1− e−δε|η|2b
)2

dη.

Using the inequality 1− e−x ≤ x, x ≥ 0, we find that

I1 ≤ Cε2
∫

|η|≤1

|η|−2n+4b dη = Cε2
∫

|η|≤1

|η|2|β| dη → 0,

as ε → 0. By the dominated convergence theorem, we obtain also that I2 → 0, and we have
proved (4.13).

Now, by the properties of the Fourier transform, for any fixed t > 0 and almost all x ∈ Rn,

lim
ε→0

Xε(t, x, β) = (2π)−nt−α

∫

Rn

ηβeit
−α/2bx·ηEα(A0(η)) dη.

On the other hand, Xε(t, x, β) → Dβ
xZα(t, x), if x 6= 0, by (4.9). Thus we have proved the

equality (4.12) for almost all x 6= 0.
Denote temporarily the right-hand side of (4.12) by X(t, x, β). Next we prove thatX(t, x, β)

is continuous in x 6= 0. This will establish the equality (4.12) for all x 6= 0; simultaneously we
will get the required estimate.
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By Proposition 1, X(t, x, β) = X1 +X2 +X3 where

X1 = (2π)−nt−α

∫

|η|≤1

ηβeit
−α/2bx·ηEα(A0(η)) dη,

X2 = −
t−α

(2π)nΓ(1− α)

∫

|η|>1

ηβeit
−α/2bx·η[A0(η)]

−1 dη,

X3 = (2π)−nt−α

∫

|η|>1

ηβeit
−α/2bx·ηH(η) dη,

|H(η)| ≤ C|η|−4b. Since |β| − 4b = −n − 2b, X3 is continuous in x, and |X3| ≤ Ct−α. We see
also that X1 is continuous in x, and |X1| ≤ Ct−α.

Let us write X2 = X21 +X22 +X23 where

X21 = −
t−α

(2π)nΓ(1− α)

∫

|η|>1

ηβeit
−α/2bx·η

{

[A0(η)]
−1 − [A0(η)− I]−1

}

dη,

X22 = −
t−α

(2π)nΓ(1− α)

∫

Rn

ηβeit
−α/2bx·η[A0(η)− I]−1 dη,

X23 = −
t−α

(2π)nΓ(1− α)

∫

|η|≤1

ηβeit
−α/2bx·η[A0(η)− I]−1 dη.

We have
∣

∣[A0(η)− I]−1
∣

∣ ≤
1

1 + δ|η|2b
(4.14)

(see Lemma V.6.1 in [10]). By the resolvent identity

[A0(η)]
−1 − [A0(η)− I]−1 = [A0(η)]

−1[A0(η)− I]−1,

we get the estimate

∣

∣[A0(η)]
−1 − [A0(η)− I]−1

∣

∣ ≤
1

δ|η|2b(1 + δ|η|2b)
. (4.15)

It follows from (4.14) and (4.15) that X21 and X23 are continuous in x, |X21| ≤ Ct−α, |X23| ≤
Ct−α.

As for X22, we note that

X22 = −
t−α

Γ(1− α)
Dβ

yG(y)
∣

∣

y=t−α/2bx

where G is the Green matrix of the elliptic operator A0(D) − I. This means that X22 is
continuous in x 6= 0, thus X has the same property and coincides with DβZα for all x 6= 0.
Now the required inequality (2.17) is a consequence of (3.10).
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For n = 1, we will refine this estimate. In this case, A0(η) = a0η
2b where

Re〈a0z, z〉 ≤ −δ|z|2 for all z ∈ C
N .

We have

Dβ
xZα(t, x) =

1

2π
t−α

∞
∫

−∞

ηβeit
−α/2bxηEα(a0η

2b) dη

where 1 + β = 2b. In particular, the natural number β is odd, so that

Dβ
xZα(t, x) =

1

π
t−α

∞
∫

0

ηβ sin(t−α/2bxη)Eα(a0η
2b) dη.

By Proposition 1,

Eα(a0η
2b) = −

a−1
0

Γ(1 − α)
η−2b +O(η−4b), η → ∞.

The contribution of the remainder term in the estimate of Dβ
xZα is clearly O(t−α). Therefore

we have to consider the function

F (y) =

∞
∫

0

ϕ(η) sin(yη) dη, 0 < y ≤ 1, (4.16)

where ϕ is continuous on [0,∞), ϕ(η) ∼ η−1, η → ∞.
It was shown in [36] that the integral in (4.16) exists as an improper one, and

F (y) ∼ const ·y−1ϕ(y−1), y → 0

(asymptotics of this kind is proved in [36] for much more general situations), that is F is
bounded near the origin. This implies the inequality (2.16).

For the function Yα with n + |β| = 2b, we use, in a similar way, the identity (3.22) with a
matrix argument ζ , which results in the representation

Dβ
xYα(t, x) = (2π)−nt−1

∫

Rn

ξβeit
−α/2bx·ξEα,α(A0(ξ)) dξ.

Using Proposition 2 we obtain the desired estimate (2.18).

The estimates for the first time derivative
∂

∂t
Zα(t, x) are obtained just as those for Zα itself.

We use the representations (3.23), (3.24), and (3.26), as well as the estimate (3.25) and the
matrix asymptotics given by Proposition 3. With this input, the proofs of (2.19)-(2.22) are
similar to the ones given above. �

4.2. Unified estimates. In Theorem 1, the estimates are given separately for large and small
values of R. In order to justify the iteration procedures of the Levi method, we need unified
estimates valid for all values of the variables.
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Proposition 4. If n+ |β| < 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−αn+|β|
2b e−cρ(t,x), c > 0; (4.17)

∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−1+α−αn+|β|
2b e−cρ(t,x). (4.18)

If n+ |β| > 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α|x|−n+2b−|β|e−cρ(t,x). (4.19)

If n+ |β| = 2b, then

∣

∣Dβ
xZα(t, x)

∣

∣ ≤ Ct−α
[
∣

∣log
(

t−α|x|2b
)
∣

∣ + 1
]

e−cρ(t,x). (4.20)

If n+ |β| ≥ 2b, then

∣

∣Dβ
xYα(t, x)

∣

∣ ≤ Ct−1|x|−n+2b−|β|e−cρ(t,x). (4.21)

The constants can depend only on the parameters listed in the formulation of Theorem 1.

Proof. The estimate (4.17) coincides with (2.10), if R ≥ 1, being obviously equivalent to
(2.12), if R ≤ 1, n+ |β| < 2b.

Let us consider the case where n+ |β| > 2b. It is clear that (4.19) is equivalent to (2.14), if
R ≤ 1. If R ≥ 1, we rewrite the right-hand side of (2.10) as follows. Let σ = c′+ c′′ (c′, c′′ > 0).
Then

t−αn+|β|
2b e−c(t−α/2b|x|)

2b
2b−α

= t−α|x|−n+2b−|β|

[

(

t−α/2b|x|
)n+|β|−2b

e−c′(t−α/2b|x|)
2b

2b−α

]

e−c′′(t−α/2b|x|)
2b

2b−α

≤ Ct−α|x|−n+2b−|β|e−cρ(t,x)

where c = c′′, and we have proved (4.19).
The proofs of (4.18), (4.20), and (4.21) are similar. �

5 Parametrix

The parametrix kernels Z
(0)
α (t, x; y) and Y

(0)
α (t, x; y) defined in Section 2.2 satisfy all the esti-

mates of Theorem 1 and Proposition 4, with all the constants independent of y.
We need also estimates of the differences Z

(0)
α (t, x; y′) − Z

(0)
α (t, x; y′′) and Y

(0)
α (t, x; y′) −

Y
(0)
α (t, x; y′′). These estimates are identical to those for Z

(0)
α and Y

(0)
α themselves, with an

additional factor |y′ − y′′|γ. The proofs are the same as in Theorem 1 and Proposition 4, with
the following additional tools: the difference estimates for classical parabolic systems [6]; the
difference estimate (3.13) for the Green matrices of elliptic systems; the estimate for

∣

∣

∣
eA0(y′,η) − eA0(y′′,η)

∣

∣

∣

22



given in Chapter 1 of [6]. We omit further details since they just repeat the above material.
As in Section 2.1, we have the integral identities

∫

Rn

Z(0)
α (t, x; y) dx = 1,

∫

Rn

Y (0)
α (t, x; y) dx = 0. (5.1)

It follows from the difference estimates and the first identity in (5.1) that

∣

∣

∣

∣

∣

∣

∫

Rn

∂

∂t
Z(0)

α (t, x− ξ; ξ) dξ

∣

∣

∣

∣

∣

∣

≤ Ct−1+αγ
2b . (5.2)

6 The Levi method. Proof of Theorem 2

Given the estimates of Theorem 1 and Proposition 4, the proof of Theorem 2 is carried out just
as its counterpart for fractional diffusion equations [8, 7]. The integral inequalities needed for
the proof are given in sufficient generality in [7]. Therefore we drop the detailed calculations
and give only the scheme and the main estimates.

We look for the functions Z
(1)
α (t, x; ξ), Y

(1)
α (t, x; ξ) appearing in Theorem 2 assuming the

following integral representations:

Z(1)
α (t, x; ξ) = Z(0)

α (t, x− ξ; ξ) +

t
∫

0

dλ

∫

Rn

Y (0)
α (t− λ, x− y; y)Q(λ, y; ξ) dy; (6.1)

Y (1)
α (t, x; ξ) = Y (0)

α (t, x− ξ; ξ) +

t
∫

0

dλ

∫

Rn

Y (0)
α (t− λ, x− y; y)Φ(λ, y; ξ) dy. (6.2)

For the functions Q,Φ we assume the integral equations

Q(t, x; ξ) =M(t, x; ξ) +

t
∫

0

dλ

∫

Rn

K(t− λ, x; y)Q(λ, y; ξ) dy, (6.3)

Φ(t, x; ξ) = K(t, x; ξ) +

t
∫

0

dλ

∫

Rn

K(t− λ, x; y)Φ(λ, y; ξ) dy, (6.4)

where
M(t, x; ξ) = [A(x,Dx)− A0(ξ,Dx)]Z

(0)
α (t, x− ξ; ξ),

K(t, x; ξ) = [A(x,Dx)− A0(ξ,Dx)]Y
(0)
α (t, x− ξ; ξ)

Using the estimates from Proposition 4 we find that

|M(t, x; ξ)| ≤ Ct−α|x− ξ|−n+γe−cρ(t,x−ξ), (6.5)

|K(t, x; ξ)| ≤ Ct−1+(γ−η) α
2b |x− ξ|−n+ηe−cρ(t,x−ξ), (6.6)
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c > 0, 0 < η < γ.
The increments of M and K are estimated as follows. Let ∆xM(t, x; ξ) = M(t, x; ξ) −

M(t, x′; ξ), ∆xK(t, x; ξ) = K(t, x; ξ) − K(t, x′; ξ). Denote by x′′ one of the points x, x′, for
which |x′′ − ξ| = min{|x− ξ|, |x′ − ξ|}. Then

|∆xM(t, x; ξ)| ≤ Ct−α|x− x′|γ−ε|x′′ − ξ|−n+ε exp{−σρ(t, x′′ − ξ)}, (6.7)

|∆xK(t, x; ξ)| ≤ Ct−1|x− x′|γ−ε|x′′ − ξ|−n+ε exp{−σρ(t, x′′ − ξ)}, (6.8)

ε > 0.
Using the estimates (6.5)-(6.8) we prove the convergence of iterations and obtain estimates

for the solutions of the integral equations (6.3) and (6.4). We use, as a tool, Lemma 1.14 from
[7] (where the conditions n = 2 and ν0 < 1 are in fact unnecessary). The resulting estimates
are as follows:

|Q(t, x; ξ)| ≤ Ct−α|x− ξ|−n+γ exp{−σρ(t, x− ξ)}, (6.9)

|Φ(t, x; ξ)| ≤ Ct−1|x− ξ|−n+γ exp{−σρ(t, x− ξ)}, (6.10)

|∆xQ(t, x; ξ)| ≤ Ct−α|x− x′|γ−ε|x′′ − ξ|−n+ε exp{−σρ(t, x′′ − ξ)}, (6.11)

|∆xΦ(t, x; ξ)| ≤ Ct−1|x− x′|γ−ε|x′′ − ξ|−n+ε exp{−σρ(t, x′′ − ξ)}, (6.12)

Now the representation of the Green matrix stated in Theorem 2 follows from its construc-
tion (6.1)-(6.2) while the estimates (2.26)-(2.31) are obtained from (6.9)-(6.12) and Lemmas
1.12, 1.13 from [7]. The above estimates, together with the inequality (5.2), make it possible
also to repeat, without significant changes, the whole reasoning from [8] or [7] regarding the
heat potential and the initial condition.

It also follows from (6.11), (6.12), and the difference estimates of Section 5, that the dif-
ferences Dβ

x [VZ(t, x
′; ξ)− VZ(t, x

′′; ξ)], Dβ
x [VY (t, x

′; ξ)− VY (t, x
′′; ξ)], |β| ≤ 2b, satisfy the esti-

mates similar to those for Dβ
xVZ , D

β
xVY , with the additional factor |x′ − x′′|γ−ε.

Let us find out when the solution u(t, x) of the form (2.25) is a uniform classical solution
with the global Hölder properties. We consider the more complicated second term

w(t, x) =

t
∫

0

dλ

∫

Rn

Y (1)
α (t− λ, x; y)f(λ, y) dy = w1(t, x) + w2(t, x)

where

w1(t, x) =

t
∫

0

dλ

∫

Rn

Y (0)
α (t− λ, x− y; y)f(λ, y) dy,

w2(t, x) =

t
∫

0

dλ

∫

Rn

VY (t− λ, x; y)f(λ, y) dy

(the first term in (2.25) can be considered similarly). The remainder kernel VY is less singular

than Y
(0)
α , so that the uniform convergence of derivatives of w2 is verified in a straightforward

way. The same can be said about lower order derivatives of w1.
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For the leading derivatives, we have, just as in [8] or [7], the expressions

Dβ
xw1(t, x) =

t
∫

0

dλ

∫

Rn

Dβ
xY

(0)
α (t− λ, x− y; y)[f(λ, y)− f(λ, x)] dy

+

t
∫

0

f(λ, x) dλ

∫

Rn

Dβ
xY

(0)
α (t− λ, x− y; y) dy, |β| = 2b, (6.13)

(

D
(α)
t w1

)

(t, x) = f(t, x) +

t
∫

0

dλ

∫

Rn

∂Z
(0)
α (t− λ, x− y; y)

∂t
[f(λ, y)− f(λ, x)] dy

+

t
∫

0

f(λ, x) dλ

∫

Rn

∂Z
(0)
α (t− λ, x− y; y)

∂t
dy. (6.14)

The global Hölder property of the derivatives (6.13) follows from the difference estimates of

Dβ
xY

(0)
α and our assumptions regarding the function f .
The representation (6.14) is obtained as follows (see [8] or [7]). First of all, if v(t, x) =

(

I1−α
0+ w1

)

(t, x), then D
(α)
t w1 =

∂v

∂t
, and

v(t, x) =

t
∫

0

dλ

∫

Rn

Z(0)
α (t− λ, x− y; y)f(λ, y) dy.

For a small positive number h, set

vh(t, x) =

t−h
∫

0

dλ

∫

Rn

Z(0)
α (t− λ, x− y; y)f(λ, y) dy.

Then
∂vh

∂t
= v

(1)
h + v

(2)
h where

v
(1)
h (t, x) =

∫

Rn

Z(0)
α (h, x− y; y)f(t− h, y) dy,

v
(2)
h (t, x) =

t−h
∫

0

dλ

∫

Rn

∂Z
(0)
α (t− λ, x− y; y)

∂t
f(λ, y) dy.

We have

v
(1)
h (t, x) =

∫

Rn

[

Z(0)
α (h, x− y; y)− Z(0)

α (h, x− y; x)
]

f(t− h, y) dy

+

∫

Rn

Z(0)
α (h, x− y; x)[f(t− h, y)− f(t− h, x)] dy + f(t− h, x).
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It follows from the estimates of the parametrix kernel and its differences, and from the
global Hölder property of f that both integrals in the last formula tend to zero, as h → 0,
uniformly with respect to x ∈ Rn, t ∈ [0, T ].

Similarly, we prove the convergence of v
(2)
h (t, x) to the sum of the two integrals appearing in

(6.14), uniformly with respect to x, t. This proves the uniform property of our solution. �

7 Proof of Theorem 3

First we consider the model system (2.1) with constant coefficients. A uniform classical solution
of the system (2.1) can be interpreted as a classical solution of the operator-differential equation

(

D
(α)
t w

)

(t) = B0w(t) (7.1)

in the Banach space Cb(R
n)N of bounded continuous vector-functions with the supremum norm.

Here B0 is the closed operator on Cb(R
n)N defined by A0(D) with the domain

{

v ∈ Cb(R
n)N : A0(D)v ∈ Cb(R

n)N
}

(A0(D)v is understood in the sense of tempered distributions). Let q be such a natural number
that q > (N + n

2
) · 2b. By Theorem 4.1 of the paper [13], under the condition (2.2) (in fact, the

Petrowsky parabolicity condition would suffice), we have
∥

∥(λI − B0)
−1(I −∆)−q/2

∥

∥ ≤ p(|λ|), Reλ > 0, (7.2)

where p is a certain polynomial.
Note that the operator (I−∆)−q/2 is bounded on Cb(R

n)N ; that follows from the integrability
of its integral kernel [37]. Under the assumption (7.2), the equation (7.1) has only a trivial
solution w ∈ Cb(R

n)N with w(0) = 0. That is proved exactly as the uniqueness theorem from
[16] where it was assumed that lim sup

λ→∞
λ−1/α log ‖(λI − B0)

−1‖ = 0. One should just repeat

the whole reasoning from [16] for the function (I −∆)−q/2w, instead of w, and notice that the
operator (I −∆)−q/2 is injective.

Thus, we have proved Theorem 3 for the system (2.1). Turning to the general case, we
rewrite the system (1.1) with f = 0 in the form

(

D
(α)
t u

)

(t, x)−A0(y,Dx)u(t, x) = [A0(x,Dx)− A0(y,Dx)]u(t, x) + A1(x,Dx)u(t, x). (7.3)

Here y ∈ Rn is an arbitrary fixed point. As before, we assume that u(0, x) = 0.
By Theorem 2, we can write down an integral representation of a uniform classical solution

of the Cauchy problem for the equation (7.3). By the above uniqueness result for model systems
with constant coefficients, we obtain the equality

u(t, x) =

t
∫

0

dτ

∫

Rn

Y (0)
α (t− τ, x− ξ; y)[A0(ξ,Dξ)− A0(y,Dξ)]u(t, ξ) dξ

+

t
∫

0

dτ

∫

Rn

Y (0)
α (t− τ, x− ξ; y)A1(ξ,Dξ)u(t, ξ) dξ. (7.4)
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Denote
v(t) =

∑

|m|≤2b

sup
x∈Rn

|Dm
x u(t, x)| .

Differentiating both sides of (7.4) in x and taking into account the boundedness of the deriva-
tives of u we come to the inequality

|Dm
x u(t, x)| ≤ C

t
∫

0

v(τ) dτ

∫

Rn

∣

∣Dm
x Y

(0)
α (t− τ, x− ξ; y)

∣

∣ dξ, |m| < 2b.

Using the estimates (4.18) and (4.21) we find that

|Dm
x u(t, x)| ≤ C

t
∫

0

v(τ)(t− τ)−1+(2b−|m|) α
2b dτ, |m| < 2b. (7.5)

For |m| = 2b, the derivatives of a heat potential are regularized by subtraction, that is

Dm
x u(t, x) =

t
∫

0

dτ

∫

Rn

Dm
x Y

(0)
α (t− τ, x− ξ; y) {[A0(ξ,Dξ)− A0(y,Dξ)]u(t, ξ)

−[A0(x,Dx)−A0(y,Dx)]u(t, x)} dξ

+

t
∫

0

dτ

∫

Rn

Dm
x Y

(0)
α (t− τ, x− ξ; y)[A1(ξ,Dξ)u(t, ξ)− A1(x,Dx)u(t, x)] dξ.

Until now, y ∈ Rn was an arbitrary parameter. Set y = x. Then one of the terms in the first
integral disappears. For the remaining terms, we use the inequalities

|[A0(ξ,Dξ)−A0(x,Dξ)]u(t, ξ)| ≤ C|x− ξ|γv(t),

|A1(ξ,Dξ)u(t, ξ)−A1(x,Dx)u(t, x)| ≤ C|x− ξ| sup
x∈Rn

|β|≤degA1+1

∣

∣Dβ
xu(t, x)

∣

∣ ≤ C|x− ξ|v(t)

(since degA1 + 1 ≤ 2b).
It follows from (4.21) that

|Dm
x u(t, x)| ≤ C

t
∫

0

v(τ)(t− τ)−1 dτ

×

∫

Rn

(|x− ξ|γ + |x− ξ|)|x− ξ|−n exp
{

−c
[

(t− τ)−α|x− ξ|2b
]

1
2b−α

}

dξ

≤ C

t
∫

0

v(τ)(t− τ)−1+αγ
2b dτ,
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|m| = 2b. Adding this inequality to (7.5) we find that, for any t ∈ [0, T ],

v(t) ≤ C

t
∫

0

v(τ)(t− τ)−1+ε dτ, ε > 0. (7.6)

By a kind of the Bellman-Gronwall inequality proved by Henry ([12], Lemma 7.1.1), it follows
from (7.6) that v(t) ≡ 0, hence u(t, x) ≡ 0. �
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