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Abstract

We study historical calibration of one- and two-factor models that are known to describe relatively well

the dynamics of energy underlyings such as spot and index natural gas or oil prices at different physical

locations or regional power prices. We take into account uneven frequency of data due to weekends, holidays,

and possible missing data. We study the case when several one- and two-factor models are used in the joint

model with correlated model factors and present examples of joint calibration for daily natural gas prices

at several locations in the US and for regional hourly power prices.
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1 Overview

As is well-known the calibration of valuation models is a crucial step towards the realistic valuation of financial
contracts. In this paper we focus on historical calibration of one- and two-factor models that describe the
dynamics of energy underlyings such as spot prices of natural gas at a physical location or regional market
power prices. These models are known to perform relatively well for energy underlyings, for example, see
[1] or [2]. From these simple models the joint model of simultaneous evolution of several underlyings can be
constructed by specifying the term structure of correlations between model factors. This joint model can be
used for valuation of energy derivative contracts that depend on several underlyings, such as swing, transport,
or structured contracts that are abundant in the energy OTC markets. These models are extensively used and
tested by various FEA clients for valuation and risk management of OTC and standard energy contracts.

We choose a simple robust approach for the joint calibration of these models. First, we calibrate each model
separately based on the historical time series of prices. After that, using the calibrated parameters and the
time series of prices, we find the time series of stochastic factors of these models and compute the correlation
between these factors to obtain the correlation term structure of the joint model.

As the result of calibration, we obtain volatility and correlation term structures and mean-reversion rates
together with confidence intervals for these estimates. We also obtain historical mean-reversion level term
structures, which include the market price of risk and are less relevant for valuation since it is done in the
risk-neutral framework. After calibration is performed, we run the statistics analysis of model factors time
series to see if they satisfy the initial modelling assumptions and if the model is a good fit for the data.

One of our goals is providing rigorous calibration procedures that take into account the structure of financial
energy data, in particular, the fact that data is not available on weekends and holidays, making the data
frequency or, equivalently, the data step uneven. The possibility of missing data only exacerbates this effect.
In this context, the estimation of mean-reversion rates in the models considered becomes non-trivial and we fully
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address this issue. We also take into account seasonal effects that are typical for energy markets by allowing
term structures of model parameters such as volatility and correlations. We provide confidence intervals for
the estimates to see if they are statistically significant, which should be defined on a case-by-case basis. For
some data sets, in order to increase the robustness of estimators, the granularity of the model term structures
should be chosen in such a way that it leads to smaller confidence intervals, for example, the correlation term
structure can be chosen to be flat and the volatility term structure can be chosen to be seasonal rather than
monthly. These are the modelling choices that affect the value of calibrated parameters and the robustness of
estimators.

The structure of the paper is as follows. First, we describe the one- and two-factor models we use for
valuation and their calibration. Then we describe how these models are joint together for the multi-asset case
valuation and provide calibration results of natural gas prices at several location for the US market. We also
provide an example of calibration with regional ERCOT power prices.

Acknowledgements We would like to thank Angelo Barbieri, Tsvetan Stoyanov, and Maksim Oks at
MSCI Research Valuation and Energy group for numerous fruitful discussions and comments.

2 One-Factor Mean-Reversion Model

The one-factor log-normal mean-reversion model is defined by the following stochastic differential equation
(SDE)

d log St = (θt − a logSt)dt+ σtdWt, (1)

where θt is derived from the no-arbitrage condition E0[St] = F (0, t) under the risk-neutral measure.
Analogously, the one-factor normal mean-reversion model is defined by the following SDE

dSt = (θt − aSt)dt+ σtdWt (2)

with the same no-arbitrage condition.
Further on, we will focus on the log-normal mean-reversion model, the results for the normal model are

very similar and can be easily obtained in the same way.

2.1 Risk-Neutral Valuation

We denote Xt = logSt.
It is easy to get

Xt = e−a(t−s)Xs +

∫ t

s

e−a(t−u)θudu+

∫ t

s

e−a(t−u)σudWu. (3)

From the no-arbitrage condition we have

∫ t

0

e−a(t−u)θudu = logF (0, t)− e−at logF (0, 0)− 1

2

∫ t

0

e−2a(t−u)σ2
udu. (4)

It follows that

St = F (0, t) exp

(

−1

2
V 2(0, t) +

∫ t

0

e−a(t−u)σudWu

)

(5)

with

V 2(0, t) =

∫ t

0

e−2a(t−u)σ2
udu. (6)

If we define the evolution of the forward curve to be F (t, T ) = Et[ST ], we get

F (t, T ) = F (0, T ) exp

(

1

2

(

1− e−a(T−t)
)

e−a(T−t)V 2(0, t)

)(

St

F (0, t)

)e−a(T−t)

. (7)

Thus, we see that the dynamics of the whole forward curve is explicitly defined via the dynamics of the spot.
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2.2 Calibration

We use historical data for calibration of the model parameters. Now we are considering the model in the real-
world measure, hence, the mean-reversion level function θt contains the market price of risk and is different
from the result obtained in the previous section 2.1.

Different granularity can be assumed for the term structures of mean-reversion level and volatility. Without
lack of generality, let us assume that the granularity of both term structures is monthly, although, our results
generalize to an arbitrary time indexation scheme.

In addition, we assume yearly periodicity of volatilities, i.e. we assume that volatilities in the same calendar
months in different year are the same. On one hand, this assumption allows us to capture seasonality effects,
on the other hand, it enables us to use several years of data for volatility estimates making them more robust.

Thus, the term structure of volatilities is parameterized by 12 parameters σm, with m = 1, .., 12, and the
term structure of mean-reversion level θ(m,y) is parametrized by a pair of parameters (m, y), with m = 1, .., 12
and y ranging over the years specified in the data set, e.g. y = 2008, 2009, and 2010.

Note that we are considering data sets with varying time steps since data is not available on weekends and
holidays.

Let us denote Xt = logSt for log-normal and Xt = St for normal model. Solving the above SDEs explicitly,
we obtain

Xt+dt = e−adtXt + θt
1− e−adt

a
+ σt

√

1− e−2adt

2a
ǫt, (8)

where ǫt is a standard normal variable.
Let us denote

ηt = e−adt,

κt =
1− e−adt

a
, (9)

γt =

√

1− e−2adt

2a
.

The conditional probability of going from Xt to Xt+dt is given by

ρ(Xt+dt|Xt, a, σt, θt) =
1√

2πσtγt
exp

(

− (Xt+dt − ηtXt − θtκt)
2

2σ2
t γ

2
t

)

(10)

The Maximum Likelihood Function is given by

L(a, σ, θ) =
N−1
∑

k=1

log ρ(Xtk+1
|Xtk , a, σtk , θtk), (11)

where N is the number of data in the provided time series for the underlying.
Differentiating w.r.t. θ(m,y), we obtain

θ(m,y) =

∑

tk−1∈(m,y)

(

Xtk − ηtk−1
Xtk−1

)

∑

tk−1∈(m,y) κtk−1

. (12)

Thus, we see that the estimator of θt depends only on the mean-reversion rate parameter.
Differentiating w.r.t. σm, we obtain

σm =
1

N(m)

∑

tk−1∈(m)

(

Xtk − ηtk−1
Xtk−1

− θ(m,y)(a)κtk−1

γtk−1

)2

. (13)

Therefore, we see that the estimator of σt also depends only on the mean-reversion rate parameter.
Thus, we have proven the following result.

Theorem 2.1 The Maximum Likelihood estimators of mean-reversion level and volatility term structures for
the one-factor mean-reversion model are given by
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θ(m,y)(a) =

∑

tk−1∈(m,y)

(

Xtk − ηtk−1
Xtk−1

)

∑

tk−1∈(m,y) κtk−1

(14)

and

σm(a) =
1

N(m)

∑

tk−1∈(m)

(

Xtk − ηtk−1
Xtk−1

− θ(m,y)(a)κtk−1

γtk−1

)2

. (15)

The mean-reversion rate can be found by finding the global maximum of the function

L(a) =
N−1
∑

k=1

log ρ(Xtk+1
|Xtk , a, σtk(a), θtk(a)). (16)

or

L(a) =
N−1
∑

k=1

− log (σtk(a)γtk)−
(

Xtk+1
− ηtkXtk − θtk(a)κtk

)2

2σ2
tk
(a)γ2

tk

, (17)

where parameters γ and κ are defined by (9) and also depend on a.

The maximum of this function can be found by using the Brent one-dimensional search method with the
initial guess provided by the estimate of the mean-reversion rate based on the assumption of constant time
steps (or, equivalently, on the assumption that the regression coefficients are slowly varying with time).

We note that, as usual, the unbiased variance estimator for volatility should be slighlty adjusted

σm(a) =
1

N(m)− 1

∑

tk−1∈(m)

(

Xtk − ηtk−1
Xtk−1

− θ(m,y)(a)κtk−1

γtk−1

)2

. (18)

2.2.1 Constant Time Step

Let us see how the results can be simplified if time steps are constant.
In this case, we have

θ(m,y) =
1

N(m, y)

∑

tk−1∈(m,y)

Xtk − e−adt

N(m, y)

∑

tk−1∈(m,y)

Xtk−1
.

We introduce the mean level function ft such that

θt = ∂t log ft + a log ft. (19)

Then, it follows that

ft =





∏

tk−1∈(m,y)

Stk−1





1/N(m,y)

and

ft+dt =





∏

tk−1∈(m,y)

Stk





1/N(m,y)

for t ∈ (m, y), i.e. the mean level is the geometric average of prices in the month (m, y).
We can rewrite the model process (1) as

d log(St/ft) = −a log(St/ft)dt+ σtdWt. (20)

Denoting xt = log(St/ft) and integrating we obtain

xt+dt = κxt + σtγǫt, (21)
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where κ and γ are constant. We bucket the time series into calendar months over which σt is also constant
σm. Let us also denote N(m) by n. Then, we perform the regression to obtain

κ =
nSxy − SxSy

∆
, (22)

where

Sx =
∑

tk−1∈(m)

xtk−1
,

Sy =
∑

tk−1∈(m)

xtk ,

Sxx =
∑

tk−1∈(m)

x2
tk−1

, (23)

Sxy =
∑

tk−1∈(m)

xtk−1
xtk ,

∆ = nSxx − S2
x

with the standard error given by
σ2
κ = Sxx/∆. (24)

It follows that the mean-reversion rate is given by

a = − log(κ)/dt. (25)

When the time steps are not approximately constant, the following estimate gives a result close to the MLE
result. The daycount C of the time series can be computed by

C = 365N{num of points in time series}/N{time length of the time series}. (26)

The estimate of the mean-reversion rate â can be obtained by following the above regression procedure. After
that, the estimate of the mean-reversion rate should be adjusted by the day count, i.e.

a = âC. (27)

However, we note that for data with varying time steps this simple estimation procedure can fail for some
time series, e.g. we encountered the cases when it fails for the time series of weekend power prices.

2.3 Zero Mean-Reversion Rate Limit

In the limit when the mean-reversion rate goes to zero, all the formulae derived for the one-factor mean-reversion
model are well-defined and the one-factor mean-reversion model reduces to the Black-Scholes model

d logSt = µtdt+ σtdWt, (28)

where µt = lima→0 θt.
The following proposition naturally follows

Proposition 2.2 The MLE estimators of the mean-reversion level and volatility term structures in the Black-
Scholes model are given by

µ(m,y) =

∑

tk−1∈(m,y)

(

Xtk −Xtk−1

)

∑

tk−1∈(m,y) dtk−1
(29)

and

σm =
1

N(m)

∑

tk−1∈(m)

(

Xtk −Xtk−1
− µ(m,y)dtk−1

)2

dtk−1
. (30)
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2.4 Calibration Procedure Steps

Here we summarize the calibration procedure.
1. Find the estimate of mean-reversion rate a0 by performing regression under the assumption of the

constant data step. (Or use an arbitrary reasonable initial estimate.)
2. Find the maximum of the ML function using the one-dimensional search procedure with the found initial

value of the mean-reversion a0.
3. Compute the estimators for the term structures of the mean-reversion level and volatility.
4. Find the error estimates for these estimators.
5. Find the residual/model factor time series of the model.
6. Compute the statistics of the residual time series to see if the model is a good fit to the historical data.

Accept or reject the modelling hypothesis based on the Jarque-Bera and/or Kolmogorov-Smirnov tests.
We describe the computation of the error estimates and statistics of the residuals in the following sections.

2.5 Goodness of Model Fit

After the calibration is done and all the parameters are found, we can find the residual time series of the model

ǫt =
Xt+dt − ηtXt − θtκt

σtγt
. (31)

and compute the first four moments of the residual time series (see section 6 for examples). We found that a
typical situation for the real energy price data is that the first three moments are very close to normal (0,1,0),
however, the fourth moment is different from 0, i.e. the distribution of the residuals is leptokurtic. Thus, as
expected, the distribution of residuals for real energy data has fat tails.

We also compute the Jarque-Bera and Kolmogorov-Smirnov statistics of the residual time series to have a
more rigorous tests of normality of residuals and the goodness of fit of the model.

2.5.1 Jarque-Bera statistics

The Jarque-Bera statistics of a time series xi with n data points is given by

JB =
n

6
(S2 +

1

4
K2) (32)

where S is the sample skewness and K is the sample kurtosis

S =
µ3

µ3
2

,

K =
µ4

µ4
2

− 3. (33)

Here, µk is the kth moment of the time series

µk =
1

n

n
∑

i=1

(xi − x̄)k, (34)

where x̄ is the sample mean

x̄ =
1

n

n
∑

i=1

xi. (35)

It is well-known that the JB statistics have asymptotically chi-square distribution with two degress of
freedom, however, this approximation is good only for large sample sizes (> 2000). Therefore, for typical sizes
of financial time series, the results of Monte Carlo simulations should be used. We used the implementation of
the Jarque-Bera test provided in Alglib project, which is freely available online under a general GNU license.
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2.5.2 Kolmogorov-Smirnov statistics

We use a simple Kolmogorov-Smirnov test. First we compute the Kolmogorov-Smirnov statistics of the time
series xi with n data points

D0 = max
i=0,..,n−1

(|i/n−N(xi)|, |(i + 1)/n−N(xi)|). (36)

Then, the p-value is given by, for example, see [10]

p = Prob(D > D0) = QKS

(

(
√
n+ 0.12 + 0.11/

√
n)D0

)

(37)

The following Kolmogorov-Smirnov test with α confidence level naturally follows. If D0 > Dα, where Dα =
Q−1

KS(1 − α), then the null hypothesis that the distribution of residuals is normal, can be rejected with 1 − α
confidence.

3 Confidence Intervals for the Volatility, Correlation, and Mean-

Reversion Rate Estimates

We use well-known results for estimation of the confidence intervals for volatility and correlation estimates, for
example, see [1] and [5].

3.1 Confidence Intervals for the Volatility Estimates

Let us simplify the notation and denote N(m) by n and σm by σ. Then

P [σlb ≤ σ ≤ σub] = 1− α,

σlb = σ

√

n− 1

χ2
(n−1;α/2)

, (38)

σub = σ

√

n− 1

χ2
(n−1;1−α/2)

,

where α is the confidence level and χ2
(n−1;α/2) is the value of the chi-square distribution with n− 1 degrees of

freedom and a confidence level 1− α.

3.2 Confidence Intervals for the Correlation Estimates

Let us simplify the notation and denote N(m) by n and ρm by ρ. Then, using Fisher’s transformation, we
have the following bounds on the correlation estimates

P [ρlb ≤ ρ ≤ ρub] = 1− α,

ρlb =
exp (2zlb)− 1

exp (2zlb) + 1
, (39)

ρub =
1− exp (−2zlb)

1 + exp (−2zlb)
,

where

zlb = z − c/
√
n− 3,

zub = z + c/
√
n− 3 (40)

with

z =
1

2
log

(

1 + ρ

1− ρ

)

,

c = N−1(1− α/2). (41)

N−1 is the inverse of the cumulative normal distribution and α is the confidence level.
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3.3 Confidence Interval for the Mean-Reversion Estimate

A standard error estimate σa0 for the initial value of the mean-reversion rate a0 follows from the regression
procedure. A crude standard error estimate of the MLE estimator of the mean-reversion rate can be obtained
in a simple way by scaling the standard error estimate coming from regression by the ratio of the MLE and
initial value of the mean-reversion rate:

σa =
a

a0
σa0 .

In order to estimate σa more rigorously, Fisher information should be employed.

4 Two-Factor Spot-Prompt Model

The two-factor Spot-Prompt model is a natural extension of the one-factor log-normal mean-reversion model
which uses the prompt-month forward price (the ”index”) as the stochastic mean-reversion level, see [12]. The
model is defined by the following system of SDEs

d logSt = (θt + a log It − a logSt)dt+ σS
t dWt,

dIt = Itσ
I
t dBt, (42)

Covar[dBt, dWt] = ρtdt,

where θt is derived in the risk-neutral measure from the series of no-arbitrage conditions described in the next
section.

4.1 Risk-Neutral Valuation

The Spot-Prompt model is a two-factor model, where the evolution of the forward curve is described by the
rolling prompt contract. Inside each month, the expected value of the spot is given by the level of the just
expired forward contract (the index). The spot mean-reverts to the stochastic level of the prompt contract.
The prompt contract follows the driftless geometric Brownian motion.

Let us denote by Ti the end of each month from the value date t = 0 to the expiry of the contract T , i.e.
T0 ≤ 0 ≤ T1 < .. < Tn ≤ T ≤ Tn+1(following NYMEX conventions, Ti falls on a business day three business
days prior to the first delivery date). Let us assume that the forward curve is given by specifying the prices
of forward contracts expiring at the end of each month F (0, Ti). We assume that the dynamics of forward
contracts is given by the Black model:

dF (t, Ti) = F (t, Ti)σF (t, Ti)dBi (43)

for t < Ti. We make the following two assumptions that will allow us to describe the evolution of the forward
curve using one-factor model of the rolling prompt:

1. All forward contracts are perfectly correlated,
2. The local volatility function for each forward contract is given by

σF (t, Ti) = exp(−b(Ti − t))σF (Ti),

where b is a forward mean-reversion rate. Hence, we include the time-to-maturity/Samuelson effect through
the introduction of the forward mean-reversion rate.

Let It = F (t, Ti) for Ti−1 ≤ t < Ti denote the prompt contract at time t and σI(t) = σF (t, Ti) for
Ti−1 ≤ t < Ti denote the term structure of prompt contract volatility, then, under the above assumptions, the
dynamics of the forward curve is effectively given by the dynamics of the rolling prompt:

dIt = ItσI(t)dBt. (44)

Note that the process It is discontinuous at Ti since at every Ti the value is switched from F (Ti, Ti) at T
−

i

to F (Ti, Ti+1) at T
+
i .

In the Spot-Prompt model, we assume that the following mean-reverting process describes the risk-neutral
dynamics of the spot:

d log St = (θt + a log It − a logSt)dt+ σS
t dWt, (45)
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where Covar[dBt, dWt] = ρtdt, σS(t) is the deterministic term structure of spot volatility, and θt is the mean
reversion level to be derived from the following no-arbitrage assumption:

ETi
[St] = IT−

i

= F (Ti, Ti) (46)

for Ti ≤ t < Ti+1. This assumption simply means that there is no riskless profit to be made by buying index
and selling spot or vice versa, also see [1].

We note that the initial no-arbitrage condition E0[St] = F (0, t) holds by the tower law property and the
fact the index process is a martingale.

In order to find the level θ(t), we derive the following equality (we omit the details of this derivation):

∫ t

s

e−a(t−u)θ(u)du = log

(

ETi
[St]

ETi
[It]

)

− e−a(t−s) log

(

ETi
[Ss]

ETi
[Is]

)

−

V (Ti, t)

2
+ e−a(t−s)V (Ti, s)

2
+

1

2

∫ t

s

e−a(t−u)σ2
I (u)du−

∫ t

s

e−a(t−u)σI(u)σS(u)ρ(u)du (47)

for Ti ≤ s < t < Ti+1, where

V (s, t) = Vars[log

(

St

It

)

] (48)

and Vars is the conditional variance at time t given the information at time s with s < t. Computing V (s, t)
explicitly, we have

V (s, t) =

∫ t

s

σ2(u)du (49)

with
σ2(u) = σ2

S(u) + σ2
I (u)− 2σS(u)σI(u)ρ(u) (50)

We note that (47) follows from the dynamics of the underlyings (44) and (45) and is true for any no-arbitrage
assumptions. From (47) it follows that

θ(t) = log

(

ETi
[St]

ETi
[It]

)

+
1

2
V (Ti, t)−

σ2
S(t)

2a
(51)

for Ti ≤ t < Ti+1. From the dynamics of the rolling prompt, we compute

ETi
[It] = ITi

(52)

for Ti ≤ t < Ti+1. Therefore, from (46) and (52) it follows that

θ(t) =
1

2
V (Ti, t)−

σ2
S(t)

2a
(53)

for Ti ≤ t < Ti+1.
From (53) we see that the Spot-Prompt model with the imposed no-arbitrage assumption (46) can be easily

implemented in the Monte Carlo simulation framework, see [3].
St is a lognormal variable. For the simulation, we use the expected value of logSt

Es[logSt] = e−a(t−s) log Ss + (1 − e−a(t−s)) log Is − (54)

1

2
V (Ti, t) +

1

2
e−a(t−s)V (Ti, s) +

1

2
V (s, t)− 1

2
Vars[logSt] (55)

and the variance of logSt

Vars[logSt] =

∫ t

s

σ2
I (u)du−

2

∫ t

s

e−a(t−s)(σ2
I (u)− σI(u)σS(u)ρ(u))du + V (s, t) (56)
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for Ti ≤ s < t < Ti+1. We note that the spot process is continuous inside each month but is discontinuous at
Ti in general (compare with [8]).

We also note that by the tower law and the fact that the index is a martingale it follows that

Es[logSt] = F (s, Ti) (57)

for s < Ti ≤ t < Ti+1.

4.2 Calibration

In the real-world measure the model can be written as

d logSt = (θt + a log It − a logSt)dt+ σS
t dWt,

d log It = µtdt+ σI
t dBt,

Covar[dBt, dWt] = ρtdt,

We can rewrite it as

d log (St/It) = (θ̃t − a log (St/It))dt+ σtdW̃t,

d log It = µtdt+ σI
t dBt, (58)

Covar[dBt, dW̃t] = ρ̃tdt,

where dW̃t = (σS
t dWt − σI

t dBt)/σt and, therefore,

σ2
t = (σS

t )
2 + (σI

t )
2 − 2σS

t σ
I
t ρt,

ρ̃t = (σS
t ρt − σI

t )/σt, (59)

θ̃t = θt − µt.

It follows that effectively we have one-factor mean-reversion model on the quotient of St and It. Thus we
can apply the results of the previous chapter to get the mean-reversion rate a, the term structure of θ̃t and σt.

We also apply the results of the section on the Black-Scholes model (29) and (30) to get the term structure
of µt and σI

t .
Thus, we have the following result.

Proposition 4.1 The mean-reversion rate estimate for the Spot-Prompt model follows from the MLE estimate
for the one-factor mean-reversion model that describe the dynamics of the quotient process of spot St and index
It.

Next, we proceed to finding the term structure correlation between the model spot and prompt factors and
the term structure of spot volatilities.

Denoting Xt = log(St/It) and Yt = log(It), we have

Xt+dt = ηtXt + θ̃κt + σtγtǫt,

Yt+dt = Yt + µtdt+ σI
t

√
dtξt, (60)

Let us introduce the following time series:

X̃t = (Xt+dt − e−adtXt − θtηt)/ηt,

Ỹt = Yt+dt − Yt − µtdt. (61)

Then, the covariance between these time series is given by

Covar[X̃t, Ỹt] = σI
t (σ

S
t ρt − σI

t ). (62)

From here, since we know σI
t , we find σS

t ρt. Then, plugging it in (59), we find σS
t ,

σS
t =

√

σ2
t − (σI

t )
2 + 2σS

t σ
I
t ρt.

Finally, dividing the product σS
t ρt by σS , we get ρt.

11



4.2.1 Spot Factor Time Series

Rewriting (60), we have

Xt+dt = ηtXt + θ̃κt + σS
t γtǫ

S
t − σI

t γtνt,

Yt+dt = Yt + µtdt+ σI
t

√
dtξt, (63)

where ǫSt , νt, and ξt are correlated standard normal variables. We need to find time times series ǫSt for the
computation of model factor correlations when the two-factor model is included in the joint multi-asset model.

First, we compute the correlation between νt and ξt

ρ(νt, ξt) =
κt

γt
√
dt

=

√

2(1− e−adt)

adt(1 + e−adt)
. (64)

We notice that the function on the right is very close to identity even when the mean-reversion rates are
very high, e.g. when adt is 0.5, the correlation is 0.99, when adt is 1, the correlation is 0.96. Thus, we can
approximate νt by ξt, to have

ǫSt ≈ 1

σS
t γt

(

Xt+dt − ηtXt − θ̃tκt +
γt√
dt
(Yt+dt − Yt − µtdt)

)

. (65)

We ran tests to see that this approximation works quite well, which follows from the statistics of the residual
time series for different data sets.

5 The Joint Model of Several Underlyings

Here we describe the joint model that we use for the description of the joint dynamics of several underlyings.
Let us assume that we need to calibrate n underlyings. Without loss of generality, we assume that the first k
underlyings are described by the Spot-Prompt model and the rest – by the log-normal mean-reversion model.
Then, we have

d logSi(t) = (θi(t) + ai log Ii(t)δi − ai logSi(t))dt+ σSi
(t)dWi(t), (66)

with δi = 1 for i = 1, .., k and δi = 0 for i = k + 1, .., n, and for the index

d log Ii(t) = µi(t)dt + σIi(t)dBi(t), (67)

for i = 1, .., k. There is a correlation between factors

Covar[dWi, dWj ] = ρij(t)dt,

Covar[dWi, dBj ] = qij(t)dt. (68)

We note that the chosen granularity of volatility σSi
, σIi and correlation ρij(t), qij(t) term structures as well

as the granularity of the mean-reversion level θi(t) and drift µi(t) term structures is a modelling assumption
that directly affects calibration results as well as robustness of estimates. It should be chosen on a case by case
basis depending on the data.

In order to calibrate the joint model, we first calibrate each model separately to get ai, the term structures
σSi

(t), and σIi(t), and θi(t) and µi(t). After that we obtain the normalized time series of model factors
corresponding to dWi(t) and dBi(t) driving factors. Then we compute the correlations between these factors
to get the term structures of correlations ρij(t) and qij(t).

We run the Jarque-Bera and Kolmogorov-Smirnov tests on these time series to define how good of a fit the
model is for the provided data. In order to improve the fit, we can introduce a simple procedure for removing
outliers. We take the distribution of the residuals of each model and throw away some percentage of outliers,
e.g. from 1% to 5% percent in the tails. We can think of these points as points corresponding to jumps that
were not accounted by us in the model. We saw in our examples, that this procedure improves the fit of the
model to the data.

We estimate the confidence intervals for the estimates in order to see if the modelling assumption on the
granularities of term structures is good for provided data. The correlation estimates notoriously have big
estimation errors, so the confidence intervals for correlations should be carefully checked. If the confidence
intervals are too big and cannot be accepted the coarser granularity should be assumed on the term structure
and the model should be recalibrated.
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6 Calibration Examples

We use daily closing prices of spot natural gas at several location. In the first example we use around 10 years
of data from 01/01/1998 to 11/25/2009 and two US location STX, in the Gulf, and M3, in the Northeast, with
the log-normal mean-reversion model.

In the second example, we use about 2 years of data from 2/13/2008 to 11/25/2009 at two US locations
STX and WLA together with the index data at those locations with the spot-prompt model.

In the third example, we use regional ERCOT hourly power prices and system load from 7/1/2004 to
2/28/2010 with the log-normal mean-reversion model.

6.1 Log-Normal Mean-Reversion Model Daily Natural Gas Data

Here we use around 10 years of data from 01/01/1998 to 11/25/2009 for spot natural gas prices at STX and
M3 with the log-normal mean-reversion model. The data step is daily. We assume that the granularity of the
term structures of mean-reversion level, volatility and correlation is monthly.

The results of the calibration are summarized below. The mean-reversion rate estimates and their standard
errors are given by

STX M3
mr 38.73 47.48
mre 2.59 2.5

We assume the step following interpolation of the term structures. The local volatility term structures are
given by

STX M3
Nov 1.32 1.36
Dec 1.10 1.63
Jan 0.73 3.05
Feb 1.24 2.15
Ma 0.60 1.47
Apr 0.46 0.51
May 0.49 0.49
Jun 0.56 0.59
Jul 0.54 0.63
Aug 0.66 0.70
Sep 0.86 0.83
Oct 1.07 1.06

The lower bounds of the confidence intervals are

STX M3
Nov 1.23 1.27
Dec 1.02 1.52
Jan 0.68 2.85
Feb 1.15 2.00
Mar 0.56 1.37
Apr 0.43 0.47
May 0.46 0.46
Jun 0.52 0.55
Jul 0.51 0.59
Aug 0.62 0.66
Sep 0.80 0.77
Oct 1.00 0.99

The upper bounds of the confidence intervals are
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STX M3
Nov 1.42 1.47
Dec 1.19 1.77
Jan 0.79 3.29
Feb 1.34 2.32
Mar 0.64 1.58
Apr 0.50 0.55
May 0.53 0.53
Jun 0.60 0.63
Jul 0.59 0.68
Aug 0.72 0.76
Sep 0.93 0.90
Oct 1.16 1.15

The statistics for the residual time series are

mean stddev skewness kurtosis JB stats KS stats
STX 0.0000 0.9987 0.2997 8.8683 14306.7398 0.1070
M3 0.0000 0.9987 0.8369 12.9883 31055.4814 0.1213

We see that the model fit is quite poor, which was expected with this long history of data.
In the following table, we provide the correlation estimate and the corresponding lower and upper bounds

of the confidence interval estimate:

corr lower uppper
Nov 0.9244 0.9077 0.9383
Dec 0.6724 0.6097 0.7267
Jan 0.2439 0.1458 0.3372
Feb 0.7414 0.6893 0.7859
Mar 0.5302 0.4529 0.5995
Apr 0.8464 0.8143 0.8733
May 0.9585 0.9493 0.966
Jun 0.9456 0.9335 0.9555
Jul 0.9242 0.9078 0.9378
Aug 0.9401 0.9271 0.9509
Sep 0.9396 0.9261 0.9506
Oct 0.951 0.9403 0.9599

We see that all the estimates are robust by looking at the confidence intervals.

6.2 Spot-Prompt Model Daily Natural Gas Data

Here we use around 2 year of data from 2/13/2008 to 11/25/2009 at two US locations STX and WLA together
with the index data at those locations with the Spot-Prompt model. The data step is daily. We assume that
the granularity of the term structures of mean-reversion level, volatility is monthly and correlation is flat.

The results of the calibration are summarized below. The mean-reversion rate estimates and their standard
errors are given by

STX WLA
mr 156.63 163.99
mre 19.79 20.67

We note that the mean-reversion rate estimates are typically higher when estimated with the Spot-Prompt
model than with the one-factor mean-reversion model.

We assume the step following interpolation of the term structures. The local volatility term structures are
given by
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STX STXIndex WLA WLAIndex
Nov 1.88 0.82 1.75 0.74
Dec 0.93 0.63 0.79 0.60
Jan 0.90 0.51 0.73 0.50
Feb 0.72 0.54 0.70 0.48
Mar 0.62 0.81 0.58 0.69
Apr 0.47 0.43 0.48 0.43
May 0.54 0.70 0.49 0.70
Jun 0.56 0.49 0.57 0.49
Jul 0.57 0.72 0.57 0.74
Aug 0.67 0.53 0.67 0.56
Sep 1.50 1.28 1.38 1.31
Oct 1.82 0.78 1.77 0.80

The lower bounds of the confidence intervals are

STX STXIndex WLA WLAIndex
Nov 1.53 0.66 1.42 0.60
Dec 0.71 0.48 0.60 0.46
Jan 0.68 0.39 0.56 0.38
Feb 0.57 0.43 0.56 0.38
Mar 0.51 0.66 0.48 0.57
Apr 0.39 0.36 0.39 0.36
May 0.44 0.57 0.40 0.58
Jun 0.46 0.40 0.47 0.41
Jul 0.47 0.60 0.47 0.61
Aug 0.55 0.44 0.55 0.46
Sep 1.23 1.05 1.13 1.08
Oct 1.51 0.64 1.46 0.66

The upper bounds of the confidence intervals are

STX STXIndex WLA WLAIndex
Nov 2.46 1.07 2.28 0.97
Dec 1.37 0.92 1.16 0.88
Jan 1.32 0.74 1.07 0.74
Feb 0.95 0.72 0.93 0.64
Mar 0.78 1.02 0.74 0.88
Apr 0.60 0.54 0.60 0.55
May 0.69 0.89 0.63 0.90
Jun 0.71 0.62 0.72 0.63
Jul 0.72 0.91 0.73 0.93
Aug 0.85 0.68 0.86 0.71
Sep 1.91 1.63 1.76 1.67
Oct 2.30 0.98 2.23 1.01

The statistics for the residual time series are given by

mean stddev skewness kurtosis JB stats KS stats
STX 0.0191 1.0018 -0.4551 1.9719 88.8309 0.0605
STXIndex -0.0126 0.9876 0.3218 1.2814 38.7256 0.0503
WLA 0.0146 1.0045 -0.3954 2.3440 115.2543 0.0565
WLAIndex -0.0151 0.9876 0.3836 1.5635 57.1260 0.0583

We see that the model fit is much better in this case than in the previous example.
The correlation matrix is given by
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STX STXIndex WLA WLAIndex
1.00 -0.12 0.94 -0.12
-0.12 1.00 -0.14 0.96
0.94 -0.14 1.00 -0.15
-0.12 0.96 -0.15 1.00

and the corresponding lower bound of the confidence interval estimate

STX STXIndex WLA WLAIndex
1.00 -0.21 0.93 -0.21
-0.21 1.00 -0.23 0.95
0.93 -0.23 1.00 -0.23
-0.21 0.95 -0.23 1.00

and the upper bound of the confidence interval estimate

STX STXIndex WLA WLAIndex
1.00 -0.03 0.95 -0.03
-0.03 1.00 -0.05 0.96
0.95 -0.05 1.00 -0.05
-0.03 0.96 -0.05 1.00

6.3 Log-Normal Mean-Reversion Model Hourly Load and Power Data

Here we use around 5.5 years of hourly ERCOT power locational marginal prices (LMP) and load data from
7/1/2004 12am to 2/28/2010 11pm with the log-normal mean-reversion model. The data step is hourly. We
assume that the granularity of the term structures of mean-reversion level, volatility, correlation is monthly.
The valuation date is the next day after the the last date in the time series, i.e. 3/1/2010.

The results of the calibration are summarized below. The mean-reversion rates and standard error estimates
are given by

Load LMP
mr 476.73 668.39
mre 13.18 15.86

We assume the step following interpolation of the term structures. The local volatility term structures are
given by

Load LMP
Mar 8.37 14.22
Apr 9.30 14.15
May 9.32 15.51
Jun 8.36 15.17
Jul 7.91 13.47
Aug 7.96 13.73
Sep 8.94 14.50
Oct 9.28 15.89
Nov 8.78 15.39
Dec 7.73 14.76
Jan 7.31 15.22
Feb 7.26 14.19

The lower bounds of the confidence intervals are
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Load LMP
Mar 8.18 13.91
Apr 9.09 13.83
May 9.11 15.17
Jun 8.17 14.82
Jul 7.75 13.20
Aug 7.80 13.45
Sep 8.76 14.20
Oct 9.09 15.57
Nov 8.60 15.07
Dec 7.58 14.46
Jan 7.16 14.91
Feb 7.11 13.89

The upper bounds of the confidence intervals are

Load LMP
Mar 8.56 14.55
Apr 9.52 14.49
May 9.54 15.87
Jun 8.55 15.53
Jul 8.08 13.76
Aug 8.13 14.02
Sep 9.14 14.81
Oct 9.47 16.23
Nov 8.97 15.72
Dec 7.90 15.08
Jan 7.46 15.55
Feb 7.42 14.51

We note that the mean-reversion rates and volatilities are much higher for hourly power data than for daily
gas data, this is a typical feature of the results of model calibration for power data.

Here are the statistics for the residual time series

mean stddev skewness kurtosis JB stats KS stats
Load 0.0000 0.9999 0.0022 -0.0532 5.8915 0.0116
LMP 0.0000 0.9999 0.7021 3.1254 24288.7583 0.0673

We see that the model fit is relatively good for the Load data.
In the following table, we provide the correlation estimate and the corresponding lower and upper bounds

of the confidence internval estimate:

corr lower uppper
Mar 0.706 0.6895 0.7218
Apr 0.638 0.6182 0.657
May 0.6142 0.5938 0.6338
Jun 0.7176 0.7014 0.7331
Jul 0.7294 0.7153 0.7428
Aug 0.7035 0.6883 0.718
Sep 0.649 0.6313 0.6659
Oct 0.653 0.6359 0.6695
Nov 0.6968 0.6811 0.7118
Dec 0.7233 0.709 0.737
Jan 0.6971 0.6817 0.7119
Feb 0.7006 0.6846 0.716
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7 Conclusion

We developed a simple robust approach for the joint historical calibration of several energy underlyings. This
approach takes into account seasonality effects and uneven frequency of data. It allows to choose different
granularity of model parameter term structures that would provide more robust estimates based on the com-
puted confidence intervals of model parameters. We also provided a simple way to check the goodness of
model fit. It shows whether the chosen models for each underlying are a good choice for the description of
the underlying dynamics. A basic procedure of how to remove data outliers was also briefly mentioned. More
elaborate methods for dealing with data outliers is an interesting question and can be a topic of a future study.

We presented several examples of calibration results for several data sets. These examples provide a good
illustration of typical parameter values and term structures for natural gas and power underlyings. This
provides a good benchmark and guidance for calibration with other energy data sets.
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