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A GLIMPSE AT SUPERTROPICAL VALUATION THEORY

ZUR IZHAKIAN, MANFRED KNEBUSCH, AND LOUIS ROWEN

To Serban A. Basarab with admiration,

on occasion of his seventieth birthday.

Abstract. We give a short tour through major parts of a recent long paper
[IKR1] on supertropical valuation theory, leaving aside nearly all proofs (to be
found in [IKR1]). In this way we hope to give easy access to ideas of a new branch
of so called “supertropical algebra”.

1. Introduction

We will be much concerned with semirings. Recall that a semiring R is a set R
equipped with addition and multiplication such that both (R,+) and (R \ {0}, · )
are monoids, i.e., semigroups with a unit element, 0 and 1 respectively, such that
multiplication distributes over addition in the usual way. In the present paper we
always assume that multiplication (and, of course, addition) is commutative. A
semifield is a semiring such that (R \ {0}, · ) is a group. We give two examples of
semifields.

Example 1.1. If F is field then the set R :=
∑
F 2 consisting of all sums of squares

in R is a subsemiring of F , and in fact a subsemifield since, if

q := a21 + · · ·+ a2n
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with ai ∈ F and q 6= 0, then

1

q
=

(
a1

q

)2

+ · · ·+

(
an

q

)2

.

For the second example of semifields we need some preparation. We call a semiring
M bipotent if for any a, b ∈M the sum a+ b is either a or b. In this case we have
a total ordering ≤ on the set M , defined by

a ≤ b ⇔ a + b = b,

as is easily checked. Clearly 0 is the smallest element of M . The ordering is com-
patible with multiplication.

a ≤ b ⇒ ac ≤ bc,

and also with addition

a ≤ b ⇒ a+ c ≤ b+ c,

for any a, b, c ∈M . We may state that

a + b = max(a, b).

Notice that bipotent semirings are very far away from those semirings where addition
is cancellative, i.e., a + c = b+ c⇒ a = b.

Example 1.2. Let Γ be a (totally) ordered abelian group, in multiplicative notation.
We add to Γ a new element 0 and extend the ordering of Γ to M := Γ ∪ {0} by
declaring 0 < γ for all γ ∈ Γ. We define addition and multiplication on the set M
as follows:

x+ y = max(x, y) for x, y ∈M,

0 · y = y · 0 = 0 for y ∈ M,

x · y = the given product in Γ, if x, y ∈ Γ.

Clearly, M is a bipotent semifield.

It is an easy exercise to check that in this way we obtain all bipotent semifields
M from ordered abelian groups Γ in a unique way (M = Γ∪{0}, Γ =M \{0}, . . . ).
In short, bipotent semifields are the same objects as ordered abelian groups.

Subexample 1.3. Take Γ = (R,+), the additive group of the real numbers with the
standard ordering. Since we switched to an additive notation, we denote the zero
element of the associated bipotent semiring M now by −∞. Thus M = R ∪ {−∞}.
Addition and multiplication on M are given by

x⊕ y := max(x, y), x⊙ y := x+ y.

We refer to this bipotent semifield R ∪ {−∞} and related structures (e.g. the
subsemiring R≥0∪{−∞}) as the “max-plus setting”. It is used in tropical geometry
(e.g. [G], [IMS]). {In some papers (e.g. [SS]) an equivalent “min-plus setting” is
used}
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The present authors feel that the max-plus setting is rather weak for the needs
of tropical geometry, and thus are driven by the idea to develop a “supertropical
algebra”, which should serve tropical geometry better. Here the supertropical

semirings, to be defined below, occupy a central place. The prefix “super” alludes
to the fact that they are a sort of cover of bipotent semirings.

There exist already supertropic results on polynomials ([IR1], [IR5]), matrices
([IR2], [IR3], [IR4]) and, based on the supertropical matrix theory, first steps of a
supertropical linear algebra [IKR2]. And now supertropical valuation theory [IKR1],
to which we refer here.

2. Supertropical predomains with pregiven ghost map

Definition 2.1. Let R be a semiring. A valuation v on R is a map v : R → M

into a bipotent semifield M with v(0) = 0, v(1) = 1, and, for any a, b ∈M ,

v(ab) = v(a) · v(b),

v(a+ b) ≤ v(a) + v(b) [= max(v(a), v(b))].

If R is a ring, this definition can be found in [B, §3 No.1], up to our change from
ordered abelian groups (additively written in [B]) to bipotent semirings. If R is a
field, we meet the classical Krull valuations.

Definition 2.2. We call a valuation v on the semiring R strict, if

∀a, b ∈ R : v(a+ b) = v(a) + v(b),

(i.e., v is a semiring homomorphism).
We call v strong, if

∀a, b ∈ R : v(a) 6= v(b) ⇒ v(a+ b) = v(a) + v(b).

As is well known (at least for R a field), every valuation v on a ring R is strong,
but no valuation on R is strict. But if R is a semiring which is not ring, v may be
very well strict.

Example 2.3. (For readers with experience in real algebra.) If R =
∑
F 2 with F

a formal real field (cf. Example 1.1) and w is a valuation on F , then the restriction
w|R is strict iff the valuation w is “real”, i.e., w has a formally real residue class
field. In this way the real valuations w on F correspond uniquely to the strict valu-
ation v on R, provided the group Γ :=M \ {0} is 2-divisible; we obtain w back from
v by the formula

w(a) = v(a2)
1
2 .

Since any ordered abelian group can be enlarged to a 2-divisible ordered abelian
group (even to a divisible ordered abelian group) in a unique way, it is essentially a
question of preference, whether we study real valuations on fields or strict valuations
on sub-semifields. With the second route we leave the cadre of classical algebra but
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have the possibility of transit to semirings which cannot be embedded into rings.
For example we can study the image of the “total strict valuation map”

R→
∏

Mv, a 7→ (v(a1)),

with v running through all strict valuations v : R → Mv on R. We do not pursue
this line here, but only point out that a “semiring–approach” is reasonable even for
Krull valuations on fields.

3. Supertropical semirings

We now define supertropical semirings. Such semirings have first been con-
structed in a special case in [I], and then defined in general in [IR1], [IR2], [IKR1].
We follow the approach of [IKR1], which has the advantage of being short, but we
refer the reader to the other papers to understand more on the intuition behind
these semirings.

Definition 3.1. A semiring U is supertropical if the following four axioms ST1-
ST4 hold, which we state together with comments and side definitions.

ST1: The element e := 1 + 1 is idempotent, i.e., 1 + 1 = 1 + 1 + 1 + 1.
Thus eU is an ideal of U and is by itself a semiring.

ST2: The semiring eU is bipotent.
Then the elements of

G := G(U) := eU \ {0}

are called the ghost elements of U . (In some sense also 0 is considered as
a ghost element.) The map

νU : U → eU, x 7→ ex

is called the ghost map of U . It associates to each x ∈ U its ghost ex. (If
x ∈ eU , then x is it own ghost.)

ST3: If ex < ey then x+ y = y.
{Recall that eU is totaly ordered, due to Axiom ST2.}

ST4: If ex = ey then x+ y = ex.
With Axiom ST4 we meet a principal idea of supertropical algebra: While

in the usual tropical geometry the semirings are idempotent, i.e., x+x = x

for each x in the semiring, here x+ x is the ghost of x.
If U is a supertropical semiring we call the elements of

T := T (U) := U \ eU

tangible. We then have a partition

U = T ∪̇ G ∪̇ {0},

and we remark that G + G ⊂ G.

In the present paper we require for supertropical semirings one more axiom, namely
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ST5: T · T ⊂ T , G · G ⊂ G.

By this assumption we exclude only supertropical semirings which are rather
pathological and seldom of interest. (They are sometimes needed for categorical
reasons.)

We add three remarks for a supertropical semiring U .

(1) U is bipotent iff T is empty,

(2) ∀x ∈ U : ex = 0 ⇒ x = 0.
This is a consequence of ST4. We have ex = e0, hence x+ 0 = 0.

(3) If x1, . . . , xn ∈ U and x1 + · · ·+ xn = 0, then all xi = 0.
Indeed, we have

ex1 + · · ·+ exn = 0,

and exi ≥ 0 for each i. Since U is totally ordered, it follows that each exi = 0,
hence xi = 0.

The second remark indicates a special role of the zero element of U . Informally
it may be considered as both tangible and ghost.

We mention that there exists a completely explicit construction which gives us all
supertropical semirings (with ST5), cf. [IKR1, Construction 3.16].

A basic intuition about ghost elements is that they are “noise” perturbing the
tangible elements. This can be formulated as follows:

Definition 3.2. Given x, y ∈ U we say that x surpasses y by ghost, and write
x |

gs

= y, if there exists some z ∈ eU with x = y + z.

We call the relation |
gs

= the ghost surpassing relation, or GS-relation, for

short.

We state two remarkable properties of the GS-relation.

(1) |
gs

= is a partial ordering of the set U , which is compatible with multiplication,

i.e., x |
gs

= y implies xz |
gs

= yz for any z ∈ U . (The remarkable thing here

is that |
gs

= is antisymmetric.)

(2) If x ∈ T ∪ {0}, y ∈ U , then x |
gs

= y implies x = y.

Thus if an element of U is perturbed by adding a ghost, the resulting element can
never be tangible.

4. Supervaluatons

We now introduce supervaluations.

Definition 4.1. A supertropical semifield is a supertropical semiring U for
which the monoids (T (U), · ) and (G(U), · ) are groups.
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Here we have to apologize for an inconsistency of language: The ghost elements
of a supertropical semifield are not invertible in U but only in G(U). Thus U is not
a semifield as defined in §1, only M := eU is a semifield.

Definition 4.2. A supervaluation on a semiring R is a map ϕ : R → U from R

to a supertropical semifield U with ϕ(0) = 0, ϕ(1) = 1, and, for any a, b ∈ R,

ϕ(ab) = ϕ(a) · ϕ(b),

eϕ(a + b) ≤ eϕ(a) + eϕ(b).

If ϕ : R→ U is a supervaluation, then the map

v : R →M = eU, v(a) := eϕ(a)

clearly is a valuation (as defined in §2). We say that ϕ covers the valuation v, and
write v = eϕ.

Starting with a valuation v : R → U with values in some bipotent semifield M

we usually have very many supervaluations ϕ : R → U covering v, where U runs
through the class of all supertropical semifields with M ⊂ U and eU = M . We
obtain a hierarchy between these supervaluations by a relation of “dominance”, to
be explained now.

Lemma 4.3. If ϕ : R→ U is a supervaluation,
then the set

〈ϕ(R)〉 := ϕ(R) ∪ eϕ(R)

is a subsemiring of U (and hence a supertropical semiring itself).

This can be easily verified.

Definition 4.4.

(a) Given supervaluations ϕ : R→ U and ψ : R→ V we say that ϕ dominates

ψ, and write ϕ ≥ ψ, if there exists a semiring homomorphism

α : 〈ϕ(R)〉 → 〈ψ(R)〉,

necessarily surjective, such that ψ(a) = α(ϕ(a)) for every a ∈ R.

(b) We call ϕ and ψ equivalent, and write ϕ ∼ ψ, of both ϕ ≥ ψ and ψ ≥ ϕ.

(c) We denote the equivalence class of a supervaluation ϕ covering v by [ϕ], and
denote the set of all these classes by Cov(v).

We obtain on the set Cov(v) a partial ordering by declaring that

[ϕ] ≥ [ψ] iff ϕ ≥ ψ.

We now have a fairly remarkable fact:

Theorem 4.5. The partially ordered set Cov(v) is a complete lattice.
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As every complete lattice Cov(v) has a top element and a bottom element. The top
element can be described explicitly, cf. [IKR1, Example 4.5]. The bottom element
is the class [v] of the supervaluation v : R→ M , viewed as a supervaluation. {N.B.
We regard M is as supertropical semifield without tangible elements.}

Starting from now, until the end of the paper, we assume that v : R → M is a
strong valuation (e.g. R is a ring), and we focus on a particularly good natured class
of supervaluations covering v, to be defined as follows.

Definition 4.6. A supervaluation ϕ : R → U covering v is strong if

∀a, b ∈ R : ϕ(a) + ϕ(b) ∈ T (U) ⇒ ϕ(a+ b) = ϕ(a) + ϕ(b).

The strong supervaluations turn out to be “nearly” semiring homomorphisms in
the GS-sense. More precisely

Proposition 4.7. A supervaluation ϕ : R → U covering v is strong iff for all
a, b ∈ R

ϕ(a) + ϕ(b) |
gs

= ϕ(a+ b).

We call a supervaluation ϕ : R → U tangible if all its values are tangible or zero;
ϕ(R) ⊂ T (U) ∪ {0}.

In the next section the strong valuations which are also tangible will play a useful
role. We quote the following important fact, to be found in [IKR1, §11].

Theorem 4.8. The subset Covt,s(v) of Cov(v) consisting of all classes [ϕ] ∈ Cov(v)
with ϕ tangible and strong is a complete sublattice of Cov(v). In particular Covt,s(v)
is not empty.

Again the top and the bottom elements of Covt,s(v) can be described explicitly,
cf. [IKR1, Theorem 11.8 and Example 10.16].

5. A supertropical version of Kapranov’s lemma

Assume that R is a semiring, ϕ : R → U is a strong supervaluation covering
v : R → M , and λ = (λ1, . . . , λn) a set of variables. We start out to extend ϕ to a
supervaluation on the polynomial semiring R[λ] in various ways.

We first extend ϕ to a map

ϕ̃ : R[λ] → U [λ]

by the formula

ϕ̃

(∑

i

ciλ
i

)
:=

∑

i

ϕ(ci)λ
i.

Here we use that standard monomial notation: i runs through the set of tuples
i = (i1, . . . , in) with i1, . . . , in in N0; λ

i means λi1i · · ·λinn ; only finitely many ci are
not zero. In the same way we have a map ṽ : R[λ] →M [λ],

ṽ

(∑

i

ciλ
i

)
:=

∑

i

v(ci)λ
i.
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Now we choose a tuple a = (a1, . . . , an) in R
n.

It gives us tuples ϕ(a) = (ϕ(a1), . . . , ϕ(an)) in Un and v(a) = (v(a1), . . . , v(an))
in Mn. Associated with these tuples we obtain evaluation maps

εa : R[λ] → R, εϕ(a) : U [λ] → U, εv(a) :M [λ] →M,

by inserting the tuples for the variables into the polynomials. For example

εϕ(a)

(∑

i

γiλ
i

)
:=

∑

i

γiϕ(a)
i (γi ∈ U).

These maps are semiring homomorphisms.
It is then fairly obvious that the map v ◦ εa : R[λ] → M is a valuation and

ϕ ◦ εa : R[λ] → U is a supervaluation covering v ◦ εa. With some work it can be
seen that also εv(a) ◦ ṽ : R[λ] → M is a valuation and εϕ(a) ◦ ṽ : R[λ] → U is a
supervaluation covering εv(a) ◦ ṽ. {Here it is important to assume that ϕ is strong.}1

Now most often the diagram

R[λ]

ϕ̃

��

εa
// R

ϕ

��

U [λ]
εϕ(a)

// U

does not commute. Instead we have

Theorem 5.1. [IKR1, §13] For any f ∈ R[λ]

εϕ(a)ϕ̃(f) |
gs

= ϕεa(f).

The theorem says in more imaginative terms that the supervaluation εϕ(a)ϕ̃ is a
perturbation of ϕεa by noise.

Theorem 5.1 has close relation to an initial key observation of tropical geometry,
Kapranov’s Lemma. Let us briefly indicate what is says.

Assume that R is a field and f =
∑
ciλ

i is a polynomial over R. It gives us the
hypersurface

Z(f) := {a ∈ Rn | f(a) = 0}.

In tropical geometry one relates Z(f) to the so called “corner locus”, or “tropical
hypersurface”, of the polynomial

ṽ(f) =
∑

i

v(ci)λ
i ∈M [λ].

Notice that, if a tuple ξ ∈Mn is given, then

ṽ(f)(ξ) = max
i

(v(ci)ξ
i).

1The valuations and supervaluations on R[λ] ocuring here are again strong, but this will not
matter for the following.
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The corner locus Z0(ṽ(f)) is defined as the set of all tuples ξ ∈ Mn, where this
maximum is attained at least at two indices. Kapranov’s lemma states that

v(Z(f)) ⊂ Z0(ṽ(f)),

cf. [EKL, Lemma 2.1.4].
It can be deduced from Theorem 5.1 as follows.
We choose a tangible strong supervaluation ϕ : R → U covering v, which is

possible by Theorem 4.8. Let a ∈ Z(f). Then ϕεa(f) = ϕ(f(a)) = 0. Theorem 5.1
tells us that

εϕ(a)ϕ̃(f) =
∑

i

ϕ(ci)ϕ(a)
i |

gs

= 0,

i.e., this sum is ghost. But each summand ϕ(ci)ϕ(a)
i is tangible or zero. From the

law ST3 in §3 we infer that the maximum of the values

eϕ(ci)ϕ(a)
i = (eϕ(ci))(eϕ(a)

i) = v(ci)v(a)
i

is attained by more than one index. In other words, v(a) is an element of the corner
locus Z0(ṽ(f)). Thus indeed v(Z(f)) ⊂ Z0(ṽ(f)).

Theorem 5.1 says more than the classical Kapranov lemma, not only since a
semiring R instead of a field R is admitted, but also since it contains a statement
about points a ∈ Rn with f(a) 6= 0.

Finally, if ϕ and ψ are strong supervaluations covering v with ϕ ≥ ψ, the state-
ment of Theorem 5.1 for ϕ formally implies the same statement for ψ. Thus Theo-
rem 5.1 seems to be “best”, if ϕ is the top element of Covt,s(v), at least if we focus
on tangible supervaluations.

To exploit all this, more work will be needed than what has been done in [IKR1].
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