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Abstract. Bringmann and Lovejoy introduced a rank for overpartition pairs and
investigated its role in congruence properties of pp(n), the number of overpartition
pairs of n. In particular, they applied the theory of Klein forms to show that there
exist many Ramanujan-type congruences for the number pp(n). In this paper, we
shall derive two Ramanujan-type identities and some explicit congruences for pp(n).
Moreover, we find three ranks as combinatorial interpretations of the fact that pp(n)
is divisible by three for any n. We also construct infinite families of congruences for
pp(n) modulo 3, 5, and 9.
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. An overpartition A of n is a partition of n for which the first occurrence
of a number may be overlined. Let p(n) denote the number of overpartitions of n.
Congruence properties for p(n) have been extensively studied, see, for example, Fortin,
Jacob and Mathieu [6], Hirschhorn and Sellers [8], Kim [I1], Lovejoy and Osburn [12],
and Mahlburg [13]. In this paper, we shall be concerned with arithmetic properties
of the number of overpartition pairs of n. An overpartition pair 7w of n is a pair of
overpartitions (A, u) such that the sum of all of the parts is n. Note that either A or u
may be an overpartition of zero. We need to pay special attention to the overpartition
of zero. There is only one partition of zero, and there is only one overpartition of zero
as well. Let pp(n) denote the number of overpartition pairs of n. Then the generating
function for pp(n) is

pr = qiq). (1.1)

(¢ 0)%

Throughout this paper, we adopt the following standard g-series notation for |g| < 1,

ﬁl—aq 1.
k=1
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Bringmann and Lovejoy [4] defined a rank for overpartition pairs to investigate
congruence properties of pp(n). Let NN(m,n) denote the number of overpartition
pairs of n with rank m, and let NN (r,t,n) denote the number of overpartition pairs of
n with rank congruent to r modulo ¢. They obtained a bivariate generating function
for NN (m,n) from which they derived the following relation for 0 < r < 2,

— pp(3n + 2)

NN(T,3,37L+2> :#

This leads to the following Ramanujan-type congruence
Pp(3n+2) =0 (mod 3). (1.2)

Furthermore, by using the theory of Klein forms, Bringmann and Lovejoy [4] proved
that there exist infinitely many Ramanujan-type congruences for pp(n). Let [ be an
odd prime and let t be an odd number which is a power of [ or relatively prime to
[. Then for any positive integer j, there are infinitely many non-nested arithmetic
progressions An + B such that

NN(r,t,An+ B) =0 (mod ) (1.3)

for any 0 < r <t — 1. Hence there are infinitely many non-nested arithmetic progres-
sions An + B satisfying .

pp(An+ B) =0 (mod I’) (1.4)
for any odd prime [ and any positive integer j. For the case | = 2, using the theory of

modular forms, they have shown that (IL4)) holds for any positive integer j.

However, the theory of Klein forms used to derive the congruence relation (4] is
not constructive and it does not give explicit arithmetic progressions An + B in the
statement. So it is still desirable to find explicit congruences for pp(n). In this paper,
we obtain some congruences modulo 3 and 5.

For the case of modulo 3, we obtain a Ramanujan-type identity

(@% )5 (a% %)%,
(g;9)4 ’

> Pp(3n +2)¢" = 12 (1.5)
n=0

which implies (I.2). Furthermore, we show that there are infinite families of congru-
ences modulo 3 satisfied by pp(n). For example, for any o > 1 and n > 0,

(9% (3n + 1)) = PB9°(3n +2)) = 0 (mod 3). (1.6)

For the case of modulo 5, we obtain three Ramanujan-type congruences

pp(20n + 11) = pp(20n + 15) = pp(20n + 19) = 0 (mod 5), (1.7)



for any n > 0. We also obtain infinite families of congruences modulo 5. For example,
for any o > 1 and n > 0,

pp(5%(5n + 2)) = pp(5%(5n + 3)) = 0 (mod 5). (1.8)

Motivated by the work of Paule and Radu [15] on some strange congruences in their
words, we establish similar congruences for pp(n). For example, for any k& > 0,

pp(5-29%) = 3(k + 1) (mod 5) (1.9)

and
pp(2-13%) = 3(k 4+ 1) (mod 9). (1.10)

In order to give combinatorial interpretations of the fact that pp(3n+2) is divisible
by 3 for any n > 0, we find three ranks of overpartition pairs that serve this purpose.

This paper is organized as follows. In Section 2, we obtain two Ramanujan-type
identities and some Ramanujan-type congruences modulo 5 and 64. In Section 3, we
give three combinatorial interpretations for the congruence ([L2)). Section 4 contains
infinite families of congruences modulo 3 and 5. In Section 5 is concerned with con-
gruences modulo 5 and 9 in the flavor of the strange congruences of Paule and Radu.

2 Ramanujan-type identities and congruences

In this section, we establish two Ramanujan-type identities and derive some congruence
relations modulo 5 and 64.

Theorem 2.1. We have

N n (0% )5 (%5 4°)5,

> PpB3n+2)¢" = 12 G on : (2.1)
n=0 ’1/o0

— n (6% ¢*)%

n=0

To prove the above identities, we recall two Ramanujan’s theta functions ¢(q) and
¥(q), namely,

pl)= ¢ vg=> ¢
n=0

n=—oo

The following two identities are due to Gauss, see, for example, Berndt [3] p.11].

(o (B
)= (0% ¢*) s’ (@)= (@)oo

3
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As shown by Hirschhorn and Sellers [7], the the generating function of p(n) is

—~_ ., 1
;p(mq (=)

This implies that the generating function of pp(n) equals

>_mp(n)g" = 90(—161)2' (2.3)

The following dissection formula of Hirschhorn and Sellers [7] plays a key role in
the proof of Theorem 211

Lemma 2.1.

) gyt P 200 Al + A A)) (2.4)

= (e(g")? + 2q0(q")*¥ () + 46° (g ) () + 8¢*Y¥(¢*)?) (2.5)

where

~ (69)(¢% %)%
Alg) = (0% 6% oo (% ¢*) o0

Proof of Theorem[21. Applying the 3-dissection formula (2.4]) in (2.3), we see that

> pp(n)g" = i%:(qﬁ,ig (04" + 2q0(—°) A(¢®) + 44*A(¢*)?)” .

(2.6)

Choosing those terms on each side of the above identity for which the powers of ¢ are
of the form 3n + 2 and noting that all the series (2.6) are functions of ¢* if the factors
q and ¢? are not taken into account, we find that

Zm(?)n‘i‘ 2)q3n+2 _ Zzg%;lz%z (8q2g0(—q9)2A(q3)2 +4q2<,0(—q9)2z4(q3)2)

4

= 12q2A(q3)2:ZE:Zz;8.

Dividing both sides of the above identity by ¢ and replacing ¢* by ¢, we obtain that

o p(=)"
p(3n + 2)¢" = 12A(¢)* ——L-.

> rmsn +2 02

This yields (2.I]). Similarly,

ST = s (pla") + 206l + AP + 80l




Choosing the terms in the above identity for which the powers of ¢ are of the form
4n + 3, we find that

- 1
> pp(4n + 3)g*+ e (164%0(¢")*v(¢%)® + 16¢° (") "1 (¢%)?)
n=0
4\3,1(8Y3
o(—q*)
Dividing both sides of the above identity by ¢* and replacing ¢* by ¢, we deduce that
o 3,0 (12)3
S pp(dn + 3)¢" = 32%, (2.7)
— ¢(—q
which is equivalent to (Z2). This completes the proof. |

In view of Theorem 2] it can be seen that pp(3n + 2) and pp(4n + 3) are divisible
by 4. In fact, for all n > 1, pp(n) is divisible by 4, since

> mn)g" = <1+22(—Q)"2> > pp(n)g" (mod 4)
S S S

Indeed, Keister, Sellers and Vary [10] have shown that for n > 1,

o5(n) 4 (mod 8), if n is a square or twice a square,
n)=
bp 0 (mod 8), otherwise.

With the aid of (2:2)) and the following relations for any prime p,

(45 9)% = (4" ¢")oo (mod p), (2.8)
we are led to the following congruence relations modulo 5 and 64.

Corollary 2.1. For any nonnegative integer n,

pp(8n+7) = 0 (mod 64), (2.9)
pp(20n+11) = 0 (mod 5), (2.10)
pp(20n +15) = 0 (mod 5), (2.11)
pp(20n +19) = 0 (mod 5) (2.12)



Proof. From (2.2) and (Z8) with p = 2, we have

Zp_p(4;2+ ?))qn (q23q2>gg = ( 2. 2)9 (IIlOd 2)

n=0

This yields congruence ([2.9) by equating the coefficients of ¢?"*! for n > 0. Again by
22) and (2.8) with p = 5, we see that

f:_(ZL +3) ool ) 1 (mod 5) (2.13)
R ) F R ) E '

n=0

Let p_s(n) be defined by

(03
It has been shown by Ramanathan [16] that for n > 0,

S poan)’ = ——
n=0

p—a(dn+2)=p_o(5n+3) =p_o(dn+4) =0 (mod 5).

Combining (Z13) and the above three congruences, we deduce the congruence relations

(2.10), 2.11) and (2.I2). This completes the proof. |

3 Three ranks for overpartition pairs

In this section, we give three combinatorial interpretations for the fact that pp(3n + 2)
is divisible by 3.

The first rank of an overpartition pair 7 = (A, u), denoted 7 (7), is defined to be
ni1(A) — ny(u), where ny(A) denotes the number of parts of an overpartition A. As
usual, let Ry(m,n) denote the number of overpartition pairs of n with r;(7) = m and
let R;(s,t,n) denote the number of overpartition pairs of n with ri(7) = s (mod t).
By symmetry, we see that Ri(m,n) = Ry(—m,n), and so Ri(s,t,n) = Ry(t — s,t,n).
It is easy to derive the bivariate generating function for R;(m,n), that is,

N mon_ (070 (=0/70)
DI e e I Y (3:1)

m=—o0 n=0

Here we adopt the convention that the empty overpartition pair of 0 has rank zero
and this convention also holds for the other two ranks that will be introduced in this
section. The following theorem shows that the rank 7 (7) leads to a classification of
overpartition pairs of 3n + 2 into three equinumerous sets.

Theorem 3.1. For 0 < s < 2, we have

pp 2
Ry(s,3,3n+2) = % (3.2)



Proof. Substituting z = ¢ = ¢*™/3 into (3.I)) and using the symmetry relation R;(1,3,n) =
R1(2,3,n), we find that

o0

B gt — (=4 Doo(—06% D)oo
2 (7a(0,3,m) = Fa(1,3,m)a" = (0 @)oo (4% @)

("))~ (690
(%) (=€ D

()
T > (=g (3.3)

n=—oo

n=0

Here the second equality follows from identity

(1—2%) = (1 —a)(1 —2€)(1 - 2€?).

Equating the coefficients of ¢ on both sides of (B8.3), and observing that there are
no squares congruent to 2 modulo 3, we conclude that

R1(0,3,3n+2) = Ry(1,3,3n + 2),
and so

pp(3 2
R1(0,3,3n+2) = Ri(1,3,3n 4+ 2) = R1(2,3,3n+2) = MJ’

This completes the proof. |

We now give the second rank 7. Let m = (A, u) be an overpartition pair. De-
fine ro(m) = no(A) — na(p), where ny(A) denotes the number of overlined parts of an
overpartition A. Similarly, let Ry(m,n) denote the number of overpartition pairs of n
with 75(7) = m and let Ry(s,t,n) denote the number of overpartition pairs of n with
ro(m) = s (mod t). Then we have the following relation.

Theorem 3.2. Forn > 0, we have

R5(0,3,3n +2) = Ry(1,3,3n + 2) = Ry(2,3,3n + 2) (mod 3). (3.4)
Proof. 1t is routine to check that

i iR2(m7 n>zmqn _ (_qz; q)OO . (_Q/Z; Q)OO (35>

(4 9) (¢ 9)

m=—o0 n=0



Using the fact that Ry(1,3,n) = Ry(2,3,n) and setting z = £ = ¢*™/3 in ([B.5)), we find

ZOO n (768 Qs(—4€% 0) s
HZO(RQ(O, 3,n) — Rg(l, 3,n))q = (q; q)go
(=% %) o (36)

(4 0)oo(7% ¢%) o0

(_;OOZ

Since there are no squares congruent to 2 modulo 3, we see that
R5(0,3,3n +2) — Ry(1,3,3n+2) = 0 (mod 3),

and hence the proof is complete. |

It is worth mentioning that Andrews, Lewis and Lovejoy [1] investigated the arith-
metic properties of the number PD(n) of partitions of n with designated summands,
whose generating function is given by ([B.4), that is,

i PD(n)g" = (4% ¢%)oc

(43 0)o0 (0?5 62) 00 (@%; 4% )0

For example, it has been shown that PD(3n + 2) is divisible by three. It should also
be mentioned that Chan [5] studied the number a(n) given by

- n 1
;a(n)q (6 D% 6P

and derived a Ramanujan-type identity for a(3n + 2), that is,

= (¢% ¢°)3. (% )%
;a (3n+2)¢" =3 T (3.7)

From (B.6) and ([B.1), we get the following formula.

Corollary 3.1. We have

75 q*)2.(4% q°)3,
(0% (a% )3, (3:8)

(R2(0,3,3n+2) — Ry(1,3,3n+2)) ¢" = 3(

NE

3
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Finally, we turn to the third rank r3 of an overpartition pair = = (A, i), which is
defined by r3(m) = ng(\) — n3(p), where ng(A) denotes the number of non-overlined
parts of an overpartition A. Similarly, let R3(m,n) denote the number of overpartition
pairs of n with r3(m) = m and let Rs(s,t,n) denote the number of overpartition pairs
of n with r3(m) = s (mod t). Then we have the following theorem.

Theorem 3.3. For 0 < s < 2, we have

pp(3n + 2)

R3(8,3,3n+2) = 3

(3.9)

Proof. 1t is easy to derive that

Z ZRg (m,n)z (=g Q)g? . (3.10)

= = NI

Using the fact that R3(1,3,n) = R3(2,3,n) and setting z = & = €2™/3 in (BI0), we
find that

(265 0)0(a/&; @)oo
(=4 D24 @)oo
(0% 0%

— 2 n(n+1)/

=0

& P 2
3" (Rs(0,3,n) — Ry(1.3,n)) " = (=4 0)sc
n=0

Note that there are no triangular numbers that is congruent to 2 modulo 3. It follows
that
R3(0,3,3n +2) = R3(1,3,3n + 2).

Since R3(1,3,3n + 2) = R3(2,3,3n + 2), the proof is complete. |

To conclude this section, we remark that the rank r3 can be used to give combi-
natorial explanations of many Ramanujan-type congruences for pp(n) which plays an
analogous role to the rank introduced by Bringmann and Lovejoy [4] for congruences
also for overpartition pairs. To be specific, we have the following theorem. The proof
is similar to the proof of Bringmann and Lovejoy. But the rank r3 seems to simpler.

Theorem 3.4. Let | be an odd prime, and let t be an odd number which is a power
of 1 or relatively prime to . Then for any positive integer j, there are infinitely many
non-nested arithmetic progressions An + B such that

Rs(r,t, An + B) = 0 (mod ) (3.11)

forany 0 <r <t—1.



Proof. Note that the generating function for R3(s,t,n) can be decomposed into a linear
combination of certain modular forms similar to the case for NN (r,t,n). Suppose that
t is an odd integer and 0 < s < t. Let (; = e¥, and let C(s,t) be the constant given
by

=
o —ks
C(S, t) = ; Z Ct .
k=0
Then we have i
o 1 —
Cls,t)+ ) Rals,ton)g" = 2> G Rs(G50),
k=0

n=1
where 9
(—4:9)5%
(925 9)oo(a/ 7 @)oo
Observe that R3((F; q) differs from R((F; q) (see Bringmann and Lovejoy [4, proposition
2.4]) only by a factor m. Hence the argument of Bringmann and Lovejoy for

(L3) can be carried over to deduce relation (3.I1]). This completes the proof. |

Rs(zq) =

4 Infinite families of congruences modulo 3 and 5

In this section, we obtain a formula for pp(3n) modulo 3 based on the number of
representations of n as a sum of two squares. We further derive a formula for pp(5n)
modulo 5 in connection with the number of representations of n in the form 2 + 5y2.
As consequences, we give infinite families of congruences modulo 3 and 5.

Theorem 4.1. If the prime factorization of n is given by

an“prin;Uj, (4.1)
=1 j=1

where p; = 1 (mod 4) and ¢; = 3 (mod 4). Then

pp(3n) = ()" [Ja+o) ][] % (mod 3). (4.2)

i=1 j=1

Proof. First, it is easy to see that

and

10



where B(q) is a infinite series in ¢ with integer coefficients . Hence,

v a p=q) _ e(—q) o
Z:pp(n)q  o(—q)? w(—q?’)( 43)
o(=¢°) + qB(¢*)

o(—¢*)

Extracting the terms ¢®* for n > 0, and replacing ¢ by ¢, we find that

> pp(3n)q" = )

= ¢(—¢q)* (mod 3). (4.3)

Let ro(n) denote the number of representations of n as a sum of two squares. So we
have

p(—af = S (1) ra(m)g" (4.4)
From (4.3) and ([@.4)) it follows that
pp(3n) = (—=1)"ry(n) (mod 3). (4.5)

Given the prime factorization of n in the form of (4.1]), it is well known that

L+ (—1)"
=411+ , 4.6
H +u; H . (4.6)
see, for example, Berndt [3] or Grosswald [9]. Combining (£F) and (£.0), we get the
desired formula (Z.2). |

Theorem 4.2. Assume that p is prime with p = 3 (mod 4), and s is an integer with
1 <s<p. Then for any a« >0 and n > 0, we have

pp(3p**(pn + 5)) = 0 (mod 3). (4.7)

In particular, setting p = 3, we have for any a > 1 andn > 0,

pp(9%(3n + 1)) =0 (mod 3) (4.8)
and

pp(9%(3n +2)) =0 (mod 3). (4.9)
Proof. Recall that r3(n) = 0 if and only if there exists a prime congruent to 3 modulo
4 that has an odd exponent in the canonical factorization of n. It can be seen that

ra(p*** (pn + 5)) = 0,

since p is not a factor of pn+s. By (4.5)) we obtain the congruence relation (A.7). This
completes the proof. |

11



Theorem 4.3. Let R(n,z* + 5y?) denote the number of representations of n by the
quadratic form x* + 5y%. Then for any n > 0, we have

p(5n) = (=1)"R(n, 2> + 5y*) (mod 5). (4.10)

To prove this theorem, we need a simple property of a Lambert series on the right-

hand side of (4.11]).

Lemma 4.1. Let 1 <r <4 and let the numbers a,(n) be given by

e o q5n+r
Zar(n)q - Z 1 — (_q)5n+7" (411)
n=1 n=0

Then we have

> a,(5n)g" =Y a,(n)g".

Proof. Let rg(n) denote the number of representations of n as a sum of eight squares,
namely,

p(@)® =1+ rs(n)q". (4.12)

Using the generating function (23] for pp(n), we have
0(@)"°> " 1p(n)(—q)" = ¢(q)". (4.13)
n=0

In view of relation (4.I2) and the fact that

©(¢°) = ¢(q)° (mod 5),

from (4.I3]) we see that
w(q°)? Zp_p(n)(—q)" =1+ Z rg(n)q" (mod 5).
n=0 n=1
Choosing the terms for which the power of ¢ is a multiple of 5, we find that

p(q°)?> Pp(n)(—q)™ =1+ > r5(5n)¢"" (mod 5). (4.14)
Replacing ¢° by ¢ in ([£I4) gives
0(q)* Y mp(5n)(—q)" =1+ Y _r(5n)g" (mod 5). (4.15)

n=0

12



We wish to establish the following congruence
1+ Z re(bn)¢" =1+ Z rg(n)q" (mod 5). (4.16)
To this end, we recall that
)8:1+16iﬂ (4.17)
= 1-(—™

see Berndt [3, Theorem 3.5.3]. It follows that

> gt 2
1+ Z 1 — 5n+1 + Z —5%2
n=0
2 Sn+3 ad AP+
+ Z q)om+3 Z W (mod 5). (4.18)
n=0

For r = 1,2,3,4, let a,(n) be defined by ([II)). By ([I2), the above relation (4I8)
can be rewritten as

ZTS n)q" —ZCH n)q" +3Za2 n)q" +2Za3 n)q" +4Za4 ¢" (mod b).

(4.19)
By Lemma A.T] we find that

Z rg(5n)q" = Z ay(5n)q" + 3 Z as(5n)q" + 2 Z as(5n)q" + 4 Z a4(5n)q" (mod 5)
n=1 n=1 n=1 n=1 n=1

= Zal n)q" +3Za2 n)q" +22a3 n)q" +4Za4 . (4.20)
By (A19) and (£.20) we obtain ([A.I16). From (£I5) and (4106) we know that
)> Y Pp(5n)(—a)" = ¢(q)° (mod 5).

Thus,

pr (5n)(—)" = ¢(9)° = w(@)p(q®) (mod 5). (4.21)

By the definition of R(n,z? + 5y?), we see that

> R(n,a” +5y°)q" = o(q)e(q”). (4.22)

n=0

13



As a consequence of (£21)) and (£22)), we deduce that
> p(n)(—q)" =Y R(n,2” +5y%)q" (mod 5).
n=0 n=0
Thus the proof is complete by equating coefficients. |

The formula for R(n,z? + 5y*) due to Berkovich and Yesilyurt [2] leads to the
following formula for pp(5n) modulo 5.

Theorem 4.4. If the prime factorization of n is given by

n = 2°5° prl H Q;Dja (4.23)
=1 j=1
where p; = 1,3,7, or 9 (mod 20) and ¢; = 11,13,17, or 19 (mod 20). Then we have

5n) = (—=1)" (1 + (=1)** 1+ ———~— (mod 5), 4.24

pp()()(())g( )jl:[l 5 ( ) (4.24)

where t is the number of prime factors of n, counting multiplicity, that are congruent
to 3 or 7 modulo 20.

Proof. Given the prime factorization of n in the form of ([@23]), it is known that

R(n,2* +5y%) = (1 + (=1)**) H(l + v;) H ﬂ, (4.25)

i=1 j=1

see, for example, Berkovich and Yesilyurt [2, Corollary 3.3]. Combining (4.10) and
(4.25), we get (4.24). This completes the proof. |

Based on the above theorem, we establish two infinite families of congruences mod-
ulo 5.

Theorem 4.5. For any o > 1 and n > 0, we have
pp(5%(5bn +2)) =0 (mod 5) (4.26)

and
pp(5%(5n + 3)) =0 (mod 5). (4.27)

Proof. Considering the possible residues of 22 + 5y? modulo 5, we find that
R(5n + 2,2 + 5y%) = R(5n + 3, 2% + 5y%) = 0.
In light of (EI0), we deduce that
pp(25m + 10) = (—=1)>" "2 R(5n + 2, 2% + 5y*) = 0 (mod 5) (4.28)

14



and
Pp(25n + 15) = (=1)"""*R(5n + 3,27 + 5y*) = 0 (mod 5). (4.29)

Observe that formula (£.24) for pp(5n) modulo 5 is independent of the exponent of 5
in the factorization of n. This means that for o > 1,

pp(5n) = pp(5%n) (mod 5). (4.30)

Combining (Z28), (£29) and ([Z30), we obtain the desired congruence relations (Z.26)
and ([A.27). This completes the proof. |

5 Further congruences for overpartition pairs

In this section, we shall establish some congruences for pp(n) modulo 5 and 9 which are
similar to the congruences for the number of broken 2-diamonds partitions derived by
Paule and Radu [I5]. Let us begin with the congruences modulo 9 which are derived
from congruences modulo 3.

Theorem 5.1. For any prime with p =1 (mod 12), we have

pp(2p)
3

for all positive integers n such that 3n 4+ 2 # 0 (mod p).

p((3n+2)p) =

pp(3n + 2) (mod 9), (5.1)

To prove the above theorem, we need the following lemma which is a special case
of Newman [14, Theorem 3].

Lemma 5.1. For each prime p with p =1 (mod 12) and for all positive integers n,

b (np+ ?) +p' <% _ 21)3;]91) s <2p3_ 2) b(n), (5.2)

where b(n) is defined by

D b(n)q" = (4 )% (0% %)%

Since the equality is derived by equating coefficients of series in ¢, it is safe to
assume that b(t) = 0 if ¢ is not a nonnegative integer. We are now ready to give a
proof of Theorem [5.11

Proof of Theorem[5.1l By the generating function of pp(3n + 2) as given in (2.1]), we
see that

> 3n + 2 n
SOPPEED) (g (@), (mod 3).

n=0

15



From the definition of b(n), we deduce that for n > 0,

pp(3n + 2)
3

b(n) (mod 3). (5.3)

On the other hand, for those prime p with p = 1 (mod 12) and those n such that 3n+2
is not a multiple of p, it follows that b (% — 2%) = 0. Thus, by Lemma [5.1] we obtain

b <np+ 2p3_ 2) — (2p3_2) b(n). (5.4)

Substituting (5.3)) into (5.4), we get

pp(2p)pp(3n + 2) (mod 3),

O~

1__
gpp(i%np +2p) =

as required. |

Next, we use Lemma [5.1] to obtain the following congruences. Such type of congru-
ences are called strange congruences by Paule and Radu [15].

Theorem 5.2. For any k > 0, we have

pp(2-13%) = 3(k + 1) (mod 9). (5.5)

Proof. Let p be a prime with p = 1 (mod 12). Then setting n = 2(pF*! — 1)/3 in (5.2)
and using (5.3)), we get

1 1
~Pp(2p™%) + ~7p(2p") = ~Pp(2p)PP(2p" ) (mod 3).

1
3 3 9

When p = 13, since pp(26) = 6 (mod 9), we deduce that
Pp(2 - 13572 4 pp(2 - 13%) = 2pp(2 - 13¥1) (mod 9). (5.6)

Given the initial conditions pp(2) = 3 (mod 9), pp(26) = 6 (mod 9), by iteration of
(56), we reach the conclusion (5.5]). This completes the proof. |

We now turn to the congruences modulo 5.

Theorem 5.3. Let p be a prime with p = 13 (mod 20) or p = 17 (mod 20). Then the
following congruence holds any positive integer n that is not divisible by p,

pp(5pn) =0 (mod 5). (5.7)

The following lemma is a special case of Newman [I4, Theorem 3], which will be
needed in the proof of Theorem [5.3]
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Lemma 5.2. For each prime p with p =1 (mod 4) and for all positive integers n,

c(np) + p*c(n/p) = (p* + 1)c(n), (5.8)

where c(n) is defined by

> e’ = ploa) = (A

n

Like the case for Lemma 5.1l we may assume that ¢(¢) = 0 if ¢ is not a nonnegative
integer.

Proof of Theorem[5.3. Recall the following relation as given in (4.21]),
> pp(5n)q" = ¢(—q)° (mod 5).
n=0

From the definition of ¢(n), we see that for n > 0,
pp(5n) = ¢(n) (mod 5). (5.9)

On the other hand, for any prime p with p = 13 (mod 20) or p = 17 (mod 20), and for
any n that is not a multiple of p, we have ¢(n/p) = 0. Thus, by Lemma we obtain
that

e(np) = (77 + 1)e(n). (5.10)
Combining (5.9) and (5.10), we get
pp(5np) = (p* + 1)pp(5n) (mod 5). (5.11)

Since p?+ 1 is a multiple of 5 if p is a prime of the form 20k + 13 or 20k + 17, the above
congruence reduces to
pp(5np) = 0 (mod 5).

This completes the proof. |

To conclude this section, we use Lemma to derive the following congruences.

Theorem 5.4. Let p be a prime with p = 1 (mod 20) or p = 9 (mod 20). Then the
following congruence holds for any positive integer k,

pp(5p") = 3(k + 1) (mod 5). (5.12)

Proof. Applying (5.8) with n = p**1 and using (5.9), we get

pp(5p"*?) + p*ep(5p") = (p* + D)pp(5p™ ") (mod 5). (5.13)
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It is easily seen that p? =1 (mod 5). From (5I3) we see that

pp(5p" ) + Pp(5p") = 2pP(5p**) (mod 5). (5.14)
Setting n = 1 in (5.11]), we get

pp(5p) = (v* + 1)PB(5) = 2pp(5) (mod 5).

Since pp(5) = 3 (mod 5), so pp(5p) = 1 (mod 5). By iteration of (5.14]), we arrive at
the desired congruence, and hence the proof is complete. |
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