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Abstract

The space D of Hodge structures on a fixed polarized lattice is known as Griffiths
period domain and its quotient by the isometry group of the lattice is the moduli of
polarized Hodge structures of a fixed type. When D is a Hermition symmetric domain
then we have automorphic forms on D, which according to Baily-Borel theorem, they
give an algebraic structure to the mentioned moduli space. In this article we slightly
modify this picture by considering the space U of polarized lattices in a fixed complex
vector space with a fixed Hodge filtration and polarization. It turns out that the
isometry group of the filtration and polarization, which is an algebraic group, acts on U
and the quotient is again the moduli of polarized Hodge structures. This formulation
leads us to the notion of quasi-automorphic forms which generalizes quasi-modular
forms attached to elliptic curves.

Around seventies Griffiths in his article [6] introduced the period domain D and de-
scribed a project to enlarge D to a moduli space of degenerating polarized Hodge struc-
tures. He asked also for the existence of a certain automorphic form theory for D, gen-
eralizing the usual notion of automorphic forms on Hermitian symmetric domains. Since
then there have been many efforts in the first part of Griffiths’s project (see [8, 13] and the
references there). For the second part Griffiths himself introduced the theory of automor-
phic cohomology, however, the generating function role of automorphic forms is somewhat
missing in this theory.

Some years ago, I was looking for some analytic spaces over D for which one may
state Baily-Borel theorem on the unique algebraic structure of quotients of Hermitian
symmetric domains by discrete arithmetic groups. I realized that even in the simplest
case of Hodge structures, namely h01 = h10 = 1, such spaces are not well studied. This led
me to the definition of a class of holomorphic functions on the Poincaré upper half plane
which generalize the classical modular forms (see [14]). Since a differential operator acts
on them I called them differential modular forms. Soon after I realized that such functions
play a central role in mathematical physics and, in particular, in mirror symmetry (see
[11] and the references within there). Inspired by such a special case of Hodge structures
with its fruitful applications, I felt the necessity to develop as much as possible similar
theories for an arbitrary type of Hodge structures.

In this note we construct an analytic variety U and an action of an algebraic group
G0 on U from the right such that U/G0 is the moduli space of polarized Hodge structures
of a fixed type. We may pose the following algebraization problem for U , in parallel
to Baily-Borel theorem in [1]: construct functions on U which have some automorphic
properties with respect to the action of G0 and have some finite growth when a Hodge
structure degenerates. They must be enough in order to enhance U with a canonical
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structure of an algebraic variety such that the action of G0 is algebraic. In the case for
which the Griffiths period domain is Hermitian symmetric, for instance for the Siegel
upper half plane, this problem seems to be promising but needs a reasonable amount
of work if one wants to construct such functions through the inverse of the generalized
period maps (see §4.1). Among them are calculating explicit affine coordinates in certain
moduli spaces and calculating Gauss-Manin connections. Some main ingredients of such
a study for K3 surfaces endowed with N-polarizations is recently done in [2]. For the
case in which the Griffiths period domain is not Hermitian symmetric, we reformulate
the algebraization problem further (see §3.3) and we solve it for the Hodge numbers
h30 = h21 = h12 = h03 = 1 (see §4.2 and [13]). This gives us a first example of quasi-
automorphic forms theory attached to a period domain which is not Hermitian symmetric.

The realization of the algebraization problem in the case of elliptic curves and the cor-
responding Hodge numbers h10 = h01 = 1 clarifies many details of the previous paragraph,
therefore, I explain it here (for more details see [14, 15]). In this case U = SL(2,Z)\P ,
where

P := {
(

x1 x2
x3 x4

)

∈ SL(2,C) | Im(x1x3) > 0}.

The algebraic group

G0 = {
(

k k′

0 k−1

)

| k′ ∈ C, k 6= 0}

acts from the right on U by the usual multiplication of matrices. The period map gives
us a biholomorphism:

(1) T := {(t1, t2, t3) ∈ C3 | 27t23 − t32 6= 0} ∼= U.

Under the above biholomorphism the action of G0 is given by

t • g = (t1k
−2 + k′k−1, t2k

−4, t3k
−6),

t = (t1, t2, t3) ∈ C3, g =

(

k k′

0 k−1

)

∈ G0.

The biholomorphism (1) is given by the generalized period map

pm : T → U, t 7→
[

1√
2πi

(

∫

δ1
dx
y

∫

δ1
xdx
y

∫

δ2

dx
y

∫

δ2

xdx
y

)]

.

Here, [·] means the equivalence class and {δ1, δ2} is a basis of the Z-module H1(Et,Z) with
〈δ1, δ2〉 = 1, where Et is the elliptic curve

y2 − 4(x− t1)
3 + t2(x− t1) + t3 = 0, 27t23 − t32 6= 0.

In fact, T is the moduli space of the pairs (E, {ω1, ω2}), where E is an elliptic curve and
{ω1, ω2} is basis of H1

dR(E) such that ω1 is represented by a differential form of the first
kind and 1

2πi

∫

E
ω1 ∪ ω2 = 1.

The algebra of quasi-modular forms arises in the following way: We consider the
composition of maps

(2) H
i→֒ P → U

pm−1

→ T →֒ T̃ ,
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where H = {τ ∈ C | Im(τ) > 0} is the upper half plane,

i : H → P, i(τ) =

(

τ −1
1 0

)

,

P → U is the quotient map and T̃ = C3 is the underlying complex manifold of the
affine variety Spec(C[t1, t2, t3]). The pull-back of the functions ring C[t1, t2, t3] of T̃ by the
composition H → T̃ , is a C-algebra which we call it the C-algebra of quasi-modular forms
for SL(2,Z). Three Eisenstein series

(3) gi(τ) = ak

(

1 + bk

∞
∑

d=1

d2k−1 e2πidτ

1− e2πidτ

)

, k = 1, 2, 3,

where

(b1, b2, b3) = (−24, 240,−504), (a1, a2, a3) = (
2πi

12
, 12(

2πi

12
)2, 8(

2πi

12
)3)

are obtained by taking the pull-back of ti’s. Our reformulation of the algebraization
problem is based on (2) and the pull-back argument, see §3.3.

We fix some notations from linear algebra. For a basis ω1, ω2, . . . , ωh of a vector space
we denote by ω a h × 1 matrix whose entries are ωi’s. In this way we also say that ω is
a basis of the vector space. If there is no danger of confusion we also use ω to denote an
element of the vector space. We use At to denote the transpose of the matrix A. Recall
that if δ and ω are two bases of a vector space, δ = pω for some p ∈ GL(h,C) and a bilinear
form on V0 in the basis δ (resp. ω) has the matrix form A (resp. B) then pBpt = A. By
[aij ]h×h we mean a h× h matrix whose (i, j) entry is aij.

1 Moduli of polarized Hodge structures

In this section we define the generalized period domain U and we explain its comparison
with the classical Griffiths period domain.

1.1 The space of polarized lattices

We fix a C-vector space V0 of dimension h, a natural number m ∈ N and a h × h integer
valued matrix Ψ0 such that the associated bilinear form

Zh × Zh → Z, (a, b) → atΨ0b

is non-degenerate, symmetric if m is even and skew if m is odd. Note that in the case of
Z-modules by non-degenerate we mean that the associated morphism

Zh → (Zh)∨, a→ (b→ atΨ0b)

is a an isomorphism, where ∨ means the dual of a Z-module.
A lattice VZ in V0 is a Z-module generated by a basis of V0. A polarized lattice (VZ, ψZ)

of type Ψ0 is a lattice VZ together with a bilinear map ψZ : VZ × VZ → Z such that in a
Z-basis of VZ, ψZ has the form Ψ0.

Let L be the space of polarized lattices of type Ψ0 in V0. Usually, we denote an element
of L by x, y, . . . and the associated lattice (resp. bilinear form) by VZ(x), VZ(y), . . . (resp.
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ψZ(x), ψZ(y), . . .). Let R be any subring of C. For instance, R can be Q, R, C, Z. We
define

VR(x) := VZ(x)⊗Z R and ψR(x) : VR(x)× VR(x) → R the induced map.

Conjugation with respect to x ∈ L of an element ω =
∑h

i=1 aiδi ∈ V0, where VZ(x) =
∑h

i=1 Zδi, is defined by

ωx :=

h
∑

i=1

aiδi,

where s, s ∈ C is the usual conjugation of complex numbers.

1.2 Hodge filtration

We fix Hodge numbers

hi,m−i ∈ N ∪ {0}, hi :=
m
∑

j=i

hj,m−j , i = 0, 1, . . . ,m, h0 = h

a filtration

(4) F •
0 : {0} = Fm+1

0 ⊂ Fm
0 ⊂ · · · ⊂ F 1

0 ⊂ F 0
0 = V0, dim(F i

0) = hi

on V0 and a bilinear form
ψ0 : V0 × V0 → C

such that in a basis of V0 its matrix is Ψ0 and it satisfies

ψ0(F
i
0, F

j
0 ) = 0, ∀i, j, i+ j > m.

A basis ωi, i = 1, 2, . . . , h of V0 is compatible with the filtration F •
0 if ωi, i = 1, 2, . . . , hi is a

basis of F i
0 for all i. It is sometimes convenient to fix a basis ωi, i = 1, 2, . . . , h of V0 which

is compatible with the filtration F •
0 and such that the polarization matrix [ψ0(ωi, ωj)] is

a fixed matrix Φ0:
[ψ0(ωi, ωj)] = Φ0.

The matrices Ψ0 and Φ0 are not necessarily the same. For any x ∈ L we define

H i,m−i(x) := F i
0 ∩ Fm−i

0

x

and the following properties for x ∈ L:

1. ψC(x) = ψ0;

2. V0 = ⊕m
i=0H

i,m−i(x);

3. (−1)i+
m

2 ψC(x)(ω, ω
x) > 0, ∀ω ∈ H i,m−i(x), ω 6= 0.

Throughout the text we call these properties P1, P2 and P3. Fix a polarized lattice x ∈ L.
P1 implies that

ψ0(H
i,m−i(x),Hj,m−j(x)) = 0 except for i+ j = m.

4



This is because if i+ j > m then ψ0(F
i
0, F

j
0 ) = 0 and if i+ j < m then ψ0(F

i
0

x
, F j

0

x

) = 0.
We have also

∑

iH
i,m−i(x) = ⊕iH

i,m−i(x) if and only if

(5) F i
0 ∩ F j

0

x

= 0, ∀ i+ j > m.

If am−k,k + · · ·+ a0,m = 0, ai,m−i ∈ H i,m−i(x) for some 0 ≤ k ≤ m with am−k,k 6= 0, then

−am−k,k = am−k−1,k+1 + · · ·+ a0,m ∈ Fm−k
0 ∩ F k+1

0

x
⇒ ak,m−k = 0

which is a contradiction. The proof in other direction is a consequence of

F i
0 ∩ F j

0

x

= H i,m−i(x) ∩Hm−j,j(x), i+ j > m.

1.3 Period domain U

Define
X := {x ∈ L | x satisfies P1 },

U := {x ∈ L | x satisfies P1,P2, P3 }.

Proposition 1. The set X is an analytic subset of L and U is an open subset of X.

Proof. Take a basis ωi, i = 1, 2, . . . , h of V0 compatible with the Hodge filtration. The
property P1 is given by

ψC(x)(ωr, ωs) = 0, r ≤ hi, s ≤ hj , i+ j > m

and so X is an analytic subset of L.
Now choose a basis δ of VZ(x) and write δ = pω. Using ω we may assume that V0 = Ch

and δ constitutes of the rows of p. We have

ω = p−1δ =⇒ ωx = p−1δ = p−1pω

Therefore, the rows of p−1p are complex conjugate of the the entries of ω. Now it is easy
to verify that if the property (5), dim(H i,m−i(x)) = hi,m−i and P3 are valid for one x then
they are valid for all points in a small neighborhood of x (for P3 we may first restrict ψ0

to the product of sphere of radius 1 and center 0 ∈ Ch).

1.4 An algebraic group

Let G0 be the algebraic group

G0 := Iso(F •
0 , ψ0) :=

{g : V0 → V0 linear | g(F i
0) = F i

0, ψ0(g(ω1), g(ω2)) = ψ0(ω1, ω2), ω1, ω2 ∈ V0}.
It acts from the right on L in a canonical way:

xg := g−1(x), ψZ(xg)(·, ·) := ψZ(g(·), g(·)), g ∈ G0, x ∈ L.

One can easily see that for all ω ∈ V0, x ∈ L and g ∈ G we have

ωxg = g−1g(ω)
x
.
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Proposition 2. The properties P1, P2 and P3 are invariant under the action of G0.

Proof. The property P1 for xg follows from the definition. Let x ∈ L, g ∈ G0 and ω ∈ V0.
We have

H i,m−i(xg) = F i
0 ∩ Fm−i

0

xg
= F i

0 ∩ g−1g(Fm−i
0 )

x
= F i

0 ∩ g−1(Fm−i
0

x
)

= g−1(F i
0 ∩ Fm−i

0

x
) = g−1(H i,m−i(x))

and
ψC(xg)(ω, ω

xg) = ψC(x)(g(ω), gg
−1g(ω)

x
) = ψC(x)(g(ω), g(ω)

x
).

These equalities prove the proposition.

The above proposition implies that G0 acts from the right on U . We fix a basis
ωi, i = 1, 2, . . . , h of V0 compatible with the Hodge filtration F •

0 and, if there is no danger
of confusion, we identify each g ∈ G0 with the h× h matrix g̃ given by:

(6) [g−1(ω1), g
−1(ω2), . . . , g

−1(ωh)] = [ω1, ω2, . . . , ωh]g̃.

1.5 Griffiths period domain

In this section we give the classical approach to the moduli of polarized Hodge structures
due to P. Griffiths. The reader is referred to [9, 8] for more developments in this direction.

Let us fix the C-vector space V0 and the Hodge numbers as in §1.2. Let also F be
the space of filtrations (4) in V0. In fact, F has a natural structure of a compact smooth
projective variety. We fix the polarized lattice x0 ∈ L and define the Griffiths domain:

D := {F • ∈ F | (VZ(x0), ψZ(x0), F
•) is a polarized Hodge structure }.

The group
ΓZ := Aut(VZ(x0), ψZ(x0))

acts on V0 from the right in a usual way and this gives us an action of ΓZ on D. The space
ΓZ\D is the moduli of polarized Hodge structure.

Proposition 3. There is a canonical isomorphism

β : U/G0
∼→ ΓZ\D.

Proof. We take x ∈ U and an isomorphism γ : (VZ(x), ψZ(x))
∼→ (VZ(x0), ψZ(x0)). The

push-forward of the Hodge filtration F •
0 under this isomorphism gives us a Hodge filtration

on V0 with respect to the lattice VZ(x0) and so it gives us a point β(x) ∈ D. Different
choices of γ leads us to the action of ΓZ on β(x). Therefore, we have a well-defined map

β : U → ΓZ\D.

Since G0 = Aut(V0, F
•
0 , ψ0), β induces the desired isomorphism.

The Griffiths domain is the moduli of polarized Hodge structures of a fixed type and
with a Z-basis in which the polarization has a fixed matrix form. Our domain U is the
moduli of polarized Hodge structures of a fixed type and with a C-basis compatible with
Hodge filtration and for which the polarization has a fixed matrix form.
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2 Period domain

In this section we introduce Poincaré duals, period matrices and Gauss-Manin connections
in the framework of polarized Hodge structures.

2.1 Poincaré dual

In this section we explain the notion of Poincaré dual. Let (VZ(x), ψZ(x)) be a polarized
lattice and δ ∈ VZ(x)∨, where ∨ means the dual of a Z-module. We will use the symbolic
integral notation

∫

δ

ω := δ(ω), ∀ω ∈ V0.

The equality

(7)

∫

δ

ωx =

∫

δ

ω, ∀ω ∈ V0, δ ∈ VZ(x)
∨

follows directly from the definition. The Poincaré dual of δ ∈ VZ(x)
∨ is an element

δpd ∈ VZ(x) with the property:

∫

δ

ω = ψZ(x)(δ
pd, ω), ∀ω ∈ VZ(x).

It exists and is unique because ψZ is non-degenerate. Using the Poincaré duality one
defines the dual polarization:

ψZ(x)
∨(δi, δj) := ψZ(x)(δ

pd
i , δpdj ), δi, δj ∈ VZ(x)

∨.

We have:
(A∨δ)pd = A−1δpd, ∀A ∈ ΓZ, δ ∈ VZ(x0)∨,

where A∨ : VZ(x0)
∨ → VZ(x0)

∨ is the induced dual map. This follows from:

∫

A∨δ

ω =

∫

δ

Aω = ψZ(x0)(δ
pd, Aω) = ψZ(x0)(A

−1δpd, ω), ∀ω ∈ V0.

We define
Γ∨
Z := Aut(VZ(x0)

∨, ψZ(x0)
∨).

It follows that ΓZ → Γ∨
Z, A 7→ A∨ is an isomorphism of groups.

2.2 Period matrix

Let ωi, i = 1, 2, . . . , h be a C-basis of V0 compatible with F •
0 . Recall that ω means the

h × 1 matrix with entries ωi. For x ∈ U , we take a Z-basis δi, i = 1, 2, . . . , h of VZ(x)
∨

such that the matrix of ψZ(x) in the basis δ is Ψ0. We define the period matrix in the
following way:

pm = pm(x) = [

∫

δi

ωj]h×h :=











∫

δ1
ω1

∫

δ1
ω2 · · ·

∫

δ1
ωh

∫

δ2
ω1

∫

δ2
ω2 · · ·

∫

δ2
ωh

...
...

...
...

∫

δh
ω1

∫

δh
ω2 · · ·

∫

δh
ωh











.

7



Instead of the period matrix it is useful to use the matrix

q = q(x), where δpd = qω.

Then we have:
Ψ0 = pm · qt.

If we identify V0 with Ch through the basis ω then q is a matrix whose rows are the entries
of δ. We define P to be the set of period matrices pm. We write an element A of ΓZ in a
basis of VZ(x0), and redefine ΓZ:

ΓZ := {A ∈ GL(h,Z) | AΨ0A
t = Ψ0}.

The group ΓZ acts on P from the left by the usual multiplication of matrices and

U = ΓZ\P.

In a similar way, if we identity each element g of G0 with the matrix g̃ in (6) then G0 acts
from the right on P by the usual multiplication of matrices.

2.3 A canonical connection on L
We consider the trivial bundle H = L× V0 on L. On H we have a well-defined integrable
connection

∇ : H → Ω1
L ⊗OL

H
such that a section s of H in an small open set V ⊂ L with the property

s(x) ∈ {x} × VZ(x), x ∈ V.

is flat. Let ω1, ω2, . . . , ωh be a basis of V0 compatible with the Hodge filtration F •
0 . We

can consider ωi as a global section of H and so we have

(8) ∇ω = A⊗ ω, A =











ω11 ω12 · · · ω1h

ω21 ω22 · · · ω2h
...

...
. . .

...
ωh1 ωh2 · · · ωhh











, ωij ∈ H0(L,Ω1
L).

A is called the connection matrix of ∇ in the basis ω. The connection ∇ is integrable
and so dA = A ∧A:

(9) dωij =

h
∑

k=1

ωik ∧ ωkj, i, j = 1, 2, . . . , h.

Let δ be a basis of flat sections. Write δ = qω. We have

ω = q
−1δ ⇒ ∇(ω) = d(q−1)qω ⇒

A = dq−1 · q = d(pmt ·Ψ−t
0 ) · (Ψt

0 · pm−t) = d(pmt) · pm−t.

and so

(10) A = d(pmt) · pm−t.

8



We have used the equality Ψ0 = pm · qt. Note that the entries of A are holomorphic
1-forms on L and a fundamental system for the linear differential equation dY = A · Y in
L is given by Y = pm

t:
dpmt = A · pmt.

We define the Griffiths transversality distribution by:

(11) Fgr : ωij = 0, i ≤ hm−x, j > hm−x−1, x = 0, 1, . . . ,m− 2.

A holomorphic map f : V → U , where V is an analytic variety, is called a period map if
it is tangent to the Griffiths transversality distribution, that is, for all ωij as in (11) we
have f−1ωij = 0.

2.4 Some functions on L
For two vectors ω1, ω2 ∈ V0, we have the following holomorphic function on L:

L → C, x 7→ ψC(x)(ω1, ω2)

We choose a basis ω of V0 and δ of VZ(x) for x ∈ L and write δ = q · ω. Then

(12) F := [ψC(x)(ωi, ωj)] = (q−1)tΨ0q
−1 = pm

tΨ−t
0 pm

(we have used the identity Ψ0 = q · pmt). The matrix F satisfies the differential equation:

(13) dF = A · F + F · At,

where A is the connection matrix. The proof is a straightforward consequence of (12) and
(10):

dF = d(pmtΨ−t
0 pm)

= (dpmt)Ψ−t
0 pm+ pm

tΨ−t
0 (dpm)

= A · F + F ·At

It is easy to check that every solution of the differential equation (13) is of the form
pm

t ·C · pm for some constant h× h matrix C with entries in C (if F is a solution of (13)
then F ·pm−1 is a solution of dY = A ·Y ). We restrict F,A and pm to U and we conclude
that

(14) Φ0 = pm
tΨ−t

0 pm

A · Φ0 = −Φ0 ·A.
where by definition F |U is the constant matrix Φ0.

We have a plenty of non holomorphic functions on L. For two elements ω1, ω2 ∈ V0 we
define:

L → C, x 7→ ψC(x)(ω1, ω2
x).

Let ω and δ be as before. We write δ = q · ωx and we have

(15) G := [ψC(x)(ωi, ω̄
x
j )] = pm

tΨ−t
0 pm = (q−1)tΨ0q

−1

The matrix G satisfies the differential equation:

(16) dG = A ·G+G ·At
,

where A is the connection matrix.

9



3 Quasi-modular forms attached to Hodge structures

In this section we explain what is a quasi-modular form attached to a given fixed data of
Hodge structures and a full family of enhanced projective varieties.

3.1 Enhanced projective varieties

Let X be a complex smooth projective variety of a fixed topological type. This means
that we fix a C∞ manifold X0 and assume that X as a C∞-manifold is isomorphic to X0

(we do not fix the isomorphism). Let n be the complex dimension of X and let m be
an integer with 1 ≤ m ≤ n. We fix an element θ ∈ H2n−2m(X,Z) ∩Hn−m,n−m(X). By
H i(X,Z) we mean its image in H i(X,C) = H i

dR(X), therefore, we have killed the torsions.
We consider the bilinear map

〈·, ·〉C : Hm
dR(X)×Hm

dR(X) → C, 〈ω,α〉 = 1

(2πi)m

∫

X

α ∪ ω ∪ θ.

The 2πi factor in the above definition ensures us that the bilinear map is the com-
plexification of a bilinear map 〈·, ·〉Z : Hm(X,Z) × Hm(X,Z) → Z (see for instance
Deligne’s lecture in [3]). We assume that it is non-degenerate. The cohomology Hm

dR(X)
is equipped with the so called Hodge filtration F •. We assume that the Hodge num-
bers hi,m−i, i = 0, 1, 2 . . . ,m coincide with those fixed in this article. We also fix an
isomorphism

(Hm
dR(X), F •, 〈·, ·〉C) ∼= (V0, F

•
0 , ψ0).

From now on, by an enhanced projective variety we mean all the data described in the
previous paragraph.

We also need to introduce families of enhanced projective varieties. Let V be an
irreducible affine variety and OV be the functions C-algebra on V . By definition V is
the underlying complex space of Spec(OV) and OV is a finitely generated reduced C-
algebra without zero divisor. Let also X → V be a family of smooth projective varieties
as in the previous paragraph. We will also use the notations {Xt}t∈V or X/V to denote
X → V . The de Rham cohomology Hm

dR(X/V ) and its Hodge filtration F •Hm
dR(X/V ) are

OV -modules (see for instance [7]) and in a similar way we have 〈·, ·〉OV
: Hm

dR(X/V ) ×
Hm

dR(X/V ) → OV . Note that we fix an element θ ∈ Fn−mH2n−2m
dR (X/V ) and assume

that it induces in each fiber Xt an element in H2n−2m(Xt,Z). We say that the family is
enhanced if we have an isomorphism

(17) (Hm
dR(X/V ), F •Hm

dR(X/V ), 〈·, ·〉OV
) ∼= (V0 ⊗C OV , F

•
0 ⊗C OV , ψ0 ⊗C OV ) .

We fix a basis ωi, i = 1, 2, . . . , h of V0 compatible with the filtration F •
0 . Under the above

isomorphism we get a basis ω̃i, i = 1, 2, . . . , h of the OV -module Hm
dR(X/V ) which is

compatible with the Hodge filtration and the bilinear map 〈·, ·〉OV
written in this basis

is a constant matrix. This gives us another formulation of enhanced family of projective
varieties. An enhanced family of projective varieties {Xt}t∈V is full if we have an algebraic
action of G0 (defined in §1.4) from the right on V (and hence on OV ) such that it is
compatible with the isomorphism (17). This is equivalent to say that for Xt and ω̃i, i =
1, 2, . . . , h as above, we have an isomorphism

(Xtg, [ω̃1, ω̃2, . . . , ω̃h]) ∼= (Xt, [ω̃1, ω̃2, . . . , ω̃h]g), t ∈ V, g ∈ G0,
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(remember the matrix form of g ∈ G0 in (6)). A morphism Y/W → X/V of two families
of enhanced projective varieties is a commutative diagram

Y → X
↓ ↓
W → V

such that
Hm(X/V ) → Hm(Y/W )

↓ ↓
V0 ⊗C OV → V0 ⊗C OW

is also commutative.

3.2 Period map

For an enhanced projective variety X, we consider the image of Hm(X,Z) in Hm(X,C) ∼=
Hm

dR(X) ∼= V0 and hence we obtain a unique point in U . Note that by this process
we kill torsion elements in Hm(X,Z). We fix bases ωi and ω̃i as in §3.1 and a basis
δi, i = 1, 2, . . . , h of Hm(X,Z) = Hm(X,Z)∨ with [〈δi, δj〉] = Ψ0 and we see that the
corresponding point in U := ΓZ\P is given by the equivalence class of the geometric
period matrix [

∫

δi
ω̃j].

For any family of enhanced projective varieties {Xt}t∈V we get

pm : V → U

which is holomorphic. It satisfies the so called Griffiths transversality, that is, it is tangent
to the Griffiths transversality distribution. It is called a geometric period map. The pull-
back of the connection ∇ constructed in §2.3 by the period map pm is the Gauss-Manin
connection of the family {Xt}t∈V . If the family is full then the geometric period map
commutes with the action of G0:

pm(tg) = pm(t)g, g ∈ G0, t ∈ V.

3.3 Quasi-modular forms

Let M be the set of enhanced projective varieties. We would like to prove that M is in
fact an affine variety. The first step in developing a quasi-modular form theory attached
to enhanced projective varieties is to solve the following conjectures. Recall that for a
enhanced projective variety we have fixed the topological data explained in §3.1.

Conjecture 1. There is an affine variety T and a full universal family X/T of enhanced
projective varieties. This mean that for any family of enhanced projective varieties Y/S
we have a unique morphism of Y/S → X/T of enhanced projective varieties.

We would also like to find a universal family which describes the degeneration of
projective varieties:

Conjecture 2. There is an affine variety T̃ ⊃ T of the same dimension as T and with the
following property: for any family f : Y → S of projective varieties with a fixed prescribed
topological data, but not necessarily enhanced and smooth, and with the discriminant
variety ∆ ⊂ S, the map Y \f−1(∆) → S\∆ is an underlying morphism of an enhanced
family, and hence, we have the map S\∆ → T which extends to S → T̃ .

11



Similar to Shimura varieties, we expect that T and T̃ are affine varieties defined over
Q̄. Both conjectures are true in the case of elliptic curves (see the discussion in the
Introduction). The function ring of T (resp. T̃ ) is C[t1, t2, t3,

1
27t2

3
−t3

2

] (resp. C[t1, t2, t3]

). We have also verified the conjectures for a particular class of Calabi-Yau varieties (see
§4.2 and [13]).

Now, consider the case in which both conjectures are true. We are going to explain
the rough idea of the algebra of quasi-modular forms attached to all fixed data that we
had. It is the pull-back of the C-algebra of regular functions in T̃ by the composition:

(18) H
i→֒ P |Im(pm) → U |Im(pm)

pm−1

→ T →֒ T̃ .

We need that the period map is local injective (local Torelli problem) and hence pm
−1 is

a local inverse map. The set H is a subset of the set of period matrices P and it will play
the role of the Poincaré upper half plane. If the Griffiths period domain D is Hermitian
symmetric then it is biholomorphic to D (see 4.1), however, in other cases it depends on
the universal period map T → U and its dimension is the dimension of the deformation
space of the projective variety. In this case we do no need to define H explicitly (see 4.2).
More details of this discussion will be explained by two examples of the next section.

4 Examples

In this section we discuss two examples of Hodge structures and the corresponding quasi-
modular form algebras: those attached to Calabi-Yau mirror quintic type and principally
polarized Abelian varieties. The details of the first case is done in [13] and we will sketch
the results which are related to the main stream of the present text. For the second case
there are many works to be done and I only sketch some ideas. Much of the works for K3
surfaces endowed with N -polarizations is done in [2] and the generalization of the results
obtained in this article to Siegel quasi-modular forms is a work for future.

4.1 Siegel quasi-modular forms

We consider the case in which the weight m is equal to 1 and the polarization matrix is:

Ψ0 =

(

0 Ig
−Ig 0

)

,

where Ig is the g × g identity matrix. In this case g := h10 = h01 and h = 2g. We take a
basis ωi, i = 1, 2, . . . , 2g of V0 compatible with F •

0 , that is, the first g elements form a basis
of F 1

0 . We further assume that the polarization ψ0 : V0 × V0 → C in the basis ω has the
form Φ0 := Ψ0. Because of the particular format of Ψ0, both these assumptions are not
in contradiction with each other. We take a basis δ of VZ(x)

∨ such that the intersection
form in this basis is of the form Ψ0 and we write the associated period matrix in the form:

[

∫

δi

ωj ] =

(

x1 x2
x3 x4

)

,

where xi, i = 1, . . . , 4 are g × g matrices. Since Ψ−t
0 = Ψ0, we have

(

0 Ig
−Ig 0

)

=

(

xt1 xt3
xt2 xt4

)(

0 Ig
−Ig 0

)(

x1 x2
x3 x4

)

=

(

−xt3x1 + xt1x3 −xt3x2 + xt1x4
−xt4x1 + xt2x3 −xt4x2 + xt2x4

)
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and

[〈ωi, ω̄
x
j 〉] =

(

xt1 xt3
xt2 xt4

)(

0 Ig
−Ig 0

)(

x̄1 x̄2
x̄3 x̄4

)

=

(

−xt3x̄1 + xt1x̄3 −xt3x̄2 + xt1x̄4
−xt4x̄1 + xt2x̄3 −xt4x̄2 + xt2x̄4

)

.

The properties P1, P2 and P3 are summarized in the properties

xt3x1 = xt1x3, −xt3x2 + xt1x4 = Ig,

x1, x2 ∈ GL(g,C),

−
√
−1(−xt3x̄1 + xt1x̄3) is a positive matrix.

By definition P is the set of all 2g×2g matrices

(

x1 x2
x3 x4

)

satisfying the above properties:

The matrix x := x1x
−1
2 is well-defined and invertible which satisfies the famous Riemann

relations:
xt = x, Im(x) is a positive matrix.

The set of matrices x ∈ Matg×g(C) with the above properties is called the Siegel upper
half plane and is denoted by H. We have U = ΓZ\P , where

ΓZ = Sp(2g,Z) = {
(

a b
c d

)

∈ GL(2g,Z) | abt = bat, cdt = dct, adt − bct = Ig}.

We have also

G0 = {
(

k k′

0 k−t

)

∈ GL(2g,C) | kk′t = k′kt}

which acts on P from the right. The group Sp(2g,Z) acts on H by:

(

a b
c d

)

· x = (ax+ b)(cx+ d)−1,

(

a b
c d

)

∈ Sp(2g,Z), x ∈ H

and we have the isomorphism

U/G0 → Sp(2g,Z)\H,

given by
(

x1 x2
x3 x4

)

→ x1x
−1
3 .

To each point x of P we associate a triple (Ax, θx, αx) as follows: We have Ax := Cg/Λx,
where Λx is a Z-submodule of Cg generated by the rows of x1 and x3. We have cycles

δi ∈ H1(Ax,Z), i = 1, 2, . . . , 2g which are defined by the property [
∫

δi
dzj ] =

(

x1
x3

)

, where

zj , j = 1, 2, . . . , g are linear coordinates of Cg. There is a basis αx = {α1, α2, . . . , α2g} of
H1

dR(Ax) such that

[

∫

δi

αj] =

(

x1 x2
x3 x4

)

.

The polarization in H1(Ax,Z) ∼= Λx (which is defined by [〈δi, δj〉] = Ψ0) is an element
θx : H2(Ax,Z) = ∧2

i=1Hom(Λx,Z). It gives the following bilinear map

〈·, ·〉 : H1
dR(Ax)×H1

dR(Ax) → C, 〈α, β〉 = 1

(2πi)2

∫

Ax

α ∪ β ∪ θg−1
x
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which satisfies [〈αi, αj〉] = Ψ0.
The triple (Ax, θx, αx) that we constructed in the previous paragraph does not depend

on the action of Sp(2g,Z) from the left on P , therefore, to each x ∈ U we have constructed
such a triple. In fact U is the moduli of the triples (A, θ, α) such that A is a principally
polarized abelian variety with a polarization θ and α is a basis of H1

dR(A) compatible with
the Hodge filtration F 1 ⊂ F 0 = H1

dR(A) and such that [〈αi, αj〉] = Ψ0.
We constructed the moduli space U in the framework of complex geometry. In order

to introduce Siegel quasi-modular forms, we have to study the same moduli space in the
framework of algebraic geometry. We have to construct an algebraic variety T over C such
that the points of T are in one to one correspondence with the equivalence classes of the
triples (A, θ, α). We also expect that T is an affine variety and it lies inside another affine
variety T̃ which describes the degeneration of varieties (as it is explained in §3.3). The
pull-back of the C-algebra of regular functions on T̃ through the composition

H → P → U
pm−1

→ T →֒ T̃

is, by definition, the C-algebra of Siegel quasi-modular forms. The first map is given by

z →
(

z −Ig
Ig 0

)

and the second is the canonical map. The period map in this case is a biholomorphism. If
we put a functional property for f regarding the action of G0 then this will be translated
into a functional property of a Siegel quasi-modular form with respect to the action of
Sp(2g,Z). In this way we can even define a Siegel quasi-modular form defined over Q̄

(recall that we expect T̃ to be defined over Q̄). It is left to the reader to verify that the
C-algebra of Siegel quasi-modular forms contains the classical Siegel modular forms and
it is closed under derivations with respect to zij with z = [zij ] ∈ H. For the realization of
all these in the case of elliptic curves, g = 1, see the Introduction and [14]. See the books
[10, 4, 12] for more information on Siegel modular forms.

4.2 Hodge numbers, 1,1,1,1

In this section we consider the case m = 3 and the Hodge numbers h30 = h21 = h12 =
h03 = 1, h = 4. The polarization matrix written in an integral basis is given by:

Ψ0 =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









.

Let us fix a basis ω1, ω2, ω3, ω4 of V0 compatible with the Hodge filtration F •
0 , a basis

δ1, δ2, δ3, δ4 ∈ VZ(x)
∨ with the intersection matrix Ψ0 and let us write the period matrix

in the form pm(x) = [xij ]i,j=1,2,...,4. We assume that the polarization ψ0 in the basis ωi is
given by the matrix:

Φ0 :=









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









.
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The algebraic group G0 is defined to be

G0 :=















g =









g11 g12 g13 g14
0 g22 g23 g24
0 0 g33 g34
0 0 0 g44









, gtΦ0g = Φ0, gij ∈ C















.

We consider the subset H̃ of P consisting of matrices:









τ 1 0 0
1 0 0 0
x31 x32 1 0
x41 −τx32 + x31 −τ 1









where τ is some variable in C defined in a neighborhood of +
√
−1∞. The particular

expressions for the (4, 2) and (4, 3) entries of the above matrix follow from the polynomial
relations (14) between periods. The connection matrix A restricted to H̃ is

dpmt · pm−t |
H̃
=









0 dτ −x32dτ + dx31 −x31dτ + τdx31 + dx41
0 0 dx32 −x32dτ + dx31
0 0 0 −dτ
0 0 0 0









.

The Griffiths transversality distribution is given by −x32dτ + dx31 = 0, −x31dτ + τdx31+
dx41 = 0 and so, if we consider τ as an independent parameter and all other quantities
xij depending on τ , then we have

(19) x32 = x′31, x
′
41 = x31 − τx′31.

In [13] we have checked the conjectures in §3.3 for the Calabi-Yau three-folds of mirror
quintic type. In this case dim(T ) = 7 and hence we have constructed an algebra generated
by seven functions in τ . We have

(20) x31 =
1

2
(5(τ + τ2) +

1

(2πi)2
(

∞
∑

n=1

(
∑

d|n

ndd
3)
e2πiτn

n2
))

Here, nd’s are instanton numbers and the second derivative of x31 with respect to τ is the
Yukawa coupling. The set H is a subset of H̃ defined by (19) and (20). As far as I know
this is the first case in which the Griffiths period domain is not Hermitian symmetric and
we have an attached algebra of quasi-modular forms and even the Global Torelli problem
is true, that is, the period map is globally injective (see [5]). However, note that in [13]
we have only used the local injectivity of the period map.
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