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ABSTRACT

Associated with each oriented link is the two variable Homflypt polynomial. Formulas
for the coefficient polynomials of the three lowest v-degrees are presented that shows they
are determined by the writhe of any braid diagram for the link, the Conway polynomial
for the link, and the remaining coefficient polynomials.

These Homflypt coefficient polynomials in z satisfy a system of linear equations with
coefficients in Z[z]. The Conway polynomial is essentially the unique Laurent polynomial
that represents such a linear combination and is also a link invariant; any other is merely
the product of the Conway polynomial and an arbitrary second polynomial. Two other
independent functions that represent such a linear combination are determined by the
writhe and are not link invariants.

Properties of the coefficient polynomials and Conway polynomial are also described.
These include upper and lower bounds on their degree for various classes of links, the
sign of the leading coefficients, and some conditions that ensure all coefficients have the
same sign as the highest degree term. An explicit formula is presented for a subclass of
links generated by alternating braids that are analogs to torus links.

Keywords: Homflypt polynomial, Conway polynomial, skein relation, braids and braid
groups, Markov stabilization
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1. Introduction

The focus of this paper is to develop and display a relationship between the coef-

ficient polynomials of the Homflypt polynomial, and to establish some properties

of the the coefficient polynomials for various classes of braid words. The primary

tools used are the defining skein relation and properties of the braid group.

The background required for this paper is a very basic understanding of skein

relations, skein polynomials, and braid groups. Such material may be found in any

introductory textbook, as for example K. Murasugi’s, [17], and may also be found

in many excellent surveys, [3]. However, nothing beyond this minimal background

is assumed.

The attraction in using a braid word as the starting point for naming a link is

that it not only immediately informs the reader of the exact link under discussion,

but the braid word itself may be manipulated using the braid relations for the braid
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group. Of course, the downside in this approach is that there are (too) many braid

words that describe the same link. Nevertheless, there is still much to be gained

from the braid approach, as this paper hopes to demonstrate.

The immediate reaction of a student upon first encountering the skein polyno-

mials is probably one of utter amazement that such entities exist; at least that was

the significance for the author. However a few exercises in using a skein tree to

calculate a skein polynomial quickly show how difficult this technique is to use, in

practice, for an arbitrary link. Since finding useful closed form expressions to calcu-

late skein polynomials for an arbitrary link is probably unattainable, it is natural

to try to understand what are their properties and which invariants determine their

form. Questions about the structure of these polynomials and how their coefficients

relate to a braid representation are steps to better understand what information

the skein polynomials convey about links.

The remainder of this section will introduce the terms and notation used in

the paper. The second section will introduce the primary results, whose proofs will

appear in the third section. The third section will also introduce the necessary tools

and formulas to facilitate the proofs. The fourth, and final, section will introduce

a number of open questions and conjectures.

1.1. Definitions and Notation

The conventions used in this paper largely follow those in, [17], to which the reader

is referred for expanded discussion. A brief review of the standard symbols and

terminology used in the paper is given here for reference. Some further definitions

that only apply to Section 2.2 appear in Section 2.2.1.

The braid group on n strands is designatedBn and has n−1 standard generators,

σi. Borrowing terminology from A. Stoimenow, [20], the term edge generator refers

to either σ1 or σn−1 . This paper refers to the other generators as interior generators.

There is a key distinction to be made between a braid word, typically called β, in

Bn, and its use as a representative of some braid in the braid group, denoted

[β], that represents the equivalence class of braid words under the defining braid

relations. Typically a braid word is presented, or arises from some process, such as

skein tree calculation. It is often convenient to find a ”better” representative of the

same braid (or for the same link) under some criterion related to induction or some

attribute. The following definitions present a number of such braid word attributes.

Definition 1.1. If a braid word, β ∈ Bn, has the expression
∏m

k=1 σ
ǫk
ik
, with ǫk =

±1 for each subscript, k,

(i) the braid length is m and is denoted |β|,
(ii) the positive (negative) crossing count, xp(β) or just xp (for negative read xn(β)

or xn) is the number of ǫk = 1 (for negative read ǫk = −1). Hence the braid

length is the sum of the positive and negative crossing counts,
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(iii) the exponent sum, or writhe, denoted w or w(β), is
∑m

k=1 ǫk. Hence the writhe

is the difference of the positive and negative crossing counts,

(iv) a syllable of a braid word is a maximal subword of identical subscripts (compare

[21]). A syllable is reduced when all its exponents have the same sign. A braid

word is in standard form when all syllables are reduced.

The writhe is actually associated with the braid diagram, rather than the braid

word itself, but this imprecision in usage causes no problems.

Definition 1.2. If a braid word, β ∈ Bn, is in standard form and has the expression∏m
k=1 σ

ǫk
ik
, with ǫk = ±1 for each subscript, k,

(i) a row of β is a maximal subword with non-increasing subscripts; e.g.

σ3σ2σ2σ
−1
1 σ5 has two rows, i.e. maximal subwords σ3σ2σ2σ

−1
1 , and σ5,

(ii) the rank of β is the number of its rows, written ρ(β).

(iii) a generator in β whose exponents are all of the same sign is called a homo-

geneous generator; otherwise it is termed a mixed generator. The number of

generators whose corresponding exponents are all positive, all negative, mixed

is denoted respectively: νp(β) or νp; νn(β) or νn; νm(β) or νm,

(iv) any generator of Bn absent from β is called a null generator. The number of

null generators for β is denoted ν0(β) or ν0,

(v) any generator that appears in a unique syllable is called a clustered generator,

(vi) any generator that appears exactly once in β is called a trivial generator. The

number of trivial generators whose corresponding exponent is one (minus one)

is denoted ν1(β) or ν1 (ν−1(β) or ν−1),

(vii) a set of generators with subscripts in a range, (a, b), with 0 ≤ a ≤ b ≤ n, yields

a new braid word, Ψ(a, b, β) =
∏

ik∈(a,b) σ
ǫk
ik−a, that belongs to Bb−a. Ψ(a, b, β)

is defined as the identity for B1 when b = a or b = a+ 1 .

An n-braid word whose twist exponents are all zero is defined to have zero for

each of the properties in the prior definitions, except that ν0 = n− 1.

The link associated with the standard closure of a braid, β, is denoted β̂. The

mirror image of a link, L, is denoted L; similarly for the mirror image of a braid

word, β, denoted β. The number of link components in L is denoted µ(L). On

denotes the trivial link with n components.

The link diagrams referenced in this paper will typically be associated with

a braid word, but the skein relation, (1.1), for the Homflypt polynomial, P , is

defined more generally to allow any valid oriented diagram, D, for the link. The

diagrams, D+, D0, and D− below refer to the usual diagrams for the link with

positive crossing, null (smoothed) crossing, and negative crossing, respectively.

PD+(v, z) = vzPD0(v, z) + v2PD−(v, z). (1.1)

The importance of the Homflypt polynomial derives from the fact it is the

same for all diagrams of a given link, and so is an invariant of the oriented link.
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The major skein polynomials and their definitions are: the Conway polynomial,

∇D(z) = PD(1, z) , the Jones polynomial, VD(t) = PD(t, (t − 1)/
√
t) , and the

Alexander polynomial, ∆D = PD(1, (t− 1)/
√
t) .

The torus links are much studied due to their uniformity, symmetry, and other

properties. The torus links are characterized by the number of full rows of twists, p,

together with the number of strands, q, denoted K(p, q). Each row may be realized

by a braid word,
∏1

i=q−1 σi = σq−1 · · ·σ1, hereafter called αq−1. Hence K(p, q), may

be represented by the braid word, αp
q−1. The elementary torus links, denoted Tp,

are those with two strands. The corresponding Conway polynomial is so central to

the results of this paper that the lengthy expression, ∇K(p,2)(z), will be shortened

to Cp(z) or even Cp. Among many other interesting properties of the Conway

polynomial (Section 3.3), Cp(1) is the p-th Fibonacci number.

A class of links with some resemblance to the torus links are those in which

there are p full rows of twists on the q strands, but the twists alternate in sign.

When the positive crossings are associated with the odd subscript generators, the

link is denoted K±(p, q) with corresponding braid word description, αp
q−1,±.

2. The Primary Results

Given that the Homflypt polynomial is a function of two variables, one obvious way

to organize its expression is as a polynomial in a single variable, with coefficients

that are simply polynomials in the second variable. The question as to which vari-

able should be the primary organizing factor may depend on circumstances, but

a powerful motivation exists to chose v from (1.1). This is due to the remarkable

results, [5], [15], known as the Morton-Franks-Williams inequality, that give bounds

on the possible values for the highest and lowest powers of v. This paper builds on

this inequality, as have papers by T. Kalman, [9], and A. Stoimenow, [20], [21].

The first step is to observe that the Homflypt polynomial for a link with a

given braid representation (β ∈ Bn) may be organized in a standard form, (2.1), in

which the pj are ordinary polynomials with integer coefficients. An equivalent form

appears in (2.2), in which the hj , are Laurent polynomials with integer coefficients,

and hj = pj/z
n−1. When multiple braid words are under discussion, the symbols

pj, β̂ , or hj, β̂ , may be used for clarity; note that the argument, z, may be omitted.

Both forms highlight the number of strands in the braid, and the writhe, w, of

the braid diagram (exponent sum of the braid word). Theorem 2.6 describes the

relations among the coefficient polynomials, pj , defined by (2.1).

Pβ̂(v, z) =
vw

∑n−1
j=0 pj (z) v

2j

(vz)n−1
, (2.1)

Pβ̂(v, z) = vw−n+1
n−1∑

j=0

hj(z) v
2j . (2.2)

The Homflypt formula for the elementary torus links is much simpler:
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PK(p,2)(v, z) =
vp{Cp+1(z)− Cp−1(z) v

2}
(vz)1

. (2.3)

The Conway polynomial for the elementary torus links has an expression:

Cp(z) =

⌊ p−1
2 ⌋∑

j=0

(
p− 1− j

j

)
zp−2j−1 , for p > 0. (2.4)

When p is negative, we have Cp(z) = (−1)p+1 C−p(z), and C0(z) = 0.

In 1987, V.F.R. Jones published a number of results relating properties of Hecke

algebras to knot theory, [8]. This landmark research displayed, among other in-

sights, how the two variable skein polynomial could be calculated from the Burau

representation of a braid. Unfortunately for knot theorists, the expression for the

two variable skein polynomial is of nontrivial complexity. A further wrinkle in us-

ing the methodology is it requires knowledge of the number of link components,

or at least whether this number is even or odd. For three-braid links, this paper

first established the Homflypt polynomial is dependent only on the writhe and the

Alexander polynomial. An equivalent result can be derived using only skein and

braid properties, without knowledge or use of Theorem 2.6 or Theorem 2.7:

Lemma 2.1. The Homflypt polynomial for a link, β̂ , with β ∈ B3 is

Pβ̂ = PTw
PO2 −∇β̂ vw (PO3 − 1) . (2.5)

It is readily apparent that substitution of v = 1 in Eq. (2.5), yields the identity

Pβ̂(1, z) = ∇β̂(z). Three immediate consequences of (2.5) follow. For three-braid

knots Eq. 8.4, p. 356, [8], is equivalent to Prop. 2.3, which is valid for all three-

braid links. In relation to Prop. 2.4, Prop. 2.9 describes when ∇β̂ = Cw(β)−1, and

Cor. 2.14 shows ∇β̂ = 1 only for the trivial knot.

Proposition 2.2. If three-braid words, β and γ , have the same writhe, and β̂ and

γ̂ have the same Conway, Jones, or Alexander polynomials, we have Pβ̂ = Pγ̂ .

Proposition 2.3. Three-braid links, β̂, with β ∈ B3, satisfy (2.1) with

(i) p0 = Cw+1 −∇β̂ ,

(ii) p1 = z2∇β̂ − p0 − p2 ,

(iii) p2 = Cw−1 −∇β̂ .

Proposition 2.4. When three-braid words, β, γ, satisfy w(β) ≥ w(γ) , we have

Pβ̂ = Pγ̂ exactly when ∇β̂ = ∇γ̂ and one of the following is true:

(i) w(β) = w(γ) , or

(ii) w(β) = w(γ) + 2 , and ∇β̂ = Cw(β)−1 or

(iii) w(β) = 2 , w(γ) = −2 , and ∇β̂ = 1 .
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The Jones polynomial for three-braid links may be derived from Eq. 2.5. Eq. 2.6

agrees with the knot formula in Prop. 11.10, p. 366, [8], but has an extra factor,

(−1)w, that handles all three-braid links. Eq. 2.6 also implies Prop. 2.16.

Vβ̂(t) = t(w−2)/2{tw+1+(−1)w(1+t+t2)}−(1+t+t2)tw−1∆β̂(t) , for β ∈ B3. (2.6)

An interesting pattern in the Homflypt coefficient polynomials is that in plotting

the degree of pj on the vertical axis, and the subscript, j, on the horizontal axis

(0 ≤ j ≤ n − 1), the points outline what looks like the profile of a landscape. In

this paper, the convention for the constant zero is that it has negative degree. In

the analogy at hand, pj = 0 corresponds to a point below sea level. The remarkable

feature of this landscape is that there are, apparently, no valleys. For the case of

three-braids, this is a consequence of Prop. 2.3, and has the following form that

suggests a more general unproven result:

Proposition 2.5. For each braid word, β ∈ B3, the subscripts of pj (zero, one,

two) are the union of two disjoint subranges, L and R, with the following property:

(i) the degree of pj is non-decreasing on L and when L is non-empty, 0 ∈ L,

(ii) the degree of pj is non-increasing on R and when R is non-empty, 2 ∈ R.

The prior decomposition can be made to be unique with a requirement that one of

the subranges always includes all subscripts corresponding to the maximum degree

among all pj . Many knots have plateaus in the maximum degree among the pj .

Generalizing the results of Proposition 2.3 to higher strand number shows the

lowest v-degree coefficient polynomials, p0(z), p1(z), and p2(z) are determined by

the writhe, the Conway polynomial and the pj(z) for j ≥ 3. Before going to the

general formula, the four-braid result is presented as a prelude:

(i) p0 = z{Cw −∇β̂} − p3 ,

(ii) p1 = z3∇β̂ − p0 − p2 − p3 ,

(iii) p2 = z{Cw−2 −∇β̂(z)} − (z2 + 3) p3 .

Now on to one of the main results, which is an immediate corollary to Thm. 2.7:

Theorem 2.6. For an arbitrary braid, β, of n ≥ 1 strands, the Homflypt polyno-

mial for β̂ is given by (2.1) with:

(i) p0 = zn−3{Cw+4−n −∇β̂} − q0 , with q0 =
∑n−1

j=3 z−2(C2j−3 − 1) pj ,

(ii) p1 = zn−1∇β̂ − p0 − p2 −
∑n−1

j=3 pj ,

(iii) p2 = zn−3{Cw+2−n −∇β̂(z)} − q2 , with q2 =
∑n−1

j=3 z−2(C2j−1 − 1) pj .

In the formula for q0, we have:

C2j−3 − 1

z2
=

j−3∑

i=0

(
2j − 4− i

i

)
z2j−6−2i, for j ≥ 3 .
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Similarly, in the formula for q2, we have:

C2j−1 − 1

z2
=

j−2∑

i=0

(
2j − 2− i

i

)
z2j−4−2i, for j ≥ 1 .

A few comments are in order about this theorem. First, the formula for the

trivial knot on one strand depends on a writhe of zero. Second, the formula for two

strands is equivalent to (2.3). Third, p1 is exactly what it has to be in order for the

identity, Pβ̂(1, z) = ∇β̂(z), to be satisfied.

Unfortunately, Theorem 2.6 leaves open the question of whether there are any

relations among the higher order coefficient polynomials, pj , for j ≥ 3. Additionally,

and more critically, there is no hint of the information content within each such pj .

However, a closer inspection of the forms for pj , q0, and q2, shows a new relation

is satisfied. It is expected that the sum of the Laurent coefficient polynomials will

be the Conway polynomial, but more is true. The following theorem introduces

a system of linear equations, with coefficients in the ring of polynomials over the

integers, that is satisfied by the Laurent coefficient polynomials, hj .

Theorem 2.7. The Laurent coefficient polynomials for a link, β̂, with β ∈ Bn,

satisfy the following relations. These are independent for n > 1 .

n−1∑

j=0

C2j−3 hj = C4+w−n , (2.7)

n−1∑

j=0

C2j−1 hj = C2+w−n . (2.8)

Any set of n functions, {fj}n−1
0 , that satisfy both equations, will also satisfy the

following family of equations for each integer, κ:

n−1∑

j=0

C2j−1−κ fj = (−1)κCκ+2+w−n . (2.9)

In the prior theorem, independent means that for a fixed choice of w and n, an

arbitrary set of Laurent polynomials with integer coefficients, {fj}, that satisfy one

of the equations need not satisfy the other equation. In fact, these equations are

independent over the smaller set of ordinary polynomials with integer coefficients.

There are thus three independent equations satisfied by the n Laurent coefficient

polynomials; two from the Theorem 2.7, and the simple equation relating the sum of

the coefficient polynomials to the Conway polynomial. It would clearly be desirable

to find any further such relations.

Suppose some linear equation exists in the form of Theorem 2.7 for each value

of n, with coefficients that are Laurent polynomials over the integers. As each new
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strand is added, a new coefficient (An−1 below) arises to match the new Homflypt

coefficient polynomial, hn−1. This assumption yields a relation for each n:

n−1∑

j=0

Aj hj = Ωn,β , with Aj ∈ Z[z, z−1] . (2.10)

As any two conjugate braid words in Bn produce the same set of hj , the value

of Ωn,β must be identical for them. Any pair of braid words that generate the same

braid element in Bn also have this same property, so Ωn,β is a function on the

conjugacy classes of braid elements. In fact, by (2.2), any two braid elements, even

in different braid groups, with identical wi −ni and whose closure is the same link,

will have Ωn1,β1 = Ωn2,β2. As the first n−1 coefficient polynomials, hj , are identical

for β ∈ Bn and βσn ∈ Bn+1, and h
n, β̂σn

= 0, the left side of (2.10) is invariant

under positive Markov stabilization, so Ωn,β = Ωn+1,βσn
.

If Ωn,β is also invariant under negative Markov stabilization, Ωn,β is a link

invariant. In this case, observe that for the trivial knot, A0 = Ω2,σ1 , and A1 =

Ω2,σ−1
1

, so A0 = A1. This quickly leads to the conclusion all Aj are equal to A0, so

(2.10) becomes A0 ∇β̂ = Ωn,β , i.e. Ωn,β is a multiple of ∇β̂ .

If Ωn,β is not invariant under negative Markov stabilization, a new family of

relations is created. First observe that by Prop. 3.6,
∑n−1

j=0 Aj+1 hj = Ωn+1,βσ−1
n

,

for every β ∈ Bn. By repeating the negative Markov stabilization κ times, we have

n−1∑

j=0

Aj+κ hj = Ωn+κ,β
∏n−1+κ

i=n σ−1
i

.

Also observe that the functions, Ωn,β , obey the same skein relation as the Conway

polynomial due to linearity of the relations, and the skein property for hj .

The trivial knot on n strands has a well-known representation when the length

of the braid word matches the writhe, i.e. αn−1, and in this case A0 = Ωn,αn−1 .

However, there are multiple representations of the trivial knot in Bn with length

n−1 and constant writhe. Critically, all these representations with the same writhe

have the same set of coefficient polynomials, hj . Observe that any such choice of

braid word, ωj, with j trivial negative generators, and n − 1 − j trivial positive

generators, satisfies Aj = Ωn,ωj
, since hk, ω̂j

= δj,k.

It is instructive to investigate the behavior of Ωn,β for the elementary torus

links. Eq. 2.3 shows that for Tκ+2, we have h0 = Cκ+3/z and h1 = −Cκ+1/z, and

{A0 Cκ+3 −A1 Cκ+1}/z = Ω2, σκ+2
1

. (2.11)

Suppose Ωn,β depends only on w − n, as is true for the braid words of length

n − 1 with all trivial generators. Then Ωn,β = Ω2, σκ+2
1

with κ = w − n and Aj =

Ωn,ωj
= {A0 C−2j+2 − A1 C−2j}/z. Substitution of these values in (2.10) and use

of κ = 1,−1 in Eq. 2.9 reveals an identity, i.e. any A0, A1 ∈ Z[z, z−1] are valid.

In other words, Ωn,β is merely a linear combination (with weights A0/z,−A1/z) of

functions in Thm. 2.7, and the same is true for each Aj .
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The prior discussion is summarized in:

Theorem 2.8. Any function, Ωn,β, defined by a linear relation in the {hj} as in

(2.10), satisfies one of the following three conditions:

(i) when Ωn,β is a link invariant, Ωn,β must be a multiple of the Conway polynomial

for β̂; in this case, Ωn,β = A0 ∇β, and each Aj equals A0 ∈ Z[z, z−1],

(ii) when Ωn,β is not a link invariant, but depends only on w−n, Ωn,β and Aj are

linear combinations of the Conway polynomials described in Thm. 2.7 ,

(iii) Ωn,β is not a link invariant and depends on parameters other than, or in ad-

dition to, w − n. Some parameter must not be a link invariant.

2.1. Skein polynomials for three-braid links

The prior three-braid results may be combined with the extensive analysis by

K. Murasugi, [16], to determine all cases when the Homflypt polynomial of a three-

braid link matches that of an elementary torus link, or when the v-span has a given

value. Research in [21] suggests the Jones polynomial may distinguish the same

three-braid links as the Homflypt polynomial. This is confirmed by Prop. 2.17.

Among several other topics, A. Stoimenow explored the Xu normal form for

three-braids in [21] and ascertained (Thm. 4.1, p. 15) when the Alexander polyno-

mial could vanish in terms of the band representation. This is mirrored in Props. 2.9,

2.10, and 2.12 using the Artin braid representation. Additionally, Cor. 4.5, , p. 17

[21], observes ”No non-trivial 3-braid knot has trivial Alexander polynomial.”

Prop. 2.14 is an equivalent result from an entirely different perspective.

In [16], K. Murasugi defines a collection of seven disjoint sets, Ωi, of three-

braid words and shows (Prop. 2.1 p. 7) that each three-braid word is conjugate to

exactly one element in some Ωi. As the numbering and definition of the Artin braid

generators differs from that in the later text, [17], we present a similar partitioning,

Ω∗
i , consistent with the latter. The Alexander polynomial for a typical member may

be derived by Prop. 3.4 and is included below (here G = t2 + t+ 1).

(i) Ω∗
0 = {α3d

2 : d ∈ Z}, with ∆
α̂3d

2

= t(t3d − 1)2/(Gt3d),

(ii) Ω∗
1 = {α3d+1

2 : d ∈ Z}, with ∆̂α3d+1
2

= t(t6d+2 + t3d+1 + 1)/(Gt3d+1),

(iii) Ω∗
2 = {α3d+2

2 : d ∈ Z}, with ∆̂α3d+2
2

= t(t6d+4 + t3d+2 + 1)/(Gt3d+2),

(iv) Ω∗
3 = {α3d+1

2 σ2 : d ∈ Z}, with ∆ ̂α3d+1
2 σ2

= t(t6d+3 − 1)/(Gt3d+1
√
t),

(v) Ω∗
4 = {α3d

2 σ−e
2 : d, e ∈ Z, e > 0},

with ∆ ̂α3d
2 σ−e

2

= t(t3d − 1)(t3d−e − (−1)e)/(Gt3dt−e/2),

(vi) Ω∗
5 = {α3d

2 σE
1 : d,E ∈ Z, E > 0},

with ∆
α̂3d

2 σE
1

= t(t3d − 1)(t3d+E − (−1)E)/(Gt3dtE/2),

(vii) Ω∗
6 = {α3d

2 η : d ∈ Z, η ∈ B3,with η =
∏r

k=1 σ
−ek
2 σEk

1 and r, ek, Ek > 0},
with ∆

α̂3d
2 η

= ∆η̂ + t(t3d − 1)(t3d+w(η) − (−1)w(η))/(Gt3dtw(η)/2).
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Proposition 2.9. When a three-braid word, β, has ∇β̂ = Cw−1, then β is conjugate

to one of the following. This collection and their conjugates is called Υw−1.

(i) α2 and α2
2, which represent the knots O1 and T3 ,

(ii) σ1 , σ2σ1σ2 , and α3
2σ

−1
2 which represent the two-links, O2, T2, and T4 ,

(iii) σ−e
2 σ1 and α3

2σ
−1
2 σE

1 , with e, E > 0, which represent T−e and TE+4 ,

(iv) α3d
2 σ2−3d

2 σ1 , and d ≥ 3 is odd, which represents a knot with w ≡ 0 mod 6,

(v) α−3d
2 σ−1

2 σ3d+1
1 , and d ≥ 2 is even, which represents a knot with w ≡ 0 mod 6.

Proposition 2.10. When a three-braid word, β, has ∇β̂ = Cw+1, then β is con-

jugate to one of the following. This collection and their conjugates is called Υw+1.

(i) α−1
2 and α−2

2 , which represent the knots O1 and T−3 ,

(ii) σ−1
2 , α−2

2 σ2 , and α−3
2 σ1 which represent the two-links, O2, T−2, and T−4 ,

(iii) σ−1
2 σE

1 and α−3
2 σ−e

2 σ1 , with e, E > 0, which represent TE and T−e−4 ,

(iv) α3d
2 σ−1−3d

2 σ1 , and d ≥ 2 is even, which represents a knot with w ≡ 0 mod 6,

(v) α−3d
2 σ−1

2 σ3d−2
1 , and d ≥ 3 is odd, which represents a knot with w ≡ 0 mod 6.

The following is an immediate consequence of Prop. 2.3 and the prior two results.

Corollary 2.11. A three-braid link, β̂, has v-span equal to four exactly when β /∈
Υw−1 ∪Υw+1 .

Proposition 2.12. When a three-braid word, β, has ∇β̂ = Cx, then w is even with

−x = w ± 1, or β ∈ Υw−1 ∪ Υw+1, or β is conjugate to one of the following. This

collection and their conjugates is called Υx, and is disjoint from Υw−1 ∪Υw+1.

(i) α0
2, σ

−e
2 , and σE

1 with e, E > 1, which represent the split links O3, T−e

∐
O1 ,

and TE

∐
O1 ; here x = 0,

(ii) α−3d
2 σ3d

1 , with d ≥ 2 is even, which represents a three-link; here x = 0 ,

(iii) α3d
2 σ−3d

2 , and d ≥ 2 is even, which represents a three-link; here x = 0 ,

(iv) α−3
2 σ5

1 and α3
2σ

−5
2 , which represent two-links; here x = −4 and x = 4 .

Prop. 12.5, p. 57 [16], shows that α−3
2 σ5

1 and α3
2σ

−5
2 are not elementary torus

links. The next result, which follows from Props. 2.3, 2.9, and 2.10, answers Ques-

tion 5, p. 3950 [20]: ”Are there P polynomials of v-span ≤ 2 other than those of

the (2, n)-torus knots and links?”. Prop. 12.6, p. 58 [16], shows that the three-braid

words listed in Cor. 2.13 create links of braid index three. Cor. 2.14 easily follows.

Corollary 2.13. The following are equivalent for a three-braid link, β̂:

(i) β̂ has v-span equal to two,

(ii) β ∈ Υw−1 ∪Υw+1 with ∇β̂ 6= 1 ,

(iii) β ∈ Υw−1 ∪Υw+1 with β̂ 6= O1 .
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When the braid index of β̂ is three, and β̂ has v-span equal to two, β is conjugate

to one of the following. These all represent knots with w ≡ 0 mod 6:

(i) α3d
2 σ2−3d

2 σ1 , and d ≥ 3 is odd, with w = 3d+ 3,

(ii) α−3d
2 σ−1

2 σ3d+1
1 , and d ≥ 2 is even, with w = −3d,

(iii) α3d
2 σ−1−3d

2 σ1 , and d ≥ 2 is even, with w = 3d,

(iv) α−3d
2 σ−1

2 σ3d−2
1 , and d ≥ 3 is odd, with w = −3d− 3.

Corollary 2.14. The following are equivalent for a three-braid link, β̂:

(i) β̂ has v-span equal to zero,

(ii) β̂ = O1,

(iii) ∇β̂ = 1.

A. Stoimenow asks in Question 4.1, p. 18 [21], whether ”any two 3-braid links

with the same V (or ∆) have also equal P? ”. Ex. 2.15 shows ∆ doesn’t have this

property. Prop. 2.16 provides some partial results for the Jones polynomial based

on (2.6) and fundamental properties of the Alexander polynomial alone. Explicit

formulas for Vβ̂ , ∆β̂ , ∆γ̂ are derived from (2.6, 3.20) when Vβ̂ = Vγ̂ . However, it is

the Murasugi classification that is decisive in proving that the Jones and Homflypt

polynomials distinguish the same three-braid links (Prop. 2.17).

Example 2.15. Set β = α3x
2 σ−3x−3y−1

2 σ1, γ = α3y
2 σ−3x−3y−1

2 σ1 , with x > y > 0

and x ≡ y mod 2 . Then ∇β̂ = ∇γ̂ 6= 0 , by Prop. 3.4, but Pβ̂ 6= Pγ̂ by Prop. 2.4.

Proposition 2.16. Assume β, γ, η ∈ B3, with Vβ̂ = Vγ̂ . We have Pβ̂ = Pγ̂ in the

following cases. Additional consequences are listed for each case.

(i) w(β) = w(γ) (this is a subset of Prop. 2.2),

(ii) µ(β̂) = 3, also implies w(β) = w(γ) ,

(iii) w(β) = w(γ)± 2, also implies ∇β̂ = Cw(β)∓1,

(iv) ∇β̂ = Cw(β)∓1, also implies ∇γ̂ = Cw(γ)±1, or w(β) = 0 and w(γ) = ±2 and

∇β̂ = 1 = ∇γ̂ ,

For knots with w(β) − w(γ) = 2k > 2, we have w(β) ≡ 2 mod 8 and k = 2.

When w(β) = 2, we have ∇β̂ = 1 = ∇γ̂ , so Pβ̂ = Pγ̂ .

For two-links with w(β)−w(γ) = 2k > 2, we have w(β) = k(3+4y) with k odd,

k ≥ 3, and y ∈ Z.

When Vη̂ = 1 we have ∆η̂ = 1, hence ∇η̂ = 1.

Proposition 2.17. If β, γ ∈ B3 have Vβ̂ = Vγ̂ , we have Pβ̂ = Pγ̂ .

While the prior results display a number of global properties, they provide little

insight into specific characteristics: how large or small is the degree for a given link,

what are the integer coefficients, or at least what is the sign of the coefficients,

and is the sign uniform? There also remains the goal to find explicit formulas for
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the coefficient polynomials for classes of links, even when no single formula suffices

for all links. These are the types of questions addressed in the following section.

The interested reader should note that some number theoretic results have been

published in this general area by A. Kawauchi, [13].

2.2. General Attributes of the Conway and Homflypt coefficient

polynomials

All braid words in this section are assumed to be in standard form. Theorem 2.22

and Corollary 2.23 describe bounds on the degrees of the coefficient polynomials

and Conway polynomial that apply to all links. Later subsections address special

classes of links for which more precise statements may be made.

2.2.1. Definitions

Definition 2.18. If a braid word, β ∈ Bn, is in standard form and has the expres-

sion
∏m

k=1 σ
ǫk
ik
, with ǫk = ±1 for each subscript, k,

(i) the normalized length. denoted ‖β ‖, is the length less the number of generators

in Bn, i.e. ‖β ‖≡ |β| − (n− 1) ,

(ii) the porosity of a row is the number of null generators in the row considered as

a braid word in its own right,

(iii) the porosity of a braid word is the sum of the porosity of all rows, written o(β).

A braid word is called nonporous when o(β) = 0 = ν0(β) ,

(iv) the braid word is called polarized when all its generators are homogeneous; null

generators are allowed,

(v) a polarized braid word is called homogeneous when it has no null generators

(this is essentially the definition in [1]),

(vi) a polarized braid word is called alternating when the subscripts of the positive

generators all have the same parity (congruence class modulo two) and the

subscripts of the negative generators all have the opposite parity,

(vii) a polarized braid word is called positive (negative) when all generators in β are

positive (negative); null generators are allowed.

An n-braid word whose twist exponents are all zero is defined to have 1− n for

its normalized length and zero porosity. Such a braid word is not called nonporous.

The following braid word properties become link invariants:

Definition 2.19. The following properties of a link are defined to be the minimum

value of the same property among all braid words whose closure yields the link: the

length, |L|; the normalized length, ‖L‖; the rank, ρ(L).

It is known, [14], [10] and [11], that the minimal possible degree of a term in hj

is 1 − µ(L), so the eligible terms in hj have exponents between this value and the



September 28, 2010 0:11 WSPC/INSTRUCTION FILE Knotsjktr

An Expression for the Homflypt Polynomial 13

degree of hj , inclusive, and have the same parity modulo two. The minimum degree

of hj is the lowest degree attained by any term. It is convenient to introduce some

terminology for results, such as Proposition 2.40, prior to their statement.

Definition 2.20. Suppose L is a link with a nonzero coefficient polynomial hj : hj

is said to have uniform sign when all its nonzero integer coefficients have the same

sign; hj achieves the minimal degree provided the term with exponent 1−µ(L) has

a nonzero coefficient; hj is complete when all terms with nonzero coefficients have

exponents that represent an arithmetic sequence with increment two; hj is fully

populated when all eligible terms have nonzero coefficients.

When a braid word β generates a link for which each nonzero hj, β̂ has uniform

sign (−1)j+xn , the braid word, link, and hj are each said to be h-uniform. When

hj is h-uniform and complete, the braid word, link, and hj are said to have USc.

Positive, negative, and some alternating braid words are h-uniform. The con-

nected sum, disjoint union, and mirror image of two links are h-uniform when

this is true for each. When hj,γ̂ and hk,η̂ have USc, so does their product. When

hj±δ,γ̂ and hk∓δ,η̂ have USc and the degree of any term of hj±δ,γ̂hk∓δ,η̂ lies in the

range [min deg hj,γ̂ +min deg hk,η̂ − 2, deg hj,γ̂ + deg hk,η̂ + 2], the sum of hj,γ̂hk,η̂

and hj±δ,γ̂hk∓δ,η̂ also has USc. This latter observation shows that in favorable cir-

cumstances, the connected sum and disjoint union of USc links will also have USc.

2.2.2. Universal coefficient polynomial and Conway polynomial attributes

The following proposition establishes the basic upper bound for the degree of any

Homflypt coefficient polynomial and for the Conway polynomial in terms of the

length or normalized length of any braid word whose closure is the link, and thus

in terms of the link invariants for length or normalized length.

Proposition 2.21. For an n-braid link, β̂, we have:

(i) deg pj ≤ |β| , hence deg pj ≤ |β̂| ,
(ii) pj = 0 for j /∈ [ν−1, n− 1− ν1] ,

(iii) deg∇β̂ ≤‖β ‖ , hence deg∇β̂ ≤‖ β̂ ‖ ,
(iv) the link β̂ is generated by a braid word, γ ∈ Bm , with m = n− ν−1 − ν1 , and

(a) w(γ) = w(β) + ν−1 − ν1 ,

(b) deg pj,γ̂ ≤ |γ| = |β| − ν−1 − ν1 .

The next two results, Thm. 2.22 and Cor. 2.23, establish sharp upper bounds on

the degree of each Homflypt coefficient polynomial, and for the Conway polynomial

for arbitrary braid words or links. Here, the effect of the number of mixed generators

in a braid representation for a link is clearly visible.

Theorem 2.22. For a link, β̂, represented by any n-braid word β, we have:
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(i) deg pj ≤ |β| − 2(νn + νm − j) , for j ∈ [0, νn + νm] ,

(ii) deg pj ≤ |β| , for j ∈ [νn + νm, νn + ν0] ,

(iii) deg pj ≤ |β| − 2(j − νn − ν0) , for j ∈ [νn + ν0, n− 1] ,

(iv) pj = 0 for j /∈ [ν−1, n− 1− ν1] .

The second range is empty when νm > ν0. In this case, a simpler estimate follows:

(i) deg pj ≤ |β| − 2(νn + νm − j) , for j ∈ [0, νn + (νm + ν0)/2] ,

(ii) deg pj ≤ |β| − 2(j − νn − ν0) , for j ∈ [νn + (νm + ν0)/2, n− 1] ,

(iii) deg pj ≤ |β|+ ν0 − νm , for all j ,

(iv) when νm + ν0 is odd, deg pj ≤ |β|+ ν0 − νm − 1 , for all j ,

(v) pj = 0 for j /∈ [ν−1, n− 1− ν1] .

These estimates are sharp for links represented by alternating braid words (com-

pare Prop. 2.33). The second set of estimates applies to non-split links with mixed

generators (see Example 2.41 for the 6-1 knot).

Corollary 2.23. For a link, β̂, represented by any n-braid word, β, the degree of

the Conway polynomial has the following upper bounds. In particular this is true

when β achieves the link value, ‖ β̂ ‖= ‖β ‖.

(i) deg∇β̂ ≤‖β ‖ −νm(β) ,

(ii) when νm(β) is odd, deg∇β̂ ≤‖β ‖ −νm(β) − 1 .

2.2.3. Links generated by rank one braid words

The following are useful benchmarks for the strength of the skein polynomials:

Proposition 2.24. The Conway polynomial is a complete invariant for the class

of connected sums of elementary torus links with all positive twists, i.e. for links

generated by positive braid words of rank one with no null generators. The same

statement is true when ”positive” is replaced by ”negative”.

The meaning of ”complete invariant” in this context is that when the Conway

polynomials for links generated by two braid words are equal, the links are equal.

Proposition 2.25. The Jones polynomial and the Homflypt polynomial are each

complete invariants for the class of connected sums of elementary torus links.

When β is a rank one n-braid word, with no trivial and no null generators, there

is a unique subscript, j = νn, for which the maximum degree is achieved among the

hj (or pj). The maximum degree is ‖β ‖ (or |β|). The coefficient of the term in hνn

(or pνn) of degree two below the maximum is (−1)νn+xn ‖β ‖.
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2.2.4. Links generated by rank two n-braid words

It is noteworthy that the Homflypt polynomial cannot distinguish the links gener-

ated by two braid words, each of rank two, when one is obtained from the other

by interchanging the twist exponents of any (number of) generator(s) between the

two rows. This is a consequence of Equations 3.10, 3.11, 3.13, and 3.14. Thus it is

meaningful to speak of an exponent pair for a generator with respect to the value

of its Homflypt polynomial. For example, a pair might have an even exponent and

the value one, leading to a so called even-one pair.

It is useful to describe a procedure and formula to calculate the number of link

components in the closure of a braid word, β, at this point. For each generator, σi,

form a set consisting of its syllable length from each row of β; this set has ρ(β)

members. Now define L(i) to be the number of odd values in this set and form the

rank one braid word, Λ(β) =
∏1

i=n−1 σ
L(i)
i .

It is clear that when the rank of β is one, the number of link components of β̂ is

one more than the number of null generators for Λ(β). When the rank of β is two,

the number of components of β̂ is also related to the number and length of maximal

subwords within Λ(β) consisting of generators whose twist exponent is two. As this

construct will appear frequently, the following definitions are provided.

Definition 2.26. When a rank two n-braid word, β, has a range of subscripts for

generators with a common attribute, and the range is maximal, the set of generators

is called a block. The name and attributes of interest are: eeblock for L(i) = 0;

eoblock for L(i) = 1; ooblock for L(i) = 2; npblock when no generator is clustered.

When a block has an odd number of members it is said to have odd width; an

odd width ooblock is called a band. When a block has only a single member it is

said to be thin. Any generator whose subscript is one below the low subscript in

the block or one above the high subscript in the block (eeblock, etc.) is called a

block (eeblock, etc.) neighbor, as appropriate.

The number of bands is written as φ(β); the number of bands whose mini-

mal subscript generator is even (odd) is φe(β) (φo(β)). The number of generators

in all bands (bands with even/odd minimal subscript) is φ♯(β) (φe,♯(β), φo,♯(β)).

The number of band neighbors with an exponent of one (minus one) is φ∂,1(β)

(φ∂,−1(β)).

The number of npblocks is written as τ(β); the number of generators in all

npblocks is τ♯(β).

Lemma 2.27. Given the preceding terminology and definitions, with β of rank two,

the number of link components of β̂ is 1 + ν0(Λ(β)) + φ(β).

Example 2.28. β = (σ10σ8σ7σ
2
6σ5σ4σ

2
3σ2σ1)(σ10σ7σ5σ4σ3σ2σ1) in B11 gives rise

to Λ(β) = σ2
10σ8σ

2
7σ

2
5σ

2
4σ3σ

2
2σ

2
1 , with ν0(Λ(β)) = 2, and φ(β) = 2. The two null

generators in Λ(β) are σ9 and σ6, and the two bands in β are {σ10} and {σ7}.

The following result shows that band neighbors with an exponent of ±1 cause
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the high/low subscript hj to have minimum degree greater than 1−µ(β̂). Prop. 2.29

identifies constraints on which hj can achieve the minimal degree, and shows that

n-component links always achieve the minimal degree in each hj .

Proposition 2.29. When β is a rank two n-braid word we have:

(i) when all generators of β belong to a single eeblock, hj achieves the minimal

degree for all j ∈ [0, n− 1], and β̂ has n components,

(ii) hj can only achieve the minimal degree when j ∈ [φ∂,−1(β), n− 1− φ∂,1(β)],

(iii) suppose β is nonporous and has a band with a range of generator subscripts,

[x, x + 2κ], for some κ ≥ 0. Any exponent of any σx+2i, for any 0 ≤ i ≤ κ,

may be changed to ±1 without changing the minimum degree of any hj,

(iv) when β has a band with generator subscripts in a range, [x, y], and no

h
j, ̂Ψ(x−1,y+1,β)

achieves the minimal degree, the same is true for each hj, β̂,

(v) assume all generators belong to bands or eeblocks, each band has a range of

generator subscripts [xk, yk], and some h
jk, ̂Ψ(xk−1,yk+1,β)

achieves the minimal

degree for each k ∈ [1, φ(β)]. Denote the minimal and maximal subscripts for

which this happens as lk and rk, respectively. It follows that hl, β̂ and hr, β̂

achieve the minimal degree, for l =
∑φ(β)

i=1 lk and r = ν0(Λ(β)) +
∑φ(β)

i=1 rk.

Furthermore, hj, β̂ does not achieve the minimal degree for j /∈ [l, r],

(vi) when all bands are thin, and all generators belong to bands or eeblocks, every

hj achieves the minimal degree, and β̂ has n components,

(vii) when β̂ has n components, every hj achieves the minimal degree.

Example 2.30. Prop. 2.29 and Prop. 2.38 imply only h2m−2 and h2m−1 achieve

the minimal degree for any rank two braid word in B2m that consists of a single

band, and whose even subscript generators all have exponents equal to minus one.

The rank two braid words in B2m whose edge generators are thin eoblocks,

either of which has an exponent of one, and whose remaining generators belong to

a single band, also generate two-links, but are distinct from those described above.

2.2.5. Links generated by braid words with special properties

A cursory scan of a knot table, [4], reveals many knots are generated by simple

extensions of braid words on fewer strands. Apart from knots of braid index two,

and those generated by alternating braid words, many knots of very low crossing

number have sub-maximal v-span. This, and other properties of the hj, are readily

explained by their braid word form, as seen in Prop. 2.32. The following definition

encapsulates one class of extensions.

Definition 2.31. Suppose x, y are integers, min{x, y} = 1, and ǫ = ±1. An edge

prefix in Bn is a braid word of the form σǫx
n−1σ

−ǫ
n−2σ

ǫy
n−1 . An edge suffix in Bn is a

braid word of the form σǫx
1 σ−ǫ

2 σǫy
1 . The edge exponent is the value, ǫmax{x, y}.
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Suppose an n-braid word, β, has an expression as ηγ, in which η is an edge

prefix and all subscripts of generators in γ are less than n − 1. In this case β is

called an edge extension of γ, or simply an edge extension; γ is called the base. The

related braid words σǫ
n−1β and σ−ǫ

n−2γ are denoted β∗ and γ∗. The same terminology

applies when β = γη, in which η is an edge suffix and γ has generator subscripts

greater than one, with β∗ = βσǫ
1 and γ∗ = γσ−ǫ

2 . By an abuse of notation, γ̂ is

written for ̂Ψ(0, n− 1, γ) or ̂Ψ(1, n, γ), so that the base, γ, is treated as a member

of Bn−1; the same convention applies to γ∗.

The links for the edge extension and base have the same number of compo-

nents exactly when the edge exponent is odd. Prop. 2.42 implies alternating braid

words are h-uniform and complete when they are iterated edge extensions of rank

two alternating braid words. Prop. 2.43 shows positive braid words are h-uniform.

Prop. 2.32 follows from the Prop. 3.6 formula: hj, β̂ = Ce+1hj, γ̂∗ + Cehj−1, γ̂ .

Proposition 2.32. Suppose β is an n-braid word with no trivial or null generators,

and is an edge extension of γ with edge exponent e. Let M represent the property

to achieve the minimal degree.

When γ and γ∗ are both h-uniform, so are β and β∗

When the edge exponent is positive, hj, β̂ = Ce+1hj, γ̂∗ + Cehj−1, γ̂ , with

hn−1, γ̂∗ = 0 and h−1, γ̂ = 0. The following are consequences:

(i) h0, β̂ is h-uniform (,complete, or 0) when h0, γ̂∗ is h-uniform (,complete, or 0),

(ii) hn−1, β̂ is h-uniform (,complete, or 0) when hn−2, γ̂ is h-uniform (,complete, or

0),

(iii) hj, β̂ is h-uniform when both hj, γ̂∗ and hj−1, γ̂ are h-uniform, for any j ∈
(0, n− 1) ,

(iv) h0, β̂ has M exactly when h0, γ̂∗ has M, and either e is even or µ(γ̂∗) > µ(β̂) ,

(v) assume hj−1, γ̂ does not achieve minimal degree, for some j ∈ (0, n− 1). Then

hj, β̂ has M exactly when hj, γ̂∗ has M, and either e is even or µ(γ̂∗) > µ(β̂),

(vi) hn−1, β̂ has M exactly when hn−2, γ̂ has M, and either e is odd or µ(γ̂) > µ(β̂) ,

(vii) assume hj, γ̂∗ does not achieve minimal degree, for some j ∈ (0, n− 1). Then

hj, β̂ has M exactly when hj−1, γ̂ has M, and either e is odd or µ(γ̂) > µ(β̂) ,

(viii) assume hj−1, γ̂ and hj, γ̂∗ have M, for some j ∈ (0, n− 1). Then hj, β̂ has M

when any of the following are true:

(a) the minimum degree terms in hj−1, γ̂ and hj, γ̂∗ have the same sign, or

(b) e is odd and µ(γ̂∗) < µ(β̂) , or

(c) e is even and µ(γ̂) < µ(β̂) .

When the edge exponent is negative, hj, β̂ = Ce−1hj−1, γ̂∗ +Cehj, γ̂ , with h−1, γ̂∗ = 0

and hn−1, γ̂ = 0. The results above may be applied to the mirror image.
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2.2.6. Links generated by alternating braid words

The following proposition reinforces why alternating braids and their closures are

so widely studied, for it provides the exact value for the degree of each Homflypt

coefficient polynomial, and for the Conway polynomial, in terms of the length or

normalized length of any alternating braid word whose closure is the link. In fact,

any alternating braid word fulfills the values of the link invariants for length and

normalized length. The result further shows the absolute value of the leading coef-

ficients of pj are bounded below by binomial coefficients determined by the number

of positive, negative, and null generators and the number of trivial generators of

each sign. The sign of these leading coefficients alternate by subscript as (−1)j+xn .

The relation of alternating braid words to Proposition 2.5 is as follows.

First, L includes a first range, [0, νn], followed by a plateau in the next range,

[νn, n− 1− νp], followed by a third range [n− 1− νp, n− 1] , that falls inside R.

Observe that the plateau in the degree of the coefficient polynomials that occurs

in the ”middle” is actually single point when, and only when, there are no null

generators.

Proposition 2.33. For a link, β̂, represented by an alternating n-braid word, β,

let aj be the leading coefficient of pj . We have

(i) the sign of aj is (−1)j+xn for j ∈ [ν−1, n− 1− ν1] ,

(ii) for j ∈ [ν−1, νn] :

(a) deg pj = |β| − 2(νn − j) ≥ 0 ,

(b) |aj | ≥
(
νn − ν−1

j − ν−1

)
, with equality when ρ(β) = 1,

(iii) for j ∈ [νn, n− 1− νp] = [νn, νn + ν0] :

(a) deg pj = |β| , hence |β| = |β̂| ,

(b) |aj | ≥
(

ν0
j − νn

)
, with equality when ρ(β) = 1,

(iv) for j ∈ [n− 1− νp, n− 1− ν1] = [νn + ν0, n− 1− ν1] :

(a) deg pj = |β| − 2(j + νp − (n− 1)) = |β| − 2(j − νn − ν0) ≥ 0 ,

(b) |aj | ≥
(

νp − ν1
j − νn − ν0

)
, with equality when ρ(β) = 1,

(v) when ν0 = 0, deg∇β̂ = ‖β ‖= ‖ β̂‖ .

While links generated by alternating three-braid words are not generally of

uniform sign, at least an eligible term in hj whose degree is two lower than the

top term has the same sign as the leading coefficient (and is nonzero), with three

exceptions. The exceptional cases are the three-link, K±(3, 3), and the closures of

two alternating braid words with rank two and length five, that represent a two-link
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and its mirror image. Proposition 2.34 provides a complete description.

Proposition 2.34. For a link, β̂, represented by an alternating three-braid word

with no trivial generators, β =
∏r

i=1 σ
xi

2 σyi

1 , with all xi, yi nonzero, we have:

(i) the value of the leading coefficients for p0 and p2 is (−1)xn(β) ,

(ii) the value of the leading coefficient for p1 is (−1)1+xn(β) ,

(iii) the term of degree two lower than the highest degree term in pj has the following

values with the same sign as the leading coefficient. The values are all nonzero

when r ≥ 4, or r = 1, or r = 2 with |β| ≥ 6, or r = 3 with |β| ≥ 7:

(a) for p0, (−1)xn(|β| − r − 3 + δ) , with δ = 1 when xn = 2 , otherwise δ = 0,

(b) for p1, (−1)xn+1(|β| − r − 1) ,

(c) for p2, (−1)xn(|β| − r − 3 + δ) , with δ = 1 when xp = 2 , otherwise δ = 0 .

(iv) the only cases in which the term of the prior item is both zero and eligible are:

(a) |β| = 5 with r = 2: the two-link L = ̂σ−1
2 σ1σ

−1
2 σ2

1 and its mirror image.

For L we have: p0 = z3 + z, p1 = −z5 − 2z3 − z and p2 = z3 ,

(b) |β| = 6 with r = 3: the three-link K±(3, 3) with p0 = p2 = −z4 + 1 and

p1 = z6 + 2z4 − 2.

When |β| = 4 and r = 1, the three-link β̂ is the connected sum of T2 and T−2,

with p0 = p2 = z2 + 1 and p1 = −z4 − 2z2 − 2 . When |β| = 4 and r = 2, the knot,

β̂, has p0 = p2 = z2 and p1 = −z4 − z2.

Example 2.35. The prime three-braid knots, 8-18 and 10-123, generated by the

braid words, α4
2,±, α

5
2,±, have the following coefficient polynomials, hj (=pj/z

2),

[4]. This shows Prop. 2.34 cannot be unconditionally extended to three terms.

(i) h0 = z4 + z2 − 1 and h0 = −z6 − 2z4 + z2 + 2 ,

(ii) h1 = −z6 − 3z4 − z2 + 3 and h1 = z8 + 4z6 + 3z4 − 4z2 − 3 ,

(iii) h2 = z4 + z2 − 1 and h2 = −z6 − 2z4 + z2 + 2 .

It is convenient to introduce the following notation for some expressions that

represent the integer coefficients of the hj forK±(2, n). Recall K±(2, n) is generated

by the alternating braid word of rank two, α2
n−1,±.

Definition 2.36. For integers j and k, define the functions fk(j) as follows:

(i) fk(j) = ⌊j/2⌋, when k is even,

(ii) fk(j) = ⌈j/2⌉, when k is odd.

Proposition 2.37. For the knot, K±(2, 2m + 1) with m ≥ 1, the coefficient of

z2k in hj, denoted aj,k,m, is a product of two binomial coefficients, one of which is

independent of m. The binomial coefficient,

(
0

0

)
= 1, while

(
0

k

)
= 0, for k 6= 0.

aj,0,m = (−1)j for 0 ≤ j ≤ m,
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aj,k,m = (−1)j
(
fk(j) + f0(k)

k

)(
m− f1(j − k)

k

)

for 1 ≤ k ≤ j ≤ m, (2.12)

aj,k,m = (−1)j
(
fk(2m− j) + f0(k)

k

)(
f0(j + k)

k

)

for j ∈ [m, 2m] , and k ∈ [0, 2m− j] , (2.13)

aj,k,m = 0 otherwise.

The Conway polynomial is related to the elementary torus links as follows:

∇K±(2,2m+1)(z) = C2m+1(ız) , with ı =
√
−1 .

Thus for the knot, K±(2, 2m + 1) with m ≥ 1, each hj is h-uniform and fully

populated. There is a symmetry wherein hj = h2m−j, since aj,k,m = a2m−j,k,m.

Observe also each coefficient of the central coefficient polynomial for the knot,

K±(2, 2m+ 1), i.e. am,k,m, is (plus or minus) the square of a binomial coefficient.

Finally, the outer two layers of coefficients, i.e. those of the two highest degrees of

hj are binomial coefficients: (−1)j
(
m

k

)
and (−1)j

(
m− 1

k

)
.

Table 1. K±(2, 11) coefficients, aj,k,5, for hj

k
5 -1
4 5 -1 5
3 -10 4 -16 4 -10
2 10 -6 18 -9 18 -6 10
1 -5 4 -8 6 -9 6 -8 4 -5
0 1 -1 1 -1 1 -1 1 -1 1 -1 1

j = 0 1 2 3 4 5 6 7 8 9 10

Proposition 2.38. For the two-component link, K±(2, 2m) with m ≥ 2, the coef-

ficient of z2k in zhj, denoted bj,k,m, is a product of two binomial coefficients, one

of which is independent of m. The constant term, bj,0,m is zero for j ∈ [0, 2m− 3],

while b2m−2,0,m = 1 and b2m−1,0,m = −1 .

For the left half of the subscript range, we have

bj,k,m = (−1)j
(
fk(j + 1) + f0(k)

k

)(
m− 1− f1(j + 1− k)

k − 1

)

for 1 ≤ k ≤ j + 1 ≤ m− 1 . (2.14)
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The following two expressions are for the coefficients of the two highest powers

in zhj for the right half of the subscript range. The values are identical to the values

for −aj+1,k,m, i.e. bj,k,m = −aj+1,k,m for the top two values of k in this range:

bj,2m−j−1,m = (−1)j
(

m

2m− j − 1

)
for j ∈ [m− 1, 2m− 2] , (2.15)

bj,2m−j−2,m = (−1)j
(

m− 1

2m− j − 2

)
for j ∈ [m− 1, 2m− 3] . (2.16)

The following expression is for the coefficients of the powers below the two highest

powers in zhj for the right half of the subscript range.

bj,k,m = (−1)j
(
fk(2m− 3− j) + f0(k)

k − 1

)(
f0(j + 1 + k)

k

)

for j ∈ [m− 1, 2m− 4] , k ∈ [1, 2m− j − 3] . (2.17)

The Conway polynomial is related to the elementary torus links as follows:

∇K±(2,2m)(z) = −ıC2m(ız) , with ı =
√
−1 .

For the two component link,K±(2, 2m) withm ≥ 2, the coefficients of all eligible

powers in each hj are nonzero and have the same sign, except that the z−1 term is

zero for j ∈ [0, 2m− 3]. The coefficient of the z1 term in hj is (−1)j(1 + ⌊j/2⌋). A
similarity to the odd strand result for K±(2, 2m + 1) is that the outer two layers

of coefficients, i.e. those of the two highest degrees of hj are binomial coefficients.

However on the left side they are for m − 1 and m − 2, while on the right side

they are for m and m − 1: (−1)j
(
m− 1

k − 1

)
and (−1)j

(
m− 2

k − 1

)
on the left, and

(−1)j
(
m

k

)
and (−1)j

(
m− 1

k

)
on the right.

Table 2. K±(2, 10) coefficients, bj,k,5, for zhj

k
5 1
4 -4 1 -5
3 6 -3 12 -4 10
2 -4 3 -9 6 -12 6 -10
1 1 -1 2 -2 3 -3 4 -4 5
0 0 0 0 0 0 0 0 0 1 -1

j = 0 1 2 3 4 5 6 7 8 9

Thus there are nonporous rank two alternating braid words that generate links

for which some hj do not achieve their minimal degree. This condition appears in
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a more general setting, and is related to the presence of a band that is not thin.

As explained in Prop. 2.40, the range on which hj achieves the minimal degree is

decreased by one for each band neighbor with an exponent of ±1. For each band

that is not thin, the range is decreased by the number of excess band generators

above the minimal number.

Among links generated by alternating braid words, the following is a minimal

interesting example in which coefficient polynomials are not complete, and/or do

not achieve the minimal degree, and/or are not of uniform sign. All hj are h-uniform

and fully populated for links of braid index two, or links generated by any braid

word of rank one with no trivial generators. Proposition 2.40 shows each hj is fully

populated and h-uniform when a knot, or link with n components, is generated by

an alternating braid word of rank two with no trivial generators.

Example 2.39. The prime four-braid knot, 9-40 = K±(3, 4), generated by the

braid word, α3
3,± = (σ3σ

−1
2 σ1)

3, has the following hj (=pj/z
3), [4].

(i) h0 = −z4 + 0z2 + 2 ,

(ii) h1 = z6 + 2z4 + 0z2 − 2 ,

(iii) h2 = −2z4 − 2z2 + 1 ,

(iv) h3 = z2 .

Proposition 2.40. When β is a rank two alternating n-braid word with no trivial

or null generators and the positive generators have odd subscript, we have:

(i) each hj is complete and h-uniform,

(ii) each hj achieves the minimal degree, and thus is fully populated, exactly when

j ∈ [φ∂,−1(β) + φo,♯(β)− φo(β), n− 1− φ∂,1(β)− φe,♯(β) + φe(β)] ,

(iii) the coefficient of z‖β‖−2 in hνn is (−1)νn+xn(‖β ‖ +τ(β) − τ♯(β)),

(iv) the rank of β̂ is two exactly when some npblock is not thin,

(v) when β is nonporous, β̂ is distinct from any link generated by any rank two

alternating braid word with a non-trivial clustered generator.

Under the assumptions of Prop. 2.40, knots, and links of n components all have

fully populated hj . For a two-link, each hj is fully populated when there is one thin

eeblock with no bands. Otherwise, a two-link has a fully populated hn−1 exactly

when there are no eeblocks, and one band, but when the band has even subscript

for its minimal member, the band must be thin and have no band neighbor with

an exponent of one. A complementary result applies to h0 for a two-link.

Example 2.41. The 6-1 knot, generated by σ2
3σ2σ

−1
1 σ−1

3 σ2σ
−1
1 , has the following

coefficient polynomials, hj (=pj/z
3), [4] and so has rank two. Thus Prop. 2.40

cannot be extended to all rank two alternating knots.

(i) h0 = 1 ,

(ii) h1 = −z2 + 0 ,
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(iii) h2 = −z2 − 1 ,

(iv) h3 = 1 .

Many knots are generated by edge extensions of rank two alternating braid

words, e.g. the 10-42 knot, [4], is generated by, [2], [18]: σ2
4σ

−1
3 σ4(σ

−1
3 σ2σ

−1
1 )2.

Prop. 2.42 shows each hj for the 10-42 knot has USc, and this is true for any

alternating braid word that is an iterated edge extension of a rank two alternating

braid word. The proof for Prop. 2.42 is as for Prop. 2.32 and uses Prop. 3.6.

Proposition 2.42. Suppose β is an alternating n-braid word with no trivial or null

generators, and that β is an edge extension of γ with edge exponent e.

When {hj, γ̂}n−2
0 ∪ {hj, γ̂∗}n−2

0 has USc, so does {hj, β̂}
n−1
0 ∪ {hj, β̂∗

}n−1
0 .

Any hj, β̂ has USc for j ∈ (0, n− 1) when:

(i) e > 0 and both hj, γ̂∗ and hj−1, γ̂ have USc,

(ii) e < 0 and both hj−1, γ̂∗ and hj, γ̂ have USc.

2.2.7. Links generated by positive braid words

The following proposition for positive braid links cannot be as simple as the result

for alternating braid links, but does establish sharp upper and lower bounds on the

degree of each Homflypt coefficient polynomial, and the exact degree of the Conway

polynomial. These are expressed in terms of the length or normalized length of any

positive braid word whose closure is the link. In fact, any positive braid word fulfills

the values of the link invariants for length and normalized length. The result further

shows each hj is h-uniform.

Proposition 2.43. For a link, β̂, represented by a positive n-braid word β we have:

(i) p0 is a monic polynomial with deg p0 = |β| , hence |β| = |β̂| ,
(ii) deg pj = |β| , for j ∈ [0, ν0] ,

(iii) each nonzero pj (or hj) is of uniform sign (−1)j , and hence h-uniform,

(iv) for j in the range (ν0, n− 1− ν1], the following are true:

(a) deg pj ≤ |β| − 2 (j − ν0) ,

(b) when pj 6= 0, deg pj > deg pj+1 , and deg pj ≥ |β| − (j − ν0)(j + 1− ν0) ,

(c) when pj = 0, it follows that pj+1 = 0 ,

(v) when ν0 = 0,∇β̂ is a monic polynomial with deg∇β̂ = ‖β ‖= ‖ β̂‖ .

The relation of positive braid words to Proposition 2.5 is as follows. First, L

can treated as empty. Second, the degree of pj is constant (and maximal) on [0, ν0],

and is followed by a downslope in the remaining range. The opposite result holds

for negative braid words.

Since torus links are so widely studied, it is appropriate to make a statement

regarding the degree of their Homflypt coefficient polynomials. This is especially
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true since there is no similar general expression for all positive braid links. The

interested reader should note that V.F.R. Jones displays a formula in Def. 6.1

p. 348 [8] for a two-variable link invariant which Prop. 6.2, p. 348 [8], relates to the

Homflypt polynomial by: XL(q, λ) = PL(v, z), with v =
√
λ
√
q and z =

√
q−1/

√
q.

One of several calculations of XL(q, λ) for various knots includes a compact but

complex formula for torus knots, Thm. 9.7, p. 359 [8].

Proposition 2.44. For a torus link, K(r, n), with r ≥ n, the degree of the Homflypt

coefficient polynomial, pj, is r(n−1)−j(j+1) for any j ∈ [0, n− 1]. In case r = n,

there is pn−1,K(n,n) = (−1)n−1.

It is convenient at this point to give definitions for some thresholds that deter-

mine when certain bounds apply.

Definition 2.45. The positive n-braid rank threshold, denoted Rn, has the value

n for n ≤ 4, and ⌊n2/4⌋ for n ≥ 4. The positive braid coefficient rank threshold,

denoted Rj, n, has the value ⌊j2/4⌋ for j ∈ [0, n− 1].

Proposition 2.46. For a link, β̂, represented by a positive n-braid word β, define

δ(j, β) = max{ 0 , 2j (Rj+1, n − ρ(β)) } .
We have deg pj ≤ |β|+ 2 o(β) + δ(j, β)− j(j + 1) .

Example 2.47. The upper bound for deg pj in Prop. 2.43 is achieved in connected

sums of elementary torus links. Prop. 2.44 shows torus links, K(r, n), with Rn ≤ r

achieve the the upper bound of Prop. 2.46 and the lower bound of Prop. 2.43.

Theorem 2.48. If β is a nonporous positive n-braid word with ρ(β) ≥ 2, we have:

(i) all pj are nonzero for j ∈ [0 ,min(ρ(β) − 1, n− 1)],

(ii) when pj is nonzero and Rj+1, n ≤ ρ(β) , then deg pj = |β| − j(j + 1) .

The following example shows that for n ≥ 5 and j ≥ 3, the requirement

Rj+1, n ≤ ρ(β) cannot be reduced and ensure deg pj = |β| − j(j + 1). For n = 4,

the three-link β = (σ2
3σ

2
2σ

2
1)

2 has deg p3 = 4 > |β| − 12. The rank two behavior is

described in Theorem 2.51. Note that for j ≤ 2, we have Rj+1, n ≤ 2 ≤ ρ(β).

Example 2.49. Consider L(r, n) which is obtained by taking αr
n−1 for any n ≥ 5

and replacing the exponent of each σ⌊n/2⌋ by two. There is a node in one choice

of skein tree for L̂(r, n) that corresponds to K(r, ⌊(n+ 1)/2)⌋ ♯ T2 ♯K(r, ⌊n/2)⌋.
Observe that deg p

j, L̂(r,n)
is at least the degree of pj for this node, i.e.

r(n− 2)− ⌊j2/2⌋. Hence deg p
j, L̂(r,n)

exceeds the theorem value, r n − j(j + 1)

when j ≥ 3 and 2 ≤ r < Rj+1, n.

Theorem 2.51 depends on counting the number of generators that can be ren-

dered trivial by use of the skein relation and Eq. 3.1. Toward this end, the following
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extension of Definition 2.26 is provided.

Definition 2.50. When β ∈ Bn has rank two, a generator is said to be a1 (minimal,

robust) when its syllable length is one in some (both, neither) row(s). A block of

a1 (minimal, robust) generators is called an a1block (stripe, rblock), written i(l, h)

when l and h are the minimum and maximum block generator subscripts.

The counting function d(β, a, b) for a, b ∈ [0, n− 1] is:

(i) when a ≥ b or b ≤ 1 or σb−1 is robust, then d(β, a, b) = 0 , otherwise,

(ii) when σb is robust, then d(β, a, b) = d(β, a, b − 1) , otherwise,

(iii) when σb−1 is minimal, then d(β, a, b) = 1 + d(β, a, b − 1) , otherwise,

(iv) d(β, a, b) = 1 + d(β, a, b − 2) .

The counting function D(β) is the sum of the d(β, l, h) over all a1blocks i(l, h) .

Theorem 2.51. Assume β is a nonporous, rank two, positive n-braid word. Define

[j]2 = 0 for j even, [j]2 = 1 for j odd. Set J = ⌊(j − 1)/2⌋. Let kβ be the maximum

cardinality among all sets of robust interior generators in β with no adjacent pairs.

We have pj = 0 exactly when D(β) ≥ n− j . When pj 6= 0 we have:

deg pj = |β| − 3j + [j]2, when kβ ≥ J ,

deg pj = |β| − 3j − 2(J − kβ) + [j]2, when kβ < J, or equivalently,

deg pj = |β| − 4j + 2kβ + 2, when kβ < J.

Theorem 2.51 shows that the maximal v-span is achieved exactly when all

a1blocks are thin.

2.2.8. Links generated by polarized braid words

The following theorem unifies the results for alternating and positive braid words

to the larger class of polarized or homogeneous braid words.

Theorem 2.52. For a link, β̂, represented by a polarized n-braid word β we have:

(i) all leading coefficients of nonzero pj have the sign (−1)j+xn ,

(ii) in the range [0, νn), the following are true:

(a) deg pj ≤ |β| − 2(νn − j) ,

(b) when pj 6= 0, deg pj < deg pj+1 ,

(iii) deg pj = |β| , for j ∈ [νn, νn + ν0] , hence |β| = |β̂| ,
(iv) in the range [νn + ν0, n− 1], the following are true:

(a) deg pj ≤ |β| − 2(j − νn − ν0) ,

(b) when pj 6= 0, deg pj > deg pj+1 ,

(v) when ν0 = 0, deg∇β̂ = ‖β ‖= ‖ β̂ ‖ , and the leading coefficient of ∇β̂ has sign

(−1)νn+xn .
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The relation of polarized braids to Prop. 2.5 is exactly as for alternating braids.

3. Proofs, Lemmas, and Tools

Theorems or equations whose proofs were not described above, and that don’t follow

by simple induction, are proven in a subsection, ”Proof of . . . ”. The proof of Eq. 2.1

and Eq. 2.2, is in section 3.7; intervening sections provide the necessary tools.

3.1. Braid Identities and Properties

The two relations in the next proposition have implications that are critical for the

proofs of all major results that depend on braid length reduction arguments.

Proposition 3.1. When two braid group generators, σi and σj , are adjacent, i.e.

|i− j| = 1, and e is nonzero, there are the following equivalent relations:

σe
jσiσj = σiσjσ

e
i , (3.1)

σjσ
e
i = σ−1

i σe
jσiσj . (3.2)

From (3.1) it easily follows that when a three-braid word of rank, r+1 ≥ 3, has

nonzero exponents in the expression, σE1
2 σe1

1 · · ·σEr

2 σer
1 σ2σ1, its closure generates

the same link as σE1+er
2 σe1

1 · · ·σ1+Er

2 σ1, a braid word of rank r. Of course, when

r = 1, the braid word, σE1+e1+1
2 σ1 generates the same link as σE1

2 σe1
1 σ2σ1.

Next, observe that if a braid word, β ∈ Bn, has a trivial generator, σκ, then β̂

can also be generated by a braid word in Bn−1. Indeed, when κ 6= n−1, first replace

β by a braid word of the form γσ±1
κ η, in which all the generators of subscript higher

than κ appear in γ, and all the generators of subscript lower than κ appear in η.

Using the relation, (3.2) repetitively, β may be replaced by a braid word in which

σκ is replaced by the trivial generator σn−1, and the subscripts of generators above

κ are each reduced by one.

When a braid word, β ∈ Bn, has a trivial generator, σκ, we may view β̂ as the

connected sum of ̂Ψ(κ, n, β) and ̂Ψ(0, κ, β). When σκ is instead a null generator,

we may view β̂ as the disjoint union of ̂Ψ(κ, n, β) and ̂Ψ(0, κ, β).

3.2. Proof of (2.4) (Conway polynomial formula for 2-braid links)

Proof. Use the following result relating to Pascal’s triangle and induction:

(
p

j

)
=

(
p− 1

j

)
+

(
p− 1

j − 1

)
. (3.3)
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3.3. Properties of the Conway polynomial

3.3.1. Properties of the Conway polynomial for n-braid links

The following formula shows how the Conway polynomial can be calculated using

braid words of shorter length. For any braid word, β ∈ Bn, and any integer, e:

∇
β̂σe

i

= Ce ∇̂βσ±1
i

+ Ce∓1 ∇β̂ . (3.4)

3.3.2. Properties of the Conway polynomial for two-braid links

The Conway polynomial, Cp, is central to the results of this paper, and its properties

are numerous and remarkable. Most of its properties are most easily derived from

the recursive relation, Cp+1 = z Cp + Cp−1, rather than by using (2.4).

It is helpful in calculations and proofs to know the following:

zmCp =

m∑

j=0

(
m

j

)
(−1)j Cm+p−2j , for m > 0. (3.5)

In particular, when p = 1, there is an expression for zm.

The following important identities are critical tools to prove the main results.

Assume integers, x, y, p, q, and κ, are chosen with x + y = p+ q in the equations

below. Eq. 3.8 is generally applied with κ = q. We have:

Cx+y = Cx Cy+1 + Cx−1 Cy , (3.6)

Cx Ck =

k−1∑

j=0

(−1)j Cx+k−1−2j , for k > 0, (3.7)

Cx Cy − Cp Cq = (−1)κ {Cx−κCy−κ − Cp−κ Cq−κ} . (3.8)

Proposition 3.2. There are no common roots over the complex numbers for Cp

and Cp+1, for any integer p, hence gcd(Cp, Cp+1) = 1.

For any integers a 6= 0, and b, we have Ca|Cab.

Furthermore, when gcd(a, b) = g, we have gcd(Ca, Cb) = Cg.

Proof. The first claim follows from the relation, Cp+1 = z Cp+Cp−1. Next, observe

that Cab = CaCab−a+1 + Ca−1Cab−a and use induction. For the third claim, there

are integers, λ, µ so that λa+µb = g. Hence Cg = Cλa+µb = Cλa+1Cµb+CλaCµb−1.

This implies Ca and Cb have no common roots in C other than the roots of Cg.

The following lemma gives the high order term for the difference of the Conway

polynomials for two distinct connected sums of positive torus links, with no null

generators, in an interesting special case.

Lemma 3.3. Suppose two non-increasing sequences of r positive integers, {pi}ri=1

and {qi}ri=1, are given with the same sum, s. Denote the multiplicities of the final
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terms as µp and µq. Assume pr > qr , or pr = qr and µp < µq. If pr > qr, let

λ = µq, otherwise λ = µq − µp. We have

r∏

i=1

Cpi
−

r∏

i=1

Cqi = (−1)qrλzs−2qr−r + o(zs−2qr−r) .

Proof. Eq. 3.8 implies the result when r = 2. When pr > qr, apply (3.8), (3.6)

and induction to obtain the result. When pr = qr, apply the result for distinct final

terms with r replaced by r − µp.

3.3.3. Properties of the Conway polynomial for three-braid links

Proposition 3.4. When γ ∈ B3 and a > 0 we have:

∇
α̂3

2γ
= ∇γ̂ + Cw(γ)+5 − Cw(γ)+1 ,

∇
α̂3a

2 γ
= ∇γ̂ +

a∑

j=1

Cw(γ)+6j−1 −
a∑

j=1

Cw(γ)+6j−5 ,

∇ ̂α−3a
2 γ

= ∇γ̂ +

a∑

j=1

Cw(γ)−6j+1 −
a∑

j=1

Cw(γ)−6j+5 .

If γ =
∏r

k=1 σ
−ek,2

2 σ
ek,1

1 , with r, ek,2 , ek,1 > 0, and 1 < Ei =
∑r

k=1 ek,i, we have

∇γ̂ = (−1)E2+1{CE2+E1−1 − rCE2+E1−3 + o(CE2+E1−3)} , (3.9)

∇γ̂ = (−1)E2+1{CE2CE1 −
2∏

k=1

Cek,2
Cek,1

} , when r = 2.

Proof. Induction, plus (3.4) and (3.6) for the first and last equations. Eq. 3.8 is

also helpful to prove the order of magnitude result in (3.9).

3.4. Properties of the Homflypt polynomial

The following properties may be found in most introductory texts, in particular,

[17]. These formulas relate the Homflypt polynomial for the connected sum, disjoint

(or distant) union, and mirror image of a link, to the original links.

PL1♯PL2 = PL1 PL2 , (3.10)

PL1

∐
PL2 = (vz)−1(1 − v2)PL1 PL2 , (3.11)

PL1
(v, z) = PL1(v

−1,−z) = PL1(−v−1, z) . (3.12)
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3.4.1. Properties of the Homflypt polynomial for n-braid links

The Homflypt polynomial shares many properties of the Conway polynomial. The

following formulas show how the Homflypt polynomial can be calculated using

braids of shorter length. For any braid word, β ∈ Bn, and any integer, e:

P
β̂σe

i

= ve−1 Ce Pβ̂σi
+ ve Ce−1 Pβ̂ , (3.13)

P
β̂σe

i

= ve+1 Ce P̂βσ−1
i

+ ve Ce+1 Pβ̂ . (3.14)

In particular, when σi is a clustered generator in β, with exponent, e, there is:

Pβ̂ = P ̂Ψ(i,n,β)
PTe

P ̂Ψ(0,i,β)
. (3.15)

3.5. Proof of Lemma 2.1 (Three-Braid Homflypt formula)

Proof. The proof is an induction on the rank of β. When the rank is one (3.10)

implies (2.3) may be used to compute Pβ̂ . Use of (3.6) allows the terms to be

rewritten in the form of Lemma 2.1. When the rank is two or more, with β = γσE
2 σ

e
1,

a double application of (3.13) to the exponents, E, e, in the last row yields

Pβ̂ = vE+e−2 CE Ce Pγ̂σ2σ1
+

vE+e−1 {CE Ce−1 Pγ̂σ2
+ CE−1 Ce Pγ̂σ1

}+
vE+eCE−1 Ce−1 Pγ̂ . (3.16)

Now reduce the rank of braid words ending in σ2σ1, σ2 or σ1 in (3.16) per

Section 3.1. The result follows by recombining terms using (3.13) and (3.4).

3.6. Proof of Prop. 2.4 (When do 3 braid links have P
β̂
= Pγ̂)

Proof. Suppose first that Pβ̂ = Pγ̂ . Since w(β) = w(γ) is valid, assume w(β) >

w(γ) . Prop. 2.3 shows that p2, β̂ = 0 and p0, γ̂ = 0 , i.e. ∇β̂ = Cw(β)−1 and

∇γ̂ = Cw(γ)+1 . Since Pβ̂ = Pγ̂ , we have Cw(β)−1 = Cw(γ)+1 , i.e. w(β) = w(γ) + 2

or w(β) = −w(γ) . These correspond to the second and third outcomes.

Conversely, when ∇β̂ = ∇γ̂ , the first condition implies Pβ̂ = Pγ̂ by Prop. 2.2.

Prop. 2.3 shows the remaining two cases also imply Pβ̂ = Pγ̂ .

Proposition 3.5. When γ ∈ B3 and a > 0 we have:

P
α̂3

2γ
= v6Pγ̂ + PTw(γ)+5

− v6PTw(γ)+1
,

P
α̂3a

2 γ
= v6aPγ̂ +

a∑

j=1

v6a−6jPTw(γ)+6j−1
−

a∑

j=1

v6+6a−6jPTw(γ)+6j−5
,

P ̂α−3a
2 γ

= v−6aPγ̂ +

a∑

j=1

v6j−6aPTw(γ)−6j+1
−

a∑

j=1

v6j−6a−6PTw(γ)−6j+5
.
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Proof. Induction, plus Prop. 3.4 and Prop. 2.3 for the first equation.

3.7. Proof of (2.1, 2.2) (Forms for Homflypt polynomial)

Proof. The expression is valid for B1 and B2, so the induction hypothesis is this is

so for braid groups with fewer strands than n. Observe that On satisfies the result,

as does the disjoint union of two links each on fewer strands, or their connected

sum. The braid length reduction formulas, (3.13, 3.14), and the standard braid

relations, show the result is true whenever a braid word has two or more consecutive

occurrences of the same generator. Use of the skein relation shows it suffices to

consider the case when β is a positive braid word. There is no loss in generality to

assume β = σn−1γσn−1η, in which γ has no occurrences of σn−1 and has positive

length, and β has no null or trivial generators.

The following argument shows β may be replaced by a braid word that either

falls into a case already shown to be true, or has fewer instances of σn−1, or the

length of γ may be reduced, so that the result follows by induction.

When γ = σn−2, note that β may be replaced by σn−2σn−1σn−2η, with fewer

instances of σn−1. When the length of γ is one, but γ 6= σn−2, then β may be

replaced by γσn−1σn−1η, a case already shown to satisfy the result.

For the remaining case that the length of γ exceeds one, consider the maximal

prefix of γ in which successive terms have lower subscript than their predecessor

term. If this prefix does not begin with σn−2, then the first term in the prefix can

commute to the left past the initial σn−1, decreasing the length of γ. Observe that

in this prefix, the initial σn−2 must be followed by successive generators in which

the subscript decreases by one. Indeed any successive terms in the prefix for which

the subscripts differ by two or more allow the later term to commute to the left

past σn−1. This would allow γ to be replaced by a shorter word.

The prefix ends with a generator, the prefix-end, whose subscript is lower than

all others in the prefix. The next term after the prefix-end, the neighbor, has a higher

subscript, which may be n− 1. We may assume that the neighbor’s subscript is one

higher than the subscript for the prefix-end by simply commuting the neighbor to

the left until this is true. Thus there arises an earliest substring, σkσk−1σk; when

k = n − 1 we are done. Application of the braid relation allows σkσk−1σk to be

replaced by σk−1σkσk−1, and now the new initial σk−1 may commute to the left

past the initial σn−1, leading to a shorter γ, as desired.

The following results are easy consequences of Equations 2.1 and 2.2.

Proposition 3.6. The coefficient polynomials, pj and hj obey the same skein re-

lation and reduction formulas, (3.4), as the Conway polynomial.

The coefficient polynomials of a link and its mirror image are related as follows:

pj,L(z) = (−1)n−1pn−1−j,L(−z) = (−1)w+n−1pn−1−j,L(z) .
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When β ∈ Bn is extended to βσn ∈ Bn+1 we have h
n, β̂σn

= 0 = p
n, β̂σn

. For all

other subscripts, we have h
j, β̂σn

= hj, β̂ and p
j, β̂σn

= z pj, β̂.

When β ∈ Bn is extended to βσ−1
n ∈ Bn+1, we have h

0, β̂σn
= 0 = p

0, β̂σn
. For

all other subscripts, we have h
j,̂βσ−1

n

= hj−1, β̂ and p
j,̂βσ−1

n

= z pj−1, β̂.

Proposition 3.7. For the torus links, there are the following relations:

pj,K(r,n) = zn−rpj,K(n,r) , for 0 ≤ j < r < n , (3.17)

pj,K(r,n) = 0 , for r ≤ j < n .

3.8. Proof of Proposition 2.5 (3-Braid Degree Result)

Proof. It suffices to prove either deg p0 ≤ deg p1, or deg p2 ≤ deg p1, and to

consider only the case in which p0 and p2 are both nonzero. By Prop. 3.6, the writhe

may be assumed to be non-negative. Separate consideration of the cases ∇β = 0,

w = 0, w = 1, deg∇β > w, deg∇β = w, deg∇β = w − 2, and deg∇β < w − 2

shows the result is true in all cases.

3.9. Proof of Theorem 2.7 (Relations for Laurent coefficients)

Proof. The proof will be in the reverse order of the statement of the theorem.

First, to show (2.7), (2.8) are independent when n > 1, it suffices to find two

sets of n polynomials each of which satisfies one relation, but not the other.

In case w 6= n− 1, Eq. 3.6 implies h0 = Cw+2−n, h1 = z Cw+1−n, and hj = 0,

for j > 1 satisfy (2.7), but these don’t satisfy (2.8). When w = n − 1, the choice

h1 = C3 and hj = 0, for j 6= 1 satisfies (2.7), but does not satisfy (2.8).

In case w 6= n − 3, observe that h1 = Cw+4−n, and hj = 0, for j 6= 1 satisfy

(2.8), but they don’t satisfy (2.7). When w = n− 3, the choice h0 = 1, and hj = 0,

for j 6= 0 satisfies (2.8), but does not satisfy (2.7).

The second point is to show whenever a function satisfies (2.7, 2.8), it also

satisfies (2.9). First take the difference of (2.7, 2.8), and divide by z to obtain (2.9)

with κ = 1. Now multiply both sides of this expression by Cκ, multiply both sides

of (2.8) by −Cκ−1, and add these two products. Apply (3.6) to the right side of the

sum and (3.8) to the left side to obtain (2.9).

The proof of (2.7), (2.8) mirrors that in Section 3.7. For n = 1, (2.7, 2.8) are

trivial, while for n = 2, application of (3.6 and 2.3) yields the result.

For On observe that hj = (−1)j
(
n− 1

j

)
/zn−1 . The proofs for (2.7) and (2.8)

are similar. For (2.7) apply (3.5) to the expression, zn−1 Cw+4−n, with w = 0, to

obtain zn−1 C4−n =
∑n−1

j=0

(
n− 1

j

)
(−1)j C3−2j . This is equivalent to (2.7).
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The technique to verify the claims for disjoint unions and connected sums is sim-

ilar. Only the proof for the latter is included. To show (2.7) holds for the connected

sum of two links, γ̂ and η̂, with r and s strands, respectively, and r + s − 1 = n,

observe that hj,γ̂♯η̂ is merely the sum of all terms of the form hk,γ̂ hj−k,η̂.

Since C2j−3 = C2k−1C2(j−k)−1 + C2k−2C2(j−k)−2 , observe that C2j−3 hj,γ̂♯η̂ is

merely two sums: one with all terms of the form C2k−1 C2(j−k)−1 hk,γ̂ hj−k,γ̂ and a

second sum with all terms of the form C2k−2 C2(j−k)−2 hk,γ̂ hj−k,γ̂ . The first sum

derives from multiplying the left side of (2.8) for γ̂ with the same for η̂. The second

sum derives from multiplying the left side of (2.9) for γ̂ with κ = 1 with the same

for η̂.

This implies the left side of (2.7) for γ̂♯η̂ is merely the sum of

Cw(γ)+2−r Cw(η)+2−s and (−1)Cw(γ)+3−r (−1)Cw(η)+3−s . This sum may be rewrit-

ten as Cw(γ)+w(η)+4−(r+s−1) , as desired. Proof of (2.8) for connected sums is similar.

The braid length reduction formulas, (3.13, 3.14), show whenever a braid word

has two or more consecutive occurrences of the same generator, the result is true.

The remainder of the proof is exactly as in Section 3.7.

3.10. Proof of Props. 2.9, 2.10, 2.12 (Membership in Υw∓1, Υx)

Proof. Prop. 3.4 and properties of ∇ show that no braid word from Ω∗
0 belongs to

Υw−1. The five words in the first two list items are the only members from
⋃5

i=1 Ω
∗
i .

In Ω∗
6, with d = 0, Prop. 3.4 implies any member has r = 1 and E1 = 1. This

yields the sixth word, σ−e
2 σ1

1 . In Ω∗
6, with d = 1, similar reasoning shows r = 1

implies e1 = 1 and yields α3
2σ

−1
2 σE

1 . There are no members in Ω∗
6 ∩ Υw−1 when

d = 1 and r > 1, and no members when d = −1.

By comparing degrees and using Prop. 3.4, we see that when d > 1 there are no

members in Ω∗
6 ∩ Υw−1 with r > 1. Indeed when r > 1, observe that e =

∑r
1 ek ≡

E =
∑r

1 Ek mod 2, and then note that rCe+E−3 cannot be accommodated. A

similar argument applies when d < −1 and r > 1. When d > 1 and r = 1, we need

C−eCE +
d−1∑

i=1

C−e+E+6i−1 −
d∑

i=1

C−e+E+6i−5 = 0, which is equivalent to

−z

d−1∑

i=1

C−e+E+6i − C−e+1CE+1 = 0.

When E = 1, we see e is odd, so e = 3d− 2 and d is odd. This yields the eighth

member, but d = 1 is the seventh member with E = 1. When E > 1, there are no

members for e = 1, hence the degree of C−e+1CE+1 is e + E − 2. As e, E cannot

both be even, apply (3.7) with x = e−1 and k = E+1 when E is odd, or x = E+1

and k = e− 1 when e is odd, to see there are no members with e > 1.

Similarly, when d < −1 and r = 1, we obtain the final entry in the list,

α−3d
2 σ−1

2 σ3d+1
1 with d ≥ 0 even. Note d = 0 yields the sixth member with e = 1.

The proof of Props. 2.10 and 2.12 for Υw+1 and Υx are similar.
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3.11. Proof of Prop. 2.16 (Simple VL properties for 3-braid links)

Proof. Begin by ignoring the value for µ(β), and observe that Vβ̂ = Vγ̂ , implies

µ(β̂) = µ(γ̂) by (12.1), p. 368 [8], which states that VL(1) = (−2)µ−1. Set a = w(β̂)

and b = w(γ̂). Since w ≡ 1+µ mod 2 for odd strand number, we have a ≡ b mod 2.

Comparison of the Jones polynomials, (2.6), for β̂ and γ̂ yields an expression,

(3.18), for ∆γ̂(t) in terms of ∆β̂(t). Using ∆L(1/t) = (−1)µ(L)−1∆L(t) , p. 6 [21],

we obtain an expression, (3.19), for ∆β̂(t). As a = b is always a solution, a more

useful form, (3.20), arises by setting a = 2B + 2k with b = 2B, and G = 1+ t+ t2,

then dividing (3.19) by ta/2 − tb/2 for k 6= 0.

Finally use µ(β̂) = 3 to see that when a 6= b, Eq. 3.20 implies ∆β̂(1) = 1, which

is disallowed. As a = b, Prop. 2.2 shows Pβ̂ = Pγ̂ .

tb∆γ̂(t) = (t3b/2 − t3a/2)t/(1 + t+ t2) + (−1)a(tb/2 − ta/2) + ta∆β̂(t). (3.18)

(t2a − t2b)∆β̂(t) = {t5a/2 − t(2a+3b)/2 + (−1)a(t(2a+b)/2 − t(4b−a)/2)}t/(1 + t+ t2)

+(−1)a(t3a/2 − t(2a+b)/2) + t(2a+3b)/2 − t(4b+a)/2. (3.19)

ta/2(t2k + 1)(tk + 1)∆β̂(t) = {(ta+k + (−1)a)(t2k + tk + 1)}t/G
+(ta + (−1)at3k), for k 6= 0. (3.20)

When w(β) = w(γ)±2, i.e. k = ±1, substitute in (3.20) to see ∆β̂(t) = ∆Ta∓1(t).

When ∇β̂ = Ca−1, substitute ∆β̂(t) = (ta−1 + (−1)a)/t(a−2)/2(t + 1) in (3.20)

to see that a = b+2 is a solution. For µ(β) = 2 it is the only solution beyond a = b.

For µ(β) = 1, the only novel solutions are (a, b) = (2,−2) or (0, 2). Substitute

a = b+2 in (3.18) to see ∆γ̂(t) = ∆Tb+1
(t) = ∆β̂(t). Hence Pβ̂ = Pγ̂ . Evaluation at

(a, b) = (2,−2) or (0, 2) shows that ∆γ̂(t) = 1 = ∆β̂(t), so also Pβ̂ = Pγ̂ . A similar

analysis applies if ∇β̂ = Ca+1.

In proving the two claims for knots and two-links with w(β) − w(γ) = 2k > 2,

we may assume a ≥ 0, since ∆L(t) = ∆L(1/t) and VL(t) = VL(1/t). Inspection of

(3.20) shows that a = 0 implies ∆β̂(t) = 1 and k = 1, so a > 0 and maxdeg∆β̂(t) =

a/2−1. Note that G | (t2k+tk+1) exactly when k 6≡ 0 mod 3. So when k ≡ 0 mod 3,

we must have G | (ta+k + (−1)a). This is impossible when a is even and implies

a ≡ 3 mod 6 when a is odd.

Assume now that a is even, so β̂ and γ̂ are knots. Eq. 3.20 shows that when

k = 2, a zero is present at ±
√
−1, but for k > 2, the roots of tk + 1 force a = 2mk

for some m > 0. Similarly, for any k > 1, the roots of t2k + 1 force a = k(1 + 4s)

for some s ≥ 0. This implies k = 2 and a ≡ 2 mod 8, as desired. When a is even,

the same type of analysis shows a = k(3 + 4y) with k odd and k ≥ 3.

To see that Vη̂ = 1 implies ∆η̂ = 1, first observe that µ(η̂) = 1 and V
σ̂2σ−1 = Vη̂.

Assign β = σ2σ
−1 and γ = η in (3.19) to see that w(η) ∈ {0,±2}. Apply these

values to (3.18) to see ∆η̂ = 1.
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3.12. Proof of Prop. 2.17 (V is equivalent to P for 3-braid links)

Proof. The first half of the proof will deal with knots, and the second half with

two-links. Prop. 2.16 shows that three-links satisfy the result.

If β ∈ Ω∗
1 ∪ Ω∗

2, Eq. 3.20 and Prop. 2.16 show that a = 10 is the only solution,

and β = α5
2. This is the 10-124 knot, ∆β̂ = (t8 − t7 + t5 − t4 + t3 − t1 + 1)/t4. This

implies b = 6, so γ ∈ Ω∗
6. Also by (3.18), we have ∆γ̂ = (t6−t4+t3−t2+1)/t3. Now

γ = α3d
2 η, and since ∆γ̂ is not alternating, we have d 6= 0, and w(η) ≡ 0 mod 6.

Comparing ∆γ̂ to the expression from Section 2.1, and using max deg∆η̂ = |η|/2−1

leads to |η| = 8. If w(η) = 0, we have d = 1 and ∆η̂ is not alternating, contrary

to the property of alternating three-braid links (Prop. 4.2, p. 13 [16]). This implies

η ∈ {σ−7
2 σ1

2 , σ
−1
2 σ7

2}. Neither of these satisfy the required relation, so γ 6∈ B3.

If β ∈ Ω∗
6 creates a knot, use the formula from Section 2.1 in (3.20) to see:

(t4 + 1)Gta/2∆η̂ + t(t4 + 1){−t3d − t3d+w(η)} = ta + t6

Note that a = 6d+ w(η), so 3d = (a− w(η))/2, divide by ta/2 and we obtain:

(t4 + 1)G∆η̂ = t(t4 + 1){t−w(η)/2 + tw(η)/2}+ ta/2 + t6−a/2

The case a = 2 is readily discarded, so by comparing maximum degrees, we see a/2

is the maximum on the right side, and thus a = 10+ |η|. The cases that r = 1 with

either e1 = 1 or E1 = 1 are readily discarded, so we are in a situation where we

may apply (3.9) tailored to ∆, to see that there are no solutions. This is the last

knot case.

When β ∈ Ω∗
3, we have a two link. The expression for ∆ from Section 2.1 may be

used in (3.20). The only solution is a = 3k, so ∆β̂(t) = t(t3k − 1)/(Gt3k/2). We also

have b = k with k odd and k ≥ 3. Use of (3.18) shows that ∆γ̂(t) = tk/2 − t−k/2.

This implies γ ∈ Ω∗
6, say γ = α3d

2 η, with d 6= 0. As in the knot case, this leads to a

relation, (tk − 1)(t2 + 1) = tk/2G∆η̂ + t(−t3d+w(η) + t3d), that cannot be satisfied.

No member of Ω∗
4 ∪ Ω∗

5 ∪Ω∗
6 generates a two-link that satisfies (3.20).

3.13. Proof of Proposition 2.21 (General bounds for pj and ∇)

Proof. The proof in Section 3.7 can be easily adapted to prove item i and ii ; item

iii is a corollary of these. For the last item, take γ to be the braid word obtained

by dropping all the trivial generators from β and shift subscripts per Section 3.1.

3.14. Proof of Theorem 2.22 (Results for arbitrary braid)

Proof. Application of the following lemma to the braid word and its mirror image,

and use of Prop. 3.6, suffice to prove Theorem 2.22.

Lemma 3.8. For a link, β̂, generated by any n-braid word β we have:
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(i) deg pj ≤ |β| − 2(νn + νm − j) , for j ∈ [0, νn + νm] ,

(ii) deg pj ≤ |β| , for j ∈ [νn + νm, n− 1− νp] ,

(iii) deg pj ≤ |β| − 2(j + νp − (n− 1)) , for j ∈ [n− 1− νp, n− 1] ,

(iv) pj = 0 for j /∈ [ν−1, n− 1− ν1] .

Proof. It is instructive to first examine the effect on the coefficient polynomials of

a disjoint union of Oµ with the closure of a braid, i.e. how a plateau is created in

the degree of pj . This corresponds to increasing ν0 by µ.

When two links satisfy the result, so does the connected sum and disjoint union.

An induction on |β|+ ν0(β) for braids on n strands is sufficient to prove the result

by using the type of braid length reduction argument in Section 3.7.

3.15. Proof of Proposition 2.24 (∇ as complete rank one inv.)

Proof. Suppose two positive braid words of rank one, with no null generators,

generate links with the same Conway polynomial. Since the closure is merely the

connected sum of elementary torus links, it may be assumed there are no common

twist exponents in the two words.

When one braid word has fewer generators than the other, it may be replaced

by a longer braid word, using positive Markov stabilization, so that the two braid

words belong to the same braid group. The degree of the Conway polynomial is

the length less the number of generators in this setting. This implies the two braid

words, with the same number of generators, have the same length and writhe.

Eq. 3.8 and Lemma 3.3 now show the set of twist exponents must coincide.

3.16. Proof of Proposition 2.25 (Homflypt/Jones polynomials are

each complete rank one invariants)

Proof. The Jones polynomial for an elementary torus link is given by:

VTw
(t) = −t(w−1)/2{tw+1 + (−1)w(1 + t+ t2)}/(1 + t) .

As VO2(t) = −(1 + t)/
√
t , it is seen that −1 is a root for only VO2(t) . When a 6= 0

is a root of VTM
(t) and VTN

(t) , with M 6= N , we have |a| = 1 = |1 + a + a2| ,
which is only possible when a = −1,±

√
−1 . As ±

√
−1 are at most simple roots,

and each VTw
(t) has another nonzero root for any |w| ≥ 2 , the Jones polynomial is

a complete invariant for links generated by rank one braid words.

To show the same for the Homflypt polynomial, it may be assumed there are

no common twist exponents. As a special case, not relevant to the prior result, it

may be assumed there are no null generators in either braid word. Indeed, when the

number of null generators match, the two braid words can be replaced by another

pair from braid groups of lower strand number. A braid word with null generators

generates a link whose Conway polynomial is zero, while this is not true when
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no null generators exist. Thus both braid words must have initially had the same

number of null generators, and these can now be dropped from both.

The proof of Proposition 2.24 shows the set of absolute values of the twist

exponents in each braid word must be identical. Since the collections are disjoint,

the positive twist exponents in one braid word, {pi}νpi=1, must appear, with opposite

sign, in the second braid word; similarly for the negative exponents, {−qi}νni=1, with

both pi and qi positive. Furthermore, no twist exponent appears together with

its additive inverse in a single braid word. Finally, it may be assumed no trivial

generators remain, since they must be paired across the two braid words. In order

for the terms of minimal v-degree to match, (2.3) implies:

νp∏

i=1

Cpi+1

νn∏

i=1

Cqi−1 =

νn∏

i=1

Cqi+1

νp∏

i=1

Cpi−1

Since the twist values are positive in the prior equation, each pi + 1 matches

some qj + 1 or matches some pj − 1. The former is not possible under the stated

assumption no twist exponent appears along with its additive inverse in either

braid word. But the latter is also impossible since for the maximal positive twist

exponent, pm, pm + 1 = pj − 1 cannot have a solution.

The statements regarding the subscript, maximal degree, and coefficient of the

term of degree two below the degree of hνn are consequences of (2.3) and (2.4).

3.17. Proof of Lemma 2.27 (Link comp. for rank two n-braid)

Proof. The number of link components is the number of disjoint cycles, with all

strands present, when β is treated as a permutation on the strands. Hence, any even

twist exponents may be ignored and it may be assumed β has only twist exponents

of zero or one. The essence of the proof then depends on two properties:

µ(L1♯L2) = µ(L1) + µ(L2)− 1 for connected sums, and

µ(L1

∐
L2) = µ(L1) + µ(L2) for disjoint unions .

Any generator with L(i) = 1 (L(i) = 0) is a trivial (null) generator and so

represents a connected sum (disjoint union) of the left and right words consisting of

higher subscript and lower subscript generators, respectively. Finally observe that

a band generates a two component link, while an even width ooblock generates a

knot, and the result follows.

3.18. Proof of Prop. 2.29 (hj properties for rank two n-braid)

Proof. Equation 3.15 shows it suffices to consider nonporous braid words, and

this is assumed below. When β is a single eeblock, Lemma 2.27 implies it has

n components, and the following paragraphs show each hj achieves the minimal
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degree exactly when the braid word with one fewer generators has this property.

As this is true for elementary torus links, the result is true.

As regards conditions that prevent hn−1 from achieving the minimal degree, note

that application of (3.13) to an even exponent of a band neighbor, and Lemma 2.27,

show the first result term cannot contribute a term of minimal degree to hn−1, β̂ as

it has fewer components than β̂. When a band neighbor has an exponent of one,

(3.15) shows the second result term contributes zero to hn−1, β̂ . This observation

implies that hj, β̂ does not attain the minimal degree for j ∈ [n− φ∂,1(β), n− 1] .

A similar argument applies to the statement for h0.

When β has a band, the prior techniques show any of the exponents for genera-

tors whose subscripts have the same parity as the generator with minimal subscript

may be replaced by ±1 by use of (3.13) or (3.14). By the skein relation, an exponent

of one may be replaced by minus one and vice versa.

When β has a band with a range of generator subscripts [x, y], for which no

h
j, ̂Ψ(x−1,y+1,β)

achieves the minimal degree, the prior discussion shows the same is

true for each hj, β̂,

The expressions for the minimum and maximum subscripts for which hj, β̂

achieves the minimum degree follow from the prior discussion and elementary prop-

erties of polynomial algebra. The result on thin bands is a corollary. The result on

n-component links follows immediately from the prior results, and Lemma 2.27,

which shows any n-component link must either have ν0,β = n− 1, i.e. β is a single

eeblock, or ν0,β+φ(β) = n−1, i.e. each generator has either an even-even exponent

pair or is in a thin band.

3.19. Proof of Proposition 2.33 (Alternating Braid results)

Proof. The result is easily seen to be true for elementary torus links, On, and

connected sums and disjoint unions of links generated by alternating braid words

for which the result is true. Also, when β, βσ1
i , βσ

−1
j , alternating braid words,

satisfy the result, so does βσe
i and βσ−e

j , for any e > 0 . Thus it suffices to consider

braid words for which all syllables have length one, with no trivial or null generators.

There is no loss in generality to assume a subword of the form σiσ
−1
j σi exists in

β with |i − j| = 1 (see Section 3.7). When the skein relation is applied to the first

σi, we obtain two terms, with weights vz and v2 . The first is associated with an

alternating braid word whose length is one less than |β| , and thus has the desired

properties. The second term braid word has the same length as β and all exponents

are ±1, but σi has changed roles to become a mixed generator.

To see that the second term supports the claim, note that σiσ
−1
j σi in β has

become σ−1
i σ−1

j σi in the second term, which we may replace by σjσ
−1
i σ−1

j . In case

this is preceded by σiσ
−1
j , the second braid word length may be decreased by four

to become alternating, which supports the claim. In case σjσ
−1
i σ−1

j is preceded

by σ−1
j , the second braid word length may be decreased by two, with σi a mixed
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generator. Otherwise, the new second term has two mixed generators, σi and σj ,

but one fewer positive and one fewer negative generators compared to β.

When σi is not a trivial positive generator in the first term, the coefficient poly-

nomials for the second result term have degree at least two less than the degree

of the first term contributions on [0, n− 1], once the weights are considered. The-

orem 2.22 shows this is true for the final case above. When σi is a trivial positive

generator in the first term, σi is now a trivial negative generator in the second term.

Hence the second term is a connected sum of two links generated by alternating

braid words. Prop. 3.6 shows that the second term subscripts for the coefficient

polynomials are shifted to the right and careful inspection shows that the second

term makes the necessary contribution to pj, β̂ for j ∈ [νn, n− 1] so that the claim

is fulfilled. On [0, νn] the first term dominates the second and fulfills the claim.

3.20. Proof of Proposition 2.34 (Alternating three braid results)

Proof. When the rank of β is one, β is the connected sum of two elementary torus

links, Ta and T−b, in which a and b are both two or more, |β| = a+ b, and

(i) p0 = Ca+1C−b+1 = (−1)b(za+b−2 + (a+ b− 4)za+b−4 + · · · ) ,
(ii) p1 = −Ca+1C−b+1 − Ca−1C−b−1 = (−1)b+1(za+b + (a+ b− 2)za+b−2 + · · · ) ,
(iii) p2 = Ca−1C−b−1 = (−1)b(za+b−2 + (a+ b− 4)za+b−4 + · · · ) .

Thus, the result holds when the rank is one.

When the rank of β is two, β can be assumed to have at least one exponent

with absolute value two or more, since the result is true for |β| = 4. Treating the

case xn = 2 separately from xn > 2 leads to a straightforward proof by induction.

The result for xp = 2 follows by applying the result for xn = 2 to the mirror image.

When the rank of β is three, the result follows easily from the values of pj for

|β| = 6 and the prior rank results. For higher ranks, the result will follow if it can

be proven when all xi, yi in the expression for β are ±1. But for r ≥ 3, it follows

that P ̂(σ2σ
−1
1 )r+1

= vzP ̂σ2σ
−2
1 (σ2σ

−1
1 )r−1

+ v2P ̂(σ2σ
−1
1 )r−3σ2σ

−3
1

.

Inspection of the first result node braid word, σ2σ
−2
1 (σ2σ

−1
1 )r−1, shows it has

the same value for xn as the original braid word, β, but has a length one less and

a rank one less. When consideration of the weight, vz, for the first node is given, it

fulfills all the conditions of induction hypothesis.

Inspection of the second result node braid word, (σ2σ
−1
1 )r−3σ2σ

−3
1 , shows it has

a length four less and rank three less than β, and the value for xn is one less. Thus

the second node has no effect on the results and the proposition is valid.
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3.21. Proof of Propositions 2.37, 2.38 (K±(2, n) formulas)

Proof. The skein and braid relations imply the following:

v2PK±(2,2m+1) = −vzPK±(2,2m) + PK±(2,2m−1) , (3.21)

vzPK±(2,2m) = (vz)2PK±(2,2m−1) + v2vzPK±(2,2m−2) . (3.22)

Both propositions are easily verified to be true for the minimal values m = 1, m = 2

respectively. Assuming the result is true for smaller n, first consider n = 2m + 1.

Inspection of (3.21) shows aj,k,m = −bj−1,k,m + aj,k,m−1, and use of (3.3) shows

the result is true. For the even strand case, n = 2m, inspection of (3.22) shows

bj,k,m = aj,k−1,m−1+bj−2,k,m−1 . For the proof of (2.15, 2.16) the following identities

apply:

(
f2m−j−1(2m− j − 1) + f0(2m− j − 1)

2m− j − 1

)
= 1 ,

(
f2m−j−2(2m− j − 1) + f0(2m− j − 2)

2m− j − 2

)
= 1 .

The result for n = 2m follows as for the odd strand case.

The Conway polynomial formulas follow from (3.21), (3.22), and induction.

3.22. Proof of Prop. 2.40 (Rank two alternating braid results)

Proof. Eq. 3.15 shows it suffices to consider nonporous braid words, and this is

assumed below.

That each hj is of uniform sign and complete follows easily by an induction

on the braid length, together with Proposition 2.33, and the observations following

Definition 2.20 in Section 2.2.1.

To show the hj,β̂ that achieve the minimal degree are those with subscripts in

[φ∂,−1(β) + φo,♯(β)− φo(β), n− 1− φ∂,1(β)− φe,♯(β) + φe(β)], note that the claim

is true for the minimal length nonporous rank two alternating braid words in Bn,

for n ≥ 3. The discussion in Section 3.18 to prove Prop. 2.29 shows that when an

even-even generator exists, or when all exponents are odd, the result follows, so

assume no eeblocks exist and some eoblock exists.

Write σi for the generator with maximal or minimal subscript within any

eoblock. Eq. 3.13 applied to the even exponent of σi implies that when the num-

ber of components for the first result term is less than µ(β), it does not affect the

outcome of whether hj,β̂ achieves the minimal degree. When the odd exponent of

σi is not ±1, the range endpoint values are identical for the second result term and

for β, as desired. In case the odd exponent of σi is one, the induction hypothesis

applies to the second result term when it is treated as the connected sum of two

links on n − 1 total strands, so the range of subscripts is [0, n− 2]. Inspection of
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the terms shows hn−1 is not expected to be part of the range for β, and the range

for the second result term coincides with the desired range for β. A similar analysis

applies when the odd exponent of σi is minus one.

When σi is neighbor to a band, the first result term always has one fewer

components than β, so it may be assumed no bands exist within β. The other block

types for which σi can be a neighbor are even width ooblocks, or eoblocks.

When an even width ooblock exists, apply (3.13) to the even exponent of σi.

When the odd exponent of σi is not ±1, inspection of the expression for the range

for the first term shows it is a subset of the range for the second term, and the

latter matches the values for β, as desired. When the odd exponent of σi is one,

the range for the second result term is [0, n− 2], while the range for β is [0, n− 1].

This time the first result term makes the necessary contribution to hn−1 to ensure

it achieves minimal degree, since a band with odd subscript has been created. A

similar analysis applies when the odd exponent of σi is minus one.

The final case to consider is when all generators belong to a single eoblock.

Apply (3.13) to the even exponent of σ1. The first result term is a two-link and the

second term is a knot with a trivial positive generator. Inspection of the expressions

for the two ranges shows their union is [0, n− 1], as desired.

To verify the coefficient of z ‖β‖−2 in hνn is (−1)νn+xn(‖β ‖ +τ(β)−τ♯(β)) when

β is nonporous, observe this is true for α2
n−1,±. For braid words of greater length,

apply the skein relation to any exponent of a generator, σi, that has absolute value

two or more. So long as σi is not trivial in the second result term, the result follows

by induction. Otherwise examination of the terms from the second term that come

from a connected sum shows the result is true.

When β has only clustered generators, the expression for the coefficient of z‖β‖−2

in hνn is valid. When there are one or more npblocks, the product of their Homflypt

polynomials will produce a polynomial for v2φe,♯(β) that has the maximum degree,

and the term of degree two lower, ignoring sign, will have a value that is the

sum of the normalized lengths plus the number of npblocks less the number of

generators belonging to any npblock. When the clustered generators are taken into

account, the coefficient for this term in v2νn becomes the value just described plus

the value given by Proposition 2.25, i.e. the sum of the normalized lengths for the

clustered generators. The sum of these two contributions is the desired coefficient:

(−1)νn+xn(‖β ‖ +τ(β) − τ♯(β)).

To show a nonporous β cannot have rank one, note that a rank one braid word

with the same Homflypt polynomial, and no trivial generators, cannot have any

null generators, and must have the same w, n, νn, and length as β. Comparing

the coefficient of the term in hνn from Proposition 2.25 to that for a rank two

alternating braid word shows they could only be the same when τ(β) = τ♯(β), i.e.

each npblock is thin. In this case, β is a connected sum of elementary torus links,

i.e. has rank one.

In order for a rank two alternating braid word to generate β̂, it must have have
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an npblock that is not thin, no null generators, and the same number of strands,

w, and νn, as β. Thus it must have the same value for τ(∗)− τ♯(∗), and this is not

possible when a non-trivial clustered generator exists.

3.23. Proof of Proposition 2.43 (Positive Braid results)

Proof. The proof in Section 3.7 can be easily adapted to prove the result.

3.24. Proof of Proposition 2.44 (Torus Link results)

Proof. The result is true for n = 1, 2, so make the induction hypothesis that

it is true when the number of strands is below n. When the rank matches the

number of strands (r = n), K(n, n) is the closure of αn
n−1. For convenience, define

ωk = σn−1 · · ·σk, a prefix of αn−1 ending with σk.

Construct a skein calculation tree by converting σ1 in the first row to σ0
1 and

σ−1
1 , according to the skein relation. The first node is equivalent to the braid word,

ω2 α
n−1
n−1, while the second node is ω2 α

n−2
n−1 αn−2.

Continue in this fashion to convert the generator in the first row with the lowest

subscript in each node, to σ0
1 and σ−1

1 , forming two new nodes from each parent

node. After the entire first row of the original braid word is converted, there are

2n−1 end nodes, each associated with a weight in the form v2n−2−aza, with a as

the number of conversions of generators to zero exponent. Thus the end node has

a writhe with the value n(n− 1)− (2n− 2− a). Note that the nodes are all positive

words in Bn, and have a rows of αn−1 and n− 1− a rows of αn−2.

Observe that each node also appears in the skein calculation tree forK(n− 1, n),

and this is equivalent to the link K(n, n − 1). By the induction hypothesis,

deg pj,K(n,n−1) = n(n − 2) − j(j + 1), for j < n − 1. By (3.17), deg pj,K(n−1,n)

is one higher, i.e. (n − 1)2 − j(j + 1), for j < n − 1. The only node that makes a

contribution to pn−1 for K(n, n) is αn−1
n−2, whose closure is a disjoint union of O1

with K(n − 1, n − 1). By the induction hypothesis, pn−2,K(n−1,n−1) = (−1)n−2,

hence pn−1,K(n,n) = (−1)n−1.

Now the node with the highest power of z in its weight is also the node with the

highest writhe, i.e. αn−1
n−1, and the weight is vn−1zn−1. Hence the dominant term in

the skein tree contributes zn−1pj,K(n−1,n), and so the degree of pj for K(n, n) is

n− 1 + (n− 1)2 − j(j + 1), i.e. n(n− 1)− j(j + 1) for 0 ≤ j < n− 1.

The same technique may now be used to show the result for r > n.

3.25. Proof of Prop. 2.46 (Pos. Braid Upper Bound for deg pj)

Proof. The assertion is easily verified for n = 2 and On for any n, for j ≤ 1

for any β, and for |β| = 1. When β = γσ2
i η, we have pj, β̂ = zpj, γ̂σiη + pj, γ̂η .

When ρ(γη) = ρ(β), the result is easily verified. When ρ(γη) = ρ(β) − 1, we have
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δ(j, γη) = max{ 0 , 2j (Rj+1, n − ρ(β)) + 2j } . By the induction hypothesis we have

deg pj, γ̂η ≤ (|β|− 2)+ (2 o(β)− 2n+4)+ δ(j, γη)− j(j+1) . This may be rewritten

as deg pj, γ̂η ≤ |β|+ 2 o(β) + δ∗ − j(j + 1) , with δ∗ = max{−2n+ 2 , 2j (Rj+1, n −
ρ(β)) + 2j − 2n+ 2 }. Since δ∗ ≤ δ(j, γσiη), the result is true.

A braid length reduction argument as in Section 3.7 concludes the proof.

3.26. Proof of Theorem 2.48 (Nonporous Positive Braid Words)

Proof. Observe that there is a node in a skein calculation tree for β̂ which

represents K(ρ(β), n) with all other nodes associated with positive braid

words. By Props. 2.43, 2.44, and 3.7, all of the pj, β̂ are nonzero for j ∈
[0 ,min(ρ(β)− 1, n− 1)]. The degree value follows from Props. 2.43 and 2.46.

3.27. Proof of Theorem 2.51 (Nonporous Rank 2 Positive Braids)

Proof. The observation that, when n ≥ 3 and j ≥ 2, we have pj = 0 exactly when

D(β) ≥ n− j is readily verified for n = 3 and j = 2. Assume n ≥ 4 below.

Suppose β = σa
n−1σ

b
n−2γσ

x
n−1σ

y
n−2η , with γ, η ∈ Bn−2. Set s = x + b − 2 and

A = a+ 1. Write σA
n−2γσ

y
n−2η as ξ1, and σb

n−2γσ
y
n−2η as ξ3 . Apply (3.13) to get:

Pβ̂ = CxCbv
sPξ̂1

+ CxCb−1v
s+1PTA♯Ty

Pγ̂η + Cx−1v
xPTa

Pξ̂3
.

In the first result term, pn−1, ξ̂1
= 0. Note that pj, β̂ = 0 exactly when this is

true for the corresponding coefficient polynomial in each result term. These are:

(i) zCxCbpj, ξ̂1 ,

(ii) CxCb−1(CA+1Cy+1pj, ∗ − p1, TA♯Ty
pj−1, ∗ + CA−1Cy−1pj−2, ∗), with ∗ = γ̂η ,

(iii) Cx−1(Ca+1pj, ξ̂3 − Ca−1pj−1, ξ̂3
) .

The following observations will be used without comment below. When σn−1 is

robust, D(β) = D(ξ3) . When σn−2 is robust, all braid words, β, ξ1, γη, and ξ3 ,

have identical values forD() , and kβ = 1+kγη , while kξ1 , kξ3 ∈ [kβ − 1, kβ ] . When

σn−2 is a1, kβ = kξ1 = kξ3 . When σn−1 and σn−2 are both a1, D(β) = 1 +D(ξ1) .

When the second (third) term is nonzero, σn−2 (σn−1) must be robust.

When j = 2, the second and third terms can only vanish when σn−2 and σn−1

are a1. The first term vanishes exactly when D(ξ1) ≥ (n− 1)− 2, so D(β) ≥ n− 2.

When j = 3, the second term can only vanish when σn−2 is a1. When σn−1 is a1,

the result follows as for j = 2 . Otherwise, we must have D(ξ3) ≥ (n − 1) − 2 , so

D(β) ≥ n− 3 . As the conditions are also sufficient, the result holds.

The final case is for j ≥ 4 . When σn−2 is a1, similar reasoning as above shows

the result holds. When σn−2 is robust, the second term requires D(γη) ≥ n − j,

which is also a sufficient condition. Hence pj, β̂ = 0 exactly when D(β) ≥ n− j .

To establish the value for deg pj, β̂ when j ≥ 3 and D(β) < n − j , begin with

n = j + 1. The first result term is zero, the second is CxCb−1CaCy−1pj−2,γ̂η , the
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third is −Cx−1Ca−1pj−1, ξ̂3
, and D(β) = 0 . For j = 3 the second result term

contributes zero when σ2 is a1 and a term with degree |β| − 8 otherwise, while the

third result term contributes zero when σ3 is a1 and otherwise contributes a term

with degree |β| − 10 . This proves the deg p3, β̂ claim when n = 4 and D(β) = 0 .

Suppose n > 4 and D(β) = n − 4 . When both edge generators are robust, all

others must be a1, so only the third result term is nonzero and the degree of p3,β̂ is

|β| − 10 . When an edge generator is a1, it may be assumed to be σn−1 ,[2], [18], in

which case the third result term is zero. When σn−2 is also a1, only the first result

term is nonzero. Since the non-edge generators of β which are robust are exactly

those of ξ1 , the claim is satisfied. In the remaining case when σn−1 is a1 but σn−2

is robust, only the second result term is nonzero and its degree is |β|−8 , as desired.

When D(β) < n− 4 the first result term contributes a dominant term for p3,β̂ with

the desired degree. This concludes the proof for j = 3 . A similar analysis verifies

the result for j = 4 .

Assume now that j ≥ 5 and n ≥ 6 . Observe that whenever σn−2 is robust, the

second result term contributes a term of the expected degree to pj, β̂ . This is also

true of the third result term when σn−1 is robust and σn−2 is a1. When σn−2 is a1

and pj, ξ̂1 6= 0 , the first term contributes a term of the expected degree to pj, β̂ .

In fact when pj, ξ̂1 6= 0 , and kξ1 = kβ the first term contributes a term of

the expected degree to pj, β̂ . When pj, ξ̂1 6= 0 , and kξ1 = kβ − 1 , the first term

contributes a term of degree two less than expected for pj, β̂ when kξ1 < J , i.e.

kβ ≤ J , but a term of the expected degree when kξ1 ≥ J , i.e. kβ > J . A more

complicated relation applies to a nonzero third result term. When kξ3 = kβ , it

contributes a term of the expected degree to pj, β̂ provided j is even or kβ < J ,

otherwise a term of degree two less. If instead, kξ3 = kβ −1 and j is odd, a nonzero

third term always contributes a term two less than expected for pj, β̂ while for even

j, it contributes a term of the expected degree when kβ > J , but a term of degree

two less otherwise. Thus there are no terms of degree higher than expected.

3.28. Proof of Theorem 2.52 (Polarized Braid results)

Proof. Theorem 2.22 provides the upper bounds in the theorem. The proof in

Section 3.7 can be adapted to prove the result. The theorem is easily seen to be

true for elementary torus links, On, and connected sums and disjoint unions of links

generated by polarized braids of lower strand number.

When β has an instance of σ2
k, say β = σ2

kγ, then Pβ̂ = vzPσ̂kγ + v2Pγ̂ . Since

the braid word for each summand satisfies the induction hypothesis, so does the

sum. This is true even when σk is a null generator for γ. A similar argument applies

when β has an instance of σ−2
k The final argument involves the same braid length

reduction technique as in Section 3.7.
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4. Conjectures and Open Questions

Here are some results that seem plausible based on examples and related results.

(i) Proposition 2.5 is true for all links,

(ii) the rank of a link generated by a nonporous homogeneous (alternating, positive)

braid word, with all syllable lengths two or more, is the rank of the braid word.

The following are a few open questions with no specific expected outcome:

(i) are the {hj}n−1
0 solutions to another family of linear relations as in (2.10),

independent from those in Thm. 2.7 , or is there a sequence of rational functions

in n variables for which they are solutions?

(ii) is there a reasonable way to determine the rank of a braid word, or link, even

if only for certain subclasses ?
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