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RELATIVE NODE POLYNOMIALS FOR PLANE CURVES

FLORIAN BLOCK

Abstract. We generalize the recent work of S. Fomin and G. Mikhalkin on poly-
nomial formulas for Severi degrees.

The degree of the Severi variety of plane curves of degree d and δ nodes is given
by a polynomial in d, provided δ is fixed and d is large enough. We extend this result
to generalized Severi varieties parametrizing plane curves which, in addition, satisfy
tangency conditions of given orders with respect to a given line. We show that the
degrees of these varieties, appropriately rescaled, are given by a combinatorially
defined “relative node polynomial” in the tangency orders, provided the latter are
large enough. We describe a method to compute these polynomials for arbitrary
δ, and use it to present explicit formulas for δ ≤ 6. We also give a threshold for
polynomiality, and compute the first few leading terms for any δ.

1. Introduction and Main Results

The Severi degree Nd,δ is the degree of the Severi variety of (possibly reducible)
nodal plane curves of degree d with δ nodes. Equivalently, Nd,δ is the number of such

curves passing through (d+3)d
2

−δ generic points in the complex projective plane CP2.
Severi varieties have received considerable attention since they were introduced by
F. Enriques [8] and F. Severi [16] around 1915. Much later, in 1986, J. Harris [12]
achieved a celebrated breakthrough by showing their irreducibility.
In 1994, P. Di Francesco and C. Itzykson [7] conjectured that the numbers Nd,δ are

given by a polynomial in d, for a fixed number of nodes δ, provided d is large enough.
S. Fomin and G. Mikhalkin [9, Theorem 5.1] established this polynomiality in 2009.
More precisely, they showed that there exists, for every δ ≥ 1, a node polynomial
Nδ(d) which satisfies Nd,δ = Nδ(d) for all d ≥ 2δ.
The polynomiality of Nd,δ and the polynomials Nδ(d) were known in the 19th

century for δ = 1, 2, 3. For δ = 4, 5, 6, this was only achieved by I. Vainsencher [19]
in 1995. In 2001, S. Kleiman and R. Piene [13] settled the cases δ = 7, 8. In [2],
the author computed Nδ(d) for δ ≤ 14 and improved the threshold of S. Fomin and
G. Mikhalkin by showing that Nd,δ = Nδ(d) provided d ≥ δ.
Severi degrees can be generalized to incorporate tangency conditions to a fixed line

L ⊂ CP2. More specifically, the relative Severi degree N δ
α,β is the number of (possibly

reducible) nodal plane curves with δ nodes which have tangency of order i to L at
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2 FLORIAN BLOCK

αi fixed points (chosen in advance) and tangency of order i to L at βi unconstrained
points, for all i ≥ 1, and which pass through an appropriate number of generic points.
Equivalently, N δ

α,β is the degree of the generalized Severi variety studied in [6, 20].
By Bézout’s Theorem, the degree of a curve with tangencies of order (α, β) equals
d =

∑

i≥1 i(αi + βi). The number of point conditions (for a potentially finite count)

is (d+3)d
2

− δ − α1 − α2 − · · · . We recover non-relative Severi degrees by specializing

to α = (0, 0, . . . ) and β = (d, 0, 0, . . . ). The numbers N δ
α,β are determined by the

rather complicated Caporaso-Harris recursion [6].
In this paper, we show that much of the story of (non-relative) node polynomials

carries over to relative Severi degrees. Our main result is that, up to a simple
combinatorial factor and for fixed δ ≥ 1, the relative Severi degrees N δ

α,β are given
by a multivariate polynomial in α1, α2, . . . , β1, β2, . . . , provided that β1 + β2 + . . . is
sufficiently large. (The δ = 0 case is trivial as N0

α,β = 1 for all α, β.) For a sequence
α = (α1, α2, . . . ) of non-negative integers with finitely many αi non-zero we write

|α|
def
= α1 + α2 + · · · , α!

def
= α1! · α2! · · · · .

Throughout the paper we use the grading deg(αi) = deg(βi) = 1 (so that d and |β|
are homogeneous of degree 1). The following is our main result.

Theorem 1.1. For every δ ≥ 1, there is a combinatorially defined polynomial
Nδ(α1, α2, . . . ; β1, β2, . . . ) of (total) degree 3δ such that, for all α1, α2, . . . , β1, β2, . . .

with |β| ≥ δ, the relative Severi degree N δ
α,β is given by

(1.1) N δ
α,β = 1β12β2 · · ·

(|β| − δ)!

β!
·Nδ(α1, α2, . . . ; β1, β2, . . . ).

We call Nδ(α; β) the relative node polynomial and use the same notation as in the
non-relative case if no confusion can occur. We do not need to specify the number
of variables in light of the following stability condition.

Theorem 1.2. For δ ≥ 1 and vectors α = (α1, . . . , αm), β = (β1, . . . , βm′) with
|β| ≥ δ, it holds that

Nδ(α, 0; β) = Nδ(α; β) and Nδ(α; β, 0) = Nδ(α; β)

as polynomials. Therefore, there exists a formal power series N∞
δ (α; β) in infinitely

many variables α1, α2, . . . , β1, β2, . . . which specializes to all relative node polynomials
under αm+1 = αm+2 = · · · = 0 and βm′+1 = βm′+2 = · · · = 0, for various m,m′ ≥ 1.

Using the combinatorial description we provide a method to compute the relative
node polynomials for arbitrary δ (see Sections 3 and 4). We utilize it to compute
Nδ(α; β) for δ ≤ 6. Due to spacial constrains we only tabulate the cases δ ≤ 3 in this
paper. The polynomials N0 and N1 already appeared (implicitly) in [9, Section 4.2].

Theorem 1.3. The relative node polynomials Nδ(α; β), for δ = 0, 1, 2, 3 (resp., δ ≤
6) are as listed in Appendix A (resp., as provided in the ancillary files accompanying
this article).

The polynomial Nδ(α; β) is of degree 3δ by Theorem 1.1. We compute the terms
of Nδ(α; β) of degree ≥ 3δ − 2.
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Theorem 1.4. The terms of Nδ(α; β) of (total) degree ≥ 3δ − 2 are given by

Nδ(α; β) =
3δ

δ!

[

d2δ |β|δ +
δ

3

[

−
3

2
(δ − 1)d2 − 8d|β|+ |β|α1 + dβ1 + |β|β1

]

d2δ−2|β|δ−1+

+
δ

9

[ 3

8
(δ − 1)(δ − 2)(3δ − 1)d4 + 12δ(δ − 1)d3|β|+ (11δ + 1)d2|β|2+

−
3

2
δ(δ − 1)(d3β1 + d2|β|α1)−

1

2
(δ + 5)(3δ − 2)d2|β|β1 − 8(δ − 1)(d|β|2α1 + d|β|2β1)+

+
1

2
(δ − 1)(d2β2

1 + |β|2α2

1 + |β|2β2

1) + (δ − 1)(d|β|α1β1 + d|β|β2

1 + |β|2α1β1)
]

d2δ−4|β|δ−2 + · · ·

]

,

where d =
∑

i≥1 i(αi + βi).

Theorem 1.4 can be extended to terms of Nδ(α, β) of degree ≥ 3δ − 7 (see Re-
mark 5.2). We observe that all coefficients of Nδ(α; β) in degree ≥ 3δ − 2 are of

the form 3δ

δ!
times a polynomial in δ. In fact, even more is true. It is conceivable to

expect this to hold for arbitrary degrees.

Proposition 1.5. Every coefficient of Nδ(α; β) in degree ≥ 3δ − 7 is given, up to a

factor of 3δ

δ!
, by a polynomial in δ with rational coefficients.

Our approach to planar enumerative geometry is combinatorial and inspired by
tropical geometry which is a general procedure replacing a subvariety of a com-
plex algebraic torus by a piece-wise linear polyhedral complex (see, for example,
[10, 15, 17]). By the celebrated Correspondence Theorem of G. Mikhalkin [14, Theo-
rem 1] one can replace the algebraic curve count in CP2 by an enumeration of certain
tropical curves. E. Brugallé and G. Mikhalkin [4, 5] introduced a class of decorated
graphs, called (marked) floor diagrams (see Section 2), which, if counted correctly,
are equinumerous to such tropical curves. We use a version of these results which
incorporates tangency conditions due to S. Fomin and G. Mikhalkin [9] (see Theo-
rem 2.4). S. Fomin and G. Mikhalkin also introduced a template decomposition of
floor diagrams which we extend to be suitable for the relative case. This decompo-
sition is crucial in the proofs of all results in this paper, as is the reformulation of
algebraic curve counts in terms of floor diagrams.
For some related work see [1], where F. Ardila and the author generalized the

polynomiality of Severi degrees to curve counts in (some) toric surfaces including
CP1 × CP1 and Hirzebruch surfaces. A main feature is that we show polynomial-
ity not only in the multi-degree of the curves but also “in the surface itself.” In [3],
A. Gathmann, H. Markwig and the author defined Psi-floor diagrams which enumer-
ate plane curves which satisfy point and tangency conditions, and conditions given
by Psi-classes. We proved a Caporaso-Harris type recursion for Psi-floor diagrams,
and show that relative descendant Gromov-Witten invariants equal their tropical
counterparts.
This paper is organized as follows. In Section 2 we review the definition of floor

diagrams and their markings. In Section 3 we introduce a new decomposition of
floor diagrams which is compatible with tangency conditions. In Section 4 we prove
Theorems 1.1,1.2, 1.3. In Section 5 we show Theorem 1.4 and Proposition 1.5.
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2. Floor diagrams and relative markings

Floor diagrams are a class of decorated graphs which, if counted correctly, enumer-
ate plane curves with prescribed properties. They were introduced by E. Brugallé
and G. Mikhalkin [4, 5] in the non-relative case and generalized to the relative set-
ting by S. Fomin and G. Mikhalkin [9]. We begin with a review of the relative setup
following notation of [9] (where floor diagrams are called “labeled floor diagrams”).

Definition 2.1. A floor diagram D on a vertex set {1, . . . , d} is a directed graph
(possibly with multiple edges) with edge weights w(e) ∈ Z>0 satisfying:

(1) The edge directions preserve the vertex order, i.e., for each edge i → j of D
we have i < j.

(2) (Divergence Condition) For each vertex j of D:

div(j)
def
=

∑

edges e

j
e
→ k

w(e)−
∑

edges e

i
e
→ j

w(e) ≤ 1.

This means that at every vertex of D the total weight of the outgoing edges is larger
by at most 1 than the total weight of the incoming edges.

The degree of a floor diagram D is the number of its vertices. It is connected if its
underlying graph is. Note that in [9] floor diagrams are required to be connected.
If D is connected its genus is the genus of the underlying graph (or the first Betti
number of the underlying topological space). The cogenus of a connected floor di-

agram D of degree d and genus g is given by δ(D) = (d−1)(d−2)
2

− g. If D is not
connected let d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively, of
its connected components. Then the cogenus of D is δ(D) =

∑

j δj +
∑

j<j′ djdj′.

Via the correspondence between algebraic curves and floor diagrams [5, Theorem 2.5]
these notions correspond literally to the respective analogues for algebraic curves.
Connectedness corresponds to irreducibility. Lastly, a marked floor diagram D has
multiplicity1

µ(D)
def
=

∏

edges e

w(e)2.

We draw floor diagrams using the convention that vertices in increasing order are
arranged left to right. Edge weights of 1 are omitted.

Example 2.2. An example of a floor diagram of degree d = 4, genus g = 1, cogenus
δ = 2, divergences 1, 1, 0,−2, and multiplicity µ = 4 is drawn below.

g g g g2- - j
*

To enumerate algebraic curves with floor diagrams we need the notion of markings
of such diagrams. Our notation, which is more convenient for our purposes, differs
slightly from [9] where S. Fomin and G. Mikhalkin define relative markings relative

1If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to
the notion of multiplicity of tropical plane curves.
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to the partitions λ = 〈1α12α2 · · · 〉 and ρ = 〈1β12β2 · · · 〉. In the sequel, all sequences
are sequences of non-negative integers with finite support.

Definition 2.3. For two sequences α, β we define an (α, β)-marking of a floor di-
agram D of degree d=

∑

i≥1i(αi+βi) by the following four step process which we
illustrate in the case of Example 2.2 for α = (1, 0, 0, . . . ) and β = (1, 1, 0, 0, . . . ).
Step 1: Fix a pair of collections of sequences ({αi}, {βi}), where i runs over the

vertices of D, with:

(1) The sums over each collection satisfy
∑d

i=1 α
i = α and

∑d

i=1 β
i = β.

(2) For all vertices i of D we have
∑

j≥1 j(α
i
j + βi

j) = 1− div(i).

The second condition says that the “degree of the pair (αi, βi)” is compatible with
the divergence at vertex i. Each such pair ({αi}, {βi}) is called compatible with D
and (α, β). We omit writing down trailing zeros.

g g g g2- - j
*

αi = (1)

βi = (1) (0, 1)

Step 2: For each vertex i of D and every j ≥ 1 create βi
j new vertices, called

β-vertices and illustrated as w, and connected them to i with new edges of weight j
directed away from i. For each vertex i of D and every j ≥ 1 create αi

j new vertices,
called α-vertices and illustrated as gs, and connected them to i with new edges of
weight j directed away from i.

g g g g2- - j
*

αi = (1)

βi = (1) (0, 1)

�����
w

������
����*

w gs
2

Step 3: Subdivide each edge of the original floor diagram D into two directed
edges by introducing a new vertex for each edge. The new edges inherit their weights
and orientations. Call the resulting graph D̃.

g g g g2 2- - - - j
*

*
j

w w
w

w

�����
w

������
����*

w gs
2

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of the
original floor diagramD such that, as inD, each edge is directed from a smaller vertex
to a larger vertex. Furthermore, we require that the α-vertices are largest among all
vertices, and for every pair of α-vertices i′ > i, the weight of the i′-adjacent edge is
larger than or equal to the weight of the i-adjacent edge.

2 2g g g gw w w w ww gs- - - - -

-

-

-
- -

2

-

We call the extended graph D̃, together with the linear order on its vertices, an
(α, β)-marked floor diagram, or an (α, β)-marking of the floor diagram D.
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We need to count (α, β)-marked floor diagrams up to equivalence. Two (α, β)-
markings D̃1, D̃2 of a floor diagramD are equivalent if there exists a weight preserving
automorphism of weighted graphs mapping D̃1 to D̃2 which fixes the vertices of D.
The number of markings να,β(D) is the number of (α, β)-marked floor diagrams D̃
up to equivalence. Furthermore, we write µβ(D) for the product 1β12β2 · · ·µ(D).
The next theorem follows from [9, Theorem 3.18] by a straight-forward extension
of the inclusion-exclusion procedure of [9, Section 1] which was used to conclude [9,
Corollary 1.9] (the non-relative count of reducible curves via floor diagrams) from
[9, Theorem 1.6] (the non-relative count of irreducible curves via floor diagrams).

Theorem 2.4. For any δ ≥ 1, the relative Severi degree N δ
α,β is given by

N δ
α,β =

∑

D

µβ(D)να,β(D),

where the sum is over all (possibly disconnected) floor diagrams D of degree d =
∑

i≥1 i(αi + βi) and cogenus δ.

3. Relative Decomposition of Floor Diagrams

In this section we introduce a new decomposition of floor diagrams compatible
with tangency conditions which we use extensively in Sections 4 and 5 to prove
all our results stated in Section 1. This decomposition is an extension of ideas of
S. Fomin and G. Mikhalkin [9]. We start out by reviewing their key gadget.

Definition 3.1. A template Γ is a directed graph (possibly with multiple edges) on
vertices {0, . . . , l}, where l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

(1) If i → j is an edge then i < j.

(2) Every edge i
e
→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

(3) For each vertex j, 1 ≤ j ≤ l − 1, there is an edge “covering” it, i.e., there
exists an edge i → k with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length
l(Γ) is the number of vertices minus 1. The product of squares of the edge weights
is its multiplicity µ(Γ). Its cogenus δ(Γ) is

δ(Γ)
def
=
∑

e

i→j

[

(j − i)w(e)− 1

]

.

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i
e
→ k

with i < j ≤ k and define

kmin(Γ)
def
= max

1≤j≤l
(κj − j + 1).

This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor
diagram on {1, 2, . . . } with left-most vertex k. Figure 1 ([9, Figure 10]) lists all
templates Γ with δ(Γ) ≤ 2.
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Γ δ(Γ) ℓ(Γ) µ(Γ) κ(Γ) kmin(Γ) PΓ(k)

d d2
1 1 4 (2) 2 k − 1

d d d 1 2 1 (1,1) 1 2k + 1

d d3
2 1 9 (3) 3 k − 2

d d
2

2
2 1 16 (4) 4

(

k−2
2

)

d d d 2 2 1 (2,2) 2
(

2k
2

)

d d d
2 2 2 4 (3,1) 3 2k(k − 2)

d d d
2 2 2 4 (1,3) 2 2k(k − 1)

d d d d 2 3 1 (1,1,1) 1 3(k + 1)

d d d d 2 3 1 (1,2,1) 1 k(4k + 5)

Figure 1. The templates with δ(Γ) ≤ 2.

Our new decomposition of a floor diagram D depends on two (infinite) matrices A
and B of non-negative integers. We require both to have only finitely many non-zero
entries all of which lie above the respective dth row, where d is the degree of D.
The triple (D, A, B) decomposes as follows. Let l(A) and l(B) be the largest row

indices such that A and B have a non-zero entry in this row, respectively. After
we remove all “short edges” from D, i.e., all edges of weight 1 between consecutive
vertices, the resulting graph is an ordered collection of templates (Γ1, . . . ,Γr), listed
left to right. Let ks be the smallest vertex in D of each template Γs. Record all
pairs (Γs, ks) which satisfy ks + l(Γs) ≤ d −max(l(A), l(B)). Record the remaining
templates together with all vertices i, for i ≥ max(l(A), l(B)) in one graph Λ on
vertices 0, . . . , l by shifting the vertex labels by d − l. See Example 3.4 for an
example of this decomposition. Furthermore, by construction, if m is the number of
recorded pairs (Γs, ks), we have

(3.1)







ki ≥ kmin(Γi) for 1 ≤ i ≤ m,

ki+1 ≥ ki + l(Γi) for 1 ≤ i ≤ m− 1,
km + l(Γm) ≤ d− l(Λ).

Given a floor diagram D, a partitioning of α and β into a compatible pair of
collections ({αi, βi}) (see Step 1 in Definition 2.3), where i runs over the vertices
of D, determines a pair of matrices A,B, if α1, α2, . . . , β1, β2, . . . are large enough.
The ith row vectors ai and bi of A and B are given by the sequences αd−i and βd−i,
respectively, for i ≥ 1 (so that a1 equals the number of α-edges of weight 1 adjacent
to the various vertices of Λ, and so on, see Example 3.2). If d− i ≤ 0 set αd−i to be
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the zero sequence. The sequences αd and βd are given by

(3.2) αd = α−
∑

i≥1

ai and βd = β −
∑

i≥1

bi

if both expression are (component-wise) non-negative.

Example 3.2. For α = (1, 1), β = (4, 1) and the floor diagram D pictured below,
the partitioning

e e e e e e e e

-
- -

-

-
3-

-
-
-
-

2- ---D =

αi = (0, 1) (1)

βi = (1) (1) (2, 1)

determines the matrices

A =











0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
.
..

.

..
.
..

. . .











B =











0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
.
..

.

..
.
..

. . .











In light of (3.2) we consider, for given tangency conditions α and β, only the triples
(D, A, B) which satisfy

(3.3)















∑

i≥1

ai ≤ α (component-wise),

∑

i≥1

bi ≤ β (component-wise),

For fixed d, the decomposition

(3.4)
(

D, A, B
)

−→
(

{(Γs, ks)},Λ, A, B
)

.

is reversible if the data on the right-hand side satisfies (3.1) and the tuple (Λ, A, B)
is an “extended template.”

Definition 3.3. A tuple (Λ, A, B) is an extended template of length l = l(Λ) =
l(Λ, A, B) if Λ is a directed graph (possibly with multiple edges) on vertices {0, . . . , l},
where l ≥ 0, with edge weights w(e) ∈ Z>0, satisfying:

(1) If i → j is an edge then i < j.

(2) Every edge i
e
→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

Moreover, we require A and B to be (infinite) matrices with non-negative integral
entries and finite support, and we write l(A) and l(B) for the respective largest
row indices of A and B of a non-zero entry. Additionally, we demand that l(Λ) ≥
max(l(A), l(B)) and that, for each 1 ≤ j < l − max(l(A), l(B)), there is an edge
i → k of Λ with i < j < k.
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Example 3.4. An example of a decomposition of a floor diagram D subject to the
matrices A and B of Example 3.2 is pictured below. Once we fix the degree of the
floor diagram the decomposition is reversible (here d = 8).

e e e e e e e e

-
- -

-

-
3-

-
-
-
-

2- ---
l

e e e e e e e e3- 2-

(Γ1, 1)
Λ

The cogenus of an extended template (Λ, A, B) is the sum of the cogenera δ(Λ),
δ(A) and δ(B), where

δ(Λ)
def
=
∑

e

i→j

[

(j − i)w(e)− 1

]

, δ(A)
def
=
∑

i,j≥1

i · j · ai,j ,

and similarly for B. It is not hard to see that the correspondence (3.4) is cogenus
preserving in the sense that (compare with Example 3.4 (cont’d))

δ(D) =

(

m
∑

i=1

δ(Γi)

)

+ δ(Λ) + δ(A) + δ(B).

Example 3.4 (cont’d). The cogenera of the decomposition are given by

δ(Γ1) + δ(Λ) + δ(A) + δ(B) = 1 + 3 + 4 + 6 = 14.

This agrees with the cogenus of D as δ(D) = (d−1)(d−2)
2

− g = 7·6
2
− 7 = 14.

With an extended template (Λ, A, B) we associate the following numerical data.
For 1 ≤ j ≤ l(Λ) let κj(Λ) denote the sum of the weights of edges i → k of Λ
with i < j ≤ k. Define dmin(Λ, A, B) to be the smallest positive integer d such that
(Λ, A, B) can appear (at the right end) in a floor diagram on {1, 2, . . . , d}. We will see
later that dmin is given by an explicit formula. For a matrix A = (aij) of non-negative
integers with finite support define the “weighted lower sum sequence” wls(A) by

wls(A)i
def
=

∑

i′≥i,j≥1

j · ai′j .

We now define the number of “markings” of templates and extended templates and
relate them to the number of (α, β)-markings of the corresponding floor diagrams.
To each template Γ we associate a polynomial as follows. For k ≥ kmin(Γ) let Γ(k)

denote the graph obtained from Γ by first adding k+i−1−κi short edges connecting
i− 1 to i, for 1 ≤ i ≤ l(Γ), and then subdividing each edge of the resulting graph by
introducing one new vertex for each edge. By [9, Lemma 5.6] the number of linear
extensions (up to equivalence, see the paragraph after Definition 2.3) of the vertex
poset of the graph Γ(k) extending the vertex order of Γ is given by a polynomial
PΓ(k) in k, if k ≥ kmin(Γ)(see Figure 1).
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(Λ, A, B) δ ℓ µ κ dmin q(Λ,A,B)(α; β) of Lemma 4.1 s

d
[

0 0
0 0

] [

0 0
0 0

]

0 0 1 () 1 1 0

d d
[

1 0
0 0

] [

0 0
0 0

]

1 1 1 (0) 1 1 0

d d
[

0 0
0 0

] [

1 0
0 0

]

1 1 1 (0) 1 β1(d+ |β| − 1) 0

d d2
[

1 0
0 0

] [

0 0
0 0

]

2 1 4 (2) 4 (d− 3) 1

d d2
[

0 0

0 0

] [

1 0

0 0

]

2 1 4 (2) 4 β1(d− 3)(d+ |β| − 2) 1

d d d
[

1 0
0 0

] [

0 0
0 0

]

2 2 1 (1,1) 3 2(d− 2) 0

d d d
[

0 0
0 0

] [

1 0
0 0

]

2 2 1 (1,1) 3 β1(d− 2)(2d+ 2|β| − 3) 0

d d
[

2 0
0 0

] [

0 0
0 0

]

2 1 1 (0) 3 1 0

d d
[

1 0
0 0

] [

1 0
0 0

]

2 1 1 (0) 3 β1(d+ |β| − 2) 0

d d
[

0 0
0 0

] [

2 0
0 0

]

2 1 1 (0) 3
(

β1

2

)

(d2 + 2d|β|+ |β|2 − 5d− 5|β|+ 6) 0

d d
[

0 1
0 0

] [

0 0
0 0

]

2 1 1 (0) 3 1 0

d d
[

0 0
0 0

] [

0 1
0 0

]

2 1 1 (0) 3 β2(|β| − 1)(d+ |β| − 2) 0

d d d
[

0 0
1 0

] [

0 0
0 0

]

2 3 1 (0,0) 3 1 0

d d d
[

0 0
0 0

] [

0 0
1 0

]

2 3 1 (0,0) 3 β1(|β| − 1)(2d+ |β| − 3) 0

Figure 2. The extended templates with δ(Λ, A, B) ≤ 2.

For each pair of sequences (α, β) and each extended template (Λ, A, B) satisfy-
ing (3.3) and d ≥ dmin, where d =

∑

i≥1 i(αi + βi), we define its “number of mark-
ings” as follows. Write l = l(Λ) and let P(Λ, A, B) be the poset obtained from Λ
by

(1) first creating an additional vertex l + 1 (> l),
(2) then adding bij edges of weight j between l − i and l + 1, for all 1 ≤ i ≤ l

and j ≥ 1,
(3) then adding βj −

∑

i≥1 bij edges of weight j between l and l + 1, for j ≥ 1,
(4) then adding

(3.5) d− l(Λ) + i− 1− κi(Λ)− wls(A)l+1−i − wls(B)l+1−i

(“short”) edges of weight 1 connecting i− 1 and i, for 1 ≤ i ≤ l, and finally
(5) subdividing all edges of the resulting graph by introducing a midpoint vertex

for each edge.
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We denote by Q(Λ,A,B)(α; β) the number of linear orderings on P(Λ, A, B) (up to
equivalence) which extend the linear order on Λ. As d ≥ dmin(Λ, A, B) if and only
if (3.5) is non-negative, for 1 ≤ i ≤ l, we have

dmin(Λ, A, B) = max
1≤i≤l(Λ)

(l(Λ)− i+ 1 + κi(Λ) + wls(A)l(Λ)+1−i + wls(B)l(Λ)+1−i).

For sequences s, t1, t2, . . . with s ≥
∑

i ti (component-wise) we denote by
(

s

t1, t2, . . .

)

def
=

s!

t1!t2! · · · (s−
∑

i ti)!

the multinomial coefficient of sequences.
We obtain all (α, β)-markings of the floor diagram D that come from a compatible

pair of sequences ({αi}, {βi}) by independently ordering the α-vertices and the non-
α-vertices. Therefore, the number such markings is given (via the correspondence
(3.4)) by

(3.6)
(

m
∏

s=1

PΓs
(ks)

)

·

(

α

aT1 , a
T
2 , . . .

)

·Q(Λ,A,B)(α; β),

where aT1 , a
T
2 , . . . are the column vectors of A. We conclude this section by recasting

relative Severi degrees in terms of templates and extended templates.

Proposition 3.5. For any δ ≥ 1, the relative Severi degree N δ
α,β is given by

(3.7)
∑

(Γ1, . . . ,Γm),
(Λ, A,B)

(

m
∏

s=1

µ(Γs)
∑

k1,...km

m
∏

s=1

PΓs
(ks)

)

·
(

µ(Λ)
∏

i≥1

iβi

(

α

a1, a2, . . .

)

Q(Λ,A,B)(α; β)
)

,

where the first sum is over all collections (Γ1, . . . ,Γm) of templates and all extended
templates (Λ, A, B) satisfying (3.3), d ≥ dmin(Λ, A, B) and

m
∑

i=1

δ(Γi) + δ(Λ) + δ(A) + δ(B) = δ,

and the second sum is over all positive integers k1, . . . , km which satisfy (3.1).

Proof. By Theorem 2.4 the relative Severi degree is given by

N δ
α,β =

∑

D

µβ(D)να,β(D),

where the sum is over all floor diagramsD of degree d =
∑

i≥1 i(αi+βi) and cogenus δ.

The result follows from µβ(D) =
∏

i≥1 i
βi ·
(
∏m

s=1 µ(Γs)
)

· µ(Λ) and (3.6). �

4. Relative Severi Degrees and Polynomiality

We now turn to the proofs of our main results by first showing a number of
technical lemmata. For a graph G, we denote by #E(G) the number of edges of G.
We write ||A||1 =

∑

i,j≥1 aij for the 1-norm of a (possibly infinite) matrix A = (aij).
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Lemma 4.1. For every extended template (Λ, A, B) there is a polynomial q(Λ,A,B)

in α1, α2, . . . , β1, β2, . . . of degree #E(Λ) + ||B||1 + δ(B) such that for all α and β

satisfying (3.3) the number Q(Λ,A,B)(α; β) of linear orderings (up to equivalence) of
the poset P(Λ, A, B) is given by

Q(Λ,A,B)(α; β) =
(|β| − δ(B))!

β!
· q(Λ,A,B)(α; β)

provided
∑

i≥1 i(αi + βi) ≥ dmin(Λ, A, B).

Proof. We can choose a linear extension of the order on the vertices of Λ to the poset
P(Λ, A, B) in two steps. First, we choose a linear order on the vertices 0, . . . , l(Λ)+1,
the midpoint vertices of the edges of Λ and the midpoint vertices of the edges created
in step (2) in the definition of P(Λ, A, B). In a second step, we choose an extension
to a linear order on all vertices. Let ri be the number of vertices between i − 1
and i after the first extension, for 1 ≤ i ≤ l(Λ) + 1, and let σi be the number of
equivalent such linear orderings of the interval between i−1 and i (σi is independent
of the particular choice of the linear order). To insert the additional vertices (up to
equivalence) between the vertices 0 and l = l(Λ) we have

(4.1)

l
∏

i=1

1

σi

(

d− l(Λ) + i− 1− κi(Λ)− wls(A)l+1−i − wls(B)l+1−i + ri

ri

)

many possibilities where again d =
∑

i≥1 i(αi+βi). If d ≥ dmin(Λ, A, B) then expres-

sion (4.1) is a polynomial in d of degree
∑l

i=1 ri, and thus in α1, α2, . . . , β1, β2, . . . .
The number of (equivalent) orderings of the vertices between l and l + 1 is the
multinomial coefficient

(4.2)

(

|β| − ||B||1 + rl+1

β1 − |bT1 |, β2 − |bT2 |, . . .

)

,

where |bTj | denotes the sum of the entries in the jth column of B. As ||B||1 ≤ δ(B),
expression (4.2) equals, for all β1, β2, · · · ≥ 0,

(4.3)

(

|β|

β1, β2, . . .

)

(|β| − δ(B))!

|β|!
P (β) =

(|β| − δ(B))!

β!
P (β)

for a polynomial P in β1, β2, . . . of degree rl+1 + δ(B). The product of (4.1) and
(4.3) is

(4.4)
(|β| − δ(B))!

β!
P ′(α; β)

for a polynomial P ′ in α1, α2, . . . , β1, β2, . . . of degree #E(Λ)+ ||B||1+δ(B) provided

d ≥ dmin(Λ, A, B) where we used that
∑l+1

i=1 ri = #E(Λ) + ||B||1. As (4.4) equals
the number of linear extensions (up to equivalence) that can be obtained by linearly
ordering the vertices in all segments between i− 1 and i, for 1 ≤ i ≤ l+1, the proof
is complete. �
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Recall that, for an extended template (Λ, A, B), we defined dmin = dmin(Λ, A, B) to
be the smallest d ≥ 1 such that d−l(Λ)+i−1 ≥ κi(Λ)+wls(A)l(Λ)+1−i+wls(B)l(Λ)+1−i

for all 1 ≤ i ≤ l(Λ). Let i0 be the smallest i for which equality is attained (it is easy
to see that equality is attained for some i). Define the quantity s(Λ, A, B) to be the
number of edges of Λ from i0 − 1 to i0 (of any weight). See Figure 2 for examples.

Lemma 4.2. For any extended template (Λ, A, B) and any α, β ≥ 0 (component-
wise) with

dmin(Λ, A, B)− s(Λ, A, B) ≤
∑

i≥1

i(αi + βi) ≤ dmin(Λ, A, B)− 1

we have q(Λ,A.B)(α; β) = 0, where q(Λ,A,B) is the polynomial of Lemma 4.1.

Proof. Notice that dmin − l(Λ) + i0 − 1 = κi0(Λ) + wls(A)l(Λ)+1−i0 + wls(B)l(Λ)+1−i0

where dmin = dmin(Λ, A, B). Therefore, the number of short edges which are added
between i0− 1 and i0 in step (3) of the definition of the poset P(Λ, A, B) is d− dmin,

where as before d =
∑

i≥1 i(αi + βi). Recall that, up to the factor (|β|−δ(B))!
β!

, the

polynomial q(Λ,A,B) records the number of linear extension of the poset P(Λ, A, B)
(up to equivalence). Every such extension is obtained by first linearly ordering the
d − dmin midpoints of the short edges between i0 − 1 and i0 which were added in
step (3) together with the s(Λ, A, B) midpoints of the edges of Λ between i0− 1 and
i0, before extending this to a linear order on all the vertices of P(Λ, A, B). Thus,
q(Λ,A,B) is divisible by the polynomial (d− dmin + 1) · · · (d− dmin + s(Λ, A, B)). �

The next lemma specifies which extended templates are compatible with a given
degree.

Lemma 4.3. For every extended template (Λ, A, B) we have

dmin(Λ, A, B)− s(Λ, A, B) ≤ δ(Λ) + δ(A) + δ(B) + 1.

Proof. We use the notation from above and write l = l(Λ). Notice that

dmin(Λ, A, B)− l(Λ) + i0 − 1 = κi0(Λ) + wls(A)l+1−i0 + wls(B)l+1−i0 .

Therefore, it suffices to show

l(Λ) ≤ δ(Λ)− κi0(Λ) + s(Λ, A, B) + δ(A)−wls(A)l+1−i0 + δ(B)− wls(B)l+1−i0 + i0.

Let Λ′ be the graph obtained from Λ by removing all edges j → k with either k < i0
or j ≥ i0. It is easy to see that l(Λ, A, B) − l(Λ′, A, B) ≤ δ(Λ) − δ(Λ′). Thus, we
can assume without loss of generality that all edges j → k of Λ satisfy j < i0 ≤ k.
Therefore, as κi0(Λ) =

∑

edges ewt(e), we have

δ(Λ)−κi0+s(Λ, A, B) =
∑

edges e

[

wt(e)(len(e)−1)−1
]

+s =
∑

[

wt(e)(len(e)−1)−1
]

,

where len(e) is the length k − j of an edge j
e
→ k and the last sum is over all

edges of Λ of length at least 2. It is easy to see that the matrix A satisfies δ(A) ≥
wls(A)i + l(A)− 1 for all i ≥ 1, therefore, if l(A) = l(Λ), it suffices to show that

(4.5) l(A) ≤
∑

[

wt(e)(len(e)− 1)− 1
]

+ l(A)− 1 + δ(B)− wls(B)l+1−i0 + i0,
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where the sum again runs over all edges of Λ of length at least 2. But (4.5) is clear
as all summands in the sum are non-negative and δ(B) ≥ wls(B)l+1−i0. The same
argument also settles the case l(B) = l(Λ).
Otherwise, we can assume that l(Λ) > l(A) ≥ l(B) and that there exists an edge

0 → i of Λ with l(Λ)− l(A) ≤ i− 1. If, additionally, we have i0 ≤ l(Λ)− l(A) then
wls(A)l+1−i0 = 0 and, using δ(B) ≥ wls(B)l+1−i0 , it suffices to prove that

l(A) + i− 1 ≤ i− 2 + δ(A) + 1

which is clear as l(A) ≤ δ(A).
Finally, if i0 ≥ l(Λ) − l(A) + 1, it remains to show that l(A) + 1 ≤ δ(A) −

wls(A)l+1−i0 + i0. We have (by definition of δ(A) and wls(A)l+1−i0) that

(4.6) δ(A)− wls(A)l+1−i0 + i0 =
∑

(i− 1)jaij +
∑

ijaij + i0,

where the first sum runs over i ≥ l + 1 − i0, j ≥ 1 and the second sum runs over
1 ≤ i < l + 1 − i0, j ≥ 1. As i0 ≥ l(Λ) − l(A) + 1 there exists a non-zero entry
ai′j′ of A with i′ = l(A) ≥ l + 1 − i0. Therefore, the index set of the first sum
of (4.6) is non-empty and the right-hand side of (4.6) is ≥ i′ − 1 + i0 = l(A) + 1 as
i0 ≥ l(Λ)− l(A) + 1 ≥ 2. �

We now turn to the proof of the main theorem of this paper.

Proof of Theorem 1.1. We first show that (1.1) holds of all α, β with d ≥ δ + 1
where we again write d =

∑

i≥1 i(αi + βi). This implies (1.1) if at least one of
α1, α2, . . . , β2, β3, . . . is non-zero (note that β1 is omitted), because in that case |β|≥ δ

implies d ≥ δ + 1.
Notice that we can remove condition (3.3) from formula (3.7) of Proposition 3.5

and still obtain correct relative Severi degrees as
(

α

aT
1
,aT

2
,...

)

Q(Λ,A,B)(α; β) = 0 whenever

(3.3) is violated. The first factor of (3.7) equals

(4.7)

d−l(Λ)
∑

km=kmin(Γm)

µ(Γm)PΓm
(km)

km−l(Γm−1)
∑

km−1=kmin(Γm−1)

· · ·

k2−l(Γ1)
∑

k1=kmin(Γ1)

µ(Γ1)PΓ1
(k1)

and is, therefore, an iterated “discrete integral” of polynomials. By repeated ap-
plication of [2, Lemma 3.5] (or other means) expression (4.7) is a polynomial in
d if d − l(Λ) ≥ 2

∑m

i=1 δ(Γi). Furthermore, as the polynomials PΓi
(ki) have de-

grees #E(Γi) and each “discrete integration” increases the degree by 1 the polyno-
mial (4.7) is of degree

∑m

i=1#E(Γi) + m. By a literal application of the argument
in Section 4 of [2] one can improve the polynomiality threshold of (4.7) and show
that (4.7) is a polynomial in d if d − l(Λ) ≥

∑m

i=1 δ(Γi) + 1. Furthermore, we have
l(Λ) ≤ δ(Λ) + δ(A) + δ(B). Thus, the first factor of (3.7) is a polynomial in d if
d ≥ δ + 1 =

∑

i δ(Γi) + 1 + δ(Λ) + δ(A) + δ(B).
The multinomial coefficient

(

α

aT
1
,aT

2
,...

)

is a polynomial in α1, α2, . . . for fixed se-

quences of (column) vectors aT1 , a
T
2 , . . . , if α1, α2, · · · ≥ 0. Hence, by Lemma 4.1, the
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second factor of (3.7) is of the form

(4.8)
∏

i≥1

iβi ·
(|β| − δ)!

β!
· R(Λ,A,B)(α; β)

for a polynomial R(Λ,A,B)(α; β) in α1, α2, . . . , β1, β2, . . . of degree #E(Λ) + ||A||1 +
||B||1+ δ provided d ≥ dmin(Λ, A, B), where used that δ(B) ≤ δ. By Lemma 4.2 the
second factor of (3.7) equals expression (4.8) for all α, β with d ≥ dmin(Λ, A, B) −
s(Λ, A, B). Thus, using Lemma 4.3, if

d ≥ δ + 1 ≥ δ(Λ) + δ(A) + δ(B) + 1 ≥ dmin(Λ, A, B)− s(Λ, A, B)

the second factor in (3.7) is
∏

i≥1 i
βi · (|β|−δ)!

β!
times a polynomial in α1, α2, . . . , β1, β2, . . .

of degree #E(Λ) + ||A||1 + ||B||1 + δ. Hence (1.1) holds if |β| ≥ δ and at least one
βi, for i ≥ 2, or one αi, for i ≥ 1, is non-zero. Notice that each summand of (3.7)
contributes a polynomial of degree

(4.9)

m
∑

i=1

#E(Γi) +m+#E(Λ) + ||A||1 + ||B||1 + δ

to the relative node polynomial Nδ(α; β). It is not hard to see that expression (4.9) is
at most 3δ, and that equality is attained by letting Γ1, . . . ,Γδ be the unique template
on three vertices with cogenus 1 (see Figure 1) and (Λ, A, B) be the unique extended
template of cogenus 0 (see Figure 2).
If α = 0 and β = (d, 0, . . . ) then N δ

α,β equals the (non-relative) Severi degree Nd,δ

which, in turn, is given by the (non-relative) node polynomial Nabs
δ (d) provided d ≥ δ

(see [2, Theorem 1.3]). Therefore, we have Nδ(0; d) = Nabs
δ (d) ·d(d−1) · · · (d−δ+1)

as polynomials in d. Applying [2, Theorem 1.3] again completes the proof. �

Remark 4.4. Expression (3.7) gives, in principle, an algorithm to compute the
relative node polynomial Nδ(α; β), for any δ ≥ 1. In [2, Section 3] we explain how
to generate all templates of a given cogenus, and how to compute the first factor in
(3.7). The generation of all extended templates of a given cogenus from the templates
is straightforward, as is the computation of the second factor in (3.7).

Remark 4.5. The proof of Theorem 1.1 simplifies if we relax the polynomiality
threshold. More specifically, without considering the quantity s(Λ, A, B) and the
rather technical Lemmata 4.2 and 4.3 the argument still implies (1.1) provided
|β| ≥ 2δ (instead of |β| ≥ δ).

The immediate conclusion from the proof of Theorem 1.1 is two-fold.

Corollary 4.6. For δ ≥ 1 the relative node polynomial Nδ(α, β) is a polynomial in
d, |β|, α1, . . . , αδ, and β1, . . . , βδ, where d =

∑

i≥1 i(αi + βi)

Proof. Every extended template (Λ, A, B) considered in (3.7) satisfies δ(A) ≤ δ and
δ(B) ≤ δ. Therefore, all rows i in A or B are zero for i > δ. �
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Proof of Theorem 1.2. By the proof of Lemma 4.1 we have, for every extended tem-
plate (Λ, A, B),

R(Λ,A,B)(α, 0; β) = R(Λ,A,B)(α; β) R(Λ,A,B)(α; β, 0) = R(Λ,A,B)(α; β).

Hence, by the proof of Theorem 1.1, the result follows. �

Now it is also easy to prove Theorem 1.3.

Proof of Theorem 1.3. Proposition 3.5 gives a combinatorial description of relative
Severi degrees. The proof of Lemma 4.1 provides a method to calculate the poly-
nomial Q(Λ,A,B)(α; β). All terms of expression (3.7) are explicit or can be evaluated
using the techniques of [2, Section 3]. This reduces the calculation to a (non-trivial)
computer calculation. �

5. Coefficients of Relative Node Polynomials

We now turn towards the computation of the coefficients of the relative node
polynomial Nδ(α; β) of large degree for any δ. By Theorem 1.1 the polynomial
Nδ(α, β) is of degree 3δ. In the following we propose a method to compute all terms
of Nδ(α; β) of degree ≥ 3δ − t, for any given t ≥ 0. This method was used (with
t = 2) to compute the terms in Theorem 1.4.
The main idea of the algorithm is that, even for general δ, only a small number of

summands of (3.7) contribute to the terms of Nδ(α; β) of large degree. A summand

of (3.7) is indexed by a collection of templates Γ̃ = {Γs} and an extended template
(Λ, A, B). To determine whether this summand might contribute to Nδ(α; β) we
define the (degree) defects

• of the collection of templates Γ̃ by

def(Γ̃)
def
=

m
∑

s=1

[

δ(Γi)
]

−m, and

• of the extended template (Λ, A, B) by

def(Λ, A, B)
def
= δ(Λ) + 2δ(A) + 2δ(B)− ||A||1 − ||B||1.

The following lemma restricts the indexing set of (3.7) to the relevant terms, if
only the leading terms of Nδ(α; β) are of interest.

Lemma 5.1. The summand of (3.7) indexed by Γ̃ and (Λ, A, B) is of the form

1β12β2 · · ·
(|β| − δ)!

β!
· P (α; β),

where P (α; β) is a polynomial in α1, α2, . . . , β1, β2, . . . of degree ≤ 3δ − def(Γ̃) −
def(Λ, A, B).

Proof. By [2, Lemma 5.2] the first factor of (3.7) is of degree at most

2 ·
m
∑

s=1

δ(Γs)−
m
∑

s=1

(δ(Γs)− 1) =

m
∑

s=1

δ(Γs) +m.
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The multinomial coefficient
(

α

aT
1
,aT

2
,...

)

is a polynomial in α of degree ||A||1 if aTj are

the jth column vector of A. Recall from the proof of Theorem 1.1 that the second
factor of (3.7) is

∏

i≥1

iβi
(|β| − δ)!

β!
times a polynomial in α, β of degree #E(Λ) + ||A||1 + ||B||1 + δ.

Therefore, the contribution of this summand to the relative node polynomial is at
most of degree

m
∑

s=1

δ(Γs) +m+#E(Λ) + ||A||1 + ||B||1 + δ

= 3δ − 2
m
∑

s=1

δ(Γs)− 2δ(Λ)− 2δ(A)− 2δ(B) + #E(Λ)

= 3δ − def(Γ̃)− def(Λ, A, B)− δ(Λ) + #E(Λ).

The result follows as δ(Λ) ≥ #E(Λ) �

Therefore, to compute the coefficients of degree ≥ 3δ−t of Nδ(α; β) for some t ≥ 0,
it suffices to consider only summands of (3.7) with def(Γ̃) ≤ t and def(Λ, A, B) ≤ t.

One can proceed as follows. First, we can compute, for some formal variable δ̃,
the terms of degree ≥ 2δ̃− t of the first factor of (3.7) to Nδ̃(α; β), that is the terms

of degree ≥ 2δ̃ − t of

(5.1) Rδ̃(d)
def
=
∑

m
∏

i=1

µ(Γi)

d−l(Γm)
∑

km=kmin(Γm)

PΓm
(km) · · ·

k2−l(Γ1)
∑

k1=kmin(Γ1)

PΓ1
(k1),

where the first sum is over all collections of templates Γ̃ = (Γ1, . . . ,Γm) with δ(Γ̃) = δ̃.
(Notice that (5.1) is expression [9, (5.13)] without the “ε-correction” in the sum in-
dexed by km.) The leading terms of Rδ̃(d) can be computed with a slight modification
of [2, Algorithm 2] (by replacing, in the notation of [2], Cend by C and M end by M).
The algorithm relies on the polynomiality of solutions of certain polynomial differ-
ence equations, which has been verified for t ≤ 7, see [2, Section 5] for more details.
With a Maple implementation of this algorithm one obtains (with t = 5)

R
δ̃
(d) =

3δ̃

δ̃!

[

d
2δ̃ −

8δ̃

3
d
2δ̃−1 +

δ̃(11δ̃ + 1)

32
d
2δ̃−2 +

δ̃(δ̃ − 1)(496δ̃ − 245)

6 · 33
d
2δ̃−3

−
δ̃(δ̃ − 1)(1685δ̃2 − 2773δ̃ + 1398)

6 · 34
d
2δ̃−4+

−
δ̃(δ̃ − 1)(δ̃ − 2)(7352δ̃2 + 11611δ̃ − 25221)

30 · 35
d
2δ̃−5 + · · ·

]

.

Finally, to compute the coefficients of degree ≥ 3δ − t, it remains to compute all
extended templates (Λ, A, B) with def(Λ, A, B) ≤ t and collect the terms of degree
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≥ 3δ − t of the polynomial

(5.2) Rδ̃(d− l(Λ)) · µ(Λ)

(

α

aT1 , a
T
2 , . . .

) δ−1
∏

i=δ(B)

(|β| − i) · q(Λ,A,B)(α; β),

where, as before, aT1 , a
T
2 , . . . denote the column vectors of the matrix A, q(Λ,A,B)(α; β)

is the polynomial of Lemma 4.1, and δ̃ = δ − δ(Λ, A, B). Notice that, for an inde-
terminant x and integers c ≥ 0 and δ ≥ 1, we have the expansion

δ−1
∏

i=c

(x− i) =

δ−c
∑

t=0

s(δ − c, δ − c− t)(x− c)δ−c−t,

where s(n,m) is the Stirling number of the first kind [18, Section 1.3] for integers
n,m ≥ 0. Furthermore, with δ′ = δ − c the coefficients s(δ′, δ′ − t) of the sum equal
δ′(δ′ − 1) · · · (δ′ − t) · St(δ

′), where St is the t-th Stirling polynomial [11, (6.45)], for
t ≥ 0, and thus are polynomial in δ′. Therefore, we can compute the leading terms
of the product in (5.2) by collecting the leading terms in the sum expansion above.

Proof of Proposition 1.5. Using [2, Algorithm 2] we can compute the terms of the

polynomial RΓ̃(d) of degree ≥ 2δ̃ − 7 (see [2, Section 5]) and observe that all co-

efficients are polynomial in δ̃. By the previous paragraph the coefficients of the
expansion of the sum of (5.2) are polynomial in δ. This completes the proof. �

Proof of Theorem 1.4. The method described above is a direct implementation of
formula (3.7), which equals the relative Severi degree by the proof of Theorem 1.1.

�

Remark 5.2. It is straight-forward to compute the coefficients of Nδ(α; β) of degree
≥ 3δ − 7 (and thereby to extend Theorem 1.4). Algorithm 3 of [2] computes the

coefficients of the polynomials Rδ̃(d) of degree ≥ 2δ̃ − 7, and thus the desired terms
can be collected from (5.2). We expect this method to compute the leading terms
of Nδ(α, β) of degree ≥ 3δ − t for arbitrary t ≥ 0 (see [2, Section 5], especially
Conjecture 5.5).

Appendix A. New relative node polynomials

Below we list the relative node polynomials Nδ(α; β) for δ ≤ 3. For δ ≤ 6 the
polynomials Nδ(α; β) are as provided in the ancillary files accompanying this article.
All polynomials were obtained by a Maple implementation of the formula (3.7). See
Remark 4.4 for more details. For δ ≤ 1 this agrees with [9, Corollary 4.5, 4.6]. As
before, we write d =

∑

i≥1 i(αi + βi). By Theorem 1.1 the relative Severi degrees

N δ
α,β are given by N δ

α,β = 1β12β2 · · · (|β|−δ)!
β!

Nδ(α, β) provided |β| ≥ δ.
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N0(α, β) = 1,

N1(α, β) = 3d2|β| − 8d|β|+ dβ1 + |β|α1 + |β|β1 + 4|β| − β1,

N2(α, β) =
9

2
d4|β|2 − 9

2
d4|β| − 24d3|β|2 + 3d3|β|β1 + 3d2|β|2α1 + 3d2|β|2β1 + 24d3|β| − 3d3β1 + 23d2|β|2

− 3d2|β|α1 − 14d2|β|β1 + 1

2
d2β2

1 − 8d|β|2α1 − 8d|β|2β1 + d|β|α1β1 + d|β|β2

1 + 1

2
|β|2α2

1 + |β|2α1β1

+ 1

2
|β|2β2

1 − 23d2|β|+ 21

2
d2β1 + 3

2
d|β|2 + 8d|β|α1 + 11d|β|β1 + d|β|β2 − dα1β1 − 5

2
dβ2

1 − 1

2
|β|2α1

+ |β|2α2 − 1

2
|β|2β1 + |β|2β2 − 1

2
|β|α2

1 − 3|β|α1β1 − 5

2
|β|β2

1 − 83

2
d|β| − 3

2
dβ1 − dβ2 − 48|β|2 + 1

2
|β|α1

− |β|α2 + 29

2
|β|β1 − 3|β|β2 + 2α1β1 + 3β2

1 + 48|β| − 15β1 + 2β2,

N3(α, β) =
9

2
d6|β|3 − 27

2
d6|β|2 − 36d5|β|3 + 9

2
d5|β|2β1 + 9

2
d4|β|3α1 + 9

2
d4|β|3β1 + 9d6|β|+ 108d5|β|2 − 27

2
d5|β|β1

+ 51d4|β|3 − 27

2
d4|β|2α1 − 42d4|β|2β1 + 3

2
d4|β|β2

1 − 24d3|β|3α1 − 24d3|β|3β1 + 3d3|β|2α1β1 + 3d3|β|2β2

1

+ 3

2
d2|β|3α2

1 + 3d2|β|3α1β1 + 3

2
d2|β|3β2

1 − 72d5|β|+ 9d5β1 − 153d4|β|2 + 9d4|β|α1 + 93d4|β|β1 − 3d4β2

1

+ 1243

6
d3|β|3 + 72d3|β|2α1 + 92d3|β|2β1 + 3d3|β|2β2 − 9d3|β|α1β1 − 35

2
d3|β|β2

1 + 1

6
d3β3

1 + 19

2
d2|β|3α1

+ 3d2|β|3α2 + 19

2
d2|β|3β1 + 3d2|β|3β2 − 9

2
d2|β|2α2

1 − 23d2|β|2α1β1 − 37

2
d2|β|2β2

1 + 1

2
d2|β|α1β

2

1

+ 1

2
d2|β|β3

1 − 4d|β|3α2

1 − 8d|β|3α1β1 − 4d|β|3β2

1 + 1

2
d|β|2α2

1β1 + d|β|2α1β
2

1 + 1

2
d|β|2β3

1 + 1

6
|β|3α3

1

+ 1

2
|β|3α2

1β1 + 1

2
|β|3α1β

2

1 + 1

6
|β|3β3

1 + 102d4|β| − 54d4β1 − 1243

2
d3|β|2 − 48d3|β|α1 − 199

2
d3|β|β1

− 9d3|β|β2 + 6d3α1β1 + 45

2
d3β2

1 − 458d2|β|3 − 57

2
d2|β|2α1 − 9d2|β|2α2 + 116d2|β|2β1 − 23d2|β|2β2

+ 3d2|β|α2

1 + 95

2
d2|β|α1β1 + 105

2
d2|β|β2

1 + d2|β|β1β2 − d2α1β
2

1 − 2d2β3

1 + 155

2
d|β|3α1 − 8d|β|3α2

+ 155

2
d|β|3β1 − 8d|β|3β2 + 12d|β|2α2

1 + 61

2
d|β|2α1β1 + d|β|2α1β2 + d|β|2α2β1 + 37

2
d|β|2β2

1 + 2d|β|2β1β2

− 3

2
d|β|α2

1β1 − 11

2
d|β|α1β

2

1 − 4d|β|β3

1 − 5

2
|β|3α2

1 + |β|3α1α2 − 5|β|3α1β1 + |β|3α1β2 + |β|3α2β1 − 5

2
|β|3β2

1

+ |β|3β1β2 − 1

2
|β|2α3

1 − 3|β|2α2

1β1 − 9

2
|β|2α1β

2

1 − 2|β|2β3

1 + 1243

3
d3|β|+ 70

3
d3β1 + 6d3β2 + 1374d2|β|2

+ 19d2|β|α1 + 6d2|β|α2 − 845

2
d2|β|β1 + 48d2|β|β2 − 27d2α1β1 − 40d2β2

1 − 2d2β1β2 − 842

3
d|β|3

− 465

2
d|β|2α1 + 24d|β|2α2 − 396d|β|2β1 + 29d|β|2β2 + d|β|2β3 − 8d|β|α2

1 − 33d|β|α1β1 − 3d|β|α1β2

− 3d|β|α2β1 + 2d|β|β2

1 − 11d|β|β1β2 + dα2

1β1 + 7dα1β
2

1 + 47

6
dβ3

1 − 92

3
|β|3α1 − 6|β|3α2 + |β|3α3

− 92

3
|β|3β1 − 6|β|3β2 + |β|3β3 + 15

2
|β|2α2

1 − 3|β|2α1α2 + 87

2
|β|2α1β1 − 6|β|2α1β2 − 6|β|2α2β1 + 36|β|2β2

1

− 9|β|2β1β2 + 1

3
|β|α3

1 + 11

2
|β|α2

1β1 + 13|β|α1β
2

1 + 47

6
|β|β3

1 − 916d2|β|+ 303d2β1 − 28d2β2 + 842d|β|2

+ 155d|β|α1 − 16d|β|α2 + 1237

2
d|β|β1 − 31d|β|β2 − 3d|β|β3 + 8dα1β1 + 2dα1β2 + 2dα2β1 − 103

2
dβ2

1

+ 14dβ1β2 + 706|β|3 + 92|β|2α1 + 18|β|2α2 − 3|β|2α3 − 46|β|2β1 + 48|β|2β2 − 6|β|2β3 − 5|β|α2

1

+ 2|β|α1α2 − 197

2
|β|α1β1 + 11|β|α1β2 + 11|β|α2β1 − 271

2
|β|β2

1 + 26|β|β1β2 − 3α2

1β1 − 12α1β
2

1 − 10β3

1

− 1684

3
d|β| − 808

3
dβ1 + 10dβ2 + 2dβ3 − 2118|β|2 − 184

3
|β|α1 − 12|β|α2 + 2|β|α3 + 1184

3
|β|β1 − 102|β|β2

+ 11|β|β3 + 63α1β1 − 6α1β2 − 6α2β1 + 150β2

1 − 24β1β2 + 1412|β| − 362β1 + 60β2 − 6β3.
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