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Abstract—This paper proposes the first known universal in-
terference alignment scheme for general(1 × 1)K interference
networks, either Gaussian or deterministic, with only 2 symbol
extension. While interference alignment is theoreticallypowerful
to increase the total network throughput tremendously, no
existing scheme can achieve the degree of freedom upper bound
exactly with finite complexity. This paper starts with detailed
analysis of the diagonality problem of naive symbol extension in
small (1×1)3 networks, a technique widely regarded as necessary
to achieve interference alignment with insufficient diversity. Then,
a joint bandpass noncoherent demodulation and interference
alignment scheme is proposed to solve the diagonality problem
by trading signal power for increased system diversity, which
is further traded for multiplexing improvement. Finally, t he
proposed noncoherent interference alignment scheme is extended
to general (1 × 1)K cases and is proven to achieve the degree
of freedom upper bound exactly. Simulation results verify the
correctness and powerfulness of the proposed scheme and show
significant degree of freedom improvement compared to the
conventional orthogonal transmission scheme.

Index Terms—Interference alignment, noncoherent transmis-
sion, bandpass modulation, degree of freedom.

I. I NTRODUCTION

T HE exact capacity region of the general interference net-
work has been an open problem to information theorists

for decades. Even for the two-user case, capacity region is
only known for special cases such as those with strong and
very strong interference [1], [2]. The best known result forthe
general two-user Gaussian interference network can determine
the capacity region within0.5 bit for real cases or1 bit for
complex cases [3], [4] by using a modified version of the
Han-Kobayashi scheme [5].

For the generalK-user interference network, whereK > 2,
most research focused on the degree of freedom (DoF) region
[6], [7], which characterizes the capacity scaling behavior with
respect to the signal-to-noise ratio (SNR). In [7], Cadambeand
Jafar showed that the sum capacity of the general(1 × 1)K

interference network can be approximated as

C(SNR) =
K

2
log(SNR) + o(log(SNR)), (1)

wheref(x) = o(g(x)) denoteslimx→∞
f(x)
g(x) = 0. The DoF

characterizationK2 , which is also known as the multiplexing
gain, becomes increasingly accurate aso(log(SNR)) tends
to be negligible compared toK2 log(SNR) in the high SNR
regime.
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The scheme used in [7] to achieve the DoF upper bound
is interference alignment, which controls the interference
contamination such that all interference signals are aligned
into a certain signal subspace and leaves the remaining signal
subspace interference-free for desired signal. Equation (1)
implies that on average, each user can almost achieve half the
rate as if there were no interference at all, no matter how many
of them share the resource. Thus, in the high SNR regime, the
sum capacity scales linearly with the number of users.

Prosperous research works follow to construct interference
alignment solutions using various techniques [8]–[15] andto
apply similar ideas to several different applications [16], [17].
However, although being theoretical powerful, interference
alignment may not be feasible for certain network config-
urations. In [18], the feasibility conditions for interference
alignment were analyzed. The interference alignment prob-
lem was viewed as a multivariate polynomial system, and
a (M × N)K interference network1 is feasible to achieve
interference alignment without symbol extension only if

M +N > (K + 1)d, (2)

because only under this condition, the number of variables
exceeds the number of equations so that a solution may exist.

For single-antenna interference networks, no practical
scheme exists that can achieve the DoF upper bound exactly
with finite complexity. Symbol extension is widely regarded
as necessary to asymptotically approach the DoF upper bound
[7]. However, this is only true for time varying or frequency
selective fading channels. For deterministic networks with
constant channel coefficients, simple symbol extension will
generate a scaled identity matrix, which can not be used to
separate the desired and interference signals into different
signal subspaces.

Although interference alignment mainly focused on improv-
ing the multiplexing gain, the other important asset a system
possess is the diversity gain. In conventional point-to-point
multiple-input multiple-output (MIMO) channels, it has been
proved that there is a fundamental tradeoff between the achiev-
able multiplexing and diversity gains of a communication
system [19]. Similarly, in network level transmission strategy
designs, one can also purposely tradeoff one asset for the other
in order to maximize the desired network performance [20].

From (2), it is easy to see that the reason for the infeasible
interference alignment system is because there is not enough

1(M ×N)K is used to denote aK-user interference network, where each
transmitter hasM antennas, each receiver hasN antennas, and each user
wants to achieved DoF per channel use.

http://arxiv.org/abs/1009.5121v2


2

Diversity Multiplexing/DoFSignal power

Fig. 1. An indirect approach to achieve interference alignment via varying signal power to provide more diversity.

diversity, i.e.,M andN are too small2. Similar problem exists
for the interference alignment schemes with naive symbol
extension [7]. In those schemes, simple symbol extension
generates sparse channel matrix with only diagonal or block
diagonal elements. As a result, the scheme in [7] is only
able to asymptotically achieve the DoF upper bound with
infinitely large symbol extension, i.e., when diversity is high
enough. The diversity insufficiency problem becomes even
more catastrophic for deterministic interference networks with
constant channel coefficients. In such deterministic cases, sym-
bol extension does not even asymptotically achieve the DoF
upper bound because the extension itself does not increase
diversity.

Inspired by the research about diversity and multiplexing
tradeoff (DMT) [19], [20], we adopt an indirect approach to
obtain the DoF benefit offered by interference alignment as
shown in Fig. 1. Firstly, we trade signal power for diversity
improvement by using noncoherent transmissions with random
phase offsets at both transmitters and receivers, which is done
by distinctly scaled signal between each transmitter-receiver
pair. While diversity is not our ultimate goal, we then further
trade the increased system diversity for multiplexing improve-
ment in order to achieve the DoF upper bound promised by
interference alignment.

A. System model

We focus on(1 × 1)K interference networks with each
transmitter or receiver having only1 antenna.H[ji] is used to
denote the channel matrix between thei-th transmitterSi and
thej-th receiverDj after symbol extension, for1 6 i, j 6 K.
The diagonal elements inH[ji] are independent real Gaussian
distributed scalars for Gaussian interference networks orreal
constant scalars for deterministic interference networks. In this
paper, we mainly consider real Gaussian channel coefficients
if not particularly specified, while the real deterministiccases
will be discussed separately.
V[i] is used to denote the precoding matrix atSi andU[j]

is used to denote the receiving matrix atDj, for 1 6 i, j 6 K.
s[i] andŝ[i] are used to denote the baseband precoded symbols
to be transmitted bySi with short-term power constraintP and
the symbols estimated byDi, for 1 6 i 6 K. The additive
noise atDj is denoted asn[j] and assumed to be Gaussian
distributed with zero mean and covariance matrix

∑

n
[j] =

IN×N , for 1 6 j 6 K. x[i] andy[j] are used to denote the
bandpass transmitted signal atSi and the bandpass received
signal atDj respectively, for1 6 i, j 6 K.

We assume each transmitter or receiver uses advanced cod-
ing or decoding techniques in order to approach the Shannon

2The maximum single-user diversity gain increases asM + N increases

becauseMN 6
(M+N)2

4
.

limit. Moreover, pulse amplitude modulation (PAM) with sine
wave being the carrier signal is adopted as the modulation
scheme. For single-antenna interference networks, bandpass
representation of the transmitted signal atSi can be written as

x[i] = Re{s[i]ej2πfct+θ[i]

}

= s[i] cos(2πfct+ θ[i]), (3)

wherefc is the carrier frequency andθ[i] is the random phase
offset brought in bySi. Similarly, the received signal (ignoring
noise) fromSi to Dj can be written as

y[ji] = h[ji]s[i] cos(2πfct+ θ[i]). (4)

At Dj, a demodulatorf with random phase offsetϕ[j]

processes the received signal fromSi as

f [j]
ϕ (y[ji])

= 2

∫ T

0

y[ji] cos(2πfct+ ϕ[j])dt

= 2

∫ T

0

h[ji]s[i] cos(2πfct+ θ[i]) cos(2πfct+ ϕ[j])dt

= cos(ϕ[j] − θ[i])h[ji]s[i], (5)

whereT is a whole symbol interval.
Conventionally, a coherent demodulator should track the

phase change and reproduce the carrier signal such thatθ[i]

andϕ[j] are as close as possible. We will later show that it is
these intentionally chosen noncoherent random phase offsets
that provides us more diversity. Roughly speaking, if the
transmitter and receiver phase offsets between two antennas
happen to be close to each other, the channel gain between
them is large; On the other hand, if they happen to be far
away, the channel gain between them is small.

II. T HE DIVERSITY INSUFFICIENCY PROBLEM

From (2), we know that interference alignment is not
feasible without symbol extension for some network con-
figurations because the diversity is not large enough to be
traded for multiplexing improvement to achieve the DoF upper
bound. Thus, it is widely conjectured that symbol extension,
either in time or frequency domain, is needed to bridge the
information theoretically powerful interference alignment to
practical applications. In particular, symbol extension is mostly
desired in the following two common scenarios:

1) In cases that the feasibility condition (2) for a MIMO
interference network is not satisfied, it is natural to
consider symbol extension (either in time or frequency
domain) to increaseM and/orN .

2) For single-antenna interference networks, one may want
to use symbol extension to increaseM andN (and thus
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the resultant equivalent channel matrices are MIMO)
so that MIMO interference alignment schemes can be
applied to achieve the DoF upper bound exactly.

A. Problems of naive symbol extension

Although conceptually simple, there are certain limitations
so that naive symbol extension themselves are not able to
resolve all the problems:

1) Naive symbol extension increaseM +N andd propor-
tionally, and thus an original infeasible system remains
infeasible.

2) More importantly, the equivalent MIMO channel ma-
trices after naive symbol extension possess a diago-
nal or block diagonal structure such that conventional
MIMO interference alignment schemes are not feasible
to produce proper interference alignment precoding and
receiving matrices.

The first problem is straightforward from (2). To better
illustrate the second problem, let us consider a(1 × 1)3

interference network. With2 symbol extension in the time
domain, the equivalent channel matrix betweenSi and Dj

becomes

H[ji] =

[

h
[ji]
1 0

0 h
[ji]
2

]

, for 1 6 i, j 6 3, (6)

where h
[ji]
τ is used to denote the channel coefficient value

betweenSi andDj at time instantτ , for 1 6 τ 6 2. Since
the received signal at each receiver is a2 × 1 vector, the
interference alignment conditions can be written as

H[12]V[2] = αH[13]V[3], (7)

H[21]V[1] = βH[23]V[3], (8)

H[31]V[1] = γH[32]V[2], (9)

whereα, β andγ are three scalers. From (7)-(9), it is easy to
see:

V[2] = (H[12])−1αH[13]V[3], (10)

V[3] = (βH[23])−1H[21]V[1], (11)

V[1] = (H[31])−1γH[32]V[2]. (12)

Thus, in order to align all interference at each receiver into
the same signal subspace, the precoding matrices need to be
designed as

V[1] = EV[1], (13)

V[2] = FV[1], (14)

V[3] = GV[1], (15)

where

E = (H[31])−1γH[32](H[12])−1αH[13](βH[23])−1H[21], (16)

F = (γH[32])−1H[31], (17)

G = (βH[23])−1H[21]. (18)

Therefore,V[1] must be a linearly scaled version of an
eigenvector ofE. SinceE is a diagonal matrix, its eigenvectors

are

[

1
0

]

and

[

0
1

]

. Whichever eigenvectorV[1] is related to,

one of its entries is0, i.e.,S1 is silent in one of the two time
instants. So doS2 andS3 because of the diagonal structure
of F andG.

Thus, with diagonal equivalent channel matrices through
naive 2 symbol extension, every transmitter transmits in one
time instant and keeps silent in the other time instant. Conse-
quently, every receiver receives superpositioned desiredand
interference signal in one time instant and receive nothing
but noise in the other time instant. Although all interference
is aligned into the same signal subspace, the desired signal
is in the same signal subspace and inseparable from the
interference.

B. The insufficiency of coherent demodulation

From the last section, we see that the sparse diagonal
channel matrix is infeasible to achieve interference alignment
because of the lack of diversity. One technique to resolve the
diagonality problem is to add some scaled versions of the
received signal across several symbol extension together,in
order to artificially generate the non-diagonal terms for the
equivalent MIMO channel matrices. However, such operations
will scale the desired and all interference signal equally so that
although individual channel matrix is not diagonal,E, F and
G in (16)-(18) are still diagonal.

Let us consider again the(1 × 1)3 interference network
with 2 symbol extension in the time domain. As a first step
to resolve the diagonality problem, at each receiver, we adda
scaled version of the received signal in the first time instant
to the received signal in the second time instant. Thus, the
equivalent channel matrix betweenSi andDj becomes

H[ji] =

[

h
[ji]
1 0

λi
jh

[ji]
1 h

[ji]
2

]

, for 1 6 i, j 6 3, (19)

where λi
j is the scaling factor atDj for received signal

from Si. Because the desired and interference signal are
superpositioned to each other and inseparable at this stage,
we must haveλ1

j = λ2
j = λ3

j .
At Dj , we have

(H[jp])−1H[jq]

=

[

h
[jp]
1 0

λ
p
jh

[jp]
1 h

[jp]
2

]−1 [

h
[jq]
1 0

λ
q
jh

[jq]
1 h

[jq]
2

]

=





1

h
[jp]
1

0

−
λ
p
j

h
[jp]
2

1

h
[jp]
2





[

h
[jq]
1 0

λ
q
jh

[jq]
1 h

[jq]
2

]

=







h
[jq]
1

h
[jp]
1

0

−
λ
p
j
h
[jq]
1

h
[jp]
2

+
λ
q
j
h
[jq]
1

h
[jp]
2

h
[jq]
2

h
[jp]
2







=







h
[jq]
1

h
[jp]
1

0

0
h
[jq]
2

h
[jp]
2






, for 1 6 j, p, q 6 3, j 6= p, q. (20)

Thus, from (16) and (20), it is easy to seeE still possesses a
diagonal structure andV[1] must have a zero entry. Similarly
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to the argument in the last section, sinceF andG are both
diagonal matrices asE, V[2] andV[3] both have zero entries
in the same position as inV[1]. Therefore, although2 symbol
extension is used, only1 time instant is used to transmit
information by each transmitter and the received desired and
interference signal at each receiver is still inseparable.

From (20), we know the reason that simple artificial su-

perposition technique does not work properly is−
λ
p
j
h
[jq]
1

h
[jp]
2

and

λ
q
j
h
[jq]
1

h
[jp]
2

cancels each other becauseλp
j = λ

q
j . In other words,

the main problem is such operations scale all interference
components equally.

Thus, it is obvious that finding a function which can provide
unequal scaling to different components in superpositioned
signal is very important. If we restrict ourselves to the base-
band representation of the received signal (ignoring noise), at
time instantτ , we have

y[j]τ = y[j1]τ + y[j2]τ + y[j3]τ , (21)

wherey[j]τ is the overall received signal atDj andy[ji]τ is the
individual received signal atDj from Si, for 1 6 i, j 6 3.
What we need is to find a functionf such that

f(y[j]τ ) = λ1
jy

[j1]
τ + λ2

jy
[j2]
τ + λ3

jy
[j3]
τ (22)

and

λ1
j 6= λ2

j 6= λ3
j , for 1 6 j 6 3. (23)

(22) implies that such a functionf should only produce linear
combinations of different signal components, with unequal
combining coefficients. Unfortunately, to our best knowledge,
such a functionf does not exist under baseband signal repre-
sentation after coherent demodulation, where the phase offsets
at all transmitters and receivers are equal, i.e,θ[i] = ϕ[j],
1 6 i, j 6 3.

III. JOINT NONCOHERENT DEMODULATION AND

INTERFERENCE ALIGNMENT

We have seen that baseband signal representation after
coherent demodulation does not have enough freedom to
be manipulated to meet our needs. However, noncoherent
demodulation with random phase offset at each transmitter
or receiver provides us extra diversity (opportunity of unequal
scaling) between each transmitter-receiver pair.

Coming back to the previous(1× 1)3 interference network
with 2 symbol extension in the time domain. Ifs[i]1 ands[i]2 are
the baseband precoded signal to be transmitted bySi across
two time instants, the following transmitting strategy is used:

1) In the first time instant,Si modulatess[i]1 with random
phase offsetθ[i]1 .

2) In the second time instant,Si modulatess[i]2 with random
phase offsetθ[i]2 .

Correspondingly, ify[j]1 andy[j]2 are the bandpass received sig-
nal across two time instants,Dj creates2 artificial signalling
branches and the following receiving strategy is used:

1) In the first signalling branch,Dj firstly demodulatesy[j]1

with random phase offsetϕ[j]
1,1 and y

[j]
2 with random

phase offsetϕ[j]
1,2. Then, it adds the two signal together

to generate baseband received signalỹ
[j]
1 .

2) In the second signalling branch,Dj firstly demodulates
y
[j]
1 with random phase offsetϕ[j]

2,1 andy[j]2 with random

phase offsetϕ[j]
2,2. Then, it adds the two signal together

to generatẽy[j]2 .

Thus, atDj and the first time instant, if we apply a function
f
ϕ

[j]
1,1

andf
ϕ

[j]
1,2

to the overall bandpass received signaly
[j]
1 and

y
[j]
2 respectively, we have

ỹ
[j]
1

= f
ϕ

[j]
1,1

(y
[j]
1 ) + f

ϕ
[j]
1,2
(y

[j]
2 )

= f
ϕ

[j]
1,1

(y
[j1]
1 + y

[j2]
1 + y

[j3]
1 ) + f

ϕ
[j]
1,2
(y

[j1]
2 + y

[j2]
2 + y

[j3]
2 )

=

3
∑

i=1

[cos(ϕ
[j]
1,1 − θ

[i]
1 )h

[ji]
1 s

[i]
1 + cos(ϕ

[j]
1,2 − θ

[i]
2 )h

[ji]
2 s

[i]
2 ].(24)

Similarly, at Dj and the second time instant, if we apply
functions f

ϕ
[j]
2,1

and f
ϕ

[j]
2,2

to the overall received signaly[j]1

andy[j]2 , we have

ỹ
[j]
2 =

3
∑

i=1

[cos(ϕ
[j]
2,1 − θ

[i]
1 )h

[ji]
1 s

[i]
1 + cos(ϕ

[j]
2,2 − θ

[i]
2 )h

[ji]
2 s

[i]
2 ]. (25)

Therefore, the equivalent channel matrix betweenSi and
Dj across these2 symbol extension should be

H[ji] =

[

cos(ϕ
[j]
1,1 − θ

[i]
1 )h

[ji]
1 cos(ϕ

[j]
1,2 − θ

[i]
2 )h

[ji]
2

cos(ϕ
[j]
2,1 − θ

[i]
1 )h

[ji]
1 cos(ϕ

[j]
2,2 − θ

[i]
2 )h

[ji]
2

]

, (26)

for 1 6 i, j 6 3.
It is easy to see that with joint noncoherent demodulation

and interference alignment, the scaling factor atDj for the
received signal fromSi becomes

λi
j =

cos(ϕ
[j]
2,1 − θ

[i]
1 )

cos(ϕ
[j]
1,1 − θ

[i]
1 )

. (27)

Because each transmitter or receiver has a unique random
phase offset, (27) implies that with joint noncoherent demod-
ulation and interference alignment,λ1

j 6= λ2
j 6= λ3

j and the
diagonality problem is now fully resolved.

Besides the conventional channel diversity, the unequal scal-
ing of different signal components in superpositioned signal
here uses the extra phase diversity provided by each distinct
transmitter-receiver pair. It is also worth mentioning that the
proposed joint noncoherent demodulation and interference
alignment scheme also works for deterministic interference
networks, where symbol extension themselves do not provide
extra diversity. This is because with random phase offsets for
each symbol extension at all transmitters and receivers, we
literately improved the system diversity by the distinct phase
difference of each transmitter-receiver pair at each symbol
extension use.
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IV. GENERALIZED NONCOHERENT INTERFERENCE

ALIGNMENT FOR (1× 1)K

Up to this point, we have used the(1×1)3 interference net-
work to illustrate why to use symbol extension, the diagonality
problem of naive symbol extension because of diversity insuf-
ficiency and how our proposed joint noncoherent demodulation
and interference alignment scheme resolves the problem by
jointly considering bandpass modulation/decomulation and
interference alignment. This section generalizes the scheme
to general(1× 1)K interference networks.

A. How many artificial signalling branches are needed

Let us restrict ourselves to use2 symbol extension only (in
time or frequency domain). Since each user has only1 transmit
or receive antenna, total achievable DoF upper bound isK

2 ,
i.e., on average, each user wants to achieve1

2 DoF in one
channel use or1 DoF across2 symbol extension, i.e.,d = 1.

Also, with 2 symbol extension, the equivalent channel
matrices are MIMO and in the form ofN × 2, whereN is
the total number of artificial signalling branches we need to
create at each receiver. From (2), we know that interference
alignment is feasible only if

N + 2 > (K + 1)d

⇔ N > K − 1. (28)

B. Generalized scheme description

• Before the start of transmission,Si passes the original
symbol through its unique interference alignment pre-
coding matrix to generate the precoded signal to be
transmitted across2 symbol extension.

• In the first channel use,Si modulates the first component
of its precoded signal with random phase offsetθ

[i]
1 .

• In the second channel use,Si modulates the second
component of its precoded signal with random phase
offset θ[i]2 .

• Dj createsK − 1 artificial signalling branches. The
output of thek-th branch, for1 6 k 6 K − 1, is the
addition of the demodulated signal of the received signal
in first channel use with random phase offsetϕ

[j]
k,1 and

the demodulated signal of the received signal in second
channel use with random phase offsetϕ

[j]
k,2.

• After the demodulation process,Dj passes all the demod-
ulated signal through its unique interference alignment
receiving matrix to remove all interference from its
undesired transmitters.

Correspondingly, the block diagram for the generalized
scheme can be illustrated in Fig. 2 and Fig. 3.

C. DoF optimality

From the last subsection, it is easy see that the equivalent
channel matrix betweenSi andDj of a (1× 1)K interference
network using the noncoherent interference alignment scheme

becomes

H[ji] =











cos(ϕ
[j]
1,1 − θ

[i]
1 )h

[ji]
1 cos(ϕ

[j]
1,2 − θ

[i]
2 )h

[ji]
2

cos(ϕ
[j]
2,1 − θ

[i]
1 )h

[ji]
1 cos(ϕ

[j]
2,2 − θ

[i]
2 )h

[ji]
2

...

cos(ϕ
[j]
K−1,1 − θ

[i]
1 )h

[ji]
1 cos(ϕ

[j]
K−1,2 − θ

[i]
2 )h

[ji]
2











, (29)

for 1 6 i, j 6 K. Now, we need to show with such equivalent
channel matrices, a total ofK DoF can be achieved, such
that on average, each user can achieve1

2 DoF per channel
use. We assume the random phase offset at each transmitter or
receiver is a rational multiple ofπ and the channel coefficients
are Gaussian rational numbers. A phase offset of a rational
multiple of π can be obtained by a finite precision sampling
of the carrier wave. Similarly, a finite precision sampling of
the received signal before the receiving matrix will resultan
equivalent quantized Gaussian rational distributed channel.

Lemma 1. cos(qπ) is a root of a monic polynomial with
integer coefficients for any rationalq.

Proof: We only give a brief proof here for the self-
containess of this paper, while interested readers can refer to
[21] for details.

Define a linear fractional transformation and its similarity
parameter as

f(x) =
ax+ b

cx+ d
, andσ =

(a+ d)2

ad− bc
. (30)

wherea, b, c, d are complex constants. The iterations of two
linear fractional transformations in the complex plane are
geometrically similar if and only if they have the same
similarity parameter. Now, consider the following function

g(x) =
(1 +m)x+ (1 −m)

(1−m)x+ (1 +m)
, (31)

wherem is a complex constant. For an random initial value
of x0, then-th iteration ofg(x) can be written as

gn(x) =
(1 +mn)x0 + (1−mn)

(1−mn)x0 + (1 +mn)
. (32)

If we requiregn(x) to be cyclic with periodp, then we must
havemp = 1 for an integerp. This meansm must be of the
form

m = ej2π
q
p , for q = 1, 2, ..., p− 1. (33)

Thus, the similarity parameter ofg(x) is

σg(x) =
4(1 +m)2

(1 +m)2 − (1−m)2

= m+
1

m
+ 2

= 2 cos(
2qπ

p
) + 2

= 4 cos(
qπ

p
)2, for q = 1, 2, ..., p− 1. (34)

Now, consider another linear fractional transformation with
one of the similarity parameters in (34) as

h(x) = 1−
1

σg(x)x
. (35)
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Fig. 2. Transmitter side model of the noncoherent interference alignment scheme, where “D” is the delay component,v are precoding coefficients andθ are
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Fig. 3. Receiver side model of the noncoherent interferencealignment scheme, wherer are receiving coefficients andϕ are receiver random phase offsets.

Therefore, we knowhp(x) = x because of their geometric
similarity. LetPp denote a polynomial ofσg(x) with periodp,
thenhp(x) = x implies (after some algebra)

−[σg(x)x
2 − σg(x)x+ 1)Pp

σg(x)[Ppx− Pp−1]
= 0, for odd p (36)

and

−[σg(x)x
2 − σg(x)x+ 1)Pp

[σg(x)Ppx− Pp−1]
= 0, for evenp. (37)

Thus, the polynomialsPp satisfy

Pp+1 =

{

Pp − Pp−1, for p is odd,
σg(x)Pp − Pp−1, for p is even.

(38)

It is easy to verify thatσg(x) with periodp are roots to monic
polynomialsPp with integer coefficients and this completes
the proof.

Lemma 2. Gauss’s Lemma: Any root of a monic polynomial
with integer coefficients must either be an integer or irrational
number.

Proof: Again, only brief proof is provided for the com-
pleteness of this paper. It is trivial to verify that polynomials of
degree1 with integer coefficients only have integer roots. Let
us define the degree of a real numberx as the degree of the
minimal monic polynomial with integer coefficients havingx
as a root. For a degreek monic polynomialf(x) with integer
coefficients and constantC, define another polynomialg(x)
as

g(x) =
f(x)− C

x
. (39)

It is easy to seeg(x) is a degreek−1 monic polynomial with
integer coefficients.
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Assumef(x) has a rational non-integer rootr. Our task now
becomes to deriving a contradiction under this assumption.Let
r be a non-integer root off(x) and it must be of degreek.
Thus, we havef(r) = 0 andg(r) = −C

r
, where−C

r
must be

a non-integer.
Define N as the smallest integer such thatNg(r) is an

integer. Thus, the product ofN and any polynomial inr of
degreek−1 is an integer and we haveN ′ = N [g(r)−⌊g(r)⌋]
is an integer. Moreover, we have

N ′g(r) = N [g(r)− ⌊g(r)⌋]g(r)

= Ng(r)2 − ⌊g(r)⌋Ng(r) (40)

also being an integer. This is becauseg(r)2 can be expressed
as a polynomial of degreek − 1 by reducing every higher
power of r by substituting from the expression forrk given
by f(r) = 0. However, this contradicts the fact thatN is
the smallest integer such thatNg(r) is an integer because
0 < [g(r) − ⌊g(r)⌋] < 1 andN ′ < N . Thus,f(x) does not
have a non-integer rational root and this completes the proof.

Lemma 3. The product of a rational number and an irrational
number is irrational with probability1.

Lemma 4. If all elements of fully connected channel matrices
are irrational algebraic numbers, then the total achievable
DoF is K

2 .

Proof: Please refer to Theorem1 in [4].

Theorem 1. The noncoherent interference alignment scheme
is DoF optimal such that each user can achieve1

2 DoF per
channel use.

Proof: The proof for the theorem is a combination of
the previously introduced lemmas. Firstly, from Lemma1
and Lemma2, the termscos(ϕ[j] − θ[i]) in (29) are irra-
tional numbers. Then, from Lemma3, we know the products
cos(ϕ[j] − θ[i])h[ji] are also irrational with probability1. Fi-
nally, from Lemma4, the equivalent channel matrices offered
by noncoherent interference alignment are able to achieve the
DoF upper boundK2 .

D. Extensions to real deterministic interference networks

It is easy to see that the proposed noncoherent interference
alignment scheme does not distinguish between Gaussian or
deterministic interference networks. This is because either of
them lacks of sufficient diversity to be traded for multiplex-
ing improvement. The extra diversity we were manipulating
comes from the distinct phase difference of each transmitter-
receiver pair which does not depend on the underlying physical
channels. Thus, noncoherent interference alignment worksfor
Gaussian as well as deterministic interference networks.

V. SIMULATION RESULTS

In this section, we investigate the performance of our
proposed noncoherent interference alignment scheme. The
modulation scheme we employ is PAM, interference alignment
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Fig. 4. Rate performance of noncoherent interference alignment for(1×1)3.
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Fig. 5. Rate performance of noncoherent interference alignment for(1×1)4.

precoding and receiving matrices are derived from closed-
form solution for three-user MIMO interference channel in
[7] and iterative zero-forcing and max-SINR solutions in
[8]. The capacity upper bound we use is from (1) with the
trivial o(log(SNR)) term being ignored. Such approximation
becomes increasingly accurate in the medium-to-high SNR
regime.

From the simulation results in Fig. 4 and Fig. 5, we can
see our proposed noncoherent interference alignment scheme
is able to achieve the DoF upper bound, i.e., its achievable
throughput increases as the SNR with slopeK

2 . However, we
obverse that the achievable throughput is better than that of the
orthogonal transmission scheme only in the high SNR regime.
This is because the noncoherent interference alignment scheme
(actually almost every other interference alignment scheme)
is only DoF optimal but not capacity optimal. Thus, there
is a constant gap (in the medium-to-high SNR regime where
interference rather than noise is the dominating factor that
affects the throughput) between the achievable throughputand
the capacity upper bound. The reasons for the gap is explained
in detail as follows.

Firstly, for any interference alignment scheme, one has
to sacrifice some signal subspaces in order to align and
remove all interference signals from undesired transmitters.
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This, however, will at the same time remove the desired signal
in those signal subspaces and the overall signal energy is
almost definitely reduced. Fortunately, this only results in a
fixed SNR offset and does not affect the achievable DoF.
Actually, one important contribution of our work is to propose
the first known scheme to tradeoff fixed power (or SNR offset)
for DoF improvement.

Secondly, the use of random phase offsets in noncoherent
interference alignment results in energy loss of desired signal
in the demodulation process. From (5), we know desired signal
energy is always reduced to some extent in order to create
the “unequal scaling”. In the simulation results presented
above, the phase offset between each transmitter-receiverpair
is drawn from a continuous uniform distribution set[0o, 360o).
It is easy to verify that such operations halve the average
received signal power at each receiver compared to the case
when coherent detection is used.

Finally, in the process of creating artificial signalling
branches in order to meet the equivalent MIMO channel
feasibility condition, we raised the noise level. From the
noncoherent interference alignment scheme description, it is
easy to see that the output of thek-th, for 1 6 k 6 K − 1,
signalling branch is the addition of the demodulated signal
of the received signal across two channel uses. The addition
operation includes the addition of desired and interference
signals and also the addition of noise signals across two
channel uses. While all interference signals can be removed,
nothing can be done about the increased random noise.

Next, we consider the bit error rate (BER) performance
of our proposed noncoherent interference alignment scheme.
As shown in Fig. 6, due to the reasons explained in the last
several paragraphs, and the fact that our proposed noncoherent
interference alignment scheme trades the diversity gain for the
multiplexing improvement, the BER performance is not good
in its original form. In order to recover the diversity benefit in
the finite rate case, we employ the Fischer-Huber (FH) loading
algorithm [22]. In particular, we formulate an optimization
problem to maximize the minimum distance of different PAM
symbols so that the BER is minimized, subject to the total
rate constraint. The rate and power allocation is applied tothe
equivalent parallel channels after and before and interference
alignment precoding and receiving matrices respectively.For
our real (PAM) case, the rate and power for each channel under
the FH algorithm is allocated as

Ri =
RT

di
+

1

2di
log(

|hi|
2di

∏

l∈I |hl|2
), (41)

and

Pi =

PT 2
2RQi

|hi|2

∑

l∈I
2
2RQl

|hl|2

, (42)

wheredi, RQi
and Pi are the DoF, rate and power respec-

tively from Si to Di and hi and Qi are the channel gain
and the precoding matrix of thei-th parallel channel, for
1 6 i 6 K. All the above variables are considered only in
I which corresponds to the set of channels actually in use
after the loading algorithms. Simulation results in Fig. 6 and
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Fig. 6. Error performance of noncoherent interference alignment for(1×1)3 .
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Fig. 7. Error performance of noncoherent interference alignment for(1×1)4 .

Fig. 7 show that with rate and power loading algorithms, the
proposed interference alignment scheme can achieve the DoF
upper bound in the high SNR regime, while at the same time
maintain acceptable BER performance in the low SNR regime.

VI. CONCLUSION

This paper proposed a practical and universal interference
alignment scheme for general(1 × 1)K interference net-
works, which trades signal power for intermediate diversity
improvement towards the ultimate multiplexing requirement.
The problems of naive symbol extension, which is a con-
ventional diversity increasing technique to do interference
alignment, was analyzed in details. It was identified that
lack of diversity is the main problem such that there is not
enough freedom to be manipulated to meet desired alignment
conditions for some network configurations. An noncoherent
interference alignment scheme with joint noncoherent band-
pass modulaiton/demodulation and interference alignmentwas
then proposed to resolve the diagonality problem of naive
symbol extension and the simple superposition technique.
This scheme was then generalized to(1 × 1)K interference
networks, either Gaussian or deterministic, and was provento
be DoF optimal. Simulation results verified its correctnessand
showed significant DoF improvement in the high SNR regime.
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As a conclusion to this paper, we want to emphasize that
although noncoherent energy loss of desired signal may costus
SNR offset, energy increase of interference signal will cause
damaging error floor and decrease the slope of the achievable
rate curve. Therefore, noncoherent interference alignment is
preferable in the wide sense. An interesting future work
would be analysis of the optimal region and distribution of
the random phase offsets such that the total SNR loss is
minimized. The challenge is to derive the tradeoff between the
noncoherent loss and signal subspace loss (less noncoherent
loss will result more signal subspace loss due to the increased
closeness of desired and interference signal vectors).
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