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BOUNDS ON THE RUBBLING AND OPTIMAL RUBBLING NUMBERS OF

GRAPHS

GYULA Y. KATONA AND NÁNDOR SIEBEN

Abstract. A pebbling move on a graph removes two pebbles at a vertex and adds one pebble
at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed.
In this new move, one pebble each is removed at vertices v and w adjacent to a vertex u, and an
extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is possible
to move a pebble to that vertex using rubbling moves. The rubbling number is the smallest
number m needed to guarantee that any vertex is reachable from any pebble distribution of m
pebbles. The optimal rubbling number is the smallest number m needed to guarantee a pebble
distribution of m pebbles from which any vertex is reachable. We give bounds for rubbling and
optimal rubbling numbers. In particular, we find an upper bound for the rubbling number of
n-vertex, diameter d graphs, and estimates for the maximum rubbling number of diameter 2

graphs. We also give a sharp upper bound for the optimal rubbling number, and sharp upper
and lower bounds in terms of the diameter.

1. Introduction

Graph pebbling has its origin in number theory. It is a model for the transportation of
resources. Starting with a pebble distribution on the vertices of a simple connected graph, a
pebbling move removes two pebbles from a vertex and adds one pebble at an adjacent vertex.
We can think of the pebbles as fuel containers. Then the loss of the pebble during a move is the
cost of transportation. A vertex is called reachable if a pebble can be moved to that vertex using
pebbling moves. There are several questions we can ask about pebbling. How many pebbles will
guarantee that every vertex is reachable (pebbling number), or that all vertices are reachable at
the same time (cover pebbling number)? How can we place the smallest number of pebbles such
that every vertex is reachable (optimal pebbling number)? For a comprehensive list of references
for the extensive literature see the survey papers [8, 9].

Graph rubbling is an extension of graph pebbling. In this version, we also allow a move that
removes a pebble each from the vertices v and w that are adjacent to a vertex u, and adds
a pebble at vertex u. The basic theory of rubbling and optimal rubbling is developed in [1].
The rubbling number of complete m-ary trees are studied in [6], while the rubbling number of
caterpillars are determined in [13].

The current paper extends the theory of graph rubbling by providing bounds for the rubbling
numbers of graphs. In Section 3, we give an upper bound for the rubbling number in terms
of the number of vertices and the diameter of the graph. In Sections 4–5, we investigate how
big the rubbling number of diameter 2 graphs can be. Let f(n, d) be the maximum rubbling
number of diameter d graphs with n vertices. We construct a family of graphs whose rubbling
numbers match all known values of f(n, 2). We also prove an upper bound for f(n, 2). Similar
questions for pebbling are studied in [2, 5], more details are given in Section 5. In Section 6, we
give a sharp upper bound for the optimal rubbling number of a graph in terms of the number of
vertices. We also give sharp upper and lower bounds in terms of the diameter. Similar results
for the optimal pebbling number are presented in [3, 11]. Our results are extensions of these.
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2. Preliminaries

Throughout the paper, let G be a simple connected graph. We use the notation V (G) for the
vertex set and E(G) for the edge set. A pebble function on a graph G is a function p : V (G) → Z

where p(v) is the number of pebbles placed at v. A pebble distribution is a nonnegative pebble
function. The size of a pebble distribution p is the total number of pebbles

∑

v∈V (G) p(v). We

are going to use the notation p(v1, . . . , vn, ∗) = (a1, . . . , an, q(∗)) to indicate that p(vi) = ai for
i ∈ {1, . . . , n} and p(w) = q(w) for all w ∈ V (G) \ {v1, . . . , vn}.

Consider a pebble function p on the graph G. If {v, u} ∈ E(G) then the pebbling move (v, v�u)
removes two pebbles at vertex v, and adds one pebble at vertex u to create a new pebble function

p(v,v�u)(v, u, ∗) = (p(v)− 2, p(u) + 1, p(∗)).

If {w, u} ∈ E(G) and v 6= w, then the strict rubbling move (v,w�u) removes one pebble each at
vertices v and w, and adds one pebble at vertex u to create a new pebble function

p(v,w�u)(v,w, u, ∗) = (p(v)− 1, p(w) − 1, p(u) + 1, p(∗)).

A rubbling move is either a pebbling move or a strict rubbling move. A rubbling sequence is a
finite sequence s = (s1, . . . , sk) of rubbling moves. The pebble function gotten from the pebble
function p after applying the moves in s is denoted by ps. The pebble function gotten after
applying the moves in a multiset S of rubbling moves in any order is denoted by pS . The
concatenation of the rubbling sequences r = (r1, . . . , rk) and s = (s1, . . . , sl) is denoted by
rs = (r1, . . . , rk, s1, . . . , sl).

A rubbling sequence s is executable from the pebble distribution p if p(s1,...,si) is nonnegative
for all i. A vertex v of G is reachable from the pebble distribution p if there is an executable
rubbling sequence s such that ps(v) ≥ 1. The rubbling number ρ(G) of a graph G is the minimum
number m with the property that every vertex of G is reachable from any pebble distribution of
size m.

The optimal rubbling number ρopt(G) of a graph G is the size of a distribution with the least
number of pebbles from which every vertex is reachable.

Given a multiset S of rubbling moves on G, the transition digraph T (G,S) is a directed
multigraph whose vertex set is V (G), and each move (v,w�u) in S is represented by two di-
rected edges (v, u) and (w, u). The transition digraph of a rubbling sequence s = (s1, . . . , sn) is
T (G, s) = T (G,S). where S = {s1, . . . , sn} is the multiset of moves in s. Let d−

T (G,S) represent

the in-degree and d+
T (G,S) the out-degree in T (G,S). We simply write d− and d+ if the transition

digraph is clear from context.
A multiset S of rubbling moves on G is balanced with a pebble distribution p at vertex v if

pS(v) ≥ 0. We say S is balanced with p if S is balanced with p at all v ∈ V (G), that is, pS ≥ 0.
A multiset of rubbling moves is called acyclic if the corresponding transition digraph has no
directed cycles. An element (v,w�u) ∈ S is called an initial move of S if d−(v) = 0 = d−(w) in
the transition digraph.

An important tool is the following result of [1].

Lemma 2.1. (No Cycle) Let p be a pebble distribution on G and v ∈ V (G). The following are

equivalent.

(1) v is reachable from p.
(2) There is a multiset S of rubbling moves such that S is balanced with p and pS(v) ≥ 1.
(3) There is an acyclic multiset R of rubbling moves such that R is balanced with p and

pR(v) ≥ 1.
(4) Vertex v is reachable from p through an acyclic rubbling sequence.
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3. Upper bound on the rubbling number

All the known upper bounds for the pebbling number π are also upper bounds for the rubbling
number since ρ ≤ π. The following result is the rubbling version of the upper bound π(G) ≤
(n − d)(2d − 1) + 1 [4, Theorem 1]. The difference between the pebbling upper bound and the
rubbling upper bound is 2d−1(n − d − 1) ≥ 0. The improvement is 0 for Pn (the path on n
vertices) since then d = n− 1.

Theorem 3.1. If G is a graph with n vertices and diameter d, then

ρ(G) ≤ (n − d+ 1)(2d−1 − 1) + 2.

Proof. The statement clearly holds if n = 1 since then d = 0, so we may assume that n ≥ 2.
Suppose p is a distribution of pebbles from which vertex v is not reachable. Let v1 be a vertex
whose distance is maximal from v and let Q1 be the shortest path between v and v1. Recursively
define vi+1 to be a vertex in V (G) \ ∪i

j=1V (Qj) whose distance is maximal from v, and define
Qi+1 to be the shortest path between v and vi+1. The recursion must stop after m ∈ N steps.
Let li be the length of Qi. Then we have n > d ≥ l1 ≥ · · · ≥ lm ≥ 1 and m ≤ n− l1. If

|p| ≥
m
∑

i=1

(2li−1 − 1) + 2l1−1 + 1

then either some Qi has at least 2li pebbles or there are some Qj and Qk with at least 2lj−1 and

2lk−1 pebbles respectively. In either case v is reachable. So we must have

|p| <
m
∑

i=1

(2li−1 − 1) + 2l1−1 + 1 ≤
m
∑

i=1

(2l1−1 − 1) + 2l1−1 + 1

= (m+ 1)(2l1−1 − 1) + 2 ≤ (n − l1 + 1)(2l1−1 − 1) + 2

≤ (n− d+ 1)(2d−1 − 1) + 2.

The last inequality follows from the fact that l1 7→ (n − l1 + 1)(2l1−1 − 1) is increasing for
0 < l1 < n. �

The upper bound is sharp for d = 0 since ρ(K1) = 1 and for d = 1 since ρ(Kn) = 2 for n > 1.
It is also sharp for d = n − 1 since ρ(Pn) = 2n−1. If the diameter of G is 2, then the upper
bound becomes ρ(G) ≤ n+1. This is no surprise since ρ(G) ≤ π(G) and we know [5] that π(G)
is either n or n+ 1. However, this upper bound is not sharp.

4. Lower bound for f(n, 2)

There is no lower bound that forces ρ to grow with the number of vertices of the graph. In
fact ρ(Kn) = 2 for all n. The only known lower bound ρ(G) ≥ 2d for the rubbling number ρ is
coming from the diameter d of the graph G. So we could ask whether {ρ(G) | diam(G) = d} is a
finite set for all d ≥ 2. The family of star shaped graphs constructed in [2] can be used to show
that this is not the case for d ≥ 3. For d = 2 we need a more elaborate construction.

Our aim is to construct a graph Gn for any given n ≥ 3 with diameter 2 and a high rubbling
number. Since the graph is not so easy to describe directly by giving the vertex and edge sets,
we first define a simpler graph, then we make modifications on it to reach the final construction.

For a positive integer s, let Hs be the simple graph defined by

V (Hs) = {(i, j) | 1 ≤ i ≤ j ≤ s}
E(Hs) = {{(i1, j1), (i2, j2)} | i1 = i2 or j1 = j2}.
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Figure 4.1. Schematic representation of the graphs G3, . . . , G18. The solid lines
are edges of the graphs. The dashed lines indicate the fact that any two vertices
on a horizontal or a vertical line are connected by an edge. The goal vertex x is
not reachable from the pebble distributions shown on the figures.

x x x

G5G4G3

x x x

G7 G8G6

Figure 4.2. The graphs G3, . . . , G8. The goal vertex x is not reachable from the
pebble distributions shown on the figures.
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Clearly |V (Hs)| = (s + 1)s/2. Now we show that diam(Hn) = 2. Take two different vertices
(i1, j1) and (i2, j2) where i1 ≤ i2. If either i1 = i2 or j1 = j2, then they are adjacent. Otherwise
(i1, j2) ∈ V (Hs) is a common neighbor of (i1, j1) and (i2, j2), so their distance is 2.

Now we modify Hs by deleting a few vertices and adding a few more edges in the following
way. If s is odd and s ≥ 3, then delete the vertices

(s− 1, s), (s − 3, s − 2), (s − 5, s − 4), . . . , (2, 3)

and add the edges

{(s, s), (s − 1, s − 1)}, {(s − 2, s − 2), (s − 3, s− 3)}, . . . , {(3, 3), (2, 2)}.
If s is even, then delete the vertices

(s− 1, s), (s − 3, s − 2), (s − 5, s − 4), . . . , (3, 4)

and add the edges

{(s, s), (s − 1, s − 1)}, {(s − 2, s − 2), (s − 3, s− 3)}, . . . , {(4, 4), (3, 3)}.
Let H ′

s denote the graph that is obtained. Clearly |V (H ′
s)| = (s + 1)s/2 − ⌊(s − 1)/2⌋. One

can see that diam(H ′
s) = 2 holds too, since any pair of vertices whose unique common neighbor

was deleted, now is either connected by an edge or has a new common neighbor on the spine.

Definition 4.1. If for a given n ≥ 3 we have |V (H ′
s)| = n for some s, then let Gn = H ′

s. Thus,
we have the construction of Gn for n = 3, 5, 9, 13, . . . . For the values of n where |V (H ′

s)| <
n < |V (H ′

s+1)|, the construction is given by adding some vertices and edges to H ′
s. We add the

vertices (0, s), (0, s− 1), (0, s− 2), . . . , (0, 1) one by one until we reach the required n vertices. A
new vertex (0, j) is adjacent to another vertex (i′, j′) if either i′ = 0 or j = j′.

A visualization of the graph family Gn is shown in Figures 4.1 and 4.2. Roughly speaking, we
add the new vertices on the left of the graph, starting at the top row and continuing towards the
bottom. We create new edges to keep the general edge structure of the graph. We stop adding
new vertices before we reach the number of vertices in H ′

s+1. This means that we stop at vertex
(0, 1) if s is odd and stop at (0, 2) if s is even. Graphs G8 and G12 shown in Figure 4.1 illustrate
these differently placed last new vertices. Note that G9 = H ′

4 and G13 = H ′
5.

Note that

|V (H ′
s)|+ s = (s+ 1)s/2 − ⌊(s− 1)/2⌋ + s

= (s+ 2)(s + 1)/2 − ⌊s/2⌋ − 1 = |V (H ′
s+1)| − 1

if s is odd, and |V (H ′
s)|+ s− 1 = |V (H ′

s+1)| − 1 if s is even.
The i-th row of Gn is Ri = {(i′, j′) ∈ V (Gn) | i′ = i} while the i-th column of Gn is

Ci = {(i′, j′) ∈ V (Gn) | j′ = j}. The spine of Gn is {(i, i) ∈ V (Gn)}. A short calculation shows
that Gn has

⌊√
2n − 1

⌋

rows. It is easy to see that diam(Gn) = 2.

Proposition 4.2. For n ≥ 3 we have ρ(Gn) ≤
⌊√

2n − 1
⌋

+ 2.

Proof. Let k =
⌊√

2n − 1
⌋

be the number of rows in Gn. Let p be a pebble distribution on
Gn containing k + 2 pebbles and suppose that a goal vertex x = (i0, j0) is not reachable. We
are going to define some collections of rows and columns, but in one case it is just part of the
columns. So let us first define the partial columns: C ′

i = {(i′, j′) | i′ = i and j′ < j0} . Now let

R = {Rj | j > j0}, R = ∪R,

C = {C ′
i | i 6= i0}, C = ∪C,
X = Rj0 ∪ Ci0 ,

as shown in Figure 4.3. Then |R| = k − j0, j0 − 2 ≤ |C| ≤ j0 − 1 (note that C ′
0 may be empty)

and R ∪ C ∪X = V (Gn).
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C ′
0

C ′
3

C ′
4

C ′
5

R7

R8

X

Rj0 = R6

(5,5)

(6,6)

Ci0 = C2

C ′
1

Figure 4.3. The sets R, C and X..

If Rj ∈ R and there are two or three pebbles on Rj, then we can apply a rubbling move on
those pebbles and move a pebble to Ci0 . Row Rj cannot have 4 or more pebbles, because then
we can move two pebbles to X, so x would be reachable. Similarly, if C ′

i ∈ C and C ′
i has two or

three pebbles, then we can move a pebble to Rj0 , while if it has 4 or more pebbles, then we can
move two pebbles to X. In the exceptional case, when Rj0 has no vertex in the i-th column (like
the 5th column on Figure 4.3), we can move the pebbles along the spine to (i+ 1, j0) instead of
(i, j0).

If we can move two pebbles to X, then x is clearly reachable. That means that if R or C has
one or two more pebbles than the size of R or C respectively, then we can move one pebble to X.
If it has three more pebbles, then we can move two pebbles to X. So if either R or C contains
enough pebbles to move two pebbles to X or both of them contains enough pebbles to move one
pebble to X, then x is reachable.

We know that p can have at most one pebble on X. If X has no pebbles, then the total
number of pebbles cannot be more than

|R|+ |C|+ 2 ≤ (k − j0) + (j0 − 1) + 2 = k + 1

which is not possible. If X has exactly one pebble, then the total number of pebbles cannot be
more than

|R|+ |C|+ 1 ≤ (k − j0) + (j0 − 1) + 1 = k

which is not possible either. �

In the proof of our next result, we are going to need to keep track of the movement of pebbles
during rubbling moves. For this purpose, we need to replace our pebbles with dependency sets.

Definition 4.3. A dependency distribution is a partition P of an initial pebble set together with
a location function l : P → V (G). The elements of P are called dependency sets or simply
pebbles.

We think of a dependency set as a pebble with some additional information about the history of
the pebble. Dependency distributions replace pebble distributions. Given a pebble distribution p
containing m pebbles, we can create a corresponding dependency distribution P = {{1}, . . . , {m}}
such that |{A ∈ P | l(A) = v}| = p(v) for all v ∈ V (G).
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Definition 4.4. If l(A) and l(B) are both adjacent to u, then the rubbling move (A,B�u)
removes the dependency sets A and B from P at the vertices l(A) and l(B) respectively, and
adds a new dependency set A∪B to P with location l(A∪B) = u. A vertex v is reachable from
a dependency distribution if a dependency set A with l(A) = v can be created using rubbling
moves.

Note that the rubbling move (A,B�u) is essentially the rubbling move (l(A), l(B)�u) with
some additional information about the history of the pebbles. It is clear that a vertex is reachable
from a pebble distribution if and only if it is reachable from the corresponding dependency
distribution. Also note that in a rubbling move (A,B�u) we must have A ∩B = ∅.
Definition 4.5. Let (s1, . . . , sk) be a sequence of rubbling moves in a dependency distribution.
We say si = (A,B�u) is dependent on sj = (C,D�w) if C ∪D ⊆ A∪B. We say that si and sj
are independent if A ∪B and C ∪D are disjoint.

Roughly speaking, si and sj are independent if they rely on two disjoint sets of pebbles. It
is clear that dependence of rubbling moves is a transitive relation. Also note that si and sj are
independent if and only if neither si is dependent on sj nor sj is dependent on si.

Example 4.6. Consider the initial dependency distribution l({1}, {2}, {3}, {4}, {5}) =
(w,w,w,w, v) and the sequence of rubbling moves

s1 = ({1}, {2}�u), s2 = ({3}, {4}�v), s3 = ({3, 4}, {5}�u), s4 = ({1, 2}, {3, 4, 5}�x).

Then s1 and s3 are independent but s4 depends on s1.

Proposition 4.7. For n ≥ 3 we have ρ(Gn) >
⌊√

2n − 1
⌋

+ 1.

Proof. Let k =
⌊√

2n− 1
⌋

be the largest column index in Gn. We show that the goal vertex
x := (1, 1) is not reachable from the pebble distribution that has a single pebble on vertex (i, i)
for 1 < i < k and three pebbles on vertex (k, k) as shown in Figures 4.1 and 4.2. To see this, we
show that x is not reachable from the dependency distribution P = {{1}, . . . , {k + 1}} with

l({1}, . . . , {k − 2}, {k − 1}, {k}, {k + 1}) = ((2, 2), . . . , (k − 1, k − 1), (k, k), (k, k), (k, k)).

For a contradiction suppose that x is reachable from P, that is, there is a sequence s1, . . . , sm of
rubbling moves that creates a dependency set at x.

Let us call a rubbling move (A,B�u) horizontal if l(A), l(B) and u are all contained in the
same row of Gn. To reach the goal vertex x, we must use a rubbling move involving vertices
on C1 ∪ C0. There are no pebbles on these vertices originally and the only way to move a new
pebble there is to use a horizontal rubbling move. So there must be at least two independent
horizontal moves si = (A,B�u) and sj = (C,D�w) in our rubbling sequence. We show that
this is not possible.

Since si and sj are independent, at least one of the sets A ∪ B and C ∪D contains at most
one element of {k − 1, k, k + 1}. Roughly speaking, this means that both si and sj cannot rely
on more than one pebble available at vertex (k, k) in P since there are only three pebbles there.
So we can assume that (A ∪B) ∩ {k, k + 1} = ∅.

Now we create a new dependency distribution P̃ = P \ {{k}, {k + 1}} by removing the two
pebbles from P that si does not rely on for sure. We also remove the rubbling moves from
(s1, . . . , sm) that are dependent on k or k + 1. More precisely, we remove the rubbling moves
of the form (K,L�v) for which (K ∪ L) ∩ {k, k + 1} 6= ∅. The resulting rubbling sequence

(s̃1, . . . , s̃m̃) is executable from P̃ and contains si.
Let us call Li = Ri ∪ Ci for i ≥ 1 a line of Gn. Line Li contains the spine vertex (i, i).

Note that all vertices on the spine are contained in exactly one line, and all other vertices are
contained in at most two lines. We say that a pebble configuration is forbidden if there is a line
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Lj

Li

(j, j)

(i, i)

(a)

Li

(b)

(i, i)

u
v

w

v

u

w

Figure 4.4. Possible ways to move a pebble to the line Li.

n 3 4 5 6 7 8 9 10
f(n, 2) 4 4 5 5 5 5 6 ?
ρ(Gn) 4 4 5 5 5 5 6 6

Table 1. Rubbling numbers of Gn and all known maximum rubbling numbers
for diameter 2 graphs with n vertices.

with more than one pebble. Note that two pebbles on a row Ri or on a column Ci with i ≥ 1 is
a forbidden configuration. It is clear that P̃ is not a forbidden pebble configurations.

We are going to show that a rubbling move cannot create a forbidden configuration if there was
no forbidden configuration before the rubbling move. Suppose that a rubbling move (A,B�u)
creates a pebble on vertex u of line Li. If u is not on the spine, then it is contained in another
line Lj , so all of its neighbors are in Li ∪ Lj. Both l(A) and l(B) cannot be on the same line
since there was no forbidden configuration before this step. Thus one of l(A) and l(B) must be
on Li while the other must be outside of Li as shown on Figure 4.4(a). If u is on the spine, then
it has a neighbor which is on the spine, too. Again, both of l(A) and l(B) cannot be on this
vertex, because that is a forbidden configuration. Therefore one of l(A) and l(B) must be on Li

again as shown on Figure 4.4(b) since in this case all other neighbors of u are in Li.
Thus we can assume that l(A) = v is in Li. Since v is in Li, we cannot have any other pebble

on Li before the rubbling move. So u is the only pebble on Li after the rubbling move and so
the rubbling move did not create any forbidden configurations.

We saw that (s̃1, . . . , s̃m̃) has the horizontal move si. A horizontal move is only possible if
there are two pebbles on a row which is a forbidden configuration. This is a contradiction since
we do not have any forbidden configurations during the execution of (s̃1, . . . , s̃m̃). �

Corollary 4.8. For n ≥ 3 we have ρ(Gn) =
⌊√

2n− 1
⌋

+ 2.

5. Upper bound for f(n, 2)

Table 1 shows the maximum rubbling numbers

f(n, 2) = max{ρ(G) | n = |V (G)| and 2 = diam(G)}
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A

C

B

C ′

D

b1 bi bkb2 bmbj

a1

x

. . . . . .

ai

c{1,2}

a2 ak amaj

c{i,j,k}

d{i,j,k}

Figure 5.1. The sets A,B,C,C ′ and D in the proof of Proposition 5.3.

of diameter 2 graphs with n vertices. The values were calculated by a computer program [14].
The program checked all diameter 2 graphs with a given number of vertices. These graphs were
generated by Nauty [10]. We have f(n, 2) = ρ(Gn) for n ∈ {3, . . . , 9}. It is not clear whether
this is true for all n.

Problem 5.1. Is it true that f(n, 2) = ρ(Gn) for all n ≥ 3?

There are more existing results for similar questions about pebbling. It is known [12] that
f(n, 2) = n + 1 since the pebbling number of a diameter 2 graph is either n or n + 1. A
classification of diameter 2 graphs with pebbling number n+1 is also known from [5]. Diameter
3 graphs are also studied. In [2], it is shown that f(n, 3) = 3

2n+O(1).
The proof of the following result uses the method of [7].

Lemma 5.2. Let H be a 3-uniform hypergraph on q vertices. If |E ∩ F | 6= 1 for all E,F ∈ H,

then |H| ≤ q.

Proof. Let v1, . . . ,vn denote the characteristic vectors of the sets in H. We claim that the
characteristic vectors are linearly independent over GF (2). This clearly implies the result.

Since every set contains 3 elements, we have v
2
i = 1 for all i since 3 ≡2 1. On the other

hand, if i 6= j then vi · vj = 0 since the product is the cardinality of the intersection of the two
corresponding sets. If

∑n
i civi = 0 then multiplying by vj we obtain cj = cjv

2
j = 0 · vj = 0.

This proves our claim. �

The set of vertices adjacent to a given vertex v of a graph is denoted by N(v).

Proposition 5.3. Let G be a diameter two graph with goal vertex x. Let p be a pebble distribution

on G containing m pebbles. If {x} ∪N(x) is not reachable using only five pebbles of p, then G

has at least
⌊

m2+3
2

⌋

vertices.

Proof. For v ∈ N(x) let R(v) = N(v) ∪ {v} \ {x}. Since the diameter of G is two, we must have

V (G) \ {x} =
⋃

v∈N(x)

R(v).

Since {x} ∪ N(x) is not reachable using only five pebbles, no R(v) can contain more than
two pebbles otherwise we could move a pebble to v ∈ N(x). So there is a maximal subset
A = {a1, . . . , am} of N(x) such that R(ai) contains exactly one pebble on a vertex bi ∈ R(ai) for
all i. Define B = {b1, . . . , bm} and note that A and B are clearly disjoint. To simplify notation
we write Ri for R(ai). Figure 5.1 shows a visualization of these sets.
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If two vertices bi and bj of B are not adjacent, then the diameter condition implies that we
can pick a common neighbor c{i,j} of bi and bj . Note that c{i,j} = c{j,i}. If i, j, k and l are all
different, then c{i,j} 6= c{k,l}, otherwise (bi, bj�c{i,j})(bk, bl�c{i,j}) would move two pebbles to
c{i,j} from which N(x) is reachable using only four pebbles.

If c{i,j} = c{i,k} then we write c{i,j,k} for c{i,j} = c{i,k}. Define

J = {{i, j} | {bi, bj} ∈ E(G)}, C = {c{i,j} | {i, j} ∈ J }.
A vertex bi cannot be adjacent to two different vertices bj and bk of B, otherwise (bj , bk�bi)
would create two pebbles on bi, making ai ∈ N(x) reachable using only three pebbles. Hence
the number of edges between the elements of B is at most

⌊

m
2

⌋

and so |J | ≥
(

m
2

)

−
⌊

m
2

⌋

.
We also introduce a subset C ′ of C by letting

K = {{i, j, k} | c{i,j} = c{i,k}}, C ′ = {c{i,j,k}|{i, j, k} ∈ K}.
Though it may happen that c{i,j} = c{i,k} = c{j,k}, we have |C\C ′| ≥ J −3|C ′|. Note that c{i,j} ∈
C \ C ′ and {i, j} 6= {k, l} implies c{i,j} 6= c{k,l}. If c{i,j,k} = c{i′,j′,k′} then {i, j, k} = {i′, j′, k′}
otherwise we could move two pebbles to c{i,j,k} using only four pebbles. Hence |K| = |C ′|.

We can clearly move a pebble to any element of C and so C ∩A ⊆ C ∩N(x) = ∅. If k 6∈ {i, j}
then c{i,j} 6∈ Rk otherwise (bi, bj�c{i,j})(bk, c{i,j}�ak) would move a pebble to ak ∈ N(x) using
only three pebbles. In particular, c{i,j} 6= bk and so C ∩B = ∅.

Suppose that c{i,j,k} ∈ C ′. Then c{i,j,k} 6∈ Rl for l 6∈ {i, j, k} since c{i,j,k} is in
{c{i,j}, c{i,k}, c{j,k}}. We also have c{i,j,k} 6∈ Ri, otherwise (bj , bk�c{i,j,k})(bi, c{i,j,k}�ai) would
move a pebble to ai ∈ N(x) using only three pebbles. Similar arguments show that c{i,j,k} 6∈
Rj ∪Rk. Hence

c{i,j,k} ∈ R(d{i,j,k}) \
m
⋃

l=1

Rl for some d{i,j,k} ∈ N(x) \A.

Let D = {d{i,j,k} | {i, j, k} ∈ K}. Then D is disjoint from A ∪ B by definition. We also

have D ∩ C ⊆ N(x) ∩ C = ∅. If d{i,j,k} = d{i′,j′,k′} then {i, j, k} = {i′, j′, k′}, otherwise
{bi, bj , bk, bi′ , bj′ , bk′} would have at least four vertices with pebbles so we could move a pebble
to d{i,j,k} ∈ N(x) using only these four pebbles. So D and C ′ has the same number of elements.

The intersection of two elements {i, j, k} and {i, j′, k′} of K cannot be a singleton set{i},
otherwise

(bj , bk�c{j,k})(bj′ , bk′�c{j′,k′})(c{j,k}, c{j′,k′}�bi)

would move two pebbles to bi from where {x}∪N(x) would be reachable using only five pebbles.
Hence the 3-uniform hypergraph K satisfies the conditions of Lemma 5.2 and so |K| ≤ m.

The result now follows from the calculation

|VG| ≥ |{x}| + |A|+ |B|+ |C|+ |D| = 1 +m+m+ |C \ C ′|+ |C ′|+ |D|

≥ 1 + 2m+ |J | − 3|C ′|+ |C ′|+ |C ′| ≥ 1 + 2m+

(

m

2

)

−
⌊m

2

⌋

− |C ′|

=
2 + 3m+m2

2
−

⌊m

2

⌋

− |K| ≥ 2 + 3m+m2

2
−

⌊m

2

⌋

−m =

⌊

m2 + 3

2

⌋

.

�

Proposition 5.4. Let G be a diameter two graph with goal vertex x. Let p be a pebble distribution

on G containing m ≥ 5 pebbles. If x is not reachable from p then G has at least
⌊

(m−5)2+3
2

⌋

vertices.
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Proof. If p satisfies the conditions of Proposition 5.3, then G must have at least
⌊

m2+3
2

⌋

vertices.

Otherwise there are five pebbles of p from where {x}∪N(x) is reachable. We can remove these
pebbles to create a new pebble distribution q containing m − 5 pebbles. Then q must satisfy
the conditions of Proposition 5.3, otherwise we could move two pebbles to {x} ∪N(x) and so x

would be reachable. So G must have at least
⌊

(m−5)2+3
2

⌋

vertices. �

Proposition 5.5. The rubbling number of a diameter 2 graph with n vertices cannot be larger

than
√
2n− 1 + 5.

Proof. From Proposition 5.4, we know that if we have m ≥ 5 pebbles on a diameter 2 graph with

n vertices one of which is not reachable, then n ≥
⌊

(m−5)2+3
2

⌋

. The contrapositive gives that

if a graph has n <
⌊

(m−5)2+3
2

⌋

vertices and m ≥ 5, then any goal vertex is reachable from any

placement of m pebbles and so the rubbling number is larger than m. The result now follows
since we have

n <

⌊

(m− 5)2 + 3

2

⌋

⇐⇒ n+ 1 ≤ (m− 5)2 + 3

2

⇐⇒
√
2n − 1 + 5 ≤ m.

�

Corollary 5.6. We have ⌊
√
2n− 1⌋+ 2 ≤ f(n, 2) ≤

√
2n− 1 + 5.

6. Bounds on the optimal rubbling number

We saw in [1] that ρopt(Pn) =
⌈

n+1
2

⌉

. We show that the path requires the most pebbles for
optimal rubbling amongst the graphs with a given number of vertices. The proof follows the
ideas of [3].

Proposition 6.1. If G is a tree with n vertices, then ρopt(G) ≤
⌈

n+1
2

⌉

.

Proof. We use induction on n. The statement is clearly true for n ∈ {1, 2}. In the inductive
step let n ≥ 3 and let v1, v2, . . . , vk be the consecutive vertices of a longest path of G. Note
that k ≥ 3. We are going to find a subtree H of G with n − 2 vertices as shown in Figure 6.1.
Then there is a pebble distribution q on H with size

⌈

n−2+1
2

⌉

from which every vertex of H is
reachable.

If d(v2) = 2 then let H be the subtree of G gotten by deleting v1 and v2. Then every vertex
of G is reachable from the pebble distribution p(v1, v2, ∗) := (1, 0, q(∗)).

If d(v2) > 2 then let w be a vertex that is adjacent to v2 but different from v1 and v3.
By the maximality of the chosen path, w must be a leaf vertex. Let H be the subtree of G
gotten by deleting v1 and w. Then every vertex of G is reachable from the pebble distribution
p(v1, v2, w, ∗) := (0, q(v2) + 1, 0, q(∗)).

The size of p is
⌈

n−1
2

⌉

+ 1 =
⌈

n+1
2

⌉

in both cases as desired. �

Corollary 6.2. If G is a connected graph with n vertices, then ρopt(G) ≤
⌈

n+1
2

⌉

.

Proof. Let H be a spanning tree of G. Then ρopt(G) ≤ ρopt(H) ≤
⌈

n+1
2

⌉

since additional edges
cannot increase the optimal rubbling number of a graph. �

Since ρopt(Kn) = 2 for n ≥ 2, there is no useful lower bound for the optimal rubbling number
in terms of the number of vertices. We can still find bounds in terms of the diameter. Similar
results are presented in [11] for the optimal pebbling number.

Proposition 6.3. If G is a connected graph with diameter d, then
⌈

d+2
2

⌉

≤ ρopt(G).
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v2

v3

v1

v1

v2
v3

w

H H

Figure 6.1. The construction of H in the proof of Proposition 6.1.

x

Figure 6.2. Schematic representation of a graph with diameter 2. The dashed
lines indicate the fact that any two vertices on a dashed line are connected by an
edge. The goal vertex x is not reachable from the pebble distribution shown on
the figure.

Proof. Let v0, v1, v2, . . . , vd be a path where this is a shortest path between v0 and vd. Build a
Breadth First Search tree from v0. This defines a partition of the vertex set of G into levels:
denote the set of vertices at distance i from v0 by Li. It is clear that vi ∈ Li holds for i ∈
{0, . . . , d}. Let Pd+1 denote the graph that is a path of length d, and let V (Pd+1) = {u0, . . . , ud}.
Define a mapping φ : V (G) → V (Pd+1) such that φ(w) = ui for all w ∈ Li.

We claim that if a vertex x in G is reachable from a pebble distribution p using a sequence s of
rubbling moves, then φ(x) is reachable in Pd+1 from the pebble distribution that has

∑

w∈Li
p(w)

pebbles on ui.
Suppose that (a, b�c) is a rubbling move in s. That means that {a, c}and {b, c} are both edges

of G. The properties of the BFS tree implies that a and c (also b and c) are either in the same
level or in two neighboring levels. If a and c (or b and c) are in the same level, then we can delete
this rubbling move from the sequence, since φ(a) = φ(c) (or φ(b) = φ(c)), so the pebble which is
moved to c by (a, b�c) is already on φ(c) in the corresponding rubbling sequence in Pd+1.

If c is not in the same level with a and with b, then use the rubbling move (φ(a), φ(b)�φ(c)).
It is easy to show by induction that this new rubbling sequence will move a pebble to φ(x).

The result now follows from this, since
⌈

d+2
2

⌉

= ρopt(Pd+1) ≤ ρopt(G). �

If the diameter of G is d, then every vertex is reachable from the distribution that has 2d pebbles
on a single vertex. Hence ρopt(G) ≤ 2d. The following example shows that this inequality is
sharp.

Proposition 6.4. For all nonnegative integer d there is a graph G with diameter d and ρopt(G) =

2d.

Proof. Let the vertex set of G be the set of points in N
d with coordinates in {1, . . . , 2d}. Let two

vertices be connected by an edge if they share all but one of their coordinates. It is clear that
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the diameter of G is d. Moreover, any two vertices that has no common coordinate has distance
d.

Consider a pebble distribution p containing 2d − 1 pebbles. Since there are more possible
values at the i-th coordinate than the number of pebbles, there must be an xi ∈ {1, . . . , 2d}
for all i ∈ {1, . . . , d} such that no pebble has xi as its i-th coordinate. Hence the vertex x =
{x1, x2, . . . , xd} does not share any coordinate with any of the vertices containing pebbles. In
this way every pebble is at distance d from x. Figure 6.2 shows one such pebble distribution on
G with vertex x for d = 2.

Assign a weight wx(p) to the pebble distribution p in the following way: Each pebble in p gets
a 1/2i weight if its distance from x is i. Then wx(p) is the sum of the weights for all pebbles in
the distribution. Since the initial distribution has 2d − 1 pebbles, each at distance d from x, its
weight is less than 1. It is easy to see, that a rubbling move cannot increase the weight. If it
removes two pebbles that are at distance i+ 1 and puts a pebble to a vertex which is one closer
to x, at distance i, then the total weight remains the same, but in all other cases it decreases.
This shows that any sequence of rubbling moves keeps the weight smaller than 1. However, if
x has a pebble, then the weight is clearly at least 1. Therefore x is not reachable, so p is not
solvable. �

Note that our example also serves as an example for a diameter d graph with maximum
pebbling number since 2d = ρopt(G) ≤ πopt(G) ≤ 2d. In fact, our example is essentially a larger
version of the example presented in [11, Theorem 2.3]. The larger size allows for a simple proof
that also fills a gap in the proof of the original example.

References

1. Christopher Belford and Nándor Sieben, Rubbling and optimal rubbling of graphs., Discrete Math. 309 (2009),
no. 10, 3436–3446.

2. Boris Bukh, Maximum pebbling number of graphs of diameter three, J. Graph Theory 52 (2006), no. 4,
353–357.

3. David P. Bunde, Erin W. Chambers, Daniel Cranston, Kevin Milans, and Douglas B. West, Pebbling and
optimal pebbling in graphs, J. Graph Theory 57 (2008), no. 3, 215–238.

4. Melody Chan and Anant P. Godbole, Improved pebbling bounds, Discrete Math. 308 (2008), no. 11, 2301–2306.
5. T. A. Clarke, R. A. Hochberg, and G. H. Hurlbert, Pebbling in diameter two graphs and products of paths, J.

Graph Theory 25 (1997), no. 2, 119–128.
6. Lisa Danz, Optimal t-rubbling of complete m-ary trees, REU project report, University of Minnesota Duluth,

Department of Mathematics and Statistics, 2010.
7. Marshall Hall, Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922–926.
8. Glenn Hurlbert, A survey of graph pebbling, Proceedings of the Thirtieth Southeastern International Confer-

ence on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), vol. 139, 1999, pp. 41–64.
9. , Recent progress in graph pebbling, Graph Theory Notes N. Y. 49 (2005), 25–37.

10. Brendan D. McKay, Practical graph isomorphism, Proceedings of the Tenth Manitoba Conference on Numer-
ical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), vol. 30, 1981, pp. 45–87.

11. Jessica Muntz, Sivaram Narayan, Noah Streib, and Kelly Van Ochten, Optimal pebbling of graphs, Discrete
Math. 307 (2007), no. 17-18, 2315–2321.

12. Lior Pachter, Hunter S. Snevily, and Bill Voxman, On pebbling graphs, Proceedings of the Twenty-sixth
Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL,
1995), vol. 107, 1995, pp. 65–80.

13. László Papp, Optimal rubbling numbers of graphs (in Hungarian), thesis, Budapest Univewrsity of Technologoy
and Economics, Department of Computer Science and Information Theory, 2010.

14. Nándor Sieben, A graph pebbling algorithm on weighted graphs, J. Graph Algorithms Appl. 14 (2010), no. 2,
221–244.

Budapest University of Technology and Economics Faculty of Electrical Engineering and

Informatics, Department of Computer Science and Information Theory, H-1521 Budapest Po.

box. 91, Hungary

E-mail address: kiskat@cs.bme.hu



14 GYULA Y. KATONA AND NÁNDOR SIEBEN

Northern Arizona University, Department of Mathematics and Statistics, Flagstaff AZ 86011-

5717, USA

E-mail address: nandor.sieben@nau.edu


	1. Introduction
	2. Preliminaries
	3. Upper bound on the rubbling number
	4. Lower bound for f(n,2)
	5. Upper bound for f(n,2)
	6. Bounds on the optimal rubbling number
	References

