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Abstract

Let g be a finite-dimensional Lie algebra and M be a g-module. The Fernando-
Kac subalgebra of g associated to M is the subset g[M] C g of all elements g € g
which act locally finitely on M. A subalgebra | C g for which there exists an
irreducible module M with g[M] = [ is called a Fernando-Kac subalgebra of g.
A Fernando-Kac subalgebra of g is of finite type if in addition M can be chosen
to have finite Jordan-Holder I-multiplicities. Under the assumption that g is
simple, I. Penkov has conjectured an explicit combinatorial criterion describing
all Fernando-Kac subalgebras of finite type which contain a Cartan subalgebra.
In the present paper we prove this conjecture for g Fs.

1 Introduction

Let g be a finite-dimensional complex Lie algebra and M be a g-module. The
Fernando-Kac subalgebra g[M|] C g associated to M is by definition the subset of
elements of g which act locally finitely on M. The fact that g[M] is a subalgebra
of g was independently proved by V. Kac and S. Fernando, [Kac85], .
The g-module M is said to be a (g,€)-module if ¢ C g[M], and to be a strict
(g,8)-module if g[M] = ¢. A subalgebra ¢ of g is defined to be a Fernando-
Kac subalgebra if there exists an irreducible strict (g,%)-module M. Under a
root subalgebra of g we understand a subalgebra of g which contains a Cartan
subalgebra b C g.

A (g, ®)-module M is of finite type if for any fixed irreducible finite-dimensional
t-module V' the Jordan-Holder multiplicities of V' in all finite-dimensional £-
submodules of M are uniformly bounded. A Fernando-Kac subalgebra ¢ of g
is of finite type if € = g[M] for some irreducible (g,¥)-module M of finite type.
Otherwise, ¢ is of infinite type. In what follows, g will be assumed reductive.

This paper completes the classification of the root Fernando-Kac subalgebras
of finite type of the classical simple Lie algebras. This classification was ini-
tiated in [PS02, [PSZ04]. It is proved in [PS02] that every root subalgebra of
g is a Fernando-Kac subalgebra, not necessarily of finite type. In [PSZ04], I.
Penkov, V. Serganova and G. Zuckerman gave a construction of an infinite fam-
ily of irreducible (g, £)-modules of finite type by using a procedure of geometric
induction from irreducible (preq,h)-modules of finite type (preq stands for the
reductive part of a parabolic subalgebra p). This enabled them to determine
all root Fernando-Kac subalgebras of finite type for g = sl(n), as they showed
that all such subalgebras arise through this construction. Furthermore, I. Penkov
conjectured an explicit description of all root Fernando-Kac subalgebras of finite
type in terms of their root systems. It claims that two conditions, the “cone con-
dition” and the “centralizer condition” (see Definition 3] below), are necessary
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and sufficient for a subalgebra to be a root Fernando-Kac of finite type (Theorem
[B2). The “centralizer condition” is a consequence of S. Fernando’s result [Fer90]
that Lie algebras of type B and D do not admit strict irreducible (g, h)-module
of finite type, and is trivially satisfied in both types A and C. Moreover, it can
be verified that Penkov’s conjecture is compatible with decomposing a semisim-
ple subalgebra into simple ideals, hence it suffices to prove it for the simple Lie
algebras.

In the present paper, we prove Penkov’s conjecture for all simple Lie algebras
except Fs. The proof of Theorem has two distinct parts. The first part
establishes that all root subalgebras [ which do not satisfy the cone condition are
Fernando-Kac suabalgebras of infinite type. This is the main contribution of the
present paper and makes up for all of sections [ and Bl In section [ for any root
subalgebra [ we give a combinatorial definition of an [-infinite weight (Definition
[41)), equivalent to the existence of certain sl(2)- subalgebras of g with pairwise
strongly orthogonal roots. Then, assuming the existence of an [-infinite weight,
we construct a £-type of infinite multiplicity in any strict (g, [)-module.

In section [B] we complete this first part of the proof by showing that, for a
simple Lie algebra g Fsg, the failure of the cone condition implies the existence
of an [-infinite weight. The argument for the classical Lie algebras goes through
classifying minimal cone intersection relations (Lemma [B.3]). The proof for the
exceptional Lie algebras Fu, Fs and F7 involves a computer computation, per-
formed by a C++ program written by the authorll. Tt is our conjecture that
the failure of the cone condition implies the existence of an l-infinite weight for
the exceptional Lie algebra Eg as well; we have not yet been able to prove (or
disprove) this fact due to the size of the computation. The latter issue should be
resolved algorithmically in the near future.

To complete the proof, for a given root subalgebra [ = €3 n satisfying the cone
and the centralizer conditions, one constructs a strict irreducible (g, [)-module M.
Such a general construction is already contained in [PSZ04]; here, we only show
that any root subalgebra [ as above provides input data for it. This is ensured
by Proposition [6.1}
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2 Preliminaries

The base field is C. U(e) stands for universal enveloping algebra. A reductive Lie
algebra g and its Cartan subalgebra § are assumed fixed. All root subalgebras of
g we consider are assumed to contain h. The h-roots of g are denoted by A(g).
By [ we denote a variable root subalgebra of g with nilradical n. We denote
by ¢ the unique reductive part of [ which contains h, and we write [ = £3 n.
The root spaces of [ are automatically root spaces of g, and we denote by A(I)
(respectively, A(t)) the set of roots of [ (respectively of €); A(¢) C A(l) C A(g).
We also put A(n) := A(I)\A(¢). There are vector space decompositions

g=he P o, =he P o

aEA(g) a€A(l)
t=he P ¢, n= P o

a€A(D): a€A(I):

—aeA(l) —agA(l)

We fix a Borel subalgebra b D ) whose roots are by definition the positive roots;
we denote them by A™(g). Given a set of roots I, we denote by Conez([)
(respectively, Coneg(I)) the Z>o-span (respectively, Q>¢-span) of I.



The form on h* induced by the Killing form is denoted by (e, e). The sign £
stands for strongly orthogonal; two roots «, 8 are defined to be strongly orthog-
onal if neither o + 8 nor a — § is a root or zero (which implies (o, 8) = 0). We
say that a root « is linked to an arbitrary set of roots I if there is an element of
I that is not orthogonal to a. The Weyl group of g is denoted by W. For two
roots a, 8 € A(g) we say that a < 8 if S — «a is a non-negative linear combination
of positive roots.

For any subalgebra s C g we denote by N(s) (respectively, C'(s)) the normal-
izer (respectively, the centralizer) of s in g. If s is reductive, we set 555 = [s, 8],
and if s contains h we denote by s,.q the reductive part of s containing b (in
particular, £ = l;cq).

Lemma 2.1 Let ¢ C g be a reductive root subalgebra. Then C(tss) = hi®
Bt a8 where by = {h € b | (k) = 0,v7 € A®)}.

Proof. Let x := h + ZaeA(g) aag” € C(tss), where g* € g*. For any v € A(¥)
we have 0 = [z,97] = v(R)g" + X ca(g) AaCaryg® T, where g®™7 = 0 if a4 v
is not a root and ca, 7# 0 whenever a + v is a root. Therefore ao = 0 for
all o which are not strongly orthogonal to A(t) and v(h) = 0. On the other
hand, it is clear that when v(h) = 0 for all v € A(¢), and a, are arbitrary, then
h+ Zaé NG aag” is an element of C'(¥ss). O

We fix the conventional expressions for the positive roots of the classical root
systems:

Anyn>2 : AT(g)={ei—¢gjli<je{l,...,n+1}};

Bn,n>2 @ AY(g)={eiteli<jec{l,....,n}}U{eili € {1,...n}};
Cnyn 22 AM(g) = {ei teili <j € {1,...,n}\{0};

D,,n>4 At(g) ={eitejli<je{l,...,n}}.

3 Statement of the result

Definition 3.1 (1. Penkov)

(a) Cone condition. We say that [ satisfies the cone condition if Coneg(A(n)) N
Coneg(Sing,~(g/1)) = {0}, where Sing,,(g/0) := {a € A(g\A(I)|a+ 6 ¢
A(g),V¥6 € A(b) NA(8)} are the weights of the b N t-singular vectors of the
t-module g/I.

(b) Centralizer condition. We say that | satisfies the centralizer condition if
a (equivalently any) Levi subalgebra of the Lie algebra C(tss) N N(n) has
simple constituents of type A and C only.

Remark. The cone condition (a) holds as stated if and only if it holds with Q
replaced by Z.

Theorem 3.2 Let [ = £3 n be a root subalgebra of g ~ sl(n), so(2n+1), sp(2n),
so(2n), Gz, Fu, Eg or E7. Then | is a Fernando-Kac subalgebra of finite type if
and only if | satisfies the cone and centralizer conditions.

We present the proof in section Note that the criterion of Theorem
is entirely combinatorial. This clearly applies to the cone condition. Checking
the centralizer condition under the assumption that the cone condition holds is
also an entirely combinatorial procedure. Indeed, in this latter case Proposition
[6.T below gives that C'(€ss) N N(n) = C(tss) N N(C(€ss) Nn), ie. C(kss) N N(n)



is a parabolic subalgebra of C(t,s). Therefore checking the centralizer condition
reduces to checking the type of the root subsystem Q N —Q C A(g), where
Q = {a € A(g) | a+ A(#), such that for all 8 € A(n) with S+ A(¥), either
a+ B € A(n), or a+ S is not a root }.

In the case when ¢ = b (i.e. [ is solvable), the cone condition is equivalent to
the requirement that n be the nilradical of a parabolic subalgebra containing b
(see [PS02, Prop. 4] and also Lemma [5.8 below). Furthermore, using Corollary
5.5 and Theorem 5.8 from [PSZ04], it is not difficult to show that when g is of
type A, the cone condition holds if and only if n is the nilradical of a parabolic
subalgebra of g which contains . This is not the case in type B, C, and D. Here
is an example for type C.

Example 3.3 g = sp(6), A(t) = {£+2e2, £2e3}, A(n) = 221,61 + 2,61 — 2. A
computation shows that Singy~,(g/l)) = {es+¢€1,e2+€3,63 —€1, —€1+€2, —2e1 }.
Thus the cone condition is satisfied, but there exists no parabolic subalgebra p
with n = ny,. Indeed, assume the contrary. Then there exists a vector ¢t € h with
a(t) > 0 for all @ € A(n), and «(t) < 0 for all other roots « of g. Therefore
e2(t) = e3(t) =0, e1(t) > 0, and (g1 + £3)(t) > 0. Contradiction.

To illustrate the cone condition in the non-solvable case, we present all non-
solvable root subalgebras that fail the cone condition in types Bs and Cs (Table
B below). These subalgebras are, up to conjugation, all non-solvable root sub-
algebras of infinite type in types Bs and Cs. Indeed, the centralizer condition is
trivially satisfied in type Cs. In type Bs, the centralizer condition holds for [+ b,
as the root system Bs is isomorphic to C2. Up to conjugation, in so(7) (respec-
tively, sp(6)), there are 11 (respectively, 16) non-solvable root subalgebras that
fail the cone condition, and 32 (respectively, 38) non-solvable root subalgebras
that satisfy it.

A(®) is of type A1+ Ax;

g
A (E) = 21-c0, e1-4es A(n) =e1+e3, eates, -€2te3, -€1+e€3,
A(®) is of type Aq; A(n) =e1-€2, e1te€3, €1-€3, €1
A+(f) = €3 A(n) =€1+€3, €1-€3, €1
A(n) =e3, -e2+€3, -€1+€3
A(n) =e1+e2, €1-€3, €2-€3, €1+¢€3, 2+€3
A(n) =€1+€2, €1-€3, €2-€3, -€2-€3, -€1-€3
A(®) is of type Aq; A(n) =e1+4e9, €1-€3, €2-€3, €1, €2
A+(E) = €1-€2 A(n) —=€1+€2, €1-€3, £2-€3
A(n) =€1+€2, €1, €2
A(‘ﬂ) —=€1-€3, €2-€3, -€2-€3, -€1-€3
A(n) —E1-€3, €2-€3
g = sp(6)
A(n) =2e1, 2e3, 2e2, £2+€3
A(n) =2e1, -2e2, -2¢3, -€2-€3
A(n) =c1+e€3, €1+€2, 23, 2e2, €2+¢€3
A(®) is of type Aq; A(n) =e1+4e3, e1+e2
A+(E) = -g2+e€3 A(n) =2e3, 2e2, e2te3
A(n) —€1-€2, £€1-€3, -2527 -2537 -£92-€3
A(‘ﬂ) =£1-€2, €1-€3
A(n) =-2¢9, -2¢3, -€2-€3




A(n) =-e2+4e3, 2e3, -2e2, e1+¢3, -€1+€3
A(n) =-go+e€3, 2e3, €1+€3, -€1+€3
A(n) =-e2+€3, 2¢e3

A(t) is of type Ax; A(n) =-e2+4e3

AJr(f) = 2e, A(n) =2¢e9, 2e3, €1+€2, -€1+¢€2

A(n) =2¢9, 2e3
A(n) =2¢e2, €14€2, -€1+€2
A(n) :252

Table [B.4]
Non-solvable root subalgebras that fail the cone condition in types Bs and Cs.

4 A sufficient condition for infinite type

Let [ = 3 n be a root subalgebra, let M be a (g,[)-module. For every root
a € A(g) choose a non-zero vector g% € g* such that [¢%, 9™ %] = h*, where h®
is the element of § for which [h%, ¢°] = (a, 8)g¢” for all 8 € A(g).

By Lie’s theorem, there exists an b N [-singular vector v in M. Suppose that
there exist roots a; € Sing,~,(g/[) and B; € A(n), as well as numbers a;, b; € Z~o,
such that the vectors of the form ((g®*)*t ... (¢%)™)" ((g*/jl)b1 e (giﬁk)bk)t ‘v
for t € Z~o have the following three properties. First, these vectors have the same
h-weight; second, they are linearly independent; third, each of them projects
naturally to a b N l-singular vector in an appropriate [-subquotient of M. If all
three properties hold, then M is a (g, [)-module of infinite type as the irreducible
[-module with highest weight equal to the weight of v has infinite multiplicity in
M.

The above summarizes our approach for proving that the failure of the cone
condition implies [ is a Fernando-Kac subalgebra of infinite type. The present
section establishes that the three properties in question hold under an additional
assumption. In section [0l we prove that this additional assumption is satisfied
whenever the cone condition fails.

Definition 4.1

o Let I be a set of roots and w be a weight. We say that w has a strongly
orthogonal decomposition with respect to I if there exist roots B; € I and
positive integers b; such that w =b181 + -+ + biBx and Bi£ B; for all i, j.

o Fizl=¥3dnCgwithn Cb. Let w be a weight. We say that w is two-sided
with respect to [, or simply two-sided, if the following two conditions hold:

— w € Conez(Sing,,(g/1)) N Conez(A(n))\{0}, i.e. there exist a; € Z>o,
a; € Singye(9/1), bi € Z>o and B; € A(n) with

l k
w = Zaiai = szﬂii (1)
i=1 i=1

— among all expressions for w of type ({dl), there exists one for which
[g°,n] Cn,...,[g%,n] Cn.
o Let w be a weight. If w is both two-sided and has a strongly orthogonal
decomposition with respect to A(n), we say that w is I-strictly infinite.
o If for a given weight w there ezists a root subalgebra t containing €, such
that w is U'-strictly infinite in t, where I' := [Nt = €3 (tNn), we say that w
is l-infinite.



Lemma 4.2 Given [ = €D n C g, there exists h € b such that v(h) = 0 for all
v € A(t) and B(h) > 0 for all B € A(n).

Proof. Since hD n is a solvable Lie algebra, it lies in a maximal solvable (i.e.
Borel) subalgebra; assume without loss of generality that this Borel subalgebra
is b. Fix A’ € b such that y(h') > 0 for all v € A*(g). Let A" € h be defined
by v(h") := y(h') for all v € A(£) and a(h”) = 0 for all weights o € A(¥)*. Set
h:=h —hn"

We claim that h has the properties stated in the lemma. Indeed, let n’ C n
be a t-submodule of n. Since y(h) = 0 for all a € A(¢), the value r := 3(h) is the
same for all roots 8 € A(n’). Our statement is now equivalent to showing that
r > 0. Assume on the contrary that r < 0. Let the sum of the weights of A(n’)
be A, ie. A=} 5 caqwy Bi- Then A(h) = #(A(n'))r < 0. On the other hand,
the sum of the weights of a finite-dimensional €;s-module always equals zero, i.e.
X € A(t)*. Therefore A(h) = A(W') + A(R”) = A(h') > 0, contradiction. O

For an arbitrary weight pu € h*, denote by L,(¢) (respectively, L,(g)) the
irreducible highest weight £-module (respectively, g-module) with b N ¢-highest
(respectively, b-highest) weight p.

Lemma 4.3 Let w be a weight that has a strongly orthogonal decomposition with
respect to A(n). Let A € b* be an arbitrary b N E-dominant and t-integral weight.
Then there exists a number to such that, for any t > to and any g-module M
that has a (b N )3 n-singular vector v of weight A + tw, it follows that M has a
£-subquotient in which there is a non-zero b N €-singular vector w of weight .

Before we proceed with the proof we state the following.

Corollary 4.4 Let g, b, | = tD n, A and w be as above. Then there exists to
such that for any t > to and any (g,t)-module that has a (b N £)D n-singular
vector v € M of weight X\ + tw, it follows that M has non-zero multiplicity of
Ly (). In particular, the existence of a (g,%)-module with the required singular
vector implies that w is b N E-dominant.

Proof of Lemma [4.3lLet n~ be the subalgebra generated by the root spaces
opposite to the root spaces of n. Let b1fS1 + -+ + bxfSx = w be a strongly
orthogonal decomposition of w with respect to A(n) (Definition [1]). Let u :=
(PP ... (¢°*)" € U(n) and @ := (g~ 1)1 ... (g P*).

Let A be the linear subspace of U(n™) generated by all possible monomials
g~ " ...g~ 7% that have strictly higher weight than —tw, where —y; € A(n7), in
other words, A := span{g™ " ...¢g 7" |y; € A(n),>. 7 < w}. Denote by N the
t-module generated by the vectors {A - v}. To prove the lemma, we will show
that the t-module M/N has w as a b N ¢-singular weight vector, where w is the
image in M/N of w :=a" - v.

First, we will prove that w is b N ¢-singular: indeed, n~ is an ideal in the Lie
subalgebra £ n~ and so g“@’ € (ﬂtga + A) for all & € AT (¥); this, together
with the fact that v is b NeE-singular, proves our claim. Second, we will prove that
if w is non-zero, then w ¢ N and therefore w is non-zero. Indeed, the weight
spaces of N are a subset of the set

X = U (A + tw + v + span, A(t)).
vE€Coneyz (A(n7))
y-—tw

We claim that X does not contain \: indeed, choose I € h such that v(I) = 0 for
all v € A(¢) and B'(l) > 0 for all 8’ € A(n) (Lemma [2). Therefore —tw(l) ¢
{p(l)|n € X} and our claim is established.



To finish the proof of the lemma we are left to show that w = @' - v is non-
zero, and this is the first and only place we will use the strongly orthogonal
decomposition of w. To do that we will prove by direct computation that the
vector u'@' - v is a strictly positive multiple of v. For any n € Zso we compute

1
(") ") v = (Bi, =3B + A+ tB) (g~ P v

3
|

<.
I
<}

n(n -

nt? (B, B) + (B, \) — Nmm) (6" v

(
= (18080 (bt - 222 1) +<ﬁM>> (67" v,

Therefore

t

it —Bit _ . A . 2 (t_k)(t_k_l)
CONCROUTEE <</327/32> (50— e - =R D)

k=0
+<ﬂl7)‘>>v

Define ¢;(t,\) to be the above computed coefficient of v, in other words, set
ci(t, v = (g")" (g7 %")"~* - v. Since b; > 0, using the explicit form of ¢; (¢, \),
we see that for a fixed A, ¢;(¢, ) > 0 for all large enough ¢t. Using that gT# and
giﬁj commute whenever i # j, we get immediately that u‘a’ - v = [T, ci(t, M,
which proves our claim that u‘@' - v is a positive multiple of v. Therefore @' - v
cannot be zero, which completes the proof of the lemma. O

Example 4.5 Let us illustrate Lemma [£3] in the case when g ~ sl(3) and M
is an irreducible (g, [)-module of finite type. Consider first the case ¢ = f. If
n = {0}, the statement of the Lemma is a tautology. If n # {0}, the lemma
asserts that a certain weight space of M is non-zero. As the h-characters of all
simple sl(3)-modules of finite type are known (see for instance, [Mat00, Section
7]), the claim of the lemma is a direct corollary of this result.

The only other possibility for £ # g is £ ~ s1(2) + . Then there are 2 options
for . [=¢or [ =£3 n, where dimn = 2. For [ = ¢ the lemma is a tautology as
n = {0}. Consider the case when [ = ¢3 n with dimn = 2, i.e. the case when [
is a parabolic subalgebra with Levi component isomorphic to sl(2). Here, there
are two options for M: dim M < oo, and dim M = oco. In both cases £ acts
semisimply on M and the lemma asserts the existence of certain b N ¢ singular
vector in M. More precisely, let 71 := €1 — €2, y2 := €2 — €3 be the positive simple
basis of A(g) with respect to b, and let A(t) = {£7y1}. Then Lemma [L3] claims
that if A is bN€-dominant and integral, then Lx4+,(g) has a bN¢-singular vector
of weight X\ for all large enough ¢. Up to multiplication by a positive integer,
there are two different options for picking the weight w - either w = 71 + 3 or
w =72+ 3.

e Suppose w = 71 + v3. Let x(t) and y(t) be functions of ¢ and A, defined
by A + tw = @(271 +7v2) + yT(’yl + 2v2). The requirement that A be
b N t-dominant forces ¢ < z(t). Then the lemma states that there exists a
constant to, such that for all top < t < z(t) we have that L4, (g) has a
bNe-singular vector of weight A\. The reader can verify that for both infinite
and finite-dimensional M, that the constant o can be chosen to be zero.

e Suppose w = 2. Then the lemma states that there exists a constant to,
such that for all ¢ > to we have that Lt (g) has a b N ¢-singular vector



of weight A. As the reader can verify, when dim M = oo, the statement of
the Lemma holds for to = 0; in the case that M is finite-dimensional, one
must pick to > —(\, y2).

Lemma 4.6 Suppose there exists an [-strictly infinite weight w.

(a) Any (g,1)-module M for which any element in g\l acts freely is of infinite
type over [.

(b) 1=1¢3 n is a Fernando-Kac subalgebra of infinite type.

Proof. As any irreducible strict (g, [)-module satisfies the conditions of (a), (a)
implies (b); we will now show (a). Let vy be a (b N I)-singular vector.

Let g be the Lie subalgebra generated by ¢ and gt , where w := 22:1 a;o; =
S°F , biBi is one decomposition (). Let u® := (g®1)* ... (¢*)* € U(g). The
vector vatuw = (u®)’ - vy is non-zero by the conditions of (a). We claim that
Uattw 18 b N [-singular. Indeed, first note that since all a; are € N b-singular,
Untiw 15 b N E-singular. Second, let g° € g? C n. By the second requirement for
being two-sided we can commute g” with u4® to obtain that ¢°(u®)" € U(q)a,
where a € U(n) is an element with no constant term and q is the Lie subalgebra
generated by g*,...,g%. Since a - vy = 0, we get ¢° - Va1, = 0, which proves
our claim.

All va4tw are linearly independent since they have pairwise non-coinciding
weights. Let M; be the g-submodule of M generated by vy1, and let M’ be the
sum of the My’s as t runs over the non-negative integers. Corollary 4] shows
that the -module L () has non-zero multiplicity in M for all large enough ¢.
Consider the vectors @' ‘Uxttw generating the E-subquotients isomorphic to Ly (),
where 7 is defined as in the proof of Lemma[£3l Let A: be the linear subspace
of U(n™) generated by all possible monomials ¢~ ...g~ "% that have strictly
higher weight than —tw, where v; € A(n). Let N be the t-submodule generated
by the vectors U At - Unytw, where to is the number given by Lemma [£3] Just

t>to
as in the proof of Lemma [£3] we see that each vector at - Unttw 1s not in N and
is the image of a b N E-singular vector in the quotient M’'/N.

We will now prove that ' - vxy¢, are linearly independent. Indeed, let u
be defined as in the proof of Lemma 3] Now take a linear dependence 0 =
Zi.v:l ciati - Uxtt;w such that txy > t1,...,ty > tn—1 and apply u'N to both
sides. As the computations in the proof of Lemma 3l show, u'~ kills all but
the last summand; therefore the last summand has coefficient ¢y = 0. Arguing
in a similar fashion for the remaining summands, we conclude that the starting
linear dependence is trivial. This shows that the £-module L (%) has infinite
multiplicity in the £-module M’. We conclude that M has infinite type over &,
hence, by [PSZ04, Theorem 3.1], M has also infinite type over [. O

5 Existence of [-infinite weights

5.1 Existence of two-sided weights

Lemma 5.1 Let au,...,ok, akt+1,7 be vectors of a root system such that o +
<o+ ar + aky1 + 7y @8 a root different from v or is equal to zero, and o; + 7y is
neither a root nor zero fori=1,..., k. Then ax+1 + 7y is a root or zero.

Proof. We will establish the lemma only for an irreducible root system; the
case of a reducible root system is an immediate corollary which we leave to the



reader. For G2 the statement is a straightforward check, so assume in addition
that the root system is not of type Ga.
Assume the contrary to the statement of the lemma. Let

a1+ -+ ak + agy1 +y=06. (2)

Then (B,7) >0, (a;,v) > 0. Apply (e,7) to both sides of [@)). We get {a1,7) +

(o, ) + (rt1,7) + (7, 7) = (0,7). If § = 0, we immediately get that
(v, ;) < 0 for some ¢ and the statement of the lemma holds as the sum of two
roots with negative scalar product is always a root. Therefore we can suppose
until the end of the proof that § # 0.

Since {(a;,7) > 0 and § # v, we must have (y,aq) = -+ = (y,) =
(v, ak+1) = 0 and (v,7) = (,7). Since § # v by the conditions of the lemma,
the only way for this to happen is to have that ~ is a short and ¢ is long, which
gives the desired contradiction in types A, D and E. Suppose now the given root
system is of type C. Then without loss of generality we can assume that § = 2¢;
and v = €1 +£2. But then there must be a summand on the left-hand side of (2))
which cancels the 4+¢2 term of . None of the «;’s have a —e2 term (since a; + v
is not a root) and therefore a1 + 7y is a root, contradiction. Suppose next that
the given root system is of type B. Then without loss of generality v can be
assumed to be €1 and 0 to be €1 +¢2. Clearly a1 + - -+ ar + g1 +e1 =1+ €2
wouldn’t be possible if all a;’s and ag4+1 were long. Therefore one of them is
short, which implies that this root plus 7 is a root, contradiction.

Suppose finally that the given root system is of type F4. Pick a minimal
relation (2) that contradicts the statement of the lemma, i.e. one with minimal
number of «;’s. This number must be at least 3, since otherwise this relation
would generate a root subsystem of rank 3 or less and this is impossible by the
preceding cases. We claim that for all 4, j, a;; := a; + 5 is not a root or zero.
Indeed, assume the contrary. If a;; +v = a; + aj + v is not a root or zero we
could replace o; + a; by au; in contradiction with the minimality of the initial
relation. Therefore a;; +v = i + o5 + v is a root or zero, and since the three
roots «y, oy, generate a root subsystem of rank at most 3, the preceding cases
imply that at least one of a; + v and a; + v is a root, contradiction.

So far, for all 4, j, we established that a; + «; is not a root or zero; therefore
(s, ) > 0 for all 4, j. Taking (a1, e) on each side of a1 ++- -+ ag+ak+1+v7 =49
we see that 2 < (a1,a1) < {(@1,d). Therefore § — a1 is a root or zero, and
transferring a; to the right-hand side we get a shorter relation than the initial
one. Contradiction. O

Definition 5.2 For a relation (1) we define the length of the relation to be
>, ai. We define a relation () to be minimal if its length is minimal, there are
no repeating summands on either side, and no two B;’s sum up to a root.

Remark. Any relation of minimal length can be transformed to a minimal
relation by combining the repeating summands on both sides and by replacing
the B;’s in () that sum up to roots by their sums. If in addition the initial
relation of minimal length corresponds to a two-sided weight, Lemma 5.1 implies
that the resulting minimal relation again corresponds to a two-sided weight.

Proposition 5.3 Let the cone condition fail. Then there exists a minimal rela-
tion () correspoding to a two-sided weight w.

Proof. The failure of the cone condition is equivalent to the existence of a
relation (). Pick a minimal such relation. Assume that the weight arising in this
way is not two-sided. Together with the minimality of the relation this implies
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that for one of the «;’s, say a1, there exist roots 8/ € A(n) and § € A(g)\A(n)
such that § = a1 + 3.

We claim that § ¢ A(l). Indeed, assume on the contrary that § € A(£). Then
B’ — 4 is a root, and therefore lies in A(n). We get the relation (a1 — 1)aq +
asas + -+ aiay = b1 + - + bpBr + (B — &) which is shorter than the initial
relation, contradiction.

Now suppose that § is not b N &-singular. Therefore there exists 1 € A™(£)
such that §; := § +1 is a root. If §; is not singular, continue picking in a similar
fashion roots ya,...,vs € AT (8), such that 6 = §+~1+ - -+ is a root for any
t < s. Since this process must be finite, §; is b N -singular for some s. As a; is
b N E-singular, a1 + 71 is not a root. Apply now LemmaEIlto 61 = a1 + 3 +
to get that 8" := 8’ + 1 is a root. Therefore 3’ € A(n). Arguing in a similar
fashion, we obtain that 8 := B” 4+ v2 is a root of n, and so on. Finally, we
obtain BtV =8 441+ -+, € A(n) and so we get a new relation ():

(a’l _1)061 +5s+a2a2+---+alo¢l :ﬂl ++6k+/3(5+1) (3)

We can reduce (@) so that no two 8’s add to a root (replace any such pairs by
their sum) and so that if 6s = a4 for some ¢ then ds+a;q; is replaced by (a;+1)a;.

This reduction of (@) is a minimal relation. If this relation does not yield a
two-sided weight, one applies the procedure again and obtains a new minimal
relation, and so on. As this process adds vectors from A(n) to the right-hand
side of the relation, while the length of the left-hand side remains constant, the
process must be finite (cf. Lemmal[L£2). Therefore there exists a minimal relation
corresponding to a two-sided weight. O

5.2 From two-sided to [-infinite weights

In the remainder of this section we prove that the failure of the cone condition
implies the existence of an [-infinite weight: our proof is mathematical for the
classical Lie algebras and G2 and uses a computer program for the exceptional
Lie algebras Fy, F¢ and Fr.

For the classical Lie algebras, our scheme of proof can be summarized as
follows. First, we classify all minimal relations (). It turns out by direct ob-
servation that whenever the cones intersect, the minimal relations () are always
of length 2, in particular this minimal length does not depend on the rank of
the root system. In type A this was discovered in [PSZ04]. In types A, B and
D, a direct inspection of all minimal relations shows that each of them possesses
a strongly orthogonal decomposition with respect to A(n). Since at least one
minimal relation must be two-sided by Proposition [5.3] we obtain the existence
of an [-strictly infinite weight.

In type C' we do not have that all minimal relations possess a strongly or-
thogonal decomposition. However, the “discrepancy” is small - there is only one
minimal relation () without such a decomposition. In this particular case, we
exhibit a root subalgebra t containing € such that t has an [ N t-strictly infinite
weight, i.e. there is an [-infinite weight.

The proof for the exceptional Lie algebras uses a mixture of combinatorics and
computer brute force. If C'(£ss) Nn is not the nilradical of a parabolic subalgebra
of C'(&ss), we prove in Lemma[5.8lthat an [-infinite weight always exists, involving
only roots of the root system of C(€ss). Then, using our computer program, we
enumerate up to g-automorphisms all remaining cases - i.e. the root subalgebras
for which C(&ss)Nn is the nilradical of a parabolic subalgebra of C(£ss) containing
C(tss) N'h. This direct computation shows the existence of [-strictly infinite

11



weights in types Es and E7. In type Fy, our program fails to exhibit an [-strictly
infinite weight for only one (unique up to g-automorphism) choice of [; in this
case we give an argument similar to that in the special case in type C.

In order to enumerate all possible subalgebras ¢ we use the classification of
reductive root subalgebras given in the fundamental paper [Dyn72]. The list of
possible subalgebras ¢ is very short (it contains respectively 19, 45, 75 and 22
entries for Fy, Es, E7 and Ejs, see section [Bl in the appendix). For a fixed ¢,
we use all automorphisms of A(g) which preserve A(bN¢) (see section [Clin the
appendix) in order to generate only pairwise non-conjugate subalgebras [ and
thus further decrease the size of the computation.

The following is an observation that is helpful in the proof of Lemma 5.5 (cf.
[PSZ04l Lemma 5.4]).

Lemma 5.4 Let the cone condition fail and let us have a minimal relation ().
Then

(a) The relation has the form
a1 +az = B,

or
(b) ai + a  is not a root for all i, j.

Proof. Pick a minimal relation ({J). Suppose there exist indices 7, j such that
v := a; + o is a root. We claim that v € A(n). Indeed, assume the contrary.
First, suppose v € A7 (¢). Then «; and a; would both fail to be b N ¢-singular.

Second, suppose v € A1 (£). We prove that az+---+a; = B1+- -+ Bk — is
a shorter relation than (). Indeed, 81 + - - - 4+ Bk — 7 is clearly non-zero (positive
linear combination of elements of A(n) cannot be in the span of the roots of
the semisimple part). By the b N t-singularity of the ay’s, (v,81 + -+ + Bkx) =
(v,a1 4+ -+ aw) = (v,7) + (v,a3 + - - - + ax) > 0 and therefore, for some index
i, {7, Bi) > 0. This shows that 3; — 7 is a root, which therefore belongs to A(n).
Contradiction.

Third, suppose v ¢ A(g)\A(l). Then ~ is bNt-singular - if y+6 = a1 + a2 +6
were a root for some § € AT (¢), then Lemma [51] would imply that o1 + 0 is
also a root. Therefore we can shorten the relation () by replacing a1 + az by
v, and the obtained relation is non-trivial since the right-hand side is not zero.
Contradiction.

Therefore v € A(n), and our lemma is proved. O

5.3 Minimal relations (I]) in the classical Lie algebras

The following lemma describes all minimal relations () up to automorphisms of
Ag)-

Lemma 5.5 Let g ~ so(2n),so(2n+1),sp(2n). Suppose [ = €3 n does not satisfy
the cone condition.

o A minimal relation [dl) has length 2 (Definition [52).

o All possibilities for minimal relations [dl), up to an automorphism of A(g),
are given in the following table.
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Scalar products. All non-listed
scalar products are zero. All

w roots, unless stated otherwise, The roots
are assumed long in types B, D from the rela-
and short in type C. tion generate
g ~ so(2n)
X i W
_ (a1, 1) = (a1, B2) = A3 C A4,
mter = Atk (a2, f1) = (a2, B2) =1 n>5 @
(a1, a2) = (on, f1) =
art+az = Bi+B2+ B égl’gj; ézl’g;; z Dy ((6)
<Oé2753> 1
200 = Pi+Pa+PBs+Pa ézi’gzi ézi’gji . Dy @
a1+az = P14 B 2217515 ég;gzi i As? @
so(2n + 1)
all relations
listed for so(2n) ) )
_ <a17/31> = <012761> = 17
mre = 4 o = Jlaal] = 1 b 8
— <Oé1,(12> =-1, <a27/31> =1,
mte - 4 o]l = 18] =1 B @
20 = P+ P lail = 1,{a1, B1) = {a1,62) =1 Bs @@
ot = 2B Bl =1, {a1, 1) = (a2, B1) = 1 Ba (=
Mt = AEA Jeni = ||52<|\a3/f1> - en P =t B @
_ (a1, a2) = (on, B1) = (a2, b1) =1,
mte: - s (o1, 82) = (02, Ba) = 1Bu]] = 1. B @
201 = 2B1+ B2+ fs ﬁ%i’n@f (a1, B2) = (a1, Bs) = 1, Bs @)
g ~ sp(2n)
mtm = b o) = G =1 v m
a1+ = B |<|(;17Hﬂ;>2: (a2, B1) =2, Co @
_ (a1, B1) = (az, B1) =1
mree T o]l = Jlaz] = 2 < ®
o = it o e g s @
(a2, Br) = (az, B2) =2,
e = (51, 5 = “ @
ezl =2

2[Dyn72, Table 9] uses the notation “D3” for such subalgebras. D3 is defined as a root subsystem
of type A3 of root system of type B or D, which cannot be extended to a root subsystem of type Aj.
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Scalar products. All non-listed
scalar products are zero. All

w roots, unless stated otherwise, The roots
are assumed long in types B, D from the rela-
and short in type C. tion generate
(a1, B2) = (a1, B2) =2,
oar+ax = [i1+4 e (a1, a2) = (a1, 1) = Cs 22

(2, 81) =1, ||B2]| = 2

Proof. Pick a minimal relation () of the form w := a1c1 + -+ + qyay =
b1B1 + -+ + biBr (see Definition [(.2)).

Throughout this proof, we will use the informal expression “+e; appears with
a positive (resp. non-positive) coefficient in the weight w” to describe the *e;-
coordinate of w in the basis {e1,...,8i—1, %€, Eit1,...,En}

5.3.1 g=~so(2n)

Case 1. There exists an index ¢, such that a; = £ej, + (£e;,), j1 # j2 and both
+e;, and +¢;, appear with a positive coefficient in w. Without loss of generality
we may assume i = 1 and a3 = €1 + €2. Therefore there exist 1 and (82 on the
right-hand side of the relation with 81 = 1 4 (£ej,) and B2 = e2 + (£e;,). The
minimality of the relation implies {1,2} N {js, ja} = 0. The latter allows us to
assume without loss of generality that §1 = €1 + 3.

€1+e2+---=¢e1testeatej;+....
i B1 Ba

We will now prove js4 # 3.

Assume on the contrary that 3 = j4. As the relation is minimal, the choice of
=+ sign must be such that €3 = +¢;,. The minimality of the relation implies that
there can be no cancellation of the weight €3 on the right-hand side. Therefore
on the left-hand side there exists a root, say ap, such that az = e3 + (£ej;),
js # 3. The minimality of the relation implies that in addition js # 1,2. Thus
we can assume without loss of generality that j5 = 5 and as = €3 + 5. So far,
the assumption that ju = 3 implies that the relation has the form

€1+exteztes+ ... =e1+eztextes+ .., (23)
N—— N — = N N — Y
aq ag v B1 B2

where « and § denote the omitted summands. Suppose at least one of the roots
€1+ ¢e5 and €2 + €5 belongs to A(n). Without loss of generality we may assume
€1+ e5 € A(n). Then the relation a1 + a2 = B2 + &1 + €5 is shorter than (23]).
Contradiction. Suppose at least one of the roots €1 + €5 and e2 + €5 belongs
to A(t). Without loss of generality we may assume €1 + e5 € A(t). Then
ez —es = B1 — (61 + &5) € A(n) and the relation v = €3 — &5 + 0 is shorter
than ([23). The latter relation is non-trivial since the right-hand side is a positive
linear combination of roots of A(n). Contradiction.

So far we proved that €1 4 £5,€2 + &5 do not belong to A(l). If &1 + &5 were a
bNe-singular weight, we could replace a1 + a2 by €1 +¢5 and remove €2+4¢€3 on the
right-hand side of ([23), shortening the initial relation. Similarly, we reason that
€2+ €5 is not a b N E-singular weight. In order for €1 + €5 not to be bN¢-singular,
there must exist an index k and a choice of sign for which one of &, — 1 and
+ep — €5 is a positive root of €. Similarly, there exists an index [ and a choice
of sign for which one of +&; — €2 and +¢; — €5 is a positive root of £&. As oy
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and ag are b N E-singular, a short consideration shows that the only possibility
is e = —e2 and +e; = 3. Therefore 83 := 2 — (e3 — €5) € A(n). Finally, we
obtain the relation aq + a2 = 1 + B3 which is shorter than (23]). Contradiction.

So far, we have proved that 3 # js. Therefore we can assume without loss of
generality that 2 = €2 + €4. We have now established that the relation has the
form

g1t+ex+--=¢c1t+e3f+e2test
—— —— ~—— ~—~
ay B1 Ba zero allowed

Case 1.1. &3 and &4 both appear with positive coefficients in w. We claim that
a2 = g3 +e4 € A(g)\A(). Indeed, first, a1 = (1 — a2) + B2 implies that
az ¢ A(t). Second, if az € A(n), we could remove «; on the left-hand side of
the relation and substitute 81 + B2 by a2 to get a relation shorter than the initial
one.

We will now prove that as is b N t-singular.

Assume on the contrary that there exists 6 € AT (£) such that az + 6 is a
root. Then ¢ is either of the form +ex —e3 or +e —e4; without loss of generality
we may assume that § = +e — £3. The requirement that €3 and e4 appear
with positive coefficients in w implies that there exist as, as € Sing,~.(g/l)
such that as = +ej; + €3, as = *ejy + €4, {Js,46} N {3,4} = 0, 1 # js, and
2 # je¢. Furthermore, the preceding assumptions imply that there are at least
three distinct roots on the left-hand side of the relation. Since ag is bN¢-singular,
we have js = k and § = +e, —e3 = e, —e3. Then e + (£ej5) = f1+0 € A(n)
and therefore k = js # 2. We can now assume without loss of generality that
js = b and the choice of =+ signs is such that as = es+e3 and d = e5—e3 € A+(E).
So far, the assumption that as is not b N ¢-singular implies that the relation has
the form

€1 +estestesteat (Fejg)+ .., =eitestertest .
—— > —,/ ~~ —— ~—— ~—~
aq asg oy zero allowed 81 Ba zero allowed

We have that €5 + €4 = a2 + 5 € A(g)\A(I). We claim that €5 + £4 is not
b N ¢-singular: indeed, otherwise the relation ai + €5 + €4 = €1 + 5 +82 would

€A(n)
be shorter than the initial one. Therefore there is a root 6’ € AT (£) such that
8’ +e5+e4 is a root. The bNE-singularity of .y together with § = e5 —e3 € AT (£)
imply that 6’ = +ej, — 4. Therefore e + (fej,) € A(n) and if the weight
es + (ejq) is a root, it belongs to A(g)\A(I). We can write

%1 +E5+(:t5j6) =¢€1 +¢€5 +52+(:|:Ej6). (24)

We will arrive at a contradiction for all possible choices of js. Indeed, if 5 # js,
then e5 + (ejq) is a root. The fact that ag, a3 € Sing,.(g/l) together with
5,8 € AT (€) imply that e5 + (£ej,) is b N E-singular. Thus () is a relation
of type () which is shorter than the initial one. Contradiction. If jo = 5 and
the choice of the sign 4 is such that as = €4 — €5, we get a contradiction as
—e4+e5 =48 € A(E). Finally, if e5 = £ej,, then §” := =5+ =3 —e4 € A(E).
Then depending on whether §” is positive or negative we get a contradiction with
the b N ¢-singularity of either a4 or as.

We have now as € Sing,.(g/l). Therefore the initial relation is a1 + a2 =
B1 + B2, of type ().
Case 1.2. One of €3, €4 appears with positive coefficient in w and the other with
non-positive. Without loss of generality we may assume that €4 appears with
positive coefficient in w and e3 with non-positive. Then there exists a root on
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the right-hand side, say (s, of the form +&; — 3. The minimality of the relation
implies 83 = €1 — €3. So far the relation is

E1tex+--=¢c1+ezF+er—ezteates+...
N—_—— N N N —
ay B1 B3 B2

Now consider az := €1 + £4. We claim, as in Case 1.1, that az € A(g)\A(l).
Indeed, first, if we had that as € A(n), we could substitute 81 + B2 + B3 by a2
on the right-hand side and remove a3 on the left-hand side to obtain a shorter
relation than the initial one. Second, ay = ((81 —2)+B2)+ B3 implies aa ¢ A(¥).

Now, as in Case 1.1, we will show that ag is b N €-singular. Indeed, assume
the contrary. The fact that ¢4 appears with positive coefficient in w implies
that on the left-hand side there is a b N ¢-singular weight, say as, of the form
as = tej; + €4, where js # 2.

We claim next that js # 1.

Indeed, first, if £¢;, = —e1, the relation a; + as = (B2 is shorter than the
initial one. Contradiction. Second, *ej; = €1 contradicts the b N ¢-singularity
of aa. Therefore js # 1,2 and we can assume without loss of generality that
js = b and a3z = €5 + €4. The assumption that as = €1 4 €4 is not b N ¢-singular
implies that there exists some index [ for which at least one of v := +¢; — €4
and § := £e; — €1 belongs to A1 (¢). The choice 6 € A1 () contradicts the
b N ¢-singularity of o unless § = €2 — e1. The latter yields a contradiction as
well, as it implies an € A(n). The choice v € AT (£) together with the b N &
singularity of as implies v = €5 — e4. Then B4 = P2 + v € A(n) and the
relation ay + ag = B1 + B3 + B4 is of type (@) and is shorter than the initial one.
Contradiction.

So far we have proved that as € Sing,~,(g/l). Therefore a1 +a2 = B1+F3+ 2
is the desired relation (G).

Case 1.3. e3 and e4 both appear with non-positive coefficients in w. As 3 and
€4 are canceled on the right-hand side without contradicting the minimality of
the relation, we need to have 83 := &1 —e3 € A(n), Bs := €2 — g4 € A(n). Thus
we have the desired relation ().

Case 2. There is no index i such that a; = £¢;, +(£ej,) and both &5, and £¢;,
appear with positive coefficients in w. As w is non-trivial, it has at least one non-
zero coordinate. Without loss of generality we may assume this to coordinate to
be positive, corresponding to €;. In addition, without loss of generality, assume
that a1 = €1 +¢€2. By our current assumption, €2 appears in w with non-positive

coefficient. Then some a;, say a2, is of the form as = —e2 + (Fej,).
Case 2.1. js # 1. Without loss of generality we can assume that js = 3 and
a2 = —e2 + €3. Then 1 := a1 + a2 is a root and by Lemma [5.4] we have the

desired relation ().

Case 2.2. js3 = j1 and as = —e2 + 1. On the right-hand side, there is a root,
say f1, of the form 81 = &1 + (£ej,). A short consideration shows that js # 1,2,
and so we assume without loss of generality that §1 := €1 + 4. The relation so
far has the form

€1 +ée2+(—€2+¢€1)+ =e14+e4+....
N—— ;/J ~~~ N——
ay as allowed to be zero B1

We will now prove that €4 appears with positive coefficient in w. Indeed,
assume the contrary. Therefore there exists a root on the left-hand side, say as,
of the form a3 = 4 + (£¢;;). By Lemma 54 we get that js # 1,2, and therefore
we can assume without loss of generality that j5 = 5 and as = €4 + 5. By
the requirement of Case 2, €5 appears with a non-positive coefficient in w, and
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therefore there exists as = —e5 + (£¢j,). By Lemma 5.4l o4 + a3 is not a root
and therefore oy = €4 — 5. Therefore we cannot have a shorter relation than

€j, +e2+(—e2+e1) te3+est+ (—ea+e3) = 2(e1 +€3). (25)
—— —— Y —- T
ay az as ay 1

We claim that the above expression cannot correspond to a minimal relation.
Consider § := €1 + £4. First, the possibility 6 € A(#) implies 81 € A(g)\A(I).
Contradiction. Second, the possibility 6 € A(g)\A([) together with the b N ¢-
singularity of a1, a2, @3 and a4 imply § € Sing,~,(g/l). In turn this is contradic-
tory since § +aq = B is shorter than (28). We conclude 6 € A(n). Since in (23],
the indices (1,4) are symmetric to (2,3), we conclude that §’' := g2 + €3 € A(n).
Finally, a1 + a3 = § + &’ is a shorter relation than ([25]). Contradiction.

So far, we have proved that €4 appears with a non-positive coefficient in
w. Therefore, on the right-hand side there is a root, say (2, of the form (2 =
—e4 + (£€j;). The minimality of the relation implies 82 = €1 — 4. Therefore we
have the desired relation a1 + a2 = f1 + B2 of type ([El)

5.3.2 g=~so(2n—+1)

Case 1. The relation has a short root on the left-hand side, say a1. Without loss
of generality we may assume a1 = 1. The b N ¢-singularity of a; implies that ¢
has no short roots.
Case 1.1. 1 appears with a positive coefficient in w and therefore there is a root
on the right-hand side, say (1, of the form 1 = e1 + (£ej,). Without loss of
generality we may assume 1 = €1 + €2.
Case 1.1.1. 2 appears with a non-positive coefficient in w. As 2 must be canceled
out without contradicting the minimality of the relation, one of the roots on the
right-hand side, say 2, is of the form B2 = €1 —e2. It is now clear that we cannot
have a relation shorter than (IT).
Case 1.1.2. e2 appears with a positive coefficient in w. The weight €2 is not a
root of €. Therefore on the left-hand side of the relation there exists a root, say
a2, in which e appears with a positive coefficient.
Case 1.1.2.1. a2 is short, i.e. as = €2. The relation is (]9[)
Case 1.1.2.2. ap = 2 + (%¢;,) is long. We claim that j3 # 1. Indeed otherwise
we would have as = g2 — ¢1, then a; + a2 would be a root, and by Lemma [5.4]
the relation would be a1 + a2 = 1. This is impossible. Therefore jz # 1, and
without loss of generality we can assume as = €2 + €3. Consider f2 := €3; we
claim that f2 € A(n). Indeed, we immediately see that B2 ¢ A(¥), as otherwise
a1 would not be bN¢-singular. Second, assume B2 € A(g)\A(n). If B2 were bN¢-
singular, we could shorten the relation by removing i and replacing a1 + a2
by B2. Therefore there exists a root v € A* (&) such that 82 + v is a root. The
bNt-singularity of a1 and a implies that v = e2 —e3. Therefore 2 € A(g)\A(I).
Now consider the relation €1 4+ €2 = B1. If €2 were not b N €-singular, there
would be a positive root v € £ such that 2 + v is a root but €2 + €3 + v is not
a root, which is impossible. Thus we have a minimal relation of length two of
the form €1 4+ €2 = 1. Hence the initial relation e1 + (e2 +e3) +---=H1 + ...
is also of length two. Therefore the unknowns on the right-hand side sum up
to €3, which together with Lemma [5] implies that €3 € A(n). Contradiction.
Therefore the relation is e1 + (€2 + €3) = (61 + €2) + €3 of type [@3).
Case 1.2. e; appears with a non-positive coefficient in w. Therefore there is a
root, say aw, of the form s = —e1 +e2. Now Lemma [5.4] implies o + a2 € A(n)
and we get the desired relation (I0).
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Case 2. Among all minimal relations there is no relation with short roots on the
left-hand side.
Case 2.1. On the right-hand side there is a short root, say £1. Without loss of
generality we may assume 81 = £1. As the relation is minimal, £; appears with
a positive coefficient in w. Therefore we can assume without loss of generality
that a1 is of the form oy = &1 + e2.
Case 2.1.1. g2 appears with a non-positive coefficient in w. Then there is a root
on the left-hand side, say a2, of the form ap = —e2 + (£ej;). If as # e2 + €1,
we can apply Lemma [5.4] to get a shorter relation than the initial one. Therefore
az = —e2 + €1 and the relation is a1 + a2 = 201, of type (I2).
Case 2.1.2. €2 appears with a positive coefficient in w. Since €2 cannot be a root
of n (that would imply a1 € A(n)), we have a root, say f2 € A(n), of the form
B2 = e2 + (Fej;). Since j3 # 1 we can assume without loss of generality that
B2 = €2 +€3.
Case 2.1.2.1. e3 appears with a positive coefficient in w. Therefore there is a
root, say agz, of the from az = €3 + (£e;,). We claim that j4 = 1. Assume the
contrary. Since js # 2, we can assume further without loss of generality that
a2 = g3 +e4. A short consideration of all possibilities shows that a1 + (e3+24) +
---=¢1+ (e2+¢e3)+... must be of length at least 3. Consider the root 3. If it
were in A(n) we could shorten the relation by removing a1 and replacing 1 + B2
by e3. If 3 were in A(€), we would get @1 € A(n), which is impossible. Therefore
ez € A(g)\A(I). In a similar fashion, we conclude that €1 +e3 € A(g)\A([). If
at one of the two roots €3 or €1 + €3 were b N ¢-singular, we would get a minimal
relation of length 2 - either ay +e3 = B1 + B2 or a1 + €1 + €3 = 261 + Po.
Contradiction. Therefore both €3 and £1 + €3 are not b N €-singular. This shows
that there exists v € AT (8) such that v+ &1 + £3 is a root. Since 2 — &1 is not
a root of A(¢) and a2 is b N E-singular, we obtain that v = e4 — £3. Consider
o :=¢€1+ €4 =77+ e1 +e3. One checks that the b N ¢-singularity of a1 and as
implies that « is also b N ¢-singular. Therefore we can shorten the relation by
replacing a1 + a2 by a and removing (2 on the right-hand side. Contradiction.
So far we have established that js = 1. We have immediately a relation of
length two, either a1 +e3+¢1 = 261 + (62 +¢€3) or a1 + €3 —e1 = €2+ €3, and so
the initial relation is also of length two. As there can be no two roots on either
side that sum up to a root (see Lemma [5.4]), one quickly checks that the only
possibility for the minimal relation (up to A(g)-automorphism) is (e1 + €2) +
(e1 +e3) = 2e1 + (g2 + €3), i.e. type ().
Case 2.1.2.2. e3 appears with a non-positive coefficient in w. Therefore on the
right-hand side there is a root, say B3, of the form 3 = €2 — 3. We have a
relation of length two: 2(e1 + €2) = 2e1 + (2 + €3) + (62 — €3) of type (IH). In
view of the already fixed data, one quickly checks that the only possibility for
the initial relation to be of length two is to coincide with this relation.
Case 2.2. There is no short root on either side of the minimal relation. Therefore
we can repeat verbatim the proof for the case g ~ so(2n) to obtain that we have
one of the relations described for this case.

5.3.3 g~sp(2n)

Case 1. o + o ¢ A(g) for all 4, j.

Case 1.1 One of the roots «;, say a1, is short. Without loss of generality we may
assume a1 = €1 + £2. Since an + a; ¢ A(g) for all j, both &1 and 2 appear
with a positive coefficient in w. Therefore on the right side of the relation there
are roots, say (1 and B2, of the from 81 = e1 + (Fej;) and B2 = e2 + (Fej,).
Consider the vector 7 := +¢ej, + (+e;,). The minimality of the relation implies

18



that « is non-zero, and therefore that 7 is a root. If 7 € A(n) we could shorten
the relation by removing a; on the left-hand side and replacing 81 + B2 by 7.
If v € A(®) then ay = (1 — ) + B2 € A(n), which is impossible. Therefore
7€ A[\AD).

As the relation is minimal, +¢;, and +¢;, appear with a positive coefficient
in w. Therefore +e;, (respectively, +ej,) appears also in some root, say s
(respectively, ) on the left-hand side. If there existed a root § € AT (€) for
which v + 6 is a root, 6 would have a negative coefficient in front of one of +¢;,
or £¢;,. This would contradict the bN¢-singularity of either as or ay. Therefore
we have a minimal relation a; +7 = 1 + f2. Depending on whether j3 = j4 and
whether j4 = 2 our relation is of type 20)), ) or ([22)).

Case 1.2 All roots «; are long. Without loss of generality we may assume a1 =
2e1. Since a1 + a; ¢ A(g) for all j, the weight e, appears with a positive
coefficient in w. Therefore there is a root on the right-hand side, say Bi1, of the
form 1 = e1 + (£ej,). Without loss of generality we may assume 81 = €1 + €2.
If €2 appeared with a non-positive coefficient in w, there would be a cancellation
in the right-hand side of the relation. This is impossible. Thus 2 appears on
the left-hand side and we have the desired relation (IJ]).

Case 2. For some oy, aj, we have that o; + a; = v is a root. By Lemma B4
~v € A(n) and we get one of the relations (I6), (I7), (I8), or (I9). O

Corollary 5.6 Let g be classical simple and suppose that | does not satisfy the
cone condition. Then the following statements hold.

e Ifg~sl(n),so(n), or so(2n), there exists an [-strictly infinite weight w.
o Ifg~sp(2n) there exists an l-infinite weight w.

Proof. The statement for sl(n) follows from [PSZ04l Lemma 5.4], so let g ~
so(2n), so(2n + 1) or sp(2n). By Proposition 53] we can always pick a mini-
mal relation corresponding to a two-sided weight. By direct observation of all
possibilities for minimal relations given in Lemma we see that all such re-
lations have a strongly orthogonal decomposition with respect to A(n) except
when g ~ sp(2n) and the two-sided weight is given by (ZI]).

Suppose now g ~ sp(2n) and relation (2I]) holds. According to the proof of
Lemma [5.5] we can assume the relation has the form

€1+ea+ 263 =¢e1+e3+e2+¢€3.
——— o N N —

ay az B1 B2

Consider the root 2e1. If 21 belonged to A(£), we would have the contradictory
a2 = f1—(2e1)+51 € A(n). Similarly, we get 2c2 ¢ A(¥). If both 2e2,2e1 € A(n),
we get the new relation 2a; = 2e1 + 2e2 which corresponds to a two-sided weight
(since the relation corresponds to a two-sided weight) and this new relation gives
an [-strictly infinite weight. If one of 2¢2,2¢1, say 2¢1, belongs to A(g/l), it is
also bNE-singular (otherwise a; would fail to be bNe-singular as well). Therefore
we have a new relation

W' = 2e1 + 263 = 261. (26)

We claim that w’ is I-infinite. Indeed, let t be the subalgebra generated by ¢,
gtP1, g2 and g*2°8. Let n’ := nNt. Since t contains the Cartan subalgebra b,
n’ is a direct sum of root spaces and is therefore generated as a -module by g°*.
Let s1 be the simple component of ¢ whose roots are linked to 2¢1; in case there
is no such simple component, set 51 := {0}. Define similarly s3 using 2e3. Then
§1MNs3 = {0} as otherwise A(n) would contain —f2. In addition, each s; must be
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of type A, (otherwise it would have a root 2¢;). It follows that w’ is two-sided
with respect to t, and therefore w’ is [-infinite. O

Lemma 5.7 Let g be a simple Lie algebra of rank 2 and | be a solvable root
subalgebra (i.e. € = b) which does not satisfy the cone condition. Then there
ezists an [-strictly infinite weight.

Proof. We leave the proof of cases Aa, B2 and Cs to the reader. We note that
in case of type Bs all relations ([@)-(2) appear; similarly, in case of type Cz, all

relations ([I0)-(I9) appear.

Let now g ~ G2, and fix the scalar product in A(g) so that the length of the
long root is v/6. The following table exhibits one [-strictly infinite weight in each
possible case for A(n).

g~ Go
Scalar products. All non-listed The roots
w from the rela-
scalar products are zero. .
tion generate
(a1, az2) = (a1, B1) = (a2, B1) =
o] + ag = 3ﬂ1 3, <0527052> = <Oé17051> = 0, Ga
(B1,B1) =2
(,a2) = 1, (a1,p1) =
o1+ a2 =1 (a2, 1) = 3, (a2,2) = G2
(,01) =2, (B1,51) =6
(@1,81) = A{a1,B2) = 3,
200 = 3P1 + B2 (B1,61) = 2, (u,a) = G2
(B2,B2) = 6
(o, 81) = (a2,1) = 3,
a1+ a2 =f1 (o1,a2) = =3, (oa,01) = Az
(a2, a2) = (B2,B2) = 6
(o, 81) = (a2,1) = 1,
ar +as = (a1, 0) = =3, (a2,a2) = Go
<ﬂ17ﬂ1> =2, <0517051> =
(@1,81) = 3 (a2, 1) = —1,
o1+ a2 =1 (o1,a2) = =3, (oa,01) = G2
(o2, a2) = (B1,P1) =2

O

The statement of the following lemma is general, but we will make use of it
only for the exceptional Lie algebras.

Lemma 5.8 Suppose nNC(Ess) is not the nilradical of a parabolic subalgebra in
C(tss) containing h N C(tss). Then the following hold.

(a) The cone condition fails.
(b) There exists a relation () of the form given by Lemma [54)(a) for which
a1, a2 and By all lie in A(C(Ess)).
(c) There is a relation (1) that is [-infinite.
Proof. (a) Suppose on the contrary the cone condition holds. Then there
exists h € b such that h(8) > 0 for all B € A(n) and h(a) < 0 for all a €

Singy - (g/) O A(C(tss). The element h defines a parabolic subalgebra (h N
C(tss)) + Preacc.,) 87 of C(tss) whose nilradical is nN C(&ss), contradiction.
v(h)>0

(b) Using similar arguments to (a), we see that the cone condition fails when
restricted to A(C(¥ss)), i.e. the cones Conez(A(C(tss))N Sing,~e (/1)) and Conez
(A(n)N A(C(%ss))) have non-zero intersection.
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Take now a relation (). Note that A(C(tss)) NSing,qe (9/0) = A(C(tss))
\A(n). Therefore when we add —3; to both sides of ([]) we still get a relation
of the type (@) or zero; thus we can obtain a relation (Il with only one term S;
on the right-hand side. If we have more than two terms on the left-hand side,
by Lemma [5.J] we get that the sum of two «;’s must be a root. If that root is
in A(n), we have found a relation of type given by Lemma [5.4)a); else we can
substitute the two roots with their sum and thus reduce the number of terms on
the left-hand side. In this fashion, we can reduce the number of summands on
the left-hand side to two, which gives the desired relation.

(c) Let a1, a2, 81 be the roots obtained in (b) and let t be the subalgebra
generated by €, gi"‘l7 gi‘¥2 and giﬂl. Lemma [B.7] implies that there exists an
[N t-strictly infinite weight in t, which is the desired [-infinite weight. O

5.4 Exceptional Lie algebras G,, Fy, Fs and E;

5.4.1 Exceptional Lie algebra G,

If ¢ss = {0} the existence of an [-infinite weight is guaranteed by Lemma B8l If
t.s # {0} it is a straightforward check that, up to a g-automorphism, the only root
subalgebra [ = €3 n for which the cone condition fails is given by A(¢) = {£y1},
A(n) = {v1 + 372,271 + 372}, where 1,72 are positive simple roots of G2 such
that +; is long. For this subalgebra, (y1 + 2v2) + (71 + 72) = 271 + 372 is the
desired [-(strictly) infinite weight.

Note that G2 is the only simple Lie algebra of rank 2 which admits a non-
solvable and non-reductive root Fernando-Kac subalgebra of infinite type (cf.
[PS02, Example 2]).

5.4.2 Exceptional Lie algebras Fy, Fg, Fr

For a fixed exceptional Lie algebra g, Lemma [5.8] allows us to assume that n N
C(¥ss) is the nilradical of a parabolic subalgebra of C(tss) containing C(€ss) N bh.
The following two lemmas can be proved using a computer; the algorithm we
used is described in the next section.

Lemma 5.9 Let g >~ Es or E7 with a root subalgebra | = €3 n for which the
cone condition fails. Suppose in addition that nNC(¥ss) is the nilradical of some
parabolic subalgebra in C(¢ss) containing HNC (ss). Then there exists an [-strictly
infinite relation () of one of the types listed for so(2n) in LemmalZd or of the

type

The
Scalar products. roots
w All non-listed scalar products from the
are zero. relation
generate
g= E67 E7
(a1, B2) = (a1, B3) =
a1 t+art+as = P14+ P+ B3 (az, B1) = (a2, B3) = As.
{as, B1) = (as, B2) =1

When g ~ Es, the above relation occurs only when A(t) ~ Ay + A1 + A;.

For the next lemma, we need to define a special root subalgebra of g ~ Fj.
Fix the scalar product of the root system of Fy so that the long roots have length
2. Let ¢ be defined by the requirement that A(tss) be of type A1 + A; where
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both A; roots are long (all such € are conjugate, [Dyn72]). Then C(tss)ss is of
type C2 ~ Bs. Let 1 and 72 be the positive long roots of £ and ;1 and Sz be
the positive long roots of C(tss). Let So be the unique short root of A(C(&ss))
which has positive scalar products with both i and 82. The roots (1, f2,71 and
v2 are linearly independent. Let 83 be given by the requirement (81,/8s) = 0,
(B2, 83) = 2, (71,P3) = 0, (72,83) = 2 and let B4 be given by the requirement
(B, B1) = O, (B2, i) = 2, (m,B1) = 2, (2, Ba) = 0. Then g™ and g’ generate
two £-submodules of g, say n’ and n”, each of dimension 2. Define n as the linear
span of n’,n”, g%, g% and g®2. Then n is a nilpotent subalgebra of g, and is a
t-module. Further, dimn =242+ (14+1+41) = 7 and C(ts)Nn is the nilradical
of a parabolic subalgebra of C(tss). Set [1 := t3 n.

Lemma 5.10 Let g ~ Fu. Suppose in addition that n N C(8ss) is the nilradical
of some parabolic subalgebra of C(tss) containing h N C(¥ss).

(a) Iflis not conjugate to li, there exists an |-strictly infinite relation () from
the list of LemmalZA Moreover, all relations from Lemmal5d except (211)
do appear.

(b) If U is conjugate to li, there exists an I-(non-strictly) infinite relation ().
This relation comes from an I' := [N t-strictly infinite relation in t, where
t is one of the two semisimple subalgebras of type Cs + A1 generated by
¢, C(tss) and the conjugate of either w’ Un'~ or 0’ Un"". The '-strictly
infinite relation in t can be chosen to be isomorphic to relation (I4).

Combining Lemma [5.8] with Lemmas [5.10] and [5.9] we get the following.

Corollary 5.11 The failure of the cone condition for a root subalgebra | of the
exceptional Lie algebras of type Fi, Eg, E7 implies the existence of an l-infinite
weight.

5.4.3 Computer computations for the exceptional Lie algebras

This section sketches the algorithm we used to carry out the computer based
proofs in section

The algorithm has as input the Cartan matrix of a semisimple Lie algebra
g. For a given value of [, let S be the set of weights of Sing,.(g/l) for which
[g%,n] C n (see Definition @.]). The output is the following.

(i) A list of all possible (up to an automorphism of A(g)) sets of roots of
subalgebras [ = £3 n, for which C(tss) N n is the niradical of a parabolic
subalgebra of C'(tss) containing h N C'(ss).

(ii) A sublist of the list in (i) for which the corresponding subalgebras do not
satisfy the cone condition but there exists no [-strictly infinite weight of
length less than or equal to max{#S5,rkg}.

Remark. This sublist turns out to be empty for g ~ Fs, E7 and contains
one entry for g ~ F,. This entry corresponds to subalgebras conjugate to
[1, where [; is the subalgebra defined in section

(iii) A list complementary within (i) to the sublist (ii).
Remark. The actual list of I-strictly infinite weights we produced is more

detailed; it includes information about the simple direct summands of €
whose roots are linked to the roots participating in the relation.

The algorithm follows. The actual tables printed out for g ~ F4, F¢ and E7 are
included in the appendix.
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e Enumerate (up to a g-automorphism) all reductive root subalgebras ¢ con-
taining b, according to the classification in [Dyn72].

e Fix £. Compute the -module decomposition of A(g). Then n is given by a
set of €-submodules of g.

e Compute A(C(€ss)) (Lemmal2ZT). Compute the group W' of all root system
automorphisms of A(g) which preserve A(bN¢). Note that W' = W' xW"
is the semidirect product of the Weyl group W'’ of C(&ss) with the group
W' of graph automorphisms of (A () ® A(C(kss)) N A(b) which preserve
A(tss) and A(C(ss)) and extend to automorphisms of A(g). The tables in
Appendix [ list the cardinalities of the groups W".

e Introduce a total order < on the set of all sets of £-submodules of g in an
arbitrary fashion.

e Enumerate all relevant possibilities for n:

— Discard all sets of submodules P for which there exists w € W’ with
wA(P) < A(P) (act element-wise).

— Discard all sets of submodules P whose union, intersected with C'(¥ss),
does not correspond to a nilradical of a parabolic subalgebra of C(tss).

e Fix n.

e Intersect the two cones Coneg(A(n)) and Coneg(Sing,n~e(g/l)) (by using
the simplex algorithm over QQ to solve the corresponding linear system of
inequalities). If the cones intersect, proceed with the remaining steps.

e Generate the set of weights S.

e Generate all possible couples a1, a2 € S (a1 = a2 is allowed) and compute
whether a1 + a2 has a strongly orthogonal decomposition with respect to
A(n). If no such strongly orthogonal decomposition exists, proceed with all
triples, quadruples, ..., up to max{#sS5, rkg}-tuples, until reaching a weight
with a strongly orthogonal decomposition with respect to A(n). If such a
strongly orthogonal decomposition is found, add the found [-infinite weight
and A(I) to the list (iii), else add it to the list (ii).

6 Proof of Theorem

Before we prove Theorem [3.2] we need to prove the following.

Proposition 6.1 Suppose that [ satisfies the cone condition. Then C(tss) N
N(C(tss)Nn) is a parabolic subalgebra of C(tss). Equivalently, in view of Lemma
[21], there exists h € b such that

Cltss)NN(C(tss) M) =qn:=b1 & P ¢ (27)
a(h)>0
ask A(tss)

where h1 = {h € h | v(h) = 0 for all v € A(¥)}. In addition, C(tss) N N(n) =
C(tss) N N(C(tss) Nn).
Proof. Throughout the entire proof we use Lemma [Z.1]

The equality Conez(Sing,~¢(g/l)) N Conez(A(n)) = {0} implies that there
exists h € b for which (k) > 0,V € A(n) and a(h) < 0,Va € Sing,,(g/l). Let
qn be defined as in (27]).

We claim first that ¢, D (C(tss) N N(C(tss) Nn)) D (C(tss) N N(n)). Sup-
pose on the contrary that there exists xz := \g’_/ +Zaé Atss) aag® € Cltss) N

€h
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N(C(tss) N'n) for which there is a root v € A(C(%ss)) such that y(h) < 0
and ay # 0. Then h C N(C(tss) Nn) implies that whenever ao 7# 0 we have
g% € N(C(tss) Nn). In particular g7 € N(C(tss) Nn). As C(tss) is reductive,
—v € A(C(tss)), and —y(h) > 0 implies —y € A(n). Therefore g7 € C'(¢ss) N0
which contradicts the inclusion g7 C N(C(tss) Nn).

We claim next that q;, C C(tss) N N(C(tss) Nn). Fix v € A(C(%ss)) for which
alh) > 0. If B € A(C(tss) Nn) and (o + B) is a root, then (o + B)(h) > 0.
Therefore a + f € A(C(tss) Nn) as all roots in A(C(tss)) are b N £-singular.
Therefore g® € N(C(tss) Nn).

So far we have established that qn = C'(£ss) NN (C(8ss)Nnn); we are left to prove
that qn, C C(fss) NN (n). Suppose, on the contrary, that there is —a € A(C(¥ss))
such that —a(h) = 0 and v := —a + 8 € A(g)\A(n) for some 8 € A(n). Since
—a* A(), —a, a € Singy,(g/!) and we have the relation

a+vy=8. (28)

Clearly v ¢ A(). For the already fixed choice of «, assume that v € A(g)\A(l)
is a root maximal with respect to the partial order defined by b N ¢, such that
there exists a relation (28] as above. If v € Sing,.(g/!), this would contradict
the cone condition; therefore there exists § € AT (£) such that § + v is a root.
The requirement that v € A(C(&ss)) forces § to be strongly orthogonal to a.
Therefore § has the same scalar product with v as it does with 3, but at the
same time J + «y is a root and J + 3 isn’t (due to the maximality of §). We will
prove that these requirements are contradictory. Let the simple component of g
containing «, v and S be s.

Case 1 s is of type A, D, E or G2. The inequality (4, 3) = (d,v) < 0 contradicts
the maximality of v because if it held, we could add § on both sides of
@8). The inequality (4,7) > 0 implies (4,7) = 0 (the sum of two roots
with positive scalar product is never a root). In turn, this contradicts the
condition that § 4+ is a root since in root systems of type A, D, F and G2,
strong orthogonality is equivalent to orthogonality.

Case 2 sisof type C. Without loss of generality we can assume that 28) ise;, + €,
————
«@
+(—¢€j, +€45) = €5, + €, where the indices ji,j2,j3 are not assumed to
—_——— ————

Y B
be pairwise different. Then § = —¢;, + &; contradicts the maximality of ~
for all possible choices of the indices ji1, j2, j3,l. Furthermore, 6 =¢;, +¢;
contradicts a € A(C(¥s5)) for all possible choices of the indices ji, j2, js, [.
Contradiction.

Case 3 s is of type B.
Case 3.1 a and ~ are both short. Without loss of generality (28) becomes &1
—

«
+ €2 = &1 +e2. The maximality of v implies § = &1 — €2 which
~— ——v

v B
contradicts a € A(C(tss)).

Case 3.2 « is short and ~ is long. Without loss of generality ([28) becomes
€1 +(—e1+¢e2) = €2 . The maximality of v implies § = ¢1 £ ¢; for
~N —— A

« v B
some index I, which contradicts o € A(C(&ss)).
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Case 3.3 «a/islong and + is short. Without loss of generality (28]) becomes €1 + 2
——

@

+(—e2) = e1 . Thus 0 = €2 +&; for some index [ and o € A(C(ss))
—— ~~

M
implies 6 = g2 — (e1). Then 8+ 8 +J = « yields a contradiction.

Case 3.4 Both « and « are long. Without loss of generality ([28) becomes £1 — 2
——

«
+e2 4+ &3 = &1 + 3. The assumption that ¢ is short contradicts either
—— =

v B
a € A(C(tss)) or the maximality of the choice of v. The fact that all
roots participating in (28) together with the root § are long is contra-
dictory. Indeed, otherwise we could use the exact same data to obtain
a relation (28)) in type D.

Case 4 s is of type F4. Suppose on the contrary that there exist roots «, 37,9
for which ([28) holds and d£ «, d£ 3, 6 L v. The same conditions would
continue to hold in the root subsystem A’ O 8 generated by «,~,d. Since
A" is of rank 3, setting A(n') := {8}, A(t,) = {£5} we get data whose
existence we proved impossible in the preceding cases. Contradiction.

Proof of Theorem[3.2]l First, suppose Conez(Sing,~,(g/l))NConez(A(n)) #
{0}. Then [ is a Fernando-Kac subalgebra of infinite type by Lemma 4.6l and sec-
tion

Second, suppose Conez(Sing,~.(g/1))NConez(A(n)) = {0} but [C(tss) NN (n)]
has a Levi subalgebra that has a simple component of type B, D, or FE. Let
h € b be such that y(h) > 0 for all v € Conez(A(n)) and (k) < 0 for all
v € Singye(g/l). According to Proposition [61] [C(tss) N N(n)] = [C(kss) N
N(C(tss)Nn)] = qp, where qj, is defined as in Lemmal6.I] Assume on the contrary
that there exists an irreducible (g, [)-module with g[M] = . Pick an arbitrary
b N [-singular vector v and consider the q, N C(¥ss)ss-module N generated by v.
We have that N is a strict (qn N C(€ss)ss, b N C(Ess)ss)-module (“torsion-free”
according to the terminology of [Fer90]). Then, according to [Fer90, Theorem
5.2], it cannot have finite-dimensional f N C(ss)ss-weight spaces. In particular
there are infinitely many wu1,--- € U(C(ss)) such that ui - v,... are linearly
independent and of same h-weight. Then u; € U(C(ss)) implies uq -v, ... are all
b N t-singular, which contradicts the fact that M is of finite type over ¢ ([PSZ04,
Theorem 3.1]).

Third, suppose Conez(Sing,~¢(g/)) N Conez(A(n)) = {0} and C(tss) N N(n)
has simple Levi components of type A and C only. We will prove that [ is
Fernando-Kac subalgebra of finite type by the construction [PSZ04, Theorem
4.3]. Since the cones do not intersect, there exists a hyperplane in h* given by
an element h € h such that A(n)) lies in the h-strictly positive half-space, and
Conez(Sing,~.(g/l)) lies in the h-non-positive half-space. Clearly we can assume
h to have rational action on h*.

We will now introduce a “small perturbation” procedure for h to produce
an element b’ such that y(h') # 0 for all v € A(€). Suppose v € A(bN¥) is
a root with y(h) = 0. Define g € h by the properties v(g) = 1, 7v'(g) = 0 for
all v/ L ~v. Now choose t to be a sufficiently small positive rational number
(t < 2 mingea(g),p(n)=0|B(R)| serves our purpose). Set hy := h —tg. Then all
h-positive (respectively h-negative) vectors remain hi-positive (respectively hi-
negative) vectors. The only roots « whose positivity would be affected by the
change those with a(h) = 0, (o, ) # 0. By the preceding remarks, A(n) lies in
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the hi-positive half-space. We will now next that Conez(Sing,~,(g/l)) remains
in the hi-non-positive half-space. Suppose on the contrary we had a vector
a € Singy.(g/l) that now lies in the hj-positive half space. By the preceding
remarks a(h) = 0. Therefore a(g) = —+a(h1) < 0 which implies (o, ) < 0 and
thus a 4 7 is a root. Contradiction.

If there is a root of € that vanishes on h1, we apply the above procedure again,
and so on. The number of roots a € A(t) for which a(h1) = 0 is smaller than
the corresponding number for h. Therefore after finitely many iterations we will
obtain an element, call it h’, for which y(h') # 0 for all v € A(¥) and

a(h') =0 for all « for which g* € C(&s). (29)

Now define

p= P %= P o
a(h)>0 a(h)>0

Then preq¢ C (Pr),.q = b + qn, where g is the subalgebra defined in Lemma
611 By Lemma 61 we get qn = C(fss) N N(n) and the latter is direct sum
of simple components of type A and C' by the centralizer condition. Thus prea
is a sum of root systems of type A and C (since types A and C contain root
subsystems of type A and C only). We can now pick a (pred, h)-module L for
which preqa[L] = b (see [BL82], [Mat00, Sections 8,9]), and we can extend L to a
p-module by choosing trivial action of the nilradical of p. The choice of A’ allows
us to apply [PSZ04] Theorem 4.3] to get a g-module M for which g[M] is the sum
of £ and the maximal ¢-stable subspace of p[L] = h3 n,. The fact that at least
one weight of each irreducible direct summand of g/l (namely, its b N ¢-singular
weight) is outside of p[L] implies that the maximal ¢-stable subspace of p[L] is n.
This completes the proof. O
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A Note on table generation

All tables in the appendix are generated by computer. The tables are also avail-
able in .html format from the author or from the web server of the “vector
partition” program.

B Reductive root subalgebras of the excep-
tional Lie algebras

The reductive root subalgebras of the exceptional Lie algebras are described
and tabulated in [Dyn72]. Our tables list in addition the type of C(tss)ss and
the inclusions between the root subsystems parametrizing the reductive root

subalgebras.

B.1 F,

All diagrams that consist of short roots are labeled by ’. For example, A% has 6

short roots; in the notation Cs + A1, the root system A; has long roots.

tss: By tss: Dy tss: Cs+ A [ A3+Al1
C(Ess)ssi - C(Ess)ssi - O(Ess)ss: - O(Ess)ss: -
£ss lies in: £ss lies in: Ess lies in: Ess lies in:
Fy, By, Fy, Fy, By,
. ESSI 4141
bas: B Bs: A,2+A2 C(Es5)35: - ts: C3
Chr+2A, N
Ctoe) st - C(8s5)ss: - £, lies in: C(tss)ss: Ax
v f;esssm €, lies in: Bs ~ s, lies in:
os : F. C2+2A Cs+Aq, F,
Cs+A1, B, 4, D2+ 1, 3+A1, Fa,
4,
Bss: By ~
Ees: As Ca+Ax /
bss: AS+A
ss: Bs C(Ess)ss: All O(Ess)ss: Ay C(E )2+ _1
C(kss)ss: - £ss lies in: €5 lies in: ¢ f.5 o
s lies in: Asz+Al, By, B- ~ FS,S 1esct’n~.‘_A
F4, B47 D4, Og—|—2A1, A%’_’_A 3 L
Bs, Cs+A1, Cs, S
By,
Bt A,1+2A1
. / . ESSI 3A1
as: A2+A1 C(EES)SS ) O(Ess)ss: Al tss: Ba ~ (s
C(tss)ss: - s lies in: N
R £ss lies in: C(8ss)ss: 2A1
E,s lies in: Cs3+Aq, N
Fy AstAl At Al 4A,, Dy, s lies in:
’ i b b By ~ OQ+A1, By ~ CQ+A1,
By, Bo ~ B " B C
/ 2 — 3 3y
A5+As, Ca+2A,, CQ+2A17
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Fy

28

[ AI1+A1 tes: 244
. O(Ess)ss: Al O(Ess)ss:
/ Ess- AZ . .
Bss: A5 Ctos)s: A £ lies in: By ~ Cy
C(Bss)ss: A2 ¢ flsesééln 2 14244, £, lies in:
ESS lies in: ASS+A, ’ A Bz ~ 02+A1, A/1+2A1,
Ab+ Ay, Cs, B2 b 3’ A5+Ay, Bs, 3A1,
3 A2+A/17 Bs ~ Cy+Aq,
Cs, A3, By ~ (s,
LAl sst Al
E(E fl 4 C(tss)ss: Cs Bt -
PN, ’ £, lies in: C(bss)ss: Fa
o3 T, Al+Ay, 241, £, lies in:
1+A17 25 /
B ~ O A27 A17 A17
2 B2 =~ 027
B.2 FEs
Es
Ess: AS"’Al 55+ 3A2 Ess: DS Ess: AS
C(Eﬁ)ss: - C(Eﬁ)ss: - C(Esﬁ)ssi - C(Esﬁ)ss: Ay
tss lies in: tss lies in: tss lies in: tss lies in:
E67 E67 E67 A5+A17 E67
woi Aty wi Arr2ay g 2L e,
C(Eﬁs)ss: - C(Eﬁs)ss: - e 155 SS.. A O(ESE)SS: -
A R ss lies in: N
tss lies in: Ess lies in: E As 1A £ss lies in:
Eg, As+Ax, Ds, As+Aq, 6 STAL Ds,
3Aa,

A tss: A3+A1 Bss: A2+2A1
CSYZE )4 . A C(Ess)ss: Ay Eos: 242 O(Ess)ss: -
¢ flsesssln ! £, lies in: C(8ss)ss: A2 €5 lies in:
£S+A ’ D Az+2A1, Ds, tss lies in: 2A2+ A1,
LT Aty 2A24A1, As, Ag+Ay,

> As, Ds, As+2A;,
. ESSZ 3A1
sst As bss: Azt C(Esﬁ)ss: Aq
sst 4A1 C(Esﬁ)ssi Ao . .
C(tes)ss: 2A1 S £, lies in:
C(tss)ss: - N £y lies in:
e lies in: £ss lies in: Ayt 24 4A1,
' As+A;, A 2res As+2A
A3+2A1, D, 3+A1, 4, As+Ar, 2+2A1,
Da, 24,5, A D,
S As+As,
ss- AZ EC‘?ZE 2541 A Ess: Al Ess: -
C(Ess)ssi 245 s s C(Esﬁ)ssi As C(Ess)ss: Eg
R tss lies in: N R
tss lies in: 341, AgtA tss lies in: tss lies in:
As+A1, As, A b ARTah 241, Ao, Aq,
3
B.3 E;



Er

tss: Az tss: De+A1r tes: As+Ao tss: Dy+3A,
C(Ess)ssi - C(Ess)ssi - O(Ess)ss: - O(Ess)ss: -
tss lies in: tss lies in: tss lies in: tss lies in:
Er, Er, Er, Ds+Ax,

sst 2A3+A sst TA1 tss: B tss: Dg
C(Ess)ssi - C(Ess)ssi - C(Esﬁ)ssi - C(Esﬁ)ss: Aq
tss lies in: £ss lies in: tss lies in: Ess lies in:
Ds+ A1, Ex, Dy+3A4, Er, Dgs+A1, Ex,
Ess: A6 Ess: D5+A1 Ess: A5+A1 Ess: D4+2A1

C(Ess)ssi - C(Ess)ss: Ay
C(Ess)ssi - C(Ess)ssi - L Lo
€, lies in: €, lies in: b, lies in: Ess Lies in:
B A B, Dot A E7, De+As, D4+3A:, De,

v ’ ' As+As, Ds+ A,

Ess: Ess: A3+3A1
sst Ag+As tss: 243 Az+Ax+A C(Esﬁ)ss: -
C(tss)ss: - Ctss)ss: Ax C(8ss)ss: - £y lies in:
tss lies in: tss lies in: Ess lies in: Ds+Aq,

FE, Ax, 2A3+A1, De, De¢+A1, FEn, De+ A,
As+Asz, Az, As+Ao, Dy+3Aq,
2A3+Ax, 2A3+A;,
Ess: 641 ¢ D bss: As
ss- 3A2 C(Ess)ss: Al CS,S(E )d A O(Ess)ss: Al
C(Bss)sst - £, lies in: ¢ flﬁe:m ! £, lies in:
£ lies in: 7A1, 8 ’ A45—|—A417 AG,
Ds+A:, Eg,
As+Asz, Eg, Dy+2A1, D Eg,
Dy+3A1, 6 Des,
Ess: D4+A1 %,S(E 14)444—%1 Bss: A3+A2
ss: As C(Ess)ssi 24, 5'5 ‘53 C(Esﬁ)ss: Aq
N £ss lies in: N
C(tss)ss: Ao £ss lies in: B At A £ss lies in:
tss lies in: Dy+2A4, A67 ° L Ag-i—Az-i—z‘h7
As+A1, De, Ds+ Ay, % As+Aa,
Ds Ds+4, De, As, 243
’ As+Ao, T ’
bos: A3+2A1 Bss: 2A2+A4 £ 5A
C(Eﬁs)ss: A C(Eﬁs)ss: - tes: Aa+3A1 CS’S(E )‘1. 24
£, lies in: £, lies in: C(tss)ss: - y figeswi;n' 1
A3+3A1, A4+A2, Ess lies in: 6;51 ’
D4+2A1, A5+A1, A3+3A17 D 1214
D¢, As+A1, Es, Ds+Aq, A4+3A17
Az+Az+Ay, Asz+Az+Ay, As+As+A, D3—|—A b
D5+A1, 3A2, 4 L
Ess: A4 Ess: A3+A1
ot Du C(E55)ss: A, C(fsg)és 2A1 Bss: As+A;
N £ss lies in: C(tss)ss: A3
C(tss)ss: 341 s lies in: N
t.. lies in: AstAr, As, As+2A1, Ds, Ess lies in:
Da+As, Ds, Ds, As+Ay, Az+2A:1, As,
A Ds+A:, As, Dy+Aq,
> As+As,
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Eq

Eos: Apt24, bos: 444 bos: As
Ess: 2A2 C(Ess)ss: Al
Lo O(Ess)ss: 3A; O(Ess)ss:
C(tss)ss: A2 £, lies in: O
O Ess lies in: As+Aq
E,s lies in: As+3A1, 5A e lies in:
2454+ A 2454+ A L o '
24, 2t Ax+3A4, As+As,
Az+As, Az+2A1, Ds, Dt A At A
A57 A57 A4+A17 A4+ 1;7 A3+D17
As+As, 3+2A1, 4, Dy,
sst 3A1
Ess: A2+A1 .
C(tss)ss: As E(Efise)sssi.n-llAl tss: 3A1 tss: Ao
£, lies in: 452 ’ C(¥ss)ss: Dy C(tss)ss: As
As+2A1, A, A 1214 Ess lies in: Ess lies in:
As+As, Aot A 441, As+A, As+Aq, As,
2Az, A3+ Ay, S
Dy,
ESS: 2A1
g(Ej_iiSS: Ess: Al Ess: -
4 . 1. C(Eﬁ)ss: Ds C(Esﬁ)ssi Er
tss lies in: R A
34 34 tss lies in: tss lies in:
1, 1,
Aot Ar, 241, As, A,
A37
B.4 FEg
FEg
sst Dsg sst Ag tes: E7+A tos: A7+AL
C(Ess)ssi - C(Ess)ssi - O(Ess)ss: - O(Ess)ss: -
£ss lies in: £ss lies in: Ess lies in: Ess lies in:
s, s, Es, E7+ A1, Eg,
Bss:
tss: Es+Ao tss: De+2A1 tss: Ds+As 3?3?2—%%1
C(Ess)ssi - C(Ess)ssi - O(Ess)ss: - £ 155 SS.. i
A A N ss lies in:
tss lies in: tss lies in: tss lies in: Eot A
6 2y
s, E7+Ai, Dy, Eg, Ds, Ert Ay,
E87
] bos: 2A34+2A1
tou: 2D4 o 1;4JT4_A1 fou: 244 CEa)on: -
C(Ess)ssi - 5.5 s.s C(Esg)ss: - Ess lies in:
R tss lies in: N
£ss lies in: Det24 Ess lies in: E7+Aq,
D87 25 b E87 D6+2A17
b Ds+As,
ESS: 4A2 ESSI 8A1 fssi E7 fssi D7
C(Ess)ssi - C(Ess)ssi - C(Ess)ssi Ay C(Ess)ss: -
£ss lies in: £ss lies in: Ess lies in: Ess lies in:
Ee+Az, Dy+4Ay, E7+ A, Ex, Es, Ds,
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Ey

Ess: A7 Ess: E6+A1 ESS: D6+A1
ss- A7 C(E ) . A C,(E ) . O(Esg)ssl Al
C(Ess)ssi - 5.5 s ! 5.5 e tss lies in:
b.. lies in: tss lies in: tss lies in: Det2A,

Ex De A A7+A1, Des, E;+A:, Es, Bt A ’

8 T8 28 Er E¢+A2 (i

’ ’ E7, Ds,

sst A6+A1 Es: DS"’AZ Bss: D5+2A1 Bss: A5+A2
C(Ess)ssi - C(Ess)ssi - C(Esﬁ)ssi - C(Esﬁ)ss: Ay
tss lies in: tss lies in: tss lies in: Ess lies in:
E7+A17 E87 E87 Ds, E7—|—A17 D?, A45—|—A42—|—A417
A87 E6+Az7 D(;-|-2A17 E6+A27
Ar+Ay, Ds+As, Ds+As, As, E7,
bss: As+2A4
C(Ess)ssi - . t.s: Di+3A, bos: As+As
£, lies in: ECS‘zE 1;41—%_13 Ctss)ss: As C(tss)ss: -
Es+Ay, v flses%m £, lies in: £, lies in:
Er+Aq, 55 D '2D Dy+4Aq, Ds, Es, As,
Ds, De+241, 77 "0 Det2A4s, Ds+4s,
Ar+Ay, > » Ds+A1, 2Dy, 2A4,
As+Ax+As,

Bss:
Ess: As+A>+2A, bos: As+4Aq
AutAst Ay EC(E 2;‘?*2‘1 CEa)as - Ctes)us: -
C(ss)ss: - v ijlseS%lIl ! £, lies in: £, lies in:
£ss lies in: 251;3%-2141' E‘7—|—A417 176—|—2A17
E7+A17 ES, Ds+A ’ D6+2A1, 175—|—2A17
Eg+A,, S N B Ds+As, Dy+As,
Ar+A1, 2A4, A6+A17 o Ds+As, Dy+4A1,
A5+A2+A1, 7 b A5+A2+A1, 2A3+2A1,
2A3+2A,,

Ess: 3A2+A; bss: TA e D
C(Ess)ssi - C(Ess)ssi Ay tss: s 5,5“ )6 . 924
s lies in: s lies in: C(8ss)ss: A2 ¢ figeswi'n' 1
As+Az+Ay, 8A1, s lies in: DSS A ) B
Es+As, D4s+3A1, FEs+ A, E7, D6 b v
Es+A1, 4A,, Dy+4A;, &

s Ds+Aq tos: As+Aq
sst A6 C(Ess)ss: Ar O(Ess)ss: Ar st A5+A1
C(tss)ss: Ar s lies in: £.s lies in: C(ss)ss: A2
b, lies in: Ds+2A:1, D7, As+2A:, Az, £ss lies in:
As¢+A1, D, FE7, FEs+Aq, As+2A;4,
Er, Ee+Aq, E7, As+Ai, D+ Az,

Az, Az, Ds+ A, Ds+Aq, Az, Fs,

Ds+As, As+Ao,
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Ey

Bos: Dat24, Bos: AstAs gaj‘:%
Ess: Da+-As gfeffgsssm2Al gfelsfe)ssinAl £, lies in:
Ctss)ss: - Di+3A,, At AstAr, As+241,
€, lies in: Do+ Ar, As, Es+Aq,
gm Dy+As, Ds+24,, Er. Ds+As, As+Asz, Dr,
5+ A2, D A(;-i-z‘h7
41+As, As+As,
Dsg As+As, Ay D5+2A17
' ° ’ ’ As+As+As,
Bss:
As+Ax+A; ECS,S(E 1%3%35441
C(bss)ss: A se)es: £
fo: 24 fo: 2A tos lies in: iSfZZm'
88+ 3 ss-+ 3 3 1,
Cltao)sst 241 Cltas)ost - AstAat241, plion,,
s lies in: s lies in: jj?’ Aot A Ds+Aq,
2A34+A1, Az, D7, Az, A41A2+ b Ds+Aq,
D4+ As, Dy+As, A4+A37 D4+ As,
Ds, As+As, o As+2A1,
As+Ao,
Ds+ Ao, Dat34s,
A5t A Az+Ax+2A,,
ST 2A3+A
D+ Az, ’
Boo: 2A04+2A,
boe: 34, C(tss)sst - too: Ax+4A; £ss: 6AL
Czkss)sd Ay £, lies in: C(8ss)ss: - C(tss)ss: 2A1
b.. lies éin: Az+As+2Aq, £, lies in: £, lies in:
340+ A, Ds+As, Ds+2A4, TA4,
A5+A277 FEs+Aq, As+4Aq, Dy+2A4,
o As+Ax+As, Dy+As, D4+3A1,
’ As+2A,, As+Az+2A1, As+4Aq,
3A2+A,
tou: As b Ast Ay
e £ Da+ Ay C(Esﬁ)ss: Aa
st Ds C(Ess) s C(8ss)ss: 3A1 £ lies in:
C(EE.S)SS.: As A2+.A1. Ess lies in: As+2A4,
tss lies in: tss lies in: Dat2A At A
Ds+A1, Ee, As+A, D4 A b A5 b
Ds, As+A, 5+ A1, s5+A1, As,
De. As. Eg Ds, Dy+ Az, Ds+ Az,
Y Ay+As, Fs,
Ess: A3+2A1
sst Az+A . C(Esﬁ)ssi 2A; Ess0 242+ A
Cltw)o 241 0 f‘;ﬁﬁ‘l £o. lies in: Ctao)os: Ao
€, lies in: v flsesssm 3 As3+3A;, £, lies in:
As+Az+A, fi&—&—SA ' Ds+Ay, 242424,
243, Dotods As+Aq, As+As+As,
Ds, As+As, oAy Aot A As+24,, As+A1,  Eg,
D4+ A, Dr37 5 b Ds, 2As3, Ay+Ao,
AG, 2A3, 27 D4—|—2A1, A45—|—A417 3A2,
As+As+Aq,
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Es

tss: Aa+3A4
C(Ess)ss: Al 55+ 5A1
s lies in: C(tss)ss: 3A1 e A
As+4A, £, lies in: tes: Dy O(E )4 .4
Ds+Au, 6A1, C(bss)ss: Da bt
2A5+2A4, Az+3A44, £, lies in: 2S+A : B
Az+Ax+As, Dy+2A,, Dy+A1, Ds, D% b >
Ay+2A,, Az+4Aq, >
Az+3A, Dy+Aqy,
D4+A27
Ecs,zk 14)3—"4_141 Essi A2+2A1
As+ A Eoat 245 Oftss)ss: As toa: 41
S s, lies in: C(tss)ss: 4A1
£, lies in: C(tes)ss: 242 e
D As+3A1, g, lies in:
As+2A4, s lies in:
Ag+A, 5A1,
Asz+2A;, 2A2+Aq,
Az+2A1, Asx+3A4,
As+A, Az+As, Aat A DutA
As+tAs A 3+As, 4+ A1,
Dt A ’ A > A3+2A:1, Ds, Az+2A;,
LT % 242+ A,
D57
ss+ 4*’41 A Bss: A2+A1 %,S(E 3)141
. s8¢ 3 . 55 )55+
Cftss)ss: Da C(tss)ss: Ds Oftas)os: As Dty
£ss lies in: b lies in: Ess lies in: e lies in:
5A17 A3+A17 A4=7 A2+2A17 41417 4A17
A3+2A17 A3+A17
D D4: 94.. A A2—|—2A1,

4’ 2o As+Ay, Dy,
ss- AZ EC‘?ZE 2541 D Ess: Al Ess: -
C(Ess)ssi Es soles o C(Ess)ssi Er C(Ess)ss: Es

R tss lies in: N R
tss lies in: 341, AstA tss lies in: Ess lies in:
A2+A17 A37 A b ? b 2A17 A27 A17

3,

C Cardinalities of groups preserving A(bN¢)

Define W’ to be the group of root system automorphisms of A(g) that preserve
A(bNE). A(bNE) W' =W xW" is the semidirect sum of the Weyl group W'’ of
C(tss) with the group W of graph automorphisms of (A (£ss) @ A(C(€s5)) NA(b)
that preserve A(tss) and A(C(tss) and extend to root system automorphisms of

Alg).
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C1l Fy

ESS C(kss)ss #W// #W”/ #(W”/ M W”)
Fy 1 1 1
By 1 1 1
Dy 6 1 6
Cs3+ A1 1 1 1
As+A] 2 1 2
By = Cy+2A, 2 1 2
AL+ Az 2 1 2
4A 24 1 24
Cs Ay 1 2 2
Bs 1 1 1
As 1 2 2 4
By = Co+As Aq 1 2 2
AL+ Ay 2 1 2
Ax+-Aj 2 1 2
A/1—|—2A1 2 1 2
341 A 6 2 12
By = (s 2A; 2 4 8
Al2 Ao 2 6 12
Ao Al 2 6 12
1+A Aq 1 2 2
241 By =5 2 8 16
Al As 2 24 48
A Cs 1 48 48
- Fy 1 1152 1152
C.2 Es
» C(kss)ss #W” #W/// #(W”l 9 W”)
FEs 2 1 2
As+A; 2 1 2
3A, 12 1 12
Ds 2 1 2
As Ay 2 2 4
As+Aq 2 1 2
A3—|—2A1 4 1 4
2A2+A 4 1 4
Dy 12 1 12
Ay Ax 2 2 4
As+Aq Al 2 2 4
2A5 Ao 4 6 24
Az+2A4 4 1 4
4Aq 48 1 48
As 2A; 4 4 16
Az+Ay A 2 6 12
3A1 Ay 12 2 24
Ao 2A5 4 36 144
244 Az 4 24 96
Ay As 2 720 1440
- FEs 2 51840 103680
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C3 E;

£ C(kss)ss #WH #W/// #(W/H « WH)
Er 1 1 1
Az 2 1 2
De+A1 1 1 1
As+As 2 1 2
D4+3A, 6 1 6
2A3+A; 4 1 4
TA; 168 1 168
FEs 2 1 2
Dg Ay 1 2 2
Ag 2 1 2
Ds+Aq 2 1 2
As+A; 2 1 2
Dy+2A,4 Ay 2 2 4
As+As 2 1 2
2A3 Ay 4 2 8
As+As+A, 2 1 2
Az+34A; 4 1 4
3A, 12 1 12
6A1 Aq 24 2 48
Ds A 2 2 4
As Ay 2 2 4
As Ao 2 6 12
Dy+A; 24, 2 4 8
As+Aq 2 1 2
Az+As Aq 2 2 4
A3+2Aq Al 2 2 4
2454+ A1 4 1 4
As+3A; 12 1 12
5Aq 2A4 8 4 32
Dy 3A; 6 8 48
Ay Ao 2 6 12
As+A; 2A1 2 4 8
As+A, Az 2 24 48
2A5 Ao 4 6 24
Ax+2A, A 4 2 8
4A, 3A; 6 8 48
As As+Aq 2 48 96
As+A, Az 2 24 48
3A; 4A, 6 16 96
3A; Dy 6 192 1152
As As 2 720 1440
24, D4+ Aq 2 384 768
Aq Dg 1 23040 23040
- Er 1 2903040 2903040
C4 Eg
" C(kss)ss #W” #W/// #(W/// “ W//)
Eg 1 1 1
Dg 1 1 1
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€
As
E+A;
A7+Aq
Ee¢+A-
Ds+2A,
Ds+As
As+Az+Aq
2Dy
Dy+4Aq
2A4
2A3+2A1
4A5
8A1
£
D~
Ar
Az
Es+Aq
De+Ay
As+A1
Ds+A»
Ds+2A,
As+Az
As+2A;
Dy+As
D4+3A,
As+As
Ay+As+ Ay
2A3+ A1
As+A2+2A,
Asz+4A;
3Ax+A;
TA1

243
Asz+Ax+A;
Az+34;
3A,
2A5+2A1
Ax+4A,
641
Ds

C(kss)ss
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Ay

Ay

Ay

Ay
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s C(kss)ss #W” #WW #(W/// 0 W//)

As As+A, 2 12 24
Dy+A 3A: 6 8 48
Ag+Aq Ao 2 6 12
As+A> 2A, 4 4 16

A3+2Aq As 4 24 96
Asz+2A1 2A, 4 4 16
2A5+A1 Ao 4 6 24
As+3A; Ay 12 2 24

5A1 341 24 8 192

Dy Dy 6 192 1152

Ay Ay 2 120 240
As+Aq As+Aq 2 48 96

2A5 2A5 8 36 288
Ax+2A, As 4 24 96

4A, 4A, 24 16 384

4Aq Dy 24 192 4608

Az Ds 2 1920 3840

As+Aq As 2 720 1440
3A4 Dy+A: 6 384 2304
As FEs 2 51840 103680
24, Dg 2 23040 46080
Ay E; 1 2903040 2903040
- Es 1 696729600 696729600

D [-infinite weights for the exceptional Lie
algebras

This section lists all minimal [-infinite relations and the corresponding two-sided
weights under the assumption that C(fss) N n is the nilradical of a parabolic
subalgebra of C(€ss) Nn containing C'(€s5) N b.

In the tables to follow, under each root a; (respectively, 8;) we write the type
of the semisimple component of £ whose roots are linked to «; (respectively, 53;).
The ’ sign is used to distinguish different components of ¢ that have the same
Dynkin type. In type Fu, the sign ' stands for a component of € whose roots
are short. For example, A] + A1 represents the direct sum of two sl(2), one with
long and one with short roots, and A;+A4;’ stands for two long-root sl(2)’s. For
example, if a root «; is linked to A1’, and a root f; is linked to A:’, then «; and
a; are linked to the same component of A(%); similarly if a root a; is linked to
Ai, and a root f3; is linked to Ay’, then the two roots are linked to two different
components of A(¥).
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D.1 Fj

Number of different non-solvable subalgebras up to g-automorphism such that
nNC(tss) is a nilradical of a parabolic subalgebra of ¢ containing C'(s5) Nh: 503
Among them 234 satisfy the cone condition and 269 do not.

Relation / linked £-components a;’s, Bi’s adding Non-zero scalar products
generate A(e)
generates
t-semisimple type: Ag
20 B1+ B
t AS A23 By = C2 By (a1, B1) = 2, (a1, B2) =2,
t-semisimple type: By = Co+A]
2a1 B+ B2 — — —
By = Cs By = CotAq By = CotAq By = C2 Fy (a1, B1) = 2, (a1, B2) =2,
t-semisimple type: Ag+A7
20y = B1+ Ba _ _ _
Al Ayt Al Ay By = C2 Fy (a1, B1) = 2, (a1, B2) =2,
t-semisimple type: A] FA]FA]
2aq B1+ B2
N , N By =C B , =2, , =2,
Aq Al +AL+A Al+A A 2 2 4 (a1, B1) (a1, B2)
t-semisimple type: By = Cg
o1t 2 B 51:+C B Bﬁ c A3 By (a1, B1) = 2, (a1, B2) = 2,
2 2 2 2 (ag, B1) =2, (agz, B2) =2,
a1t 2 B1 A B @y, o = -2, (a1,8 =
Bg = Co Bg = Co 2 4 é,%(;tz,z1>31>:2: (a1, B1)
2a1 B1+ B2 — — —
By = Cs By = Co By = Cs By = C2 Fy (a1, 81) = 2, (a1, B2) =2,
t-semisimple type: A5
aj+ o B1+ B2+ B3 D F =2
’ 7 7 4 4 = 4
Ap Ap Ap =2,
=2,
aj/+ o2 il/ A2 Fy (ag, @) = =2, (a1, B1) =
2 2 2, (ag, B1) = 2,
O;}/Jr 2 BA/JF /iz, A3 Fy (a1,B1) = 2, (a1, B2) = 2,
2 2 2 (ap,B1) =2, (a,B3) =2,
t-semisimple type: Ao
2a B1+ ]
! A A By =Cy By (a1,81) = 2, (a1, 62) = 2,
2c B1+ B
Aé f{g A22 By =Cz By (a1, B1) =2, (a1, B2) = 2,
a1+ a B
22 2 A12 By = Ca By éﬂl,az) = -2, {a1,81) =
g+ « 23 :
52 A22 A; By = C2 By (a1, B1) = 2, (ag,B1) =2,
aq+ « B
52 2 A12 By = Cy By (a1, B81) = 2, (ag,B1) =2,
0¢A1+ ag il A’2 Fy (ay,a) = —1, (a1,81) =
2 2 1, (@2,B1) =1,
t-semisimple type: Aj+Aq
Lt 2 A, By = Ca C3+Ay (ag,a2) = =2, (ag,B1) =
A7 Al h 2,
al+ az 281 _ _ _
Alay A A/lJrA1 By = Cy Fy (a1,B1) =2, (ag,B1) = 2,
o1t 2 A Ag Ag+al (a1, ag) = —2, (a1, B1) =
1 1 2, (ag, B1) = 2,
a1+ an B1
Al A7 Al By = Ca Cz+Aq (a1, B1) =2, (a2, 81) =2,
a1+ ag B1+ B2
3 ; 2 B3 Fy (1, B1) = 2, (1, B2) = 2,
Aq Aj Al+Ar Aj (an, B2) = 2,
a1+ o B1+ B
j A2’ j A2’ B3 Fy (a1,B1) = 2, (a1, B2) = 2
1 1 1 1 (e, B1) = 2,
2
aA1+ (22 A/ﬁij& i% Bg Fy (a1, a2) =2, (a1,81) = 2,
1 1 1 1 1 (a1, B2) = 2, (ag, B1) = 2,
(g, B2) = 2,
A?i: 2 BXJF Qﬁg B3 Fy (ag,a2) =2, (a1,B1) =2,
1o 1 1 (a1, B2) s (g, B1) = 2,
(ag, B2) =2,
2
O(A1/+ *2 f/l By = Co C3+Aq (a1, B1) = 2, (a2, B1) =2,
1 1
a1+ o B1+ 2B
j AQ/ j A? B3 Fy (1, ag) =2, (a1, 81) = 2,
1 1 1 1 (a1, B2) = 2, (az, B1) = 2,
(ag, Bz) =2
ag+ ag B1 _ _
Ay Al Al +4, By = Cy Fy é("lv"Q) = —2, (a1, 81) =
200 B1+ B2 _ _
Al +Ay ALt Ay Ay By = C2 Fy (a1, 81) = 2, (a1, B2) =2,
2aq B1+ B2 _ _
Al ALt Ay Ay By = C2 Fy (a1, 81) = 2, (a1, B2) =2,
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Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products

generate A(E)
generates
AT}rtn 022'1 - AiBiAl By =Cy Fy (1, P1) =2, (a2, B1) = 2,
2 -
z’i 52,1* & By = C2 C3+A4, (a1, B81) = 2, (a1, B2) =2,
2001 = 281+ B2+ B3 B F
»B1) =2, ,B2) = 2,
g RO o gggIpes
a1+ as = B1
A B , = —2, , -
Ay Al Al+A; 2 4 éfx%a;?g” -y (a1, B1)
ay+ ag = B1+ B2 B F
»B1) =2, ,B2) = 2,
Ay Y Al+Ay Y 3 4 fon oy 2 5 o P2
ay+ ag = B1+ B2 A B a1, B1) =2, (a1, B2) = 2
Ay A A/1+A1 A/1+A1 3 4 ga;: Bi; = 2: <<o<21,1622)> = 2,Y
2 = 2
A PR Cs Py (21,82) = 2. (o 1) = 2
@, B2) =1,
t-semisimple type: Aq+Aq
aAll+ et - AllilAl’ By =Cz By (a1,B81) = 2, (az,B1) = 2,
2 -
o1 Alﬁizl’ Aléf*ll’ By = C2 B3 (a1, 81) = 2, (a1, B2) =2,
OXJF o2 - il Al Cz+Ay (a1, a2) = —1, (a1, B1) =
1 1 1, (a2, B1) =1,
2 -
f{i Alﬁ}j‘f AIBfAl, By = C2 By (a1, B81) = 2, (a1, B2) =2,
o1t 2 = B A D = -2 =
Ajt+Ayp Aj4Ayp 2 4 éfx%&;x%” o2 (a1, B1)
a1t az = b1+ B2 c F - -
) ) 3 4 (ag,a2) =1, (a1, B1) = 2,
A1 A1 Artay (a1, B2) =1, (a2, B1) = 2,
(ag,Ba) =1,
t-semisimple type: A]
o1t o2 - ﬁf}f iz/ Az B3 (a1, 81) = 2, (a1, B2) = 2,
1 1 (ag, B1) =2, (ag, B2) =2,
aj/:r 2 - il/l By = Ca C3 (ag,a2) = =2, (ag,B1) =
2,
- 2
aj+ 2 jl By = Cy C3 (1, B1) = 2, (a2, 81) =2,
+ 81
a -
aAl/l A2/1 Al/1 Bz =Cz C3 (a1,B81) = 2, (az,B1) =2,
+ = B
02/ 2 Al/ Ag Bg (g, ag) = =2, (a1, B1) =
1 1 2, (ag, B1) = 2,
+ = +
W A B3 Fy (o1, 81) = 2, (az.8) = 2,
ag, B2) = 2,
al+ o« - B+ 28
j/ AQ/ j/ A? By Fy (1, ag) =2, (a1, 81) = 2,
1 1 1 1 (a1, B2) = 2, (az, B1) = 2,
(ag, B2) =2,
et o2 - ﬁf}f 2§2 B3 Fy (a1, @) = 2, (ay,f1) = 2,
1 1 (a1, B2) = 2, (ag, B1) = 2,
(ag, B2) = 2,
2 -
z’i Bj’j P2 By = C2 C3 (a1, B1) =2, (a1, B2) =2,
+ = +
OX/ (22/ B{i/ B2 C3 Fy (a1, a2) =1, (a1,B1) = 2,
1 1 1 (a1, B2) = 1, (ag, B1) = 2,
(ag, B2) =1,
t-semisimple type: Aq
PR - s By =Cy  Ba (@1.81) = 2, (a3, 1) = 2,
OXJF 2 - il Az A3 (ag, az) = =2, (a1, 1) =
1 1 2, (ag,B1) =2,
2 -
f{i Ej:r ljfl By = C2 B3 (@1, B1) = 2, (a1, P2) =2,
QA1+ %2 - EjJr ljf A3 Dy (a1, B81) = 2, (o, B2) = 2,
L L L L (a2, B1) = 2, (a2, B2) =2,
02: 2 N ?411 By = C2 B3 éal’O‘z) = =2, (a1,81) =
QAI:F 02‘21 - 221 By = C2 B3 (a1, B81) = 2, (az,B1) =2,
2 =
o Bﬁj izl By =Cz  Bg (a1, B1) = 2, (a1, B2) = 2,
02+ OAQ - BK+ ?42 C3 Fy (a1, a2) =1, (ay,p1) = 2,
1 1 1 1 (a1, B2) =1, (a2, B1) = 2,
(ag, B2) =1,
aA1+ ag = lil Al C3 (a1, @) = =1, (ay, B1) =
1 1 1, (ag,B1) =1,



D.1.1 F; two-sided weights without a strongly orthogonal de-
composition

This section lists the only case up to Fj-automorphism in F4 for which no two-sided weight with strongly
orthogonal decomposition exists. The second table gives one [-(non-strictly) infinite weight in this case.

Relation / linked E-components a;’s, B;’s adding ¢ Non-zero scalar products
generate generates
t-semisimple type: A]+A]
a1t az = B1+ B2 c F — —
R s 3 4 (B1,B2) =1, (a1,B1) = 2,
Ap+A; Ay Al (a1, B2) = 2, (az,B1) =1,
(ag, B2) =1,
e-form relative to the subalgebra generated by £ and the relation
(2e1) + (fea+teg)=(s1+ez) + (e1+e2)
Corresponding I-(non-strongly) infinite weight.
Relation / linked E-components a;’s, B;’s  adding € Non-zero scalar products
generate generates
t-semisimple type: A1+Aq
are - Gl Catar Oz (a1, a2) = —1 (a1.81) =
1, (a2,B1) =1,
e-form relative to the subalgebra generated by £ and the relation
(e1-e2) + (+eate3z)=(s1+e3)
D.2 FE4: [-strictly infinite weights and corresponding
relations
Number of different non-solvable subalgebras up to g-automorphism such
that n N C(tss) is a nilradical of a parabolic subalgebra of € containing
C(tss) Nb: 2044
Among them 706 satisfy the cone condition and 1338 do not.
Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
t-semisimple type: Ay
QAII 2 - 214 Az Ee Yx%vaz; ? *? (aq,B81) =
, (g, B1) =1,
ag+ ag = B1+ B2 A E, = =
3 6 (a1, B1) = 1, (a1, B2) =1,
A4 A4 A4 (ag,B1) =1, (o, B2) =1,
t-semisimple type: Ag+Aq
QAI: 2 - 5A1'g Az As+Aq YJ%’DQ/); ? *i, (o1, B1) =
- b y (a2, P1) =1,
art ag = B1+ B2 A E — -
3 6 (1, B1) = 1, (a1, B2) =1,
A3 A3 Ast A Azt (ag,B1) =1, (a2,B2) =1,
t-semisimple type: Ag+Ao
ag+ ag = B1+ B2+ B3 D B _ _
) ) ) 4 6 (ag, ) =1, (a1, B1) = 1,
Aztaz Azt Aztaz (a1, 82) = 1, (a1, 83) = 1,
Eazvgli = 11 (ag, B2) =1,
ag, B3) =1,
a1+ ag = B1 A E (a1, a2) = —1, (a1,B1) =
Ag+Agy’ Ag+Agy’ 2 6 { %&2255: Lolenf1) =
a1t az = B1+ B2 A E Z1 -
, , ) 3 6 (a1, B1) =1, (a1,B2) =1,
Ag+Ag Ag+Ag Ag+Ag (o9, B81) = 1, (a9, By) = 1,
t-semisimple type: AgFA]+A]
a1+ az = B1 — _
Ag+4; AT Ag+A1+AY Az Ee §a%&;’<2;5;}w (ay,B81) =
ar+ az = B1+ B2 n E _ : _
) ) 3 6 (a1, B1) =1, (aq,B2) =1,
Ag+Aq A Ag+Aj+A; Ag+A1+A4A, {og, B1Y = 1, (@, Ba) = 1,
OX:F 0222 N AgﬁJerl Az As+A4y Yx%vazg ? 7}, (ay,B81) =
, (ag, B1) =1,
ar+ az = B1+ B2 n B _ _
) s 3 6 (a1, B1) =1, (aq,B2) =1,
A1 A1 A2ty A2ty (ag, B1) =1, (ag, B2) =1,
art az = B1+ B2 A E — —
, , 3 6 (a1, B1) =1, (aq,B2) =1,
4t M AztAita 42 (09 81) = 1. (an, B3) = 1,
t-semisimple type: Ag
o1t @2 = iy A Az D5 (a1.81) = 1, (a1, B2) = 1,
3 3 (a3, B1) = 1, (ag, B2) =1,
02; o2 a i13 Az As Yx%vaz; ? *? (ay,B81) =
, (g, B1) =1,
art ag = B1+ B2 n E _ _
3 6 (a1, B1) = 1, (a1, B2) =1,
43 43 43 (o, B1) = 1, (az. Bg) = 1,
02; o2 a i13 Az Ds Yx%vazg ? 7}, (ay,B81) =
» (ag, B1) =1,
art az = B1+ B2 n B _ _
3 6 (1, B1) = 1, (a1, B2) =1,
A3 A3 A3 A3 (ag,B81) =1, (g, B82) =1,
t-semisimple type: Ao+Aq
AZ}JM o2 N AlerAl Az Ds YX}'OQ/); ? 71, (ay,B81) =
, (g, B1) =1,
aj+ = B1+ B2 A D = =
3 5 (1, B1) = 1, (a1, B2) =1,
Az AztAr Axtdy (e, B1) = 1, (az. Bg) = 1,
a1+ ag = B1+ B2 A E — -
3 6 (a1, B1) = 1, (a1, B2) =1,
Ag+Aq Ag - Ag+Aq Ao (ag, B1) =1, (ag, B2) =1,
QAIJ 2 B lZ12 Az Agt+Ay Y]%’DQL)% ? *i, (a1, B1) =
; {(ag, B1) =1,
ag+ ag = B1+ B2+ B3 D E _
4 6 (g, ag) =1, (aq, B1) = 1,
Az+4, Az+4, Az 1,

(a1, B2) = 1, (a1, B83)
(ag, B1)
(ag, B3)

1, (g, B2)
1,

1,



P Ba+ %
1

=1,
=1, (a1, B1) —_ 4
P Sl -t
Eg (a1, B2) = 1 (ag, B2) =1,
Dy (ag, B1) -
% (az, B3) =1, (a1, B2) = 1,
=1, (aq, _
A Azt+Aq 2 <"‘1’B1;;1, (a2, B2) =1,
g Ag+Aq Az o (a2’ﬁl> = 1L (a1, 61) =
Ag A2 A <°¢1(’)La251> =1, 1
81+ B2 Ay 5 1, (e, _o (Dtl’ﬁ2>,:1’
Ag+Aq Az Pl Sy (o2, P2) =1,
a4 ag B A5 Eg (g, By =1, (a1, Bg) = 1,
Ay AgtAq : <a1,g1;;1y’ (ag, By) =
g+ 02‘22 Bt Ba As Eg (agz, By — 1, (a1, B2) :11,
A Ay Ao <a1,ﬁ1>71 (ag, B2) =1,
ag Az B Eg (ag,B1) =1,
o1t B1+ JiAl A3
A2t ) Axta A25 L (a1, 61) =
o 2 y = —1,
ar+ A + A (a1, ag =1,
AgfAq 1 Af}ull A2+A1+A1+A1 - Az+244 1, {ag, B1) 1, (e, By =
o1t P emisimple type: Ay : (a1, a2) V-1
Ag ts Ag+Ay L, (az, B y =1,
B A =1 (ay, B2 =1
A (a1 20 (o by 2
T EP) 5 As Eg (ag, By =1, (g, B2) :11,
41 Ap+Ay <a1,31>:1’<a2,32>: ’
+  ag L B2 Eg (@, B1) =1, Bo) = 1,
o1 Ay B1+ A7 A Asg =1, (a1, B2 -1
Aq A tap 1 A <°‘1’g1;*1 (ag, Ba)
ag B Ag s B1) = =1,
ar+ ) Ay B+ A A, Ag (ag 61y =1, (a1,£2>>: L
ArtApr+Ay A1+A; AgtAp <°‘1’E1> =1, (az, B2 .
g+ 327 + Ba As 5 (ag, =1, (a1, B1) = 1,
Ay 1 ~ A7 ‘ (a1, ag) = 1. (a1, B3) -
ag+ %2 ! B2 Be (o1, B2) = 1 {agif) = 1.
Now oo >4 aioh =1
N Qg Aq ot B3 (g, B3 _ (apﬁl)zi’
AaiAly B1+ A21, Ap” <a1,ﬂ2>>;1, (a1, B3) iy
1 - Ay Eg (a1, B3) = 1, (a3, B2)
ar+ 22, Dy (ag, B1) 1
arti, 1 53 (ag, B3) = 1, (a1, B1) = 1
B1+ ‘ZT A {on: a2) = 1 (a1, B3) = H
ag A1 Be (1, Ba) =10 {az.62) =
a1+ » B Dy <°‘2’B1>71
A1+A1 41 Bat | A1"?FA1 (22 P) = L, fa1, Ba) =1,
Bt Ap"F Ay <a1,51>f1’<a2 B2) =1,
A1+A, Eg (@2, 1) = B1) =
n ag Ag _ , (a1, 81
A b (aq, ):
B+ A BfAl“ Ag 5 b (a2, B0 . <a1,52>jl
Ap+Ay 1 <°‘1’B1;;1, (ag, B2) =1,
ar+ oz Dy (ag, B1 a1, B2) = 1,
A7 B1 » Az )y =1, (a1 =1,
Ay A1+A7+A, Bo <a1’§1>,1 (asg, Ba) =
. » E s BL) = =1,
a1t zf’ B1+ » Artar+as Ag 6 (o2 =1, (a1, B2) 1,
Artag Ap+AT A P LBy Tl g
a1t 0221 Bit A?” Ag o (o2, A1 =1, (a1, B2) =1,
Ay Al A a1, B1) = ag, Ba) =
Apt+Ay B2 Ag+Aq E B1) =1, (a2 1
. asg, =1,
a1+ Ay tay AP ArtAay Ag B1) =1, (aq, §2>>:
AptAyp o Art+Ar+ag B (o1, 515 = 1, () B2 .
a1+ I 81+ B2 Ag ¢ o ) =1, <a1’52>f1,’
Aj+Ay A tA; s <°‘1’gl>:1, (ag, B2) =
AR st et Az e (o201~ b fo, fa) = 1
Aq A1+A1+A, s é <al,§1;:1. (a1, B4) =1,
ag 2 Eg P33 =5 =1,
A Bt Ay B4 Dy o ) L{enAy -1,
A1 Ar1+A7+AL B3+ (a1, a2) = 1, (o, B3) = 1
+  an L Bat AprAy Eg {1, B2) =1, (a2, f2) =1,
A Ay st A7 +A Da {oz, A1) = 1,
201 Ar+4q Bt B3 (ag, B3) =1, (1, B3) = 1,
”» = 3 1 = >
Ay Bit AptA4g (o1, B2) = 1, (a2, f3) = 1
o A1+Aq Eg (a2, B1) _ 1, (a3, B2) =
ay+ A21, As (a3, B1) =
Ay
B3 =1,
Ba+ ne =1, (a1, f3) =
agz. Ds (ag, B1) = B1) =
ag+ » T Ay = -1, (a1, 81
OCA11+ Ay’ A1 t-semisimple type 43 <al’a2l>31;: L
A , =1,
+ B2 Ag * b (o2 =1, <"<1*52>:1
B1 Ag (a1151>:1 (ag, B2) =1,
g A2 D5 (ag, B1) = =1
ay+ s As =1, (a1, B1) — .
1 <a1,0‘2>71 (a1,53>71
an Ao Eg (o1, B2) =1, ag, B2) =
@1t n B2 Dy B1Y =1, {an
Ag B1 Ao (erg, y =1,
Ao (ag, B3 B1) =1,
ot ag + B3 =1, (a1, B1 =1,
Al Az B1+ BAQ Ag (g, ag) =1, (a1, B3) 1
2+ ag A2 ’ D e el e
aq 4 s P1) =
B3 Ezg,ﬁ'ﬂ - (o1, B2) =1,
=1 (a1, B2) = .
Y A & (aaib1) 21 (an oy 21
« Az Ds (ag, B1
a1+ A22 A3 =1,
A2 =1, (ﬂl’ﬁ2>:1'
B+ B2 eI Bl Gy
Ag Ag ATAL N Dy (ag, B1 1, (o1, B1) =
a1+ ag semisimple type: 1 3 (a1, @) ::lw
Ag tse B2 Az+Ay L (az, F1) =1, =1,
+ Ay A ’ L (a1, ) = 1,
B}rm’ A1+Ay 2 (a1, B1) :1’<a2,B2>:1’
ag Al Ds (e, B1) =1, =1,
a1+ Ag =1, (ay, B2) 1
81 : (er, B1) =1, ag, B2) =1,
ag A1 Ag f1) =1, (az -1,
ag+ 81+ B2 Ag (ag, 1, (ag, f1) = L
Ay Jer1’ A1 (aq, @) = 1, (a1, B3) = 1,
ay *2 - Ba Ee (o1, B2) - L, (g, f2) =
Ay B+ A7 Pa <a2’§1; a1,
as A + B3 (ag, B3 JB1) =1,
g+ . B2 A =1, (aq =1,
Py Ay Bt Ay’ 1 <a11a2>71 (o1, B3) 1
1 o Ap+Aq Eg (a1, B2) = 1. {an, Bo) =
oy w b4 <a2’ﬂ1; -1
= 4 Ba+ ?431 <a2,ﬂ3> = -1, (a1, 81) =
. o) =
Alﬁ}r*‘l’ 4 Ay Y,X%azv A1)y =1, y =1,
ag+ @2 Ay =1, (a1, Bs _
5 A5 As (ag, B1 = —1, (a1.B1) =
~ (o, 2) =
g+ az + B Ay P4
A, 1 5{;1 et
2
a1t ° B1
A1+A4y N A14Aq°
o1t 2
A1+A;

1, (as. B1) =1,



art ag = B1+ B2 n D _ _
A At AL s 3 5 (a1, B1) = 1, (a1, B2) = 1,
1 1B+ 1 51 (ag, B1) =1, (a2, B2) =1,
a1t ag = 1+ 2 A D — —

, ) ) ) 3 5 (e, B1) = 1, (g, B2) =1,
Aqp+Aq Ay A1ﬁ+A1 ;\1 (ag, B1) =1, (ag, B2) =1,
al+ ag = 1+ 2 A D _ —

) ) 3 5 (a1, B1) =1, (aq,B2) =1,
A1ty A1 Aty A1 (ag, B1) =1, (ag,B2) =1,
art ag = B1+ B2 A D — -
) ) 3 5 (o1, B1) = 1, (g, B2) =1,
Aq Aq A1ﬁ+41 ;1+A1 . (g, B1) = 1, (ag, Ba) = 1,
o1t 2 = 1t 2+ 3 D E =1 =1
RO R e
(g, B1) = 1, {(az,B2) =1,
(g, B3) =1,
ag+ ag = B1+ B2 A A = =
, , 3 5 (a1, B1) =1, (aq,B2) =1,
Aq A Ar+a, (g, B1) =1, (ap,Bo) =1,
t-semisimple type: A
a1t og = ﬂAJr liz Aj Dy (o1, B1) = 1, (g, B2) =1,
! ! (ag, B1) =1, (ag, B2) =1,
ajj 2 - ill Ag Az (a1, az) = —1, (e, B1) =
1, (ag,B1) =1,
A - a2 A3 Dy (a1,81) = 1, (a1,82) = 1,

(ag, B1) = 1, (ag, B2) =1,

D.3 E7:
relations

[-strictly infinite weights and corresponding

Number of different non-solvable subalgebras up to g-automorphism such
that n N C(kss) is a nilradical of a parabolic subalgebra of € containing
C(tss) Nh: 73834

Among them 7427 satisfy the cone condition and 66407 do not.

Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
t-semisimple type: Ag3+Ag
20 = B1+ B2+ B3+ Ba D B _ — 1,
Az+Agz’ Az+Az’ Ag+Agz’ Az+Agz’ 4 7 Egig;’i — <<§11’§f>>7 1,
t-semisimple type: Dy
a5+ “2 - %1 Az Bq (ag, @) = =1, (a1, B1) =
5 5 1, (ag,B1) =1,
aDl: @2 - B,:l,:r %25 A3 Er (o1, B1) =1, (1, B2) =1,
- ° - (ag,B1) =1, (a3,B2) =1,
t-semisimple type: Ag
QAI+ “2 - il Az A7 (ap, @) = =1, (a1, 1) =
5 5 1, (a2, B1) =1,
O;}Jr %2 - BAJF iz A3 Er (a1, B1) = 1, (a1, B2) =1,
5 5 5 5 (ag,B1) =1, (@g,B2) =1,
t-semisimple type: Ag
a1t ag = ﬁ,§+ B§+ i3 Dy Eq (g, ag) =1, (ay, 1) =1,
5 5 5 (g, B2) = 1, (g, B3) =1,
(e, B1) = 1, (ag, B2) =1,
(ag, B3) =1,
O;}Jr 2 - il Ag EB7 (ag,a2) = —1, (a1, B1) =
5 5 1, (ag,B1) =1,
QAI+ a2 - ﬁ,§+ lff A3 Br (a1, B1) = 1, (o, B2) = 1,
5 5 5 (g, B1) =1, (@, B2) =1,
t-semisimple type: Dy tA]
et o2 - 55+ %2 A3 Dg+A1 (a1, B1) = 1, (a1, B2) =1,
4 4 (ag, B1) =1, (ag,B2) =1,
QDI+ a2 - %1 Az Dg+A1 (ar,az) = =1, (a1, B1) =
4 4 1, (ag,B1) =1,
t-semisimple type: Aj+A]
a1+ ag = 81 A B — ,1 —
A Ay AgtAq 2 7 Y”%szg ) = S A1)
o1 o2 = Bit B2 A E =1 =1
A% I R S R A
ay+ a = B1+ B2 A E = =
3 7 (a1, B1) = 1, (a1, B2) =1,
A4 A4 AatAy AqtAy (ag, B1) =1, (ag,B2) =1,
a1+ az = B+ B2 A B — —
3 7 (a1, B1) = 1, (a1, B2) =1,
At A Actar A (ag, 81) =1, Cag, B2) = 1,
a1+ ag = B1 A A - _
2 7 (ag,a2) = —1, (a1, B1) =
Aq Ay Ag+Aq 1, {(ag,B1) =1,
t-semisimple type: Ag+Ao
et @2 = A1 A E = -1 =
AgtAg Ag+Ag 2 7 ﬁf’%c’x‘;?gw Zp e
OﬂJr “2 - il Az As+Az (ap,az) = =1, (a1, B1) =
3 3 1, (a2,B1) =1,
art az = B1+ B2 " _ _
3 EB7 (a1, B1) =1, (a1,B2) =1,
AgtAy Az+An Ag+Ag (g, B1) =1, (a2, B2) =1,
a1+ g = B1+t B2 A B — —
3 7 (a1, B1) = 1, (a1, B2) =1,
42 Astdz 43 {a2,B1) =1, (ag, B2) = 1,
o1 o2 = Bit B2 A B =1, =1
Astaz 4 Aztaz  Agtas ’ " (o1 1) 20 (o 8 S0
20 = B1+ Ba+ B3+ Ba D B =1, =1
20 = B1+ B2+ B3+ Ba D B — —
A3 AstA  AstAz  Agtdz  4g : " iy <<§f,'§f>> i
a1t a2 = srt B2t A3 D B =1, =1
R : T fuamsiengsy
(ag,B1) =1, (ag,B2) =1
5 5 5 (ag,B3) =1,
al+ ag = 1+ 2+ 3 D B -1 -1
A Asthz  AsTAz  Astas ! i (o152 S (g ) 1
(g, B1) = 1, (ag, B2) =1,
5 (a2, B3) =1,
a1+ az = 1 — —
Ay Aq Agt Ao A2 A7 (g, az) = =1, (a1, 81) =

1, (ag,B1) =1,



Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
20 = B1+ B2+ B3+ Ba Dy Er (a1, B1) = 1, (a1, B2)
Az Az+Ay Az+Ag Az+Ag (a1,B3) =1, (a1, Bg)
al+ ag = B1+ B2 Ag E7 (a1,B1) = 1, (a1, B2)
Az Az Az+Az Az+Az (g, 1) =1, (g, Ba)
E-semisimple type: A3 fA]FA]L
a1t ag = B1 Ay Dg+Aq (g, ag) = =1, (a1, 1) =
Az+Aq Az+Aq 1, (ag,B81) =1,
al+ as = B1+ B2 ) As Ey (a1, B1) = 1, (a1, B2) = 1,
Az+A, Aq Az+A1+A7 Az+A1+A; (ag,B1) =1, (a2, B2) =1,
a1+ g = B1 Ay 2A3+A (a1, @2) = =1, (a1,B1) =
Aq Aq 1, (ag,B1) =1,
a1+ ag = B1+ B2 Az Eq (ay,B1) =1, (a1, B2) =1,
A3+Aq A7 Az+A; Ay’ (ag,B1) =1, (ag, B2) =1,
ay+ ag = B1+ B2 Az E7 (a1, B1) = 1, (a1, B2) = 1,
Az+A; Ay’ Az+A1+Ay A3 (o, B1) =1, (a2, B2) =1,
a1+ asg = B1+ Ba+ B3 D Er (o, ag) =1, (a1, B81) =1,
AL D AztAIFAL AgtAi+Ar As 4 (a1.B2) = 1, {aq, B3) = 1,
(g, B1) = 1, (g, B2) =1,
(ag, B3) =1,
ay+ ag = B1+ Ba+ B3 Dy Eq (a1, a2) =1, (a1,B1) =1,
Az+Aq Az+Aq Az+Aq Ay’ (o1, B2) =1, (o1, B3) =1,
(ag, B1) = 1, (a2, B2) =1,
(ag,B3) =1
a1+ ag = B1+ B2 Ag Dg+Aq (a1,B1) =1, (a1,B2) =1,
Ag Az+A; Az+Aq (ag,B1) =1, (ag, Ba) =1,
al+ ag = B1+ Ba+ B3 Dy Eq (1, a2) =1, (a1, p1) =1,
Ay A3 Azt+Ay Az+Ar Ar’ (a1, B2) =1, (a1, B3) =1,
(ag,B1) =1, (ag,By) =1,
(ag, B3) =1,
a1+ ag = B1 Ag Ey (ag,a2) = =1, (a1,B1) =
Ag+Aq A7’ Az+A1+Ay° 1, (a2, B1) =1,
2] = B1+ B2+ B3+ B4 Dy Er (1,B1) =1, (a1, B2) =1,
Al Az+Ai+Ap Az+A1+AD Az (a1,B3) =1, (a1, B4) =1,
ag+ ag = B1 Ao Dg+Aq (a1, a2) = —1, (a1,B1) =
Aq Ag Az+Ay 1, (ag, B1) =1,
ay+ ag = B1+ B2 Az E7 (a1, B1) = 1, (a1, B2) = 1,
Az+Aq Ay’ Az+A, Az+Ay’ (ag,B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Az Dg+Ay (o1, B1) =1, (a1, B2) =1,
Aq Aq Az+Aq Az+Ay (ap,B1) =1, (@p,B2) =1,
t-semisimple type: Agf A FA]
Zaq = B1+ B+ B3+ Ba D Eq (a1,B1) = 1, (ay,B2) =1,
Az+A, Az+A4, Az+Ayr’ Az+Ay 4 (a1, B3) =1, (a1, B4) =
ay+ ag = B1+ B2 Az Eq (1,B1) = 1, (a1, B2) =1,
Ap+Ap Az+Aq Az+Ay’ (g, B1) =1, (a2, B2)
ay+ ag = B1+ B2 Az E7 (a1, B1) = 1, (a1, B2) = 1,
A3+Aq Az+Aqp’ Az+A; Az+Aqp° (ag, B1) =1, (agz, B2) =
201 = B1+ B2+ B3+ Ba Dy Eq (a1,B81) = 1, (a1, B2) = 1,
Ag Az+Aq Az+Aq Ag+Ay’ Az+Aq (ay,B3) =1, (a1,B4) =1,
t-semisimple type: AgfAgFA]
a1+ ag = B1 Ag Er (g, @) = —1, (a1, 1) =
Aot Ay Ay’ Ag+Ag’+A; 1, (ag,B81) =1,
a+ ag = B1 Ag As+Ag (ag,a2) = —1, (a1, B1) =
Aq Ay Az+Ay 1, (ag, B1) =1,
ag+ ag = B1+ Ba Ag Dg+Aq (a1,B1) =1, (a1,B2) =1,
Ag Ag’ Ag+Ag’ Ag+Ag’ (ag, B1) =1, (ag, B2) =
alt ag = B1+ B2 Az Eq (o1, B1) =1, (o1, B2) =1,
Ag Ao’ Az+Ay A2’ +A (g, B1) =1, (ag, f2) =
ar+ o = Bit B2 A Er (a1,B1) = 1, (a1, B2) = 1,
A2iA2’ Ao Ag+Ax’ +A Ag+Ag’+Aq 8 (g, B1) =1, {ag, B2) =1,
20) = B1+ Ba+ Ba+ B4 Dy Eq (a1,B1) = 1, (a1, B2) =1,
Ay Ag+Ay Ag’+Aq A2’+Az Ag’+Az (a1,B3) =1, (a1, B4) =1,
al+ an = B1+ B2 Ag Er (a1,B1) =1, (a1,B2) =1,
Aot Ay’ Aq Ag+Aq Ag+Az’ (ag, B1) =1, (a2, B2) =1,
20) = B1+ Ba+ Ba+ B4 Dy Eq (a1,B1) = 1, (a1, B2) =1,
Ag Ag+Aq Ag’+Aq Ag’+Ag Ag’+Az (ay,B83) =1, (a1, B4) =1,
ay+ ag = B1+ Ba+ B3 , Dy Er (ag,a) =1, (ay,B1) =1,
Ay Ag Ag+Ay Ag+Ag’ Az+Az (a1, B2) =1, (a1, B3) =1,
(ag, B1) = 1, (ag,B2) =1,
(ag, B3) =1,
a1+ ag = B1+ B2+ B3 Dy Ey (g, az) =1, (g, B1) = 1,
Ag+Aq Ag’ Ag+Ag’ Ag+Ag’ Ay (a1, B2) =1, (a1,83) =1,
(ag, B1) = 1, (ag,B2) =1,
(ag, B3) =1,
a1+ ag = B1+ B2 Az Er (a1, B1) = 1, (a1, B2) =
Ag+Aq Ag’+Aq Ag+Ag’+Ay Ag+Ag’+A; (ag, B1) =1, (ag, B2) =
ag+ ag = B1+ B2 Ag E7 (a1, B1) = 1, (g, B2) =
AgtA, Ag Ag+Ag'+A; Ag+Ag’ (ag, B1) =1, {ag, B2) =
ay+ ag = B1+ Ba Az Er (a1,B1) = 1, (a1, B2) =1,
Ag Ag’ Ag+Ag’+A A1 (a2,B1) =1, (@g,B2) =1,
t-semisimple type: Ao+A1+A1+A,
a1+ D) = B1 Ay Dg+Aq (g, a2) = =1, (a1, 1) =
A1t+Ay Ag Ag+A1+Ay’ 1, (ag,B81) =1,
a1+ ag = B1+ B2 R Az Eq (a1,B1) =1, (a1, B2) =1,
A1+Ap A1 +Aqy” Ag+A1+Ay’ Ag+A1+Ay (ag, B1) =1, (agz, B2) =
a1+ as = B1+ B2 A Dg+Aq (a1, B1) =1, (a1,B2) =1,
A AgHAIH+A; AgtAl4Ap 3 (a2, 1) = 1, Cag, B3) =
a1+ ag = B1+ B2 Az Eq (o1, B1) =1, (1, B2) =1,
Ap+Ap Ay Ag+A1+Ay” A1’+A (g, B1) =1, {@p, B2) =
t-semisimple type: A FA| FA FA FA]
a1 = B1+ Ba+ B3+ ”54 ., D Dg+A7 (v1,B1) =1, (a1,B2) =1,
A1+ Ay Aj+Ap A 4A” Ar7+A 4 0 (a1,B3) =1, (a1, B4) =1,
o+ ag = B1+ B2 ; Asg Dy+3A, (a1,B1) = 1, (a1, B2) =1,
Ar+Ay’ A1+Ag (g, B1) =1, (ag, B2) =
ay+ asg = B1 Ag Dy+3Aq (g, ag) = —1, (ay,B1) =
A1+Ay° A1+Ar° 1, (ag,B81) =1,
ay+ ag = B1+ L, B2 , Ag E7 (a1,B1) = 1, (a1, B2) = 1,
Ar+Ar ApEay Ap+Ar+Ay” ALTHAT Ay (o, B1) =1, (az, B2) = 1,
arl+ asg = B1+ B2 ) Asg Dg+Aq (a1,B1) =1, (a1,B2) =1,
A14+Aq A7 A A1+Ay° A7 +AL” (ag, B1) =1, (a2, B2) =1,



Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
g+ ag = B1+ L, B2t ; B3 D Eq (aq, az) )
Ap+Aq Ay +A Aj+Ap+AY” A" FAT AL 4 (a1, B2) )
(a2, B1) ,
(g, B3)
t-semisimple type: Dy
a1+ ag = B1+ B2 Ag Dg (a1, B1) =
Dy Dy (ag, B1) =1,
a1+ ag = B1+ B2 Az By (o1, B81) =1, (a1, B2) =1,
Dy Dy Dy (e, B1) =1, (a2, B2) =1,
arl+ ag = B1 Ay Dg (g, @) = 71 (a1, B1) =
Dy Dy 1, (a2, B1) =
alt ag = B1+ B2 Ag E7 (o1, B1) =1, <a1,ﬁ2> =1,
Dy Dy Dy Dy (ap,B1) =1, (ap,B) =1,
t-semisimple type: Ay
a1+ o = B1 Ao Eg (o1, a2) = —1, (a1,B1) =
Ay Ay 1, (ag,B81) =1,
a1+ ag = B1+ B2 Ag Eg (1,B1) =1, (a1, B2) =1,
Ay Ay Ay (g, B1) =1, (@2, B2) =1,
a1+ ag = B1+ B2 Az Ey (o1, B1) =1, (a1, B2) = 1,
Ay Aq Ag Ag (ag, B1) =1, (ag, B2) =1,
ay+ g = B1 Ay Ag (a1, @2) = =1, (a1,B1) =
Ay Ag 1, (ag,B1) =1,
aj+  ag = B1+ B2 Az E7 (a1, B1) = 1, (g, B2) = 1,
Ay Ay Ag (ag, B1) =1, (ag,B2) =1,
ag+ ag = B1+ B2+ B3 Dy Eq (ap, @) =1, (ay,B1) =1,
Ag Ag Ag (a1, B2) =1, (a1,B3) = 1,
(ag,B1) = (ag, B2) =1,
(az, B83) = 1,
a1+ ag = Bi+ B2t B3 Dy Eq (ap, @) =1, (ay,B1) =1,
Ag Aq Aq Aq Ay (a1, B2) =1, (a1, B3) =1,
(g, B1) = 1, (g, B2) =1,
(og,83) =1,
F-semisimple type: Azt A]
a1t ag = B1+ B2 A Er (a1,B1) = 1, (a1, B2) =1,
Az+A; Az+Aq Ag 3 (ag,B1) =1, (a2, B2) =1,
al+ as = B1+ Ba Ag E7 (a1,B81) =1, (a1, B82) =1,
Ay Az+Aq Az (g, B1) =1, (ag, B2) =1,
a1+ ag = B1 Ao 2A3 (ag,a2) = —1, (a1,B1) =
Aq Ay 1, (ag,B1) =1,
a1+ ag = B1+ B2 As A7 (1,B81) = 1, (a1, B2) =1,
Az+Aq Ay Ag (ag,B1) =1, (ag, B2) =1,
at+ asg = B1+ B2 Az Dg+A1 (a1,B1) =1, (a1, B2) = 1,
Ag A3 (g, B1) =1, (ag, B2) =
al+ ag = B1 Ay As+Aq (a1, ag) = =1, (a1, B1) =
Ag A3 1, (ag,B1) =1,
arl+ ag = B1 Ay Dg (g, ag) = =1, (a1, B1) =
Agz+A, Az+4, 1, (@z,B81) = 1,
o+ ag = B1+ B2 Az Dg+Aq (1,B1) =1, (a1, B2) =1,
Ag Ag Az Az (g, B1) =1, (@2, B2) =1,
ag+ ag = B1+ B2 Az Eq (a1,B1) =1, (a1, B2) =
Az+Aq Ag Az+A; Az (g, B1) =1, (a2, B2) =
a1+ ag = B1+ B2 Az A7 (o1, B81) =1, (a1, B2) =1,
Aq Az A1 A3 (g, B1) =1, (ag,B2) =1,
al+ s = B1+ Ba Ag E7 (a1,B1) =1, (a1, B2) =1,
AztA, Ay Az+A, Az+4; (ag, B1) =1, (a2, B2) =1,
a1+ ag = B1+ B2 Ag By (o1, B81) =1, (o1, Bg) =
A A3 Az+A; A3 (ag, B1) =1, (ag, B2) =1,
ay+ ag = B1 Ag Ag (ag,az) = =1, (a1, B1) =
Ay A3 Azt+Ay 1, (az,B1) =1,
ay+ ag = B1+ B2 A Dg (a1, B1) = 1, (a1, B3) =1,
Ag Az+A; Az+Ay 3 (ag,B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Ag Dg+Aq (a1,B1) =1, (a1,B2) =1,
As Ag A3 (ag,B1) =1, (ag, Ba) =1,
201 = B1+ B2+ B3+ Ba Dy Ey (o1, B1) =1, (a1, B2) =1,
Az+Aq Ag+Aq A3 A3 (a1,B3) =1, (@1,B4) =1,
2a7 = B1+ B2+ B3+ B4 D Eq (1,B81) = 1, (a1, B2) =1,
As AztAL  AgtAy Az Ag 4 (a1.B3) =1, (ay, Bg) = 1,
a1+ ag = B1+ Ba+ B3 Dy Er (ap, @) =1, (ay,P1) =1,
Ag Ag Az+Aq Az+A A3 (a1, B2) = 1, (g, B3) = 1,
(ag,B1) =1, (a2,B2) =1,
(e, B3) =1,
a1+ ag = B1+ Ba+ B3 Dy Eq (a1, a) =1, (a1,B1) =1,
Ay Az 41 A3 A3 (o1, B2) =1, (o1, 83) =1,
(ag,B1) =1, (a2,B2) =1,
(az, B83) = 1,
ag+ Qg = Bi+ B2t B3 Dy Eq (ap, @) =1, (ay,B1) =1,
Az+Ay A Az A3 (a1, B2) =1, (a1, B3) =1,
(g, B1) = 1, (g, B2) =1,
(ag, B3) =1,
ag+ ag = B1+ B2+ 83 D Eq (1, a2) =1, (a1, p1) =1,
Ay Aq Az+Aq Az+4; A3 4 (o1, B2) =1, (1, B3) =1,
(ag,B1) =1, {ag, Ba) =1,
(ag, B3) =1,
a1+ ag = B1+ B2 Az Er (a1,B1) = 1, (a1, B3) =1,
Ag Ag Az+Aq Az+A; (ag, B1) = 1, (a2, B2) = 1,
ag+ ag = Bi+ B2t B3 Dy Eq (ap, @) =1, (ay,B1) =1,
AgtA, A3 Aq Ag A3 (o1, B2) =1, (g, B3) = 1,
(ag, B1) =1, (ag,By) =1,
(az, B3) =1,
a+ ag = B1+ B2 A Eg (a1,B1) = 1, (a1, B3) =1,
As A AztA,  Agtag 3 (2. 81) = 1, (g, By) =
ay+ ag = B1 Ag Dg (ag,az) = =1, (a1, B1) =
Ay A3 Az+Ay 1, (g, B1) = 1,
al+ ag = B1+ B2 A Dg (ay,B1) = 1, (a1, B2) =
AL A AgtAr  Agtay 3 (az. B1) = 1. (ap. Bg) = 1,
ay+ ag = B1+ B2 Az Az (a1, B1) = 1, (g, B2) = 1,
Aq A3z Az+A; (e, B1) =1, (a2, B2) =1,
201 = B1+ Bat B3+  Ba D Er (o1, B81) = 1, (a1, B2) =1,
Al Az+4; A3z+A; A3 4 (a1,B3) =1, (a1, B4) =1,



Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products

generate A(E)
generates
ay+ ag = B1+ B2+ B3 Dy E7 (a1, ag 1, (g, B1) = 1,
Ay Az Az+A; A3 (a1, B2 (a1,83) =1,
(g, By (ag, B2) =1,
(g, B3
ay+ ag = B1+ Ba+ B3 Dy Eq (v, g (a1,B81) =1,
Ag Az+A Az+AyL Az (a1, B2 (a1, B3) = 1,
(ag, B1 (g, B2) =1,
(2, B3
201 = B1+ Ba+ B3+ Ba Dy Ey (a1, 81 s (a1, B2) =1,
Ag Az+Aq Az+4; A3 (a1, B3 (o1, B4) = 1,
ay+ ag = B1+ B2+ B3 Dy E7 (a1, ag y (a1, B1) =1,
Ag Ag Az+Aq Az+A; (o1, Ba (g, B3) = 1,
(g, By (ag, B2) =1,
(o2, B3
t-semisimple type: Ag+Aq
a1t oo = B1+ Ba+ B3 Dy E7 (a1, ) =1, (ay, B1) =1,
Az+Aq Az+A; A3 (o, B2) = 1, (a1, B3) =1,
(ag,B1) =1, (ag,B2) =1,
(ag, B3) =1,
a1+ ag = B1+ B2 A Dg+Aq (a1, B1) =1, (a1,B2) = 1,
! A3 A3 3 (e, B1) =1, (a2, f2) =1,
al+  ag = B1 Ag Ds+Aq (ap,az) = =1, (a1, B1) =
Ag Az 1, (ag,B1) =1,
E-semisimple type: ApfAg
a1t ) = B1+ B2+ B3 Dy Eg (g, az) =1, (g, B1) = 1,
! Ag+Ag’ Ag+A2’ Az+Az (a1, B2) =1, (a1, B3) =1,
(ag,B1) =1, (a2,B2) =1,
(a2, B3) =1,
aj+  ag = B1 Ag Ag+Ag (ag,az) = =1, (a1, B1) =
Aoy Ag 1, (ag,B1) =1,
ay+ ag = B1+ B2 Az Er (a1,B1) = 1, (a1, B2) =
Ag+Agy’ Ag+Ag’ A2 (a2, B1) =1, (a2, B2) =1,
2a = B1+ Bat+ B3+ B4 Dy Eq (o1, B81) =1, (g, B2) =1,
Ay Ag+Ay’ Ag+Ag’ Ag’ Ao (aq, B3) =1, (a1, B4) =1,
2001 = B1+ Ba+ B3+ Ba Dy E7 (a1,B1) = 1, (o, B2) =
Ag+Ag’ Agt+Ag’ Az’ Az (a1,B3) =1, (a1, B4) =1,
a4 ag = B1 Ay Ag (g, ag) = =1, (a1, B1) =
Ay Ay’ Ag+Ay 1, (ag, B1) = 1,
ar+ ag = B1+ B2 Ag Ar (a1, B1) = 1, (a1, B2) = 1,
Ag Ay’ Ag Ag’ (e, B1) =1, (a2, f2) =1,
ay+ ag = B1+ Ba+ B3 Dy E7 (ar,az) =1, (ay, 1) =1,
Ag Ag Ag+Ay Az’ Az (ar,B2) = 1, (a1, B3) =1,
(ag,B1) =1, (a2,B2) =1,
(a2, B3) =1,
ag+ ag = B1+ B2 Ag Dg (a1, B1) = 1, (a1, B2) = 1,
Ag Ag’ Ag+Ag’ Ag+Az’ (ag, B1) =1, (ag, Ba) =1,
a1+ ag = B1+ B2+ B3 Dy Er (ap,a2) =1, (a1, B1) =1,
Ag+Ay Ag’ Ag (a1, B2) =1, (a1,B3) = 1,
(ag,B1) =1, (a2,B2) =1,
(a2, B3) =1,
a1+ Qg = B1+ B2+ B3 D Eq (g, ag) =1, (@, B1) = 1,
AlQ Ag Az+Ag’ Az+Az’ Az+Az * (ar,B2) = 1, (a1, B3) =1,
(ag,B1) =1, (a2,B2) =1,
(a2, B3) =1,
ag+ asg = B1+ B2 Ag E7 (a1,B1) = 1, (a1, B2) = 1,
Ao Ag+Ag’ Ag (ag,B1) =1, (ag, Bz) =1,
a1+ g = B1+ B2+ B3 Dy Ey (o1, ag) =1, (e, B1) =1,
Ag Az+Ag’ Ag+Az’ Az (a1, B2) =1, (a1, B3) =1,
(ag,B1) =1, (a2,B2) =1,
(a2, B3) =1,
ag+ as = B1+ B2 Ag E7 (a1,B1) =1, (a1, B2) =1,
Ay Ag+Ag’ Az’ (ag, B1) =1, (ag, B2) =
a1+ ag = B1+ B2 Az Ar (a1,B1) =1, (a1, B2) =1,
Ag+Agy’ Ag Ag (g, B1) =1, (ag, B2) =
a4 ag = B Ag Eg (ag, ) = =1, (a1,B1) =
Ag+Ay’ Ag+Az 1, (ag,B1) =1,
ag+ as = Bt B2 Az Eq (a1, B1) = 1, (a1, B2) =
Ag+Agy’ Ag+Ag Ag (g, B1) =1, (a2, B2) =1,
ar+ ag = B1+ B2 Ag B (a1,81) =1, (a1, B2) = 1,
Ag+Ay Ay’ Ag+Ag’ Ao’ (g, B1) =1, (ag, B2) =1,
a1+ an = B1+ Ba Az Er (ay,B1) =1, (a1, B2) =1,
Ao+Ag’ Ao Ag+Ag’ Ag+Ag’ (ag,B1) =1, (ag, B2) =1,
ay+ ag = B1+ B2 Az Eg (a1, B1) = 1, (g, B2) = 1,
Ag+Ay Ag+Ay’ Ag+Az’ (o, B1) =1, (a2, B2) =1,
a1+ ag = B1+ Ba Az Er (ay,B1) =1, (a1, B2) =
Aot Ay’ Ay’ Ag+Ag’ Ag+Az’ (ag, B1) =1, (a2, B2) =1,
a1+ ag = B1+ B2 As Eq (a1,B1) = 1, (a1, B2) =1,
Ag Ag Ag+Ag’ Ag+Ag’ (e, B1) =1, (a2, f2) =1,
al+ g = B1+ B2 Ag E7 (a1,B1) =1, (a1, B2) =1,
Ag+Ay Ag Ag+Ag’ Az (ag, B1) =1, (az, B2) = 1,
al+ ag = B1+ B2 Ag A7 (o1, B81) =1, (o1, Bg) =
Ag Ao’ Ag+Ag’ (g, B1) =1, (ag,B2) =1,
201 = B1+ Ba+ B3+ Ba Dy E7 (a1,B81) = 1, (a1, B2) =1,
A2+A2’ Ag+Ag’ Ag+Ag’ Ag’ Ag (a1,B3) =1, (a1, B4) =1,
a1+ ag = B1+ Ba+ B3 Dy Eq (1, a2) =1, (a1, p1) =1,
Ag+ Ay’ Ao Ag+Ay’ Ag+Az’ Az (a1, B2) = 1, (a1, B3) =1,
(ag,B1) =1, (a2,B2) =1,
(az,B3) =1,
201 = B1+ Ba+ Bgt B4 Dy Eq (a1, B1) = 1, (a1, B2) )
Ag Ag+Ag’ Ag+Ag’ Ag+Az (aq,B3) =1, ¢ ,
ar+ ag = B1+ B2+ B3 Dy Ey (o1, ag) =1, (g, B1) =1,
Ag Ay’ Ag+Ag’ Ag+Az’ (g, B2) = 1, (a1, B3) =1,
(ag, B1) = 1, (ag, B2) =1,
(@g,B3) =1,
E-semisimple type: AgfA]FA]
Zaq = B1+ B2t B3+ Ba Dy Eq (a1, B1) = 1, (ay, Ba) =
Az+Ay Az+Ay’ 41 Al (a1, 83) = <a1 Ba) =
a1+ ag = B1+ B2 A Ds+Aq (a1, B1) =1, (a1,B2) =
A Ag+Aq A2+4, 3 (g, B1) = 1 (g, B2) =1,
2
ar+ g = B1 Ag Az+Az+Ay (a1, az) = =1, (a1, B1) =
Ay Al

; (a2, B1) =1,



Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products

generate A(E)
generates
a1+ g = B1 Ay Ds+Aq (ag,a) = —1
Ag+A, Az+A, 1, (ag, B1) =1
a1+ as = B1+ B2 Az Eq (aq,B1) =1, ¢ 1
Ag+A1+AY Ag+Ay Ay’ (e, B81) =1, ¢ )
aq+ ag = B1+ B2 Az Dg+Aq (a1,B1) =1, (a1, B2) = 1,
Ag Ag+4y Al (g, B1) =1, (a2, B2) =1,
arl+ ag = B1+ B2 Ag Eq (a1, B1) =1, (a1, B2) =1,
Ap+Ayp Ag+A4y Az+Ay’ (az, B1) = 1, (az, B2) )
a1+ ag = B1+ B2 Az Ag (a1,B1) =1, (a1,B2) = 1,
A1+Aq Ay Ag+Aq Ay’ (ag, B1) =1, (ag, B2) =1,
201 = B1+ Bat B3+ Ba Dy Eq (@1,B1) =1, (a1, B2) =1,
Aq Ag+Aq Ag+Ay’ Al A (1, B83) =1, (a1, B4) = 1,
a1+ ag = B1+ B2+ B3 Dy Ey (g, ag) =1, (a1, B81) =1,
Aq Ag+Ay Ag+Ay’ A1 (a1, B2) = 1, (a1, B3) =1,
Eaz,?; :11, (ag, B2) =1,
ag,B3) =1,
a1+ ag = B1 Ag As+Aq (a1, ag) = =1, (a1, 81) =
Aq Ag Ag+Aq 1, (a2, B1) =1,
ay+ ag = B1+ B2+ B3 Dy Eq (a1, a2) =1, (ay,P1) =1,
Agt Ay Ag+Aq Az+4, Al (o1, B2) = 1, (a1, B3) = 1,
(ag,B1) = 1, (ag, B2) =1,
(ag, B3) =1,
a1+ ag = B1 ) Ag Eg (a1, a2) = —1, (a1, B1) =
Ag+Aq Ay Ag+A1+4, 1, (ag,B1) =1,
ay+ as = B1+ B2 Az E7 (ey,B1) = 1, (ay, B2) = 1,
Aot Aq Ag+Aqp° Ag+Aj+A7p° Ag (ag,B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Az By (o1, B1) =1, (1, B2) =1,
Ag+A, Ay Ag+A1+Ay’ Ap+Ay’ (ag,B1) =1, (ag, B2) =1,
ag+ ag = B1+ Ba+ B3 Dy E7 (ap,ag) =1, (ag, B1) =1,
Ay +AL Ao Ag+Aq Ay’ Az (o, B2) = 1, (aq,B3) =1,
(ag, B1) = 1, (ag, B2) =1,
(a2, B3) =1,
a1+ ag = B1+ B2 Az As+Ag (1,B1) = 1, (a1, B2) =1,
Ay Ar’ A Ay’ (ag,B1) =1, (ag, f2) =1,
a1+ ag = B1+ 521 Ag Er (a1,B1) =1, (a1, B2) =1,
Ag+Aq A7’ Ag+4y Al (g, B1) =1, (ag, B2) =1,
al+ ag = B1+ Ba+ B3 Dy Eq (a1, a2) =1, (ay,P1) =1,
Aq Ao Ao+Aq A Ay’ (a1, B2) = 1, (a1, B3) =1,
(ag, B1) = 1, (ag, B2) =1,
(a2, B3) =1,
a1+ ag = B1+ B2t B3 Dy Ey (g, @g) =1, (a1, B81) =1,
Aq Ag Ag+Ay Az+Aq A1 (a1, B2) = 1, (a1, B3) =1,
(az,B1; =1, (ag, B2) =1,
(ag,B3) =1,
a1+ g = B1+ Ba Az As+Ag (g, B1) = 1, (a1, B2) =1,
Ap+Ay Ay Ar’ (ag, B1) =1, (ag, B2) =1,
201 = B1+ Ba+ B3t Ba Dy Er (a1,B1) = 1, (ay,B2) =1,
Aot Aq Ag+Aq Ag+Aq Aq (ay,B3) =1, (a1, B4) =1,
a1+ ag = B1+ Bz Ag Eq (a1, B1) =1, (a1, B2) =1,
Ag+A1+AY Ag+4y Az+A, (g, B1) =1, (agz,B2) =1,
20 = B1+ Ba+ Bzt Ba Dy Eq (a1,B1) = 1, (a1, B2) =1,
Al Ag+Aq Ag+Aq Ag+Aq A (a1,B83) =1, (a1, B4) =1,
a1+ ag = B1+ B+ B3 , Dy Eq (aq,a9) =1, (ag,B1) =1,
Aq Ag+4q Az+4q Az+A4, (o1, B2) = 1, (a1, B3) = 1,
2012,51; :11, (ag, B2) =1,
ag,B3) =1,
ar+ ag = B1 Ag Ag+Ay (g, ) = =1, (a1, B1) =
Ay Ay Ap+Ay’ 1, (ag, B1) = 1,
a1+ ag = B1 ) Ag Dg (a1, a2) = —1, (a1, p1) =
A1+Ap’ Ao Ag+A1+Ay 1, (a2,B1) =1,
al+ an = B1+ B2 Ag E7 (a1, B1) =1, (a1, B2) =1,
A1+ Ay Ay Ag+A1+Ay Az+A4; (g, B1) =1, (ag,B2) =1,
a1+ ag = B1+ B2 Ag E7 (@1,B1) = 1, (a1, B2) = 1,
Aq Ag Ag+Aj+Ay” Ay (ag, B1) =1, (ag, B2) =1,
ag+ as = B1+ Ba+ B3 Dy E7 (o, ) =1, (a1, B1) =1,
Ag+Ay Ag+4y A A1 (g, B2) = 1, (aq, B3) =1,
(ag, B1) = 1, (ag, B2) =1,
(ag, B3) =1,
a1+ ag = B1+ B2 ) Az Er (a1,B1) =1, (a1, B2) =1,
AgtAq Ag+Ay’ Ag+Aq A2+4, (a2, B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 , Az Er (a1, B1) =1, (a1, B2) =1,
Ag+Aq Ag Ag+A1+Ay Az+Aq (a2, B1) =1, (ag,B2) =1,
g+ ag = B1+ B2 Az Dg+Aq (o, 1) = 1, (aq, f2) =1,
Ag+Aq Aq Ag+A; Al (ag, B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Az Er (a1,B1) =1, (a1, B2) =1,
AgtAq Ay’ Ag+A1+Ay’ Az (g, B1) =1, (az,B2) =1,
g+ ag = Bi+ B2 ) Az Eg (a1, B1) =1, (a1, 82) =1,
Ag+Aq Aq Ag+A1+Ay° Ag+A1+Aq (ag,B1) =1, (ag, B2) =1,
ay+ ag = B1+ Ba+ 83 Dy Eq (o, ) =1, (a1, B1) =1,
Ag+A1+A Ag Ag+Ay A’ A2 (a1, B2) =1, (a1,B3) =1,
<a2,31; =1, (ag, B2) =1,
(a2, B3) =1,
g+ ag = B+ B2 Ag Dg+Aq (ey,B1) = 1, (ay, B2) = 1,
Ay Ag Ag+Aq Ag (ag,B1) =1, (agz, B2) =1,
aj+  ag = B1+ B2 ) Az Dg (a1,B1) = 1, (a1, B2) = 1,
Ag Ao Ag+Aj+Ay Ag+A1+Aq (ag,B1) =1, (ag, B2) =1,
aj+  ag = B1+ B2 Az Eq (a1, B1) = 1, (a1, 82) =1,
Ay Az Ag+A1+Ay 41 (g, 1) =1, (ag, B2) =1,
a1+ ag = B1+ Bz Az Jore (a1, B1) = 1, (a1, B2) =1,
Ag+A1+A7" Ao Ag+A4Aq Ag+Aq (g, B1) =1, (ag,B2) =1,
a1+ ag = B1+ B2 Az Eq (a1, B1) = 1, (a1, 82) =1,
Aq Az Ar+Ay’ Ag+Ay (ag, B1) =1, (ag, B2) =1,
ay+ ag = B1+ B2 | Az E7 (a1, B1) =1, (a1, B2) = 1,
A1+Ay Ay’ Ag+A1+Ay Az+A4; (a2, B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Ag Eg (1,B1) = 1, (a1, B2) = 1,
Ay A7’ Ag+A4q Ag+Ay’ (a2, B1) =1, (ag,B2) =1,
ar+ ag = Bi+ B2 Az Eg (a1, B1) = 1, (a1, 82) =1,
Al Ay’ Ag+A1+Ay Az (ag,B1) =1, (az, B2) =1,
a1+ ag = B1+ B2 Az Er (a1,B1) =1, (a1, B2) =1,
Aq Az Ar+Ay’ Az+Aq (ag, B1) =1, (ag, B2) =1,
al+ ag = B1+ B2 Ag Dg+Aq (a1, B1) =1, (a1, B2) =1,
Ag Ag Ag+Aq Ag+A;

(ag, B1) =1, (ag, B2) =
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ay, Br) =
ay, B3) =

al,a2>:
ay, B2) =
ag, B1) =
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(
(
(
(
(
(
(a1, B1) =
(ag, B1) =
(a1, o)
(a1, B2)
(
(
(
(
(
(
(
(
(
(
(

ag, B1)
ag, B3) =
ap,ag)
a1, B2)
ag, B1)
ag, B3) =

a1, B1) =
ay,B3) =

ay,ag)
a1, B2)
ag, B1)
(ag, B3) =

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3) =

(aq, az)
(a1, B2)
(ag, B1)
(ag, B3) =

(aq,B1) =
(a1, B3) =

(g, B1) =
(g, B3) =

(a1, o)
(a1, B2)
(ag, B1)
(ag, B3) =

(aq,B1) =
(a1, B3) =

(aq, az)
(a1, B2)
(ag, B1)
(ag, B3)

(aq,B1) =
(a1, B3) =

(a1, a2)
(a1, B2)
(a2, B1)
(ag, B3) =

(g, B1) =
(ag, B1) =

(aq,B1) =
(ag, B1) =

(g, B1) =
(a2, B1) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(ag, B1) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(ag, B1) =

(aq,B1) =
(ag, B1) =

(a1, az)
(a1, B2)
(ag, B1)
(ag, B3)

(a1, B1)
(ag, B2)
(ag, B1) =

(ay,B1) =
(ag, B1) =

(a1, B1) =
(a1, B3) =

(aq,B1) =
(a1, B3) =

(a1, az)
(a1, B2)
(ag, B1)
(ag, B3)

(a1, B1)
(a1, B3) =

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3) =

(aq, az)
(a1, B2)
(a2, B1)
(a2, B3) =
(aq,B1) =
(ag, B1) =
(aq, az)
(a1, B2)
(a2, B1)
(ag, B3)

1, (a1, B2) =1,
1, (a1,B4) =1,

=1, (a1, B2) =1,
1

y (a1, Bg) =

) ) =
s (o1, B3) =
) ) =

1, y =
1, (a1, B3) =
1, y =
1

1, y =1,
1, (a1,B83) =1,
1, y =1,
1

1, (a1, B2) =1,
1, (a1,B4) =1,

1, (a1, B2) =1,
1, (a1,B4) =1,
1, (a1, B81) =1,
1, (a1, B3) =1,
1, (ag,B2) =1,
1

1, (a1, B2) =1,
1, (a1,B4) =1,
s (g, Br) = 1,
» (er, B3) =1,
» (@, B2) =1,

1, (a1, B2) =
1, (ag, B2) =

1, (a1, B2)
1, (g, B2)

1, (a1, B2) =1,
1, (ag, B2) =

1, (a1, B2) =1,
1, (ag, B2) =1,

1, (aq,B2) =1,
1, (ag, B2) =1,

1, (a1, B2) =1,
1, (ag, B2) =

1, (a1, B2) =1,
h —

s

1, (a1, B2) =
1, (ag, B2) =

1, (a1, B2)
1, (g, B2)

1, (a1, B2)
1, (a1, Bq) =

1, (a1, B2) =
1, (a1, B4) =1,
1, y =1,
1, (a1, B3) =1,
1, ) =1,
1,

1, (a1, B2) =1,
1, (aq, B4) = 1,

1, (a1, B2) =1,
1, (ag, B2) =1



Relation / linked t-components ai:,rfjc*s aAcl(dei)ng Non-zero scalar products
geners
generates
a4 ag = B1+ B2+ B3 Dy Eq (ay,a2) =1, (a1, B1) = 1,
Aq Ay Ag+A1+Ay’ Az (a1, B2) = 1, (a1, B3) =1,
(a2, B1) = 1, (ag,B3) =1,
(ag,B3) =1,
t-semisimple type: A1+A1+A1+A,
a1+ as = B1+ B2 | Az Dg+A1 (a1,B81) = 1, (a1, B2) =1,
A1+Ap7+ALY A1+Ay’ Ar” (ag, B1) =1, (a2, B2) =1,
a+ ag = B1+ Ba2+ 537” Dy Er (ay, ) =1, (a1,B1) =1,
A1+AP+ALY A1+Ay A7 +Ay 41 (o1, B2) = 1, (a1, B3) = 1,
(a2, B1) = 1, (ag,B3) =1,
(a2, B3) =1,
a1+ ao = B1 Ag Ag+3Aq (ay,a) = =1, (a1, B1) =
Aq Aq 1, (a2, B1 ):
a ag = B1+ Bo+ B3 Dy Dg+Aq (ap, o) =1, <a1,B1) =1,
A AtAr ArtAr AY (a1.B2) = 1, {ay. B3) = 1,
(ag, B1) = 1, (ag, Bz) =1,
(ag, B3) =1,
ay+ ag = B1+ B2 A Dg+Aq (a1, B1) =1, (a1,B2) =1,
AliAl’ Ar+Ay’ Arp"+Ay 8 (g, B1) =1, (a2, B2) =1,
+ a = B1+ Ba+ B3 D Eq (g, a2) =1, (ay, 1) =1,
AjdAp A ALFAL AUTRAL A 4 {a1.P2) = 1, {ay, B3} = 1,
(g, B1) = 1, (g, B2) =1,
(ag, B3) =1,
201 = B1+ Ba+ B3+ Ba Dy Dg+Aq (a1,B1) = 1, (a1, B2) =1,
Aj+Ay Ar+Ay’ A1” Al (a1,B3) =1, (a1, B4) =1,
ap+ as = B1+ Bao Ag Dy+3A, (1,B1) =1, (a1, B2) =1,
Aaro M (ag, #1) =1, Cag, B2) = 1,
a1+ ag = B1+ B2 A Dy+2A; (a1,B1) = 1, (a1, B3) =1,
! A1+Ar° A1+A4y’ 3 (g, B1) =1, (a2, B2) =1,
a1+ ag = B1 Ag Dyg+2A, (ay,a) = —1, (a1,81) =
Ap+Ay A1t+Ay 1, (g, B81) =1
ay+ ag = B1+ Bz Az Dg+Aq (a1, B1) = 1, <a1,ﬁ2> =1,
Ai+Ap Aj+Ay’ Ar+Ar” (g, B1) =1, (a2, B2) =1,
ay+ ag = B1+ B2 Az Dy+3A4 (a1,B1) = 1, (a1, B2) = 1,
Ay Ay A Al (ag,B1) =1, (ag, B2) =1,
ag+ ag = B1+ Bz Az Dg+Aq (1,B1) = 1, (a1, B2) =1,
A1+Ap° Ay Ap+Aq? Ar” (ag,B1) =1, (ag, B2) =1,
201 = B1+ Ba+ B+ Ba Dy Dg+A1 (a1,B81) =1, (a1, B2) = 1,
Aq A1+Ayp A1t+Ay’ Ar” A1 (aq,B3) =1, (ay,B4) =1,
al+ ag = B1 ) Ag Ds+Aq (a1, a2) = —1, (a1, p1) =
A1tAy Ay” A1+AL+AL” 1, (g, B81) = 1,
ay+ ag = Bt Bat B3 Dy Eq (a1, ) =1, (a1,B1) = 1,
Al+A7+AY AP H+AL Ap+Aq Ap+Ay Al (a1, B2) =1, (a1, B3) =1
(ag, B1) = 1, (a2, B2) =1,
(ag,B3) =1,
ag+ Qg = B1+ B2 Az Dg+A1 (a1, 81) = 1, (a1, B2) = 1,
Art+Aay Ar+Ay Ar+Aay (a2,B81) =1, (az, B2) =1,
a1+ ag = B1+ B2 Az Eq (a1, B1) = 1, (a1, B2) = 1,
Aj+Ay Ay Aj+AP+AY” A17+A477 (az,B1) =1, (az, B2) =1,
a1+ ag = B1+ Ba R Ag Dg+A, (1,B1) = 1, (a1, B2) =1,
Aq Aq A1+ApP+AYY Ar+A+Ay (g, B1) =1, (a2, B2) =1,
g+ o = Aﬁ}r: A l??fA fSW Dy Eq 20‘1’;2; = i, éabgl)) = }’
A1+A7+A A7 +A” 1+A 1 1 1 a1,B2) =1, (a1, B3) =1,
o ' ' (a2, B1) = 1, (ag,B3) =1,
(ag, B3) =1,
a1+ ag = B1+ Bat 537” Dy Eq (ay,a) =1, (ay,B1) =1,
Aj+A]+ALY A1+Ay A1+Ay A7 (o1, B2) = 1, (a1, B3) = 1,
(a2, B1) = 1, (ag,B3) =1,
(ag,B3) =1,
a1+ ag = B1+ N ”1?2 N Az Eq (a1,B81) =1, (a1,82) =1,
A +AL+AYY Ay4AYY Ar+Ar+A A" +AL (ag,B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2 Ag Dg+A1 (a1, B1) = 1, (a1, B2) = 1,
A1+Ap Aq1+AqY A1+Ay’ Ar1+Ar” (ag, B1) =1, (ag, B2) =1,
a1+ asg = B1+ B2 Ag E7 (g, B1) = 1, (ay,B2) =1,
Aj+Ay A14+Aq” A1+Ap A Ap+Ap+A (ag, B1) =1, (ag, B2) =
a1+ ag = B1+ B2 Az Eq (a1, B1) = 1, (a1, B2) =1,
Ay+Ap Ay Ar+Ar+A” Ap’+A™ (a2, B1) =1, (ag, B2) =1,
ag+ ag = B1+ B% o Ag Ey (a1,B1) =1, (a1, B2) =1,
A1+A1 +Ay” Ay Ar1+Ar+A” A1+Ar’+A4y” (g, B1) =1, (agz,B2) =1,
a1+ ag = B1+ B2 Az Dg+Aq (a1,B1) = 1, (a1, B3) =1,
Aj+Ay Ay~ A1+A+AY” (e, B1) =1, (a2, B2) =1,
al+ ag = B1+ B2 Ag Er (a1, B1) =1, (a1, B2) =1,
A1t+Ay Ay” A1+Ar+AL A7 +ALY (g, B1) =1, (ag,B2) =1,
a1+ ag = B1+ B2+ B3 Dy Er (a1, a@2) =1, (a1,B1) =1,
A1+Ay° Aq” A1+AL+A” Ap'+A” (a1, Ba) = =1,
(a2, B1) = =1
(a2, B3) =
ag+ ag = B1+ Bat Bs Dy Er (a1, @) =1, (a1, B1) =1,
AliAl* A1+Ay A1+AT+AL” A1+Ay’+AY A7 +AL (a1, B2) = 1, (a1, 83) = 1,
(az,B1; =1, (ag, B2) =1,
(az,B3) =1,
ay+ ag = B1+ Ba+ B3 Dy E7 (o, ) =1, (a1, B1) =1,
A1t+Ay Ay” A1+Ay’ A1+Ay” A7 (a1, B2) = 1, (a1, B3) =1,
(a2, B1) = 1, (a2, B2) =1,
(ag, B3) =1,
a1+ ag = B1+ B2+ R 83 Dy Dg+Aq (ay, ag) =1, (a1,B1) =1,
All Aq A1+A7+HAT A1+A;’+Ay (a1, B2) =1, (a1,83) =1,
(a2, B1) = 1, (a2, B2) =1,
(a2, B3) =1,
a1+ ag = B1t+ 2, B Ag Eq (a1,B81) = 1, (a1, B2) =
A1+A] ALY Aq A1+Ap+ALY A1+417+4, (g, B1) = 1, (a2, Ba) =
+ a = B1+ B2 A Er (a1, B1) =1, (a1, B2) =1,
Ajtay ALndA; Aj+A7+ AL Ap+A AL 8 (ag,B1) =1, (ag, Bz) = 1,
g+ ag = B1+ Bz A E7 (a1, B1) = 1, (a1, Ba) =1,
AliAl’ ALY A1+Ap+AL” A7 AL 3 (g, B1) =1, (a2, B2) =1
20 = B1+ B2t B3t Ba D E7 (e, B1) = 1, (aq, f2) =1,
A1+%41’ Ar+Ap’+AY” A14+A7 A A7 F A 4 (a1, B3) =1, (a1, B4) =1,
+ a = B1+ Bat+ ) B3 Dy Ey (g, ag) =1, (a1, B81) = 1,
ArdAr Ata, AjFATTA AIFAIHAY (a1.62) = 1, {aq, B} = 1,
(az,B1§ =1, (ag, B2) =1,
(ag,B3) =1



Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
+ 814 s generates
aq az = 1 2+ B3
AptAq AL Ap+A] ALY A7 rALY Dy E7 (ag, ) =1, (ay,B1) =1,
(a1, B2) (a1,B3) =1,
(a2, B1) (ag, B2) =1,
art ag = B1+ B (@2 fa)
= 2
A1+A1 +Aq” Aq A1+Ar+A” Ap+A Ay A3 B7 2%@1; ,<(o¢1,§2>) =1,
g, B1 g, =1,
201 = B1+ B2+ B3+ Ba D Dat A 2
Aq A1+A7+ALY A1 +A7 ALY 4 6+A1 Eal,g1§ ,<<a1,52> :11,
@7, 3 3 = 5
t-semisimple type: A1+A1+A1+A, — 1 04) -
20 = B1+ B+ 2 Ba
Aj Ay A 4Ap A hag Aptap Dy D¢ (ay,81) = 1, (a1, B2)
(a1, B3) =1, (a1, Bg)
2aq = B1+ Ba+ B3+ Ba D )
Aj+Ap Al+Ar A7 Ap A7 AL Ay EAL 4 7 (a1, B1) =1, (a1,B2) =1,
(a1, B3) =1, (a1,B4) =1,
ay+ ag = B1+ Bao+ B3 D B _
Aj4+Ap Aj4+Ap A fAp” AT Ap 4 7 (ay, @) =1, (ay, B
(a1, B2) =1, (a1, B3
Eazvgli =1, (ag, B2
ag, B3) =1,
g+ ag = B1+ B2+
ArtAy AtAy A7 Ay Aiage Dy E7 (a1, @) =1, (a1, B1
(a1, B2) = 1, (a1, B3
(ag,B1) = 1, (a3, B2
ar+ ag - o1+ 62 (a2, 83) =1,
Aj+A A7 F AL Al4Ap Al £AL Ag Arg (a1,B1) = 1, (a1, Ba)
ay+ ag = B1+ B2 (o2 P1) = 1 (a2, f2)
ArtAy Ayhpar Aptay AprpAp Ag Dg (a1, B1) = 1, (a1, Ba)
_ (ag,B1) =1, (ag, f2) =1,
2aq = B1+ Ba+ B3+ Ba D
Al+Ap Al+Ar Al +AL” Ay AL Ay EAL 4 By (a1, B1) =1, (a1,B2) =1,
art as = 81+ Ba+ 5 (o fa) = (o Pa) =
= 3
AL +Ap A +AL Aj4+Ap A AL Apitag Dy E7 (a1, @) =1, (a1, B1) =1,
(g, B2) = 1, (g, B3) =1,
(g, B1) = 1, (g, B2) =1,
a1+ ag = B1+ Bot 8 (ag, B3) =1,
Aj+Ay AprAr Aj+Ay A" FAL 3 Dy By (ap,a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,83) =1,
(ag,B1) = 1, (az,B2) =1,
art ag = B1+ B2 (az,B3) =1,
A1+A A3 AL Al+Aq A" 3 AL A3 De+A1 (a1, B1) = 1, (a1, B2) =1,
ot B (ag,B1) =1, (ag, B2) =1,
1 ag = B1+ Ba+ B3 D
Aj4+Ap A7 RAL Aj4+Ap A fAp” Ap7HAp 4 Bq (a1, @) =1, (ay,81) =1,
(aq,B2) =1, (a1,B3) =1,
20@,21; :llw (g, B2) =1,
ag, =1,
t-semisimple type: Ag 22
a1+ ag = B1+ B2
Asg As A3 D¢ (o1, 81) = 1, (a1, B2) =
(ag, B1) =1, (ag,B2) =1,
ag+ ag = B1 A
Az A3 2 As (a1, a2) = =1, (a1, B1) =
1, (ag,B81) =1,
a1+ ag = B1+ B2 N E
Ag Ag Az 3 6 (a1, B1) = 1, (a1, B2) =1,
(ag, B1) =1, (ag,B2) =1,
ajt+  ag = B1+ Ba+ 83 D
Ag Ag Az 4 E7 (ag,a2) =1, (ay,B1) =1,
(ay,B2) =1, (a1,B3) =1,
20@,21) =1, (ag,B2) =1,
a9, =1,
al+ ag = B1+ B2 A 2 F8)
Ag Az Az 3 Dg (ar,B1) = 1, (ay, B2)
) B (ag, B1) =1, (ag, B2)
ay = B1+ B2+ B3+ Ba
Ag Ag Ag A Dy E7 2&1,215 = 11 <<a1,§2>
ay, =1, , =1,
1t an _ B1+ 85 1,83 ar, Bg)
Ag As A3 Ds Ea1,§1§ = 11 <<al,§2> =1,
g, =1, s =1,
a4 ag = B1+ B 2 P1 agz, B2)
Ag Az Ag Ag Az Dg (a1, B1) = 1, (g, B2) = 1,
(ag, B1) =1, (ag, B2) =1,
a1+ as = B1
Ag Ag Ag Dy (a1, a2) = —1, (a1, B1) =
1, (ag,B81) =1,
a1+ ag = B1+ B2
A B =1, =1
Ag Az Az Ag 3 6 (a1, B1) (a1, B2) ,
(ag,B1) =1, (ag, B2) =1,
aj+ ag = B1+ Ba+ B3
Az As Ag Aj As Dy Bq (a1, @) =1, (a1, 81
(o, B2) = 1, (aq, B3
Eazvgli =1, (ag, B2
ag, B3) =1,
2a = B1+ B2+ B3+ Ba
Az Ag Ag Ag Ag Dy By (a1,B1) =1, (a1, B2) = 1,
(a1, B3) =1, (a1, B4) =1,
ajt+  ag = B1+ Ba+ B3 D
Ag Ag Ag Az 4 E7 (ag, ) =1, (ay,B1) =1,
(ay,B2) =1, (a1,B3) =1,
§a2,g1§ =1, (ag,B2) =1,
agz,B3) =1,
2aq = B1+ Ba+ B3+ Ba
Ag Ag A3 Az Dy E7 (o1, B1) =1, (a1, B2) = 1,
(1,B83) =1, (a1, B84) =1,
a1+ ag = B1+ B2+ B3
Ag Ag Az Ag Dy Er (ar,az) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B83) =1,
(ag,B1) =1, (a2,B2) =1,
(ag,B3) =1,
t-semisimple type: Ao+Aq
a1+ ag = B1
Ag+Aq Agt+Aq A2 Ds (g, @2) = =1, (a1, 81) =
1, (ag,B81) =1
a1+ ag = B1+ B2 A D
Ag At A AsFAq 3 5 (a1,B1) = 1, (a1, B3) =1,
(ag, B1) =1, (ag,B2) =1,
a1+ ag = B1+ Ba A =
Ag+Aq Ag Ag+Aq Ao 3 Ee (a1, 81) = 1, (a1, B2) = 1,
(ag, B1) =1, (a2, B2) =1,
a1+ ag = B1+ B2 N
Ay A+ Ay Ag 3 Eg (a1,B1) = 1, (a1, B3) =1,
art . _ ™ (ag, B1) =1, (ag,B2) =1,
Ay Ao Az Agt+Ay (ag,an) = =1, (a1, B1) =
a1+ ag = B 1, (a2, B1) =1,
= 1
Aq Aq Ag Az+Ag (a1, @) = =1, (a1,B1) =
1, (a2,B1) =1,
a1+ as = B1+ Ba+ B3 D
Ao Ao AotAq Ag+Aq Ay 4 Eg (ag, ) =1, (a1,B1) =1,
(aq,B2) =1, (a1,B3) =1,
Eazvgli :llw (ag, B2) =1,
ag, =1,
a+ ag = B1+ B2 A 203
Ay Ao Ao Ay 3 Ds+Ay Eal,gﬂ =1, (a1, B2) =1,
s =1, 5 =1,
a1t s _ b1+ 5s az; B1) (ag, B2) )
Ay Ag Ay Ag A3 Ag (a1, B1) = 1, (g, B2) = 1,
(ag, B1) =1, (ag,B2) =1,



a1+ ag
Az
2aq
Ag
a1+ ag
A2 Az
ag+ ag
Ag+A, Al
a1+ ag
A Ag
al+ ag
Az
a1+ ag
Ag+Aq Ag
a1+ ag
Al Al
ay+ ag
a1+ ag
Ag+Aq
201
a1+ ag
A Ag
a1+ ag
A2 Az
al+ ag
A Al
a1+ ag
201
Al
a1+ ag
Al
a1+ ag
al+ ag
Al Az
ay+ ag
Ag+Aq
a1+ ag
Az+A; Al
al+ ag
Ag+Aq Ag
a1+ ag
Ag+A,
al+ ag
A2 Az
a1+ ag
Ag
a1+ ag
Az+Aq Az+A;
2aq
Ag+Aq
a1+ ag
Az+A; Al
a1+ ag
A2 Az
al+ ag
A Al
a1+ ag
Al Az
207
Al
a1+ ag
Al Az
2a1
Ag+Aq
al+ ag
Ag+Aq Al
a1+ ag
Az+A; Az

Relation / linked &-components

B1+
Ao+Aq

B1+
Ao+ Ay

B1+
Ao+Aq

B1+
Ao+ Ay

B1+
Ao+ Ay

B1+ Ba
Az Az

B1+
Ao+ A7

B1+
Ao+Aq

B1+ B2
A
B1+ Ba
A

B1+
Ao+Aq
B1
Ao+ Ay
B1+
Ao+Aq
B1+
Ao+ Ay

B1+
Ao+Aq

B1+
Ao+Aq
B1+
Ao+ Ay

B1+
Ao+Aq

B1+ Bao+
Al Az

B1+ Bo+
Al Ag

B1+
Ao+Aq
B1+
Ao+ A7
B1+
Ao+Aq
B1+
Ao+Aq
B1+
Ao+ Ay

B1+
Ag+Aq

B1+
Ao+ Ay
B1+
Ao+Aq

B1+
Ao+Aq

B1+
Ao+ Ay
B1+
Ao+Aq
B1+
Ao+ Ay
B1+
Ao+Aq

B1+
Ao+Aq
B1+
Ao+ Ay

B1+
Ao+Aq

B2
Al

Ba+
A

Ba+
Al

B2
Al

B2
Ag

Ba+
Ag

Ba+
Al

Ba+
Al

B2
Ao+Aq
Ba+
Ao+ Ay

Ba+
Ao+Aq

B3
Az

Ba+

Ba+
A1

Ba+
Ao+Aq

B2
Ag+Aq
B2
Ba+
Ag+Aq

Ba+
Az

Ba+
Ao+Aq

Ba+
Ao+ Ay

Ba+

B3+ Bq
Ag Ag

B3
Az

B3
Ag

B3
Az

Bz+ Bq
Az A2

83
Ag

B3
Az

B3+ Bq
Az A2

B3
Ag

B3
Az

B3
Ag

B3
Az

Bz+ Bq
Ag Ag

B3
Az

B3
Az

B3+ By
Ag

B3

B3+ Ba
Az

B3

B3

ag’s, Bi’s
generate

A3

A3

Dy

Dy

Dy

adding
AE)
generates

Dg

Ds+Aq

E7

Eg

E7

Non-zero scalar products

ay, B) =

(
(ag, B1) =
(
(

<0‘1’0‘2> =
(a1, B2) =
(g, B1) =
(ag, B3) =

(a1, 81) =

(e, ag) =
(aq, B2) =
(ag, B1) =
(ag, B3) =

(o, ) =
(aq, B2) =
(g, B1) =
(ag, B3) =

(aq,B1) =
(ag, B1) =

(g, B1) =
(ay, B3) =
(g, ) =
1, (a2, B1)

(g, B1) =
(ag, B1) =

(a1, o)
(a1, B2)
(ag, B1)
(ag, B3) =
(a1, o)
(a1, B2)
(a2, B1)
(ag, B3) =

([
[l e

(a1, o)
(a1, B2)
(a2, B1)
(a2, B3) =

(a1, o)
(a1, B2)
(a2, B1)
(ag, B3) =

(a1, az)
(a1, B2)
(ag, B1)
(ag, B3) =

(ap, )
(a1, B2)
(ag, B1)
(ag, B3) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(ag, B1) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(ag, B1) =

(ap, o)
(a1, B2)
(a2, B1)
(a2, B3)

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3) =

(a1, B1)
(a1, B3) =

(ap, o)
(a1, B2)
(a2, B1)
(a2, B3) =

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3) =

(a1, B1) =
(ag, B1) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(a1, B3) =

(ap, o)
(a1, B2)
(a2, B1)
(a2, B3)

(@1, B1) =
(a1, B3) =

(ap, o)
(a1, B2)
(a2, B1)
(a2, B3) =
(ap, o)
(a1, B2)
(a2, B1)
(ag, B3)

1 {11l
Prmo FPeep

=P e e

=1, (ay, B2)
=1, (ag, B2) =

=1, (a1, B2)

1, (a1, B2) =1,
, (ag, B2) =1,

1
=1, (a1, B2) =1,
1

y (a1, Bg) =

)y =
1, (al,ﬂsi =

(a1, B2) =

=1, (a1, B2) =1,

1, (a2, B2) =
1, (a1,B2) =1,
1, (ag, B2) =1,
1, (a1, B2) =1,
1, (aq,B84) =1,
=1, (a1, B1) =
1, (a1, B2) =1,
1, (a2, B2) =1,
1, (a1,B1) =1,
1, (a1,B83) =1,
1, (ag,B2) =1,

-

(a1, B1) =1,
(a1, B3) = 1,
(ag, B2) = 1,

1, (aq, Bg)
1, (a1,B1) =1,
1, (a1,B83) =1,
1, (ag,B2) =1,

-

(a1, B1) =1,
(a1, B3) =1,
(ag, B2) =1,

» (a1, Ba)
1, (ag, B2)
1, (a1, B2)
1, (a2, B2)
1, (a1, B2)
1, (g, B2)
1, (a1, B2)
1, (a2, B2)
1, (a1, B1) =
1, (a1, B3) =
11, (ag, B2) =

1

B =1,
1, (011,33) =1,
1, (ag,B2) =1,
1,

1, (a1, B2)
1, (aq, Bg)

1, (a1,B1) =1,
1, (a1,B83) =1,
1, (ag,B2) =1,
1,
1, ¢ =1,
1, (011,33) =1,
1, (ag,B2) =1,
1,

1, (a1, B2)
1, (a2, B2)

1, (a1, B2)
1, (g, B2)

1, (a1, B2)
1, (aq, Bg)

1, (a1, B1) =
1, (a1, B3) =
11, (ag, B2) =

1, (a1, B2)
1, (a1, Bg)

" (o1 83)
s (a2, B2)



- scalar products
ag’s, Bi’s aAd(dei)ng Non-zero s
nerate
mponents ge generates - <a11 Bl) .
Relation / linked £-co B <a1w°¢2> = 1: v 20
b (b 1 (calB 20
@z,
- - igz (g, B3) =1, 1
ag Aq Az )y =1, (a1,B2) =1,
ay+ Ay E (a1, B Sl =
Ag+Aq Dy 7 ton sy = 1, R
: =1, (a1,B1) =1,
o8 : (a1, ag) , JZ L
: : “ =1, , B3
2001 Aég}rf‘q Ag+Aq 2 Dy 7 2‘11’22? - i EZ;,E2> -
: o ’ a2 B1) = B
. (agz, B3) , -
al+ 2] Ag+Ay Ao+Aq (a1, ag) = 1, (al,glg = i,
Ag Ag Dy E7 (a1, B2) = i EZ;B; -
o & (a2, B1) =0
: o ) (ag,B3) =1,
5y a+2A A+ Ay
| 1 =1,
Ag+Aq 2 A1+Aq E (a1, B1) = 11, (<§11,§f)> -
t-semisimple type: Aj+ lﬁ = — — : v | -
: 3 “ ,B1) = 1, (a1, =
B1+ s A é%FAlv Aq Aq . . Ezl ﬁé) L
a1 A1+A 1 B3+ Ba 4 L -4 eled
B1+ A A ar Ds+A; (o181 = L (o1, 82) =1
20 Ai1+Ay’ Aq Ag (el 1> w215~
; : (aq, ag =-L )
ag Aﬂizlv A Ag Ay+Aq i S Sty .
: 1 (g, ag) =1, <a1151>:1v

Al y e 1063y = 1. (a1, Bg) = 1,

+ ag Ai1+Ay’ Dy (a1, B2 A S Al Gy
1 Ay B2+ B3 <a2,§1§ =L

1 B1+ s A1+ALD Aq e i

) . . (a1, B1) =1, <a1,B2> =5
) 4 e (ag,B1) =1, <<Ot2, 52> 71
=1, (a1,B82) =1,
B1+ Bz Dy+24, (a1, B1) Zoonp =
| A 4 (g, B1) ,
a1+ oz A1+Aq 1 ) 2 Byl
A1+Ap7+AL” B1+ lj@ n As+Aq Ezéng il il . iy
ag+ az Aq 1 . Gt @
: 2A N -

+ ag Bf%;r A21v Ag Az+2Aq by =1 o
al ’ =1, »B2) =1,
R . K e DSy 1 Sy

: a1, -
ajj @2 Al N Ba+ B3+ fiw (a1,B1) = 1, <(a1,§2>): 1,
B1 > Ay E s Ay
2001 A1+Ap A1+Aq Ag 6 (an. 51) (o) =
BQ (a1, B1) = 1, ) -
+ g Alﬂ‘}’:zl A" F A Ag As+Aq (ag,B1) =1, (ag, 52>> -
aAll Ay’ Ba A (a1, B1) = 1, (al,ﬁgZ):l’
b | Pat By = 1. (ag. Bs
: . . : 4 (g, B1 (g, B2) =1
al =1, (ag, =1,
Y B1) ) =
Aj+Aq + P2 | D (a1, R iy
a1+ ag AlﬂiAy A1+4Aq Ag 6 {an, B1) : <<a21 o
§ A (a1,B1) =1, ,,Bz) =)
+ ag Afizlv A1+Aq Ag Ds+Aq (algH 24, <<a2 o
al )y =1, (a1,B81) =1,
A1+Ay + 52, B (aq, ag - NI
1 ar+ g Alﬂ‘}’Al’ Ay Dy 7 (al,[ggi - 22;1{32) -
Ay 81+ B2+ 33,-, EZZ:Bé) o
| N ) | : = ay,B1) =1,
- | . (ag,a2) =1, ¢ 1,B3> -
" b N (o3l bh Sl (b6 2
g (ag,B1) =1, ,
Ba+ ., =
Bt A7+ Ay Ay (ag, B3) N
a1+ ag A1+Aq (a1,B1) = 1, (al,ﬁ% =)
o ’ Ba Dy E7 (a1,B83) =1, (a7, B4> =1
- “ =1, (a1, B2) =1,
+ Y »B1) =
B1+ s A1€,2+A1 Ay Ay Dy Er Egiygb el 4.
207 s A1+Ay ot o v
A1+Aq B1+ Bat Ay’ Ay By <a1,a2>> = fan Uzl
2] A1+Ay° A1+Aq Dy <al’g?> - L
B1+ et EZE:%) o
a1+ @ A1+A7 Aq B <a11B2>7: 11
1 D (egs B1 il by
A1+Aq Asg 6 (o By — 1, o=
= »B2) =1,
. (a1, B1) =1, (a1 =5
by e Y o (a1, B3) =1, (a1, Bg)
ap+ ag A1+Aq B3+ Ba " i
Ay +Ay° B1+ Aﬁlen Ay’ Ay Eq <a1v2‘22> =1, (a1, B3) = i
K ot 1 B Dy <a1~51> =1, (ag, B2) =1,
Ay B1+ fat, 43 Ezgzﬁy o
ay+ ag Ai1+Ay’ A1"+Aq BAc éal,glg i i’
e X =1, (a1,B83) =1,
: ! ' (ea b 2l (b b 2
B1+ Ba+ B3,, 222,5;’) iy
N ) Al 3 B2) =
; i o B1) =1, (ag, 2) =
Al . o (on b =1, (ag,B2) =
1 e (ag,B1) =1, : =
_ L B1) =
; (aqp, @) =1, (ay )z
B1+ I s Er oo
ar+ g Ap+Ay A1 Ay 5 Dy égé*gfi Shima
Ay’ \ Y 7
Aq 12 Aﬂixlv ljﬁf Ay e 11’ we
- | | (ap,a2) =1, (ag, n
Ay +Aq Dy Dg+Ay <a1,§2§ = i 232333 -
: (a2, 81 -
1 P AT e iz}
: ) ) | (a1,B1) =1, <011,B2> o5
: 4 o (ag,B1) =1, (ag, ;
=1, (ay, By
: A <<>¢1w0¢2>7 s o
+ ag Af}r:y Ay” Dy Dg+Aq éal,ggi = i 22;,;32
) 7 ag, B1) =1,
A1+Ay Aq B1+ Ba+ 5,3, cim :
+ . ) Al | =1, (a1, B2) =1,
D;} Dg <011,B1>:1,<a2,ﬁ2>: :
| 4 (ag, B1) = ,< e
= s B1) =1,
) (aqp, @) =1, (ay JZ 0
+ » ) :1. &
a1+ ag AfiAlv A" +Aq Dy 6 Eal’g?; - 222,132) =1
| @z, )
Ap+Ap Bit+ B2t ﬁi, aEe 5
a1+ @2 Aq Al A (a1,B1) = 1, <a1,§2> = ,1
A1+Ay Aq Dy Dg+Aq (a1, B3) =1, (ay, B4> -
= »B2) =1,
a * (a1, B1) = 1, (1 :
+ Ba+ : A ’ §
s ﬁf{l Al Al N )
B2
ﬁ1+ ) A"
A s A1+Ay Art+Ay
A1+A1+HAYYY Aq

(a2, B1)

, (ag, B2) =



a1+ ag
41 A1
@] @2
A1+A1’+Ar” A1’
a1+ ag
41 Ay’
aq+ ag
A1+A1+A”
g+ ag
Aj+Ay° Ay’
a1+ ag
A1
a1+ ag
41 Ay’
a1+ ag
Aj+A1+HAY Aq
a1+ ag
Aj+Ay’ A’
a1+ ag
Aj+A]+AL A7”
a1+ ag
A1+Ay’
a1+ ag
A1+Ay A7
aq+ ag
A1 Al
a1+ ag
A1+Ay Aq
aq+ ag
A1 Al
2a1
A1+Aq°
g+ ag
Aj+Ay’ A’
aq+ ag
Aj+Ay° A1+Ay”
2cq
A1
a1+ ag
A1 A1’
a1+ ag
A1+Aq° Aq’
a1+ ag
A1+Ay A7
201
Al
a1+ ag
41 A1’
a1+ ag
A1+A1+AYYY A1+Aq°
aq+ ag
Aj+Ay° Aq
a1+ ag
A1 A1’
a1+ ag
A1+A4y’ A17+A4r°
g+ ag
Aj+Ay’ A’
a1+ ag
A1+A+AL” A A7
a1+ ag
41 A1
2aq
A1+Aqp°
a1+ ag
A1+Ay Aq

Relation / linked &-components

= B1+
A1+Ay°

= B1+
Aj+Ay°

= B1+
A1+Ay

= B1+ Bo+
Al Ay’

= B1+
Aj+Ay°

= B1+
A1+A7

= B1+
A1+Ay°

= B1+
Aj+Ay°

= B1+
Aj+Ay°

= B1+
A1+Ay°
B1

Aj+Ay°

= B1+
A1+Aq°

= B1+ Ba
A1 A1

= B1+
A1+Aq

= B1+
Aj+Ay’

= B1+
A1+Ay°

= B1+ Ba+
A1 A1

= B1+
Aj+Ay’

= B1+ B2+
A1 A1

= B1+
Aj+Ay’

= B1+
A1+Aq°

= B1+
A1+A7°

= B1+
Aj+Ay’

= B1+
A1+A7°

= B1+
A1+A7°

= B1+
Aj+Ay’

= B1+
Aj+Ay’

= B1+
A1+Ay°

= B1+
Aj+Ay’

= B1+
A1+A7

= B1+
A1+Ay°

= B1+ Bao+
Al Al

= B1+ B2+
A1 Ay’

Ba+ B3
A" AL Ay7FAy
2
A7 +AL
B2
A1+Aq7
B3
Ay”

Ba+ B3
Ar1+A1” Ay’
Ba+ B3
A7 +AL Ay’

Bo+ B3
Ay Ay
Ba+ B3
Aq” A
Ba+ B3
A7+ AL Ay’
B2
A" 3 AL
B2
A7
B2
A1
B2
A1+Aqp°
Ba+ B3+ Ba
A" AL A Ap
B3
Aq”’
Ba+ B3
Aq” A
B3+ Ba
Aq’ Aq’
B2
Ba+ B3
A7 +Ay A1
Ba+ B3
Ay
Ba+ B3+ Ba
A7 AL Ay Ap”
Ba+ B3
Aq” Aq
Ba+ B3
A7 Ay AY”
Ba+ B3
A7 AL Ay”
Ba+ B3
A Aq”
B2
A" 3 AL
Ba+ B3
A7 AL Ay”
Ba+ B3
A7 +Ay A1
Ba+ B3
A1+Aqy°
B3+ Ba
Aq’ A’
B3
Ay’

ag’s, Bi’s
generate

Dy

Dy

Dy

Dy

adding
AE)
generates

Eg

E7

E7

Dg+41
As+Aq

Eq7

E7

Dg+A1q

Dg+A1q

De+Ay

Non-zero scalar products

(g, ag) =1, (@, B1) = 1,
(a1, B2) =1, (a1,B3) = 1,
(ag, B1) = 1, (a2, B2) =1,
(ag, B3) =1,

(a1, B1) = 1, (a1, B2) = 1,
(ag, B1) =1, (a2, B2) =1,
(a1,B1) =1, (a1, B2) = 1,
(o, B1) =1, (a2, B2) =1,
(ag, @) =1, (ay, f1) =1,
(o, B2) = 1, (g, B3) =1,
(g, B1) = 1, (g, B2) =1,
(o, B3) =1,

(ag,a2) =1, (a1, B1) =1,
(a1, B2) = 1, (g, B3) =1,
(g, B1) = 1, (g, B2) =1,
(a2, B3) =1,

(ag,a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag,B1) = 1, (az, B2) =1,
(o, B3) =1,

(ap, @) =1, (a1, By) =1,
(a1, B2) = 1, (a1, B83) =1,
(ag, B1) = 1, (a2, B2) = 1,
(o, B3) =1,

(ap, @) =1, (a1, B1) =1,
(a1, B2) = 1, (a1, B3) =1,
(a2, B1) = 1, (a2, B2) =1,
(a2, B3) =1,

(ag,a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag,B1) = 1, (az, B2) =1,
(ag, B3) =1,

(a1,B1) =1, (a1,B2) = 1,
(o, B1) =1, (a2, B2) =1,
(a1, @z) = —1, (a1, B1) =
1, (ag,B81) =1,

(1,B81) = 1, (a1, B2) =1,
(ag,B1) =1, (ag, B2) =1,
(1, B81) =1, (a1, B2) =1,
(g, B1) =1, (ag,B2) =1,
(o1, B1) =1, (a1, B2) =1,
(ag, B1) =1, (ag, B2) =1,
(ap,B1) = 1, (ay, f2) = 1,
(a2, B1) =1, (ag, B2) =1,
(o1, B1) =1, (a1, B2) =1,
(o1, B3) =1, (a1, B4) =1,
(ap, @) =1, (a1, B1) =1,
(a1, B2) = 1, (a1, B3) =1,
(g, B1) = 1, (ag,B2) =1,
(a2, B3) =1,

(ap,ag) =1, (ay, B1) = 1,
(a1, B2) = 1, (ay,f3) =1,
(ag,B1) =1, (ag, f2) = 1,
(a2, B3) =1,

(a1,B1) =1, (a1, B2) = 1,
(o1, B3) =1, (a1, B4) =1,
(a1, B1) =

(a2, B1) =

(o, ag) =

(aq, B2) =

(o, B1) =

(ag, B3) =

(aq, ag) =

(a1, B2) =

(g, B1) =

(ag, B3) =

(1, B81) =1, (a1, B2) =1,
(a1, B3) = ,
(ag,a2) =1, (a1,B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag,B1) = 1, (az, B2) =1,
(o, B3) =1,

(a1, @) =1, (a1, B1) =1,
(1, B2) =1, (a1,B3) =1,
(ag, B1) = 1, (a2, B2) =1,
(ag, B3) =1,

(a1, @) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) =1,
(g, B1) = 1, (ag,B2) =1,
(a2, B3) =1,

(ag,a2) =1, (a1,B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag, B1) = 1, (a2, B2) = 1,
(a2, B3) =1,

(@1,B1) = 1, (a1, B2) =
(g, B1) =1, (ag, B2) =
(a1, @) =1, (a1, B1) =
(a1, B2) = 1, (a1, B3) =
(a2, B1) = 1, (a2, B2) =
(a2, B3) =1,

(ag,a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag, B1) = 1, (a2, B2) = 1,
(a2, B3) =1,

(ap, @) =1, (a1, B81) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag,B1) = 1, (az,B2) =1,
(o, B3) =1,

(@1,B1) =1 1,
(a1,B3) =1 )
(ar,az) =1, (g, B1) =1,
(o1sB2) =1, (1, B3) =1,
(ag, B1) =1, (a2, B2) =1,
(ag, B3) =1,



a1+ ag
Al
al+ ag
Aj+Ay A7+ A
2a1
Al
2cq
Al
al+ ag
A Al
a1+ ag
Aj+Ay A7
al+ ag
Aj+Ay Ay
a1+ ag
Al Ay’
ag+ ag
Al
al+ ag
Aj+Ay Ay
a1+ ag
A1+Ay A7+ A
201
A1 +A+AY
a1+ ag
Al Ay’
ay+ ag
A Ay’
a1+ ag
Al
al+ ag
A1+Ay Aq
a1+ ag
A Ay’
a1+ ag
Ar+Ap’+Ay” A’
al+ ag
A Al
a1+ ag
A Ay’
a1+ ag
Al Ay’
al+ ag
A Al
ap+ ag
Ar+Ay’ A7 +AY
a1+ ag
A1+Ay Ay
al+ ag
A Al
a1+ ag
A1+AY A1+Ap
2aq
2aq
A1 +A+AY
a1+ ag
A1+AY A
ag+ ag
Ar+A+AY” Ay’
a1+ ag
Al Ay’
2cq
Al
a4 ag
Aj+Ap A
a1+ ag
Aj+A+AL Ar”
a1+ ag
Al A’

Relation / linked &-components

B1+ B2+ B3
Ay+Aq A1"F Ay A
B1+ Ba+ B3
A1+Ay’ A Ar”
B1+ Ba+ B3+
Al+Ay A" AL ApAy
B1+ Ba+ B3+ Ba
Aj+Ar Al +Ap A Ap
B1+ B2
A1+A+AY” Ar+A+AY”
B1+ B2
Ar+Ap’+AYY Ar+Ay”
B1
Aj+A]+AL”
B1+ B2+ B3
A1+Ay A1"+Aq
B1+ Ba+ B3
Al Ay Al +AL” Ay
B1+ B2
A1+A+A” A1+Ar”
B1+ Ba
A1+Ap’+AY” A’
B1+ Ba+ B3+ Ba
Al+Ay Al +AL” Ay Ap
B1+ B2
A1+A1+HAYYY Aq
B1+ B2
A1+A1+A” Ay’
B1+ Ba+ B3
Al AL A" AL A7
B1+ B2
A1+A1+HAYYY A1+A7
B1+ B2
Aj+AL+AL” Al
B1+ Ba+ B3
Al Ay A Ay
B1+ Ba+ B3
A1+A+AY” Ar+Ay’ Ap”
B1+ Ba+ B3
AjtAy AjFAy”
B1+ Ba+ B3
Ar+Ay’ Arp"+Ay
B1+ Ba+ B3
A1+A1’+A” A1’+A417 Al
B1+ B2
Aj+A]+AL” Al
B1+ B2
A1+A1+HAYYY
B1+ Ba+ B3
A1+A+AY” Ar+A+AY”
B1+ Ba+ B3
Ar+Ap’+AY” Ar+Ay” Ar’
B1+ Ba+ B3+ Ba
Al +Ap AL AL Ar Ay
B1+ Ba+ B3+ Ba
Al+Ay Al AL Ay Ap
B1+ B2
A+ AL +AL AL AL
B1+ Ba+ B3
A1+Ay’ A Ar”
B1+ Ba+ B3
A1+A7
B1+ Ba+ B3+
A1+Ap’+AYY Ap’+Ar” Al
B1+ Ba+ B3
Aj+AL+AL” ApEAL”
B1+ Ba+ B3
Ajt+Ay Ay ApY
B1+ Ba+ B3
A1+A1+HAYY Aq

Ba

By

a;’s, Bi's

generate

Dy

Dy

adding
AE)
generates

E7

Eg

De+Ay

Non-zero scalar products

ay, B) =
(a1, B3) =

(ay,B1) =
(ag, B1) =

(g, B1) =
(ag, B1) =

(a1, az)
1, (a2, B1

(a1, o)
(a1, B2)
(a2, B1)
(ag, B3) =

(aq, az)
(a1, B2)
(ag, B1)
(ag, B3) =

(aq,B1) =
(ag, B1) =

(@1, B1) =
(ag, B1) =

(a1, B1) =
(a1, B3) =

(aq,B1) =
(ag, B1) =

(a1, B1) =
(ag, B1) =

(a1, o)
(a1, B2)
(a2, B1)
(ag, B3) =

(a1, B1) =
(ag, B1) =

(ay,B1) =
(ag, B1) =

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3)

(a1, az)
(a1, B2)
(ag, B1)
(ag, B3) =

(a1, o)
(a1, B2)
(a2, B1)
(a2, B3) =

(aq, az)
(a1, B2)
(a2, B1)
(ag, B3) =

(a1, az)
(a1, B2)
(ag, B1)
(ag, B3) =

(aq,B1) =
(a2, B1) =

(a1, B1)
(ag, B1) =

(a1, ag)
(a1, B2)
(ag, B1)
(ag, B3) =

(a1, ag)
(a1, B2)
(ag, B1)
(a2, B3)

(a1, B1) =
(a1, B3) =

(a1, B1) =
(a1, B3) =

(@1, B1) =
(ag, B1) =

(a1, ag)
(a1, B2)
(ag, B1)
(ag, B3)

(a1, ag)
(a1, B2)
(ag, B1)
(ag, B3) =

(a1, B1) =
(a1, B3) =

(a1, ag) =
(a1, B2) =
(ag, B1) =
(ag, B3) =

(a1, ag) =
(a1, B2) =
(ag, B1) =
(ag, B3) =

(aq, az)
(a1, B2)
(ag, B1)
(g, B3)

s (a1, Bg) =1,

, (@1, B2) =1,
s (a1, Bg) =1,

1, (a1, B2) =1,
1, (a2, B2) =

1, (a1, B2) =1,
1, (ag, B2) =1,

=1, (a1, B1) =

1
1
1
1, (a1, B2) =1,
1
1
1

s (e, B2) =1,

1, (a1, B2)
1, (ag, B2)
1, (a1, B2)
1, (ay, By) =
1, (a1, B2) =1,
1, (ag, B2) =1,
1, (a1, B2) =1,
1, (ag, B2) =1,

1 y =1,
1, (a1, B3) =1,
1, (ag, B2) =1,
1

1, (a1, B2) =1,
1, (ag, B2) =1,

s =1,
» (er, B3) =1,
s =1,

» (a1, Ba)
1, (a2, B2)
1, (a1, B2) =1
1, (ag, B2) =1,

1, (a1, B2) =1,
1, (aq, B84) =1,
1, (a1, B2) =
1, (a1, Bg) =
1, (a1, B2) =
1, (ag, B2) =




Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
a1+ ag = B1+ B2+ B3
AptAy’ Ap+Ay” A1+A1+AL” Ay Dy By >>
)
y=1
201 = B1+ Ba+ B3+ Ba D B — —
Aj+Ar° Ap+ATFAY” Aj+Ay” Ay 4 7 <0¢1w51§ =b <<§11,1§f>> o
a1+ ag = B1+ B2+ B3 D E =1
A1+Ay A1 +Aq A1+A+AL” Ay’ 4 7 >> ; égi;g;i -1
i » (ag, B2) =1,
209 = B1+ Ba+ B3+ Ba D D =1
Ay Al4AL+AL Al +AL+AL” 4 6 i : <<a0¢11,1§f>> o
a1+ ag = B1+ Ba+ B3 D B -1
Ay FAp Ay’ Ap+A7+AL” ApFAg” 4 7 >> égig;i iy
; (ag, B2) =1,
o1t 2 = Bt B2 A E 1 =1
AptAq Ay fAp” Ap+ A +AL” A 3 6 i . <<§21,,522>>: .
20 = B1+ B2+ B3+ Ba D Det A N
Ay Aj+Ay A1F¥Ayp 4 6+4 EZ;?;; 1
a1+ ag = B1+ Bo+ B3
A1+Ay Ay A1+Ap+A” A1+41” b4 o 2212222;
(g, B1)
8 s s s (o2 03)
2oy = 1+ 2+ 3+ 4 D B -1 -1
A1+AL+A7” Alt+Ar ApFAy Ay Ay 4 7 Ezi g;i 1 éffjff)) 4
a1t a2 = A1t B2t B3 D B =1 =1
Ap+A+AL” ApfAy” AytAp A7 F Ay Ay” 4 7 EZ};S; gy égig;i iy
(g, B1) = 1, (g, B2) =1,
s s s 8 (o2 0a) — 1
2o = 1t 2+ 3+ 4 D E =1, =1
Ay Al4AL+AL” Al +AL” A 4 7 22}:2;? - <<§11,,542>>: .
ag+ ag = B1+ Ba+ B3 D _ _
, , . 4 2 (g, ag) =1, (@, B81) = 1,
A A A1+A+Ay A (a1, B3) = 1, (a1, B3) = 1,
(o, B1) = 1, (g, B2) =1,
+ B1+ Bo+ 8 (ag, B3) =1,
1 @2 = 1 ’ 2 3, D E , =1, , -1
A1+Ay’ Ar1+Ay’ A1+Ar’+AL” Ar1+Ar° Ar” 4 7 EZ};;; =1, égig;g =1,
(g, B1) = 1, (g, B2) =1,
5 5 5 (ag, B3) =1,
a1+ az+ a3 = 1+ 2+ 3 A B -1
EA A AR & . S
(23,81) =
t-semisimple type: Aj A FA]
a1+ az = B1+ B2 A D —1
: e e
ag+ g = B1+ Ba+ B3 D B -1 _
: T fum sl =
(ag, B1) = 1, (a2, B2) =
5 5 (ag,B3) =1,
al+ ag = 1+ 2 A D -1
Ajt+Ap Aj+Ar” Alt+Ar AptAy” 3 6 EZ; gi; iy <<§211’§22>>
Relation / linked E-components a;’s, B;’s  adding Non-zero scalar products
generate A(E)
generates
E-semisimple type: Ag
ot ez - Bj+ iz A3 Ds (a1, B1) = 1, (a1, B2) = 1,
2 2 (ag, B1) =1, (a2, B2) =1,
QA12+ o2 - 6&2 A2 Ag (g, ag) = =1, (a1, B1) =
5 5 1, (a2,B1) =1,
a1t ag = 1+ 2 A D — —
3 5 (g, B1) = 1, (a1, B2) = 1,
A2 Az Az Az (ag, B1) =1, (ag, B2) =1,
et o2 - BjJr Bf+ ZS Dy Ee (o1, ag) =1, (aq, B1) = 1,
2 2 2 (o1, B2) =1, (g, B3) = 1,
(g, B1) = 1, (g, B2) =1,
(ag, B3) = 1,
"XJF 2 = Bj+ i2 As Dy (a1, B1) = 1, (a1, B2) = 1,
2 2 2 (ag, B1) =1, (ag, B2) =1,
a1+ ag = B1+ B2+ B3 D — —
4 Eg (g, ag) =1, (@, B1) = 1,
Az A2 Az Az A2 (a1, 82) = 1, (a1, B3) = 1,
(g, B1) = 1, (g, B2) =1,
(g, B3) =1,
E-semisimple type: A]FA]
it ez = it G Ag DytAr  (a1.B1) = L (a.By) = 1,
! ! (@, B1) =1, (ag, B2) = 1,
C!A1+ ag = BA1+ BEJr fzay Dy Dg (a1, an) = 1, (a1, B1) = 1,
L L L L (a1, B2) = 1, (g, B3) = 1,
(ag, B1) =1, (ag,By) =1,
(ag, B3) =1,
aAlJr o2 - il A2 Az+4; (g, az) = =1, (a1, 81) =
1 1 1, (a2, B1) =1,
a1+ az = B1+ B2 A A — —
, ; 3 5 (a1, B1) = 1, (g, B2) = 1,
A1 A1 A1 A1 (ag, B1) =1, (ag, B2) =1,
ag+ ag = B1+ Ba+ B3 D _ _
, ; 4 Eg (g, ag) =1, (@, B81) = 1,
Ar A Artay A1 A (a1, 82) = 1, (a1, B3y = 1,
(ag, B1) =1, (ag,By) =1,
5 5 (ag, B3) = 1,
oyt o2 = 1+ 2 A D — —
) ) 3 5 (a1, B1) =1, (a1,B2) = 1,
A1 Artay A1 (ag, B1) =1, (ag,B2) =1,
ag+ ag = B1+ Ba+ B3 D _ _
, , 4 Eg (g, ag) =1, (@, B81) = 1,
Artay A1 A (a1, 82) = 1, (a1, B3) = 1,
(ag, B1) =1, (ag,By) =1,
5 5 (ag, B3) =1,
a1+ az = 1t 2 A D — —
» 3 5 (a1, B1) =1, (a1, B3) =1,
Ay Ar1+A4y A1 (e, B1) =1, (a2, B2) =1,
2o - Bj+ BX+ i?’Jr ﬁ47 Dy Dg (g, B1) = 1, (a1, B2) = 1,
! ! ! 1 (e1,B3) =1, (a1, Bg) = 1,
et ez - pit o P2t 23, Dy Dg (a1, ag) =1, (a1, B1) = 1,
L L L L (g, B2) = 1, (g, B3) =1,
(ag, B1) =1, (ag,By) =1,
(ag, B3) =1,



a1+ ag

A1 Ay’

aq+ ag
Aj+Ay°

a1+ ag

aq+ ag
A1+Ay°

a1+ ag

A1+A7° Aq

a1+ ag

Al A1

a1+ ag

A1+A7 Aq’

201

A1

a1+ ag

A1 Ay’

a1+ ag

Al A1

a1+ ag

A1+Aq° Aq’

a1+ ag

A1+Aq° A1+Aq

a1+ ag

Al A1

2a7

A1

a1+ ag

A1 Ay’

2aq

Aj+Ay°

a1+ ag

A1+Ay Aq

Relation / linked £-components

= B1
A1+Aq°

= B1+ Ba
A Ay’

= B1+
A1+A7°

= B1
A1+Aqp°

= B1+
A1+A7°

= B1+
A1+Aqy°

= B1+
A1+Aq°

= B1+ Ba+
A A

= B1+
A1+Ay°

= B1+ Ba
A A

= B1+ Ba+
A1 A1

= B1+
A1+Aq

= B1+
A1+Aqp°

= B1+
A1+Aqp’

= B1+
A1+Aq°

= B1+ Bo+
A A

= B1+ Ba+
A1 Ay’

B2
AyfAq

B2
Al

B2
Aj+Ap

B2
A7
B3+
Ay
B2

B3
Ay’

Ba+
Aq’

Ba+
Aj+Ay’

Ba+
Aj+Ay°

B3

Ba+ B3

B3+
Aqp’

B3
Ay

Ba
Ay’

B3

B3+

Ba
Ay’

ag’s, B;’s
generate

Az

A3

adding
A(E)

generates

Ay

As

Eg

Non-zero scalar products

(g, ag) = —1, (ay,B1) =
1, {2, B1) =1,

(g, B1) = 1, (g, B2) = 1,
(ag, B1) =1, (a2, B2) =1,
(a1, B1) =1, (a1, B2) = 1,
(ag, B1) =1, (ag, B2) =1,
(a1, az) = —1, (a1, B1) =
1, (ag,B1) =1,

(a1, B1) =1, (a1, B2) = 1,
(ag, B1) =1, (ag, B2) =1,
(@1, B81) = 1, (a1, B2) = 1,
(a2, B1) =1, (ag, B2) =1,
(a1, B81) =1, (a1, B2) = 1,
(ag, B1) =1, (ag, B2) =1,
(1, B1) = 1, (a1, B2) =1,
(1, B3) =1, (a1, B4) = 1,
(o1, B1) = 1, (1, B2) =1,
(ag, B1) =1, (ag, B2) =1,
(ap, B1) = 1, (ay, f2) = 1,
(ag,B1) =1, (az,B2) = 1,
(ag, a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag, B1) = 1, (a2, B2) = 1,
(a2, B3) =1,

(ap, @) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag,B1) = 1, (@z, B2) =1,
(g, B3) =1,

(a1, ) =1, (a1, B1) =1,
(a1, B2) = 1, (a1,B3) =1,
(g, B1) = 1, (ag,B2) =1,
(a2, B3) =1,

(o1, B1) =1, (a1, B2) =1,
(o1, B3) =1, (@1, B4) =1,
(a1, @) =1, (a1, B1) =1,
(1, B2) = 1, (a1,B3) =1,
(ag, B1) = 1, (a2, B2) =1,
(ag, B3) =1,

(a1, B1) = 1, (ay, f2) = 1,
(1, B3) =1, (a1, B4) = 1,
(ag, a2) =1, (a1, B1) =1,
(a1, B2) =1, (a1,B3) = 1,
(ag, B1) = 1, (a2, B2) =1,
(ag, B3) =1,



Relation / linked £-components a;’s, Bi’s adding Non-zero scalar products
generate A(e)
generates
t-semisimple type: A

et o2 BK+ iz A3 Dy (a1,B1) = 1, (a1, B2) = 1,
1 1 (a2, B1) =1, (a2, 82) =1,

ag+ a B
All 2 All A2 As (ay, ag) = =1, (a1, B1) =

1, (ag,B1) =1,

02+ %P2 BK+ iz A3 Dy (a1,B1) = 1, (a1, B2) = 1,
1 1 1 1 (a2, B1) =1, (a2, 82) =1,
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