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CANONICAL CLASS INEQUALITY FOR FIBRED SPACES

JUN LU, SHENG-LI TAN, AND KANG ZUO

Abstract. We establish the canonical class inequality for families of higher
dimensional projective manifolds. As an application, we get a new inequality
between the Chern numbers of 3-folds with smooth families of minimal surfaces
of general type over a curve, c3

1
< 18c3.

1. Introduction

Let f : X → Y be a semistable family of n-dimensional projective manifolds over
a projective m-fold Y . Let L be a line bundle on X . The volume of L is defined as

v(L) = lim sup
dim(X)! · dim(H0(X,Lν))

νdim(X)
.

If L is nef, then [V82, Lemma 3.1] says that

dim(H i(X,Lν)) ≤ ai · ν
dim(X)−i

and hence the Hirzebruch-Riemann-Roch Theorem implies that v(L) = c1(L)
dim(X).

In this paper we study the upper bound of the volume of ωX/Y . The main result
can be stated as follows.

Theorem 1.1. Let f : X → Y be a semistable non-isotrivial family of minimal n-
folds over a curve Y of genus b. (i.e. that for all smooth fibre Ff of f the canonical
line bundle ωFy

is semiample.) Denote by s = #S the number of singular fibres of
f over S ⊂ Y . Then

v(ωX/Y ) ≤
(n+ 1)n

2
· v(ωF ) · deg Ω

1
Y (logS).(1.1)

In particular, if b ≥ 1, then we get

v(ωX) ≤ v(ωF ) ·

(

(n+ 1)(n+ 2)

2
v(ωY ) +

n(n+ 1)s

2

)

.(1.2)

When f : X → Y is a non-trivial semi-stable family of curves of genus g ≥ 2,
Vojta [Vo88] shows the following canonical class inequality by using the famous
Miyaoka-Yau inequality,

K2
X/Y = v(ωX/Y ) ≤ deg(ωF ) · deg Ω

1
Y (logS) = (2g − 2) · (2b− 2 + s),(1.3)

which is a special case in Theorem 1.1. The second author proved that Vojta’s
inequality is strict when s 6= 0 [Ta95, Lemma 3.1], and generalized it to the non-
semistable case [Ta96, Theorem 4.7]. K. F. Liu [Li96] proved that Vojta’s inequality
is strict in any case by using differential geometric method.

1This work was supported by the SFB/TR 45 Periods, Moduli Spaces and Arithmetic of
Algebraic Varieties of the DFG (German Research Foundation).

2The first and the second named authors are also supported by NSFC, the Science Foundation
of the EMC and the Foundation of Scientific Program of Shanghai.
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The idea of our proof of Theorem 1.1 is to use Arakelov type inequality to get
canonical class inequality. Viehweg and the third author [VZ01, VZ05] get Arakelov
type inequality for µ(f∗ω

⊗ν
X/C),

µ(f∗ω
⊗ν
X/C) ≤

nν

2
(2b− 2 + s),(1.4)

where µ(f∗ω
⊗ν
X/C) is the slope of the sheaf f∗ω

⊗ν
X/C . The key point of our proof of

Theorem 1.1 is to view the inequality (1.1) as the limit of Viehweg-Zuo inequality
when ν tends to infinity. We would like to mention that one can get the Arakelov
inequality for the case n = 1 by combining Vojta’s inequality and Cornalba-Harris-
Xiao’s inequality [CH88, Xi87],

K2
X/Y ≥

4g − 4

g
deg f∗ωX/Y .

(1.2) gives an upper bound on v(ωX). In fact, Kawamata obtains a lower bound
on v(ωX) [Zh07, Theorem 7.1]

v(ωX) ≥ (n+ 1) · v(ωY ) · v(ωF ).(1.5)

The following theorem is an analog of Theorem 1.1 over higher dimensional base.

Theorem 1.2. Let f : X → Y be a family of n-folds over a projective manifold
Y of dimension m, which is semi-stable in codimension one. Let S be a normal
crossing divisor on Y such that ωY (S) is semi-ample and ample with respect to
Y \S. Assume that X is projective and that the fibres Fy = f−1(y) for y ∈ Y \S are
minimal, i.e., ωFy

is semiample. Assume moreover that for some invertible sheaf
L on X with L|Fy

ample and with Hilbert polynomial h the morphism ϕ : Y0 →Mh

is generically finite.
Let l0 denote the smallest integer such that |l0ωY (S)| defines a birational map.

Then we have

v(ωX/Y ) ≤ c · v(ωF ) · v(ωY (S)),(1.6)

where c is a constant depending only on n, m and l0.

Together with Eckart Viehweg we have thought about the Arakelov type in-
equality over higher dimensional base Y . The generalized Arakelov type inequality
plays an important role in this paper which therefore should be considered as a
joint work with Viehweg.

Acknowledgements: This work was done while the third author was visiting
Center of Mathematical Sciences at Zhejiang University and East China Normal
University. He would like to thank both institutions’ financial support and the
hospitality. The authors thank also professor De-Qi Zhang and professor Meng
Chen for useful discussion.

2. Arakelov Inequality

Let Y be a projective m-fold, Y0 the complement of a normal crossing divisor S
with ωY (S) semi-ample and ample with respect to Y0. For a coherent sheaf K on
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Y we write µ(K) for the slope c1(K) · c1(ωY (S))
m−1/rk(K). By Yau’s fundamental

theorem on the solution of Calabi-conjecture [Y93] Ω1
Y (log S) carries a Kähler-

Einstein metric. Hence, Sm(Ω1
Y (logS)) is µ- polystable for all m.

Proposition 2.1. Let f : X → Y be a family of n-dimensional manifolds. Assume
that X is projective and that the fibres Fy = f−1(y), for y ∈ Y0 are minimal, i.e.
that ωFy

is semiample. Assume moreover that for some invertible sheaf L on X
with L|Fy

ample and with Hilbert polynomial h the morphism ϕ : Y0 → Mh is
generically finite, and that f : X → Y is semi-stable in codimension one.

Then there exists a constant ρ = ρ(Y, S) ≤ 1 with:
Let Kν be a saturated subsheaf of (f∗ω

ν
X/Y )

∨∨ for some ν ≥ 2. Then

µ(Kν) ≤ ν · n · ρ · µ(Ω1
Y (log S)).

Proof. Replacing f : X → Y by f r : X(r) → Y for a suitable non-singular model
of the r-fold fibre product, with r = rk(Kν) one finds

det(Kν) ⊂
(

r
⊗

f∗ω
ν
X/Y

)∨∨

=
(

f r∗ω
ν
X(r)/Y

)∨∨
.

Since µ(det(Kν)) = rµ(Kν) we may assume that rk(Kν) = 1. Let us write K = Kν .
Choose a finite covering ψ : Y ′′ → Y such that ψ′∗K = Hν , for an invertible

sheaf H on Y ′′, and write f ′′ : X ′′ → Y ′′ for the pullback family. For

L = ωX′′/Y ′′ ⊗ f ′′∗H−1

the inclusion Hν → f ′′
∗ω

ν
X′′/Y ′′ induces a section σ of Lν . It gives rise to a cyclic

covering of X ′′ whose desingularization will be denoted by Ŵ (see [EV92], for

example). Then for some divisor T̂ the morphism ĥ : Ŵ → Y will be smooth

over Y \ T̂ , but not semistable in codimension one. Choose Y ′ to be a covering,
sufficiently ramified, such that the pullback family has a semistable model over Y ′

outside of a codimension two subscheme. From now on we will no longer assume
that Y , Y ′′ and Y ′ are projective. We will just use that those schemes are non-
singular and that they are the complement of subschemes of codimension ≤ 2 in
non-singular compactifications Ȳ , Ȳ ′′ and Ȳ ′. We will allow ourselves to choose
those schemes smaller and smaller, as long as this condition remains true. In this
way, we may talk about semistable reduction. Moreover, we may assume that all
the discriminant divisors are smooth. Also we can talk about the slopes in this
set-up.

Next choose W ′ to be a Z/ν equivariant desingularization of Ŵ ×Y Y
′, and Z to

be a desingularization of the quotient. Finally let W be the normalization of Z in
the function field of Ŵ ×Y Y

′. So we have a diagram of proper morphisms

(2.1)

W
τ

−−−→ Z
δ

−−−→ X ′ ϕ′

−−−→ X ′′ ψ′

−−−→ X

h





y

g





y

f ′





y

f ′′





y

f





y

Y ′ =
−−−→ Y ′ =

−−−→ Y ′ ϕ
−−−→ Y ′′ ψ

−−−→ Y.
The ν-th power of the sheaf M = δ∗ϕ′∗L has the section σ′ = δ∗ϕ′∗(σ). The sum
of its zero locus and the singular fibres will become a normal crossing divisor after
a further blowing up. Replacing Y ′ by a larger covering, one may assume that
Z → Y ′ is semistable, and that Z and D satisfy the assumption iii) stated below.
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For a suitable choice of T one has the following conditions:

i. X ′ = X ×Y Y
′, and τ : W → Z is the finite covering obtained by taking

the ν-th root out of σ′ ∈ H0(Z,Mν).
ii. g and h are both smooth over Y ′\T ′ for a divisor T ′ on Y ′ containing ϕ−1(S+
T ). Moreover g is semistable and the local monodromy of Rnh∗CW\h−1(T ′)

in t ∈ T ′ are unipotent.
iii. δ is a modification, and Z → Y ′ is semistable. Writing ∆′ = g∗T ′ and D

for the zero divisor of σ′ on Z, the divisor ∆′ +D has normal crossing and
Dred → Y ′ is étale over Y ′ \ T ′.

iv. δ∗(ωZ/Y ′ ⊗M−1) = ϕ∗(H),

In fact, since f : X → Y is semistable, X ′ has at most rational double points.
Then

δ∗(ωZ/Y ′ ⊗ δ∗ϕ′∗ω−1
X/Y ) = δ∗(ωZ/Y ′ ⊗ δ∗ω−1

X′/Y ′) = δ∗ωZ/X′ = OX′ ,

which implies iv). The properties i), ii) and iii) hold by construction.
W might be singular, but the sheaf ΩpW/Y ′(log τ ∗∆′) = τ ∗ΩpZ/Y ′(log∆′) is locally

free and compatible with desingularizations. The Galois group Z/ν acts on the
direct image sheaves τ∗Ω

p
W/Y ′(log τ ∗∆′). As in [EV92] or [VZ05, Section 3] one has

the following description of the sheaf of eigenspaces.

Claim 2.2. Let Γ′ be the sum over all components of D, whose multiplicity is not
divisible by ν. Then the sheaf

ΩpZ/Y ′(log(Γ
′ +∆′))⊗M−1 ⊗OZ

([D

ν

])

,

is a direct factor of τ∗Ω
p
W/Y ′(log τ ∗∆′). Moreover the Z/ν action on W induces a

Z/ν action on
W = Rnh∗CW\τ−1∆′

and on its Higgs bundle. One has a decomposition of W in a direct sum of sub
variations of Hodge structures, given by the eigenspaces for this action, and the
Higgs bundle of one of them is of the form G =

⊕n
q=0G

n−q,q for

Gp,q = Rqg∗
(

ΩpZ/Y ′(log(Γ
′ +∆′))⊗M−1 ⊗OZ

([D

ν

]))

.

The Higgs field θp,q : Gp,q → Gp−1,q+1 ⊗ Ω1
Y ′(log T ′) is induced by the edge mor-

phisms of the exact sequence

(2.2) 0 −→ Ωp−1
Z/Y ′(log(Γ

′ +∆′))⊗ g∗Ω1
Y ′(log T ′)

−→ gΩpZ(log(Γ
′ +∆′)) −→ ΩpZ/Y ′(log(Γ

′ +∆′)) −→ 0,

tensorized with M−1 ⊗OZ

([

D
ν

])

. Here gΩpZ(log(Γ
′ +∆′)) denotes the quotient of

ΩpZ(log(Γ
′ +∆′)) by the subsheaf Ωp−2

Z (log(Γ′ +∆′))⊗ g∗Ω2
Y ′(log T ′).

The sheaf

Gn,0 = g∗
(

ΩnZ/Y ′(log(Γ′ +∆′))⊗M−1OZ

([D

ν

]))

contains the invertible sheaf

g∗
(

ΩnZ/Y ′(log∆′)⊗M−1
)

= g∗(ωZ/Y ′ ⊗M−1) = ϕ∗(H).

Let us write Ω = ϕ∗ψ∗ΩY (log S), and Ω∨ for its dual.
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Claim 2.3. Let

(H =

n
⊕

q=0

Hn−q,q, θ|H)

be the sub Higgs bundle of (G, θ), generated by ϕ∗(H). Then there is a map

ϕ∗(H)⊗ Sq(Ω∨) −→ Hn−q,q.

which is surjective over some open dense subscheme.

Proof. Writing ∆ = f ∗(S + T ) consider the tautological exact sequences

(2.3) 0 → Ωp−1
X/Y (log∆)⊗f ∗Ω1

Y (log S+T ) −→ gΩpX(log∆) −→ ΩpX/Y (log∆) → 0,

tensorized with
ω−1
X/Y = (ΩnX/Y (log∆))−1.

Taking the edge morphisms one obtains a Higgs bundle H0 starting with the (n, 0)
part OY . The sub Higgs bundle generated by OY has a quotient of Sq(T 1

Y (− log(S+
T ))) in degree (n− q, q)

On the other hand, the pullback of the exact sequence (2.3) to Z is a subsequence
of

0 → Ωp−1
Z/Y ′(log∆

′)⊗ g∗Ω1
Y ′(log T ′) → gΩpZ(log∆

′) → ΩpZ/Y ′(log∆
′) → 0,

hence of the sequence (2.2), as well. So the Higgs field of ϕ∗H0 is induced by the
edge morphism of the exact sequence (2.2), tensorized with

ϕ′∗ψ′∗(ω−1
X/Y ).

One obtains a morphism of Higgs bundles ϕ∗(H⊗ ψ∗H0) → G. By definition

ϕ∗(H⊗ ψ∗Hn,0
0 ) = ϕ∗(H) = Hn,0 ⊂

−−−→ Gn,0,

and H is the image of ϕ∗H0 in G. �

Choose ℓ to be the largest integer with Hn−ℓ,ℓ 6= 0. Obviously ℓ ≤ n and

Hn−ℓ,ℓ ⊂ Ker
(

Hn−ℓ,ℓ → Hn−ℓ−1,ℓ+1 ⊗ ΩY ′(log T ′)
)

,

hence µ(Hn−ℓ,ℓ) ≤ 0.
Since µΩ > 0 and ℓ ≤ n,

µ(ϕ∗H)− µ(Sn(Ω)) ≤ µ(ϕ∗H)− µ(Sℓ(Ω).

Applying the Claim 2.3 there is a map

ϕ∗(H)⊗ Sℓ(Ω∨) −→ Hn−ℓ,ℓ.

which is surjective over some open dense subscheme. The µ-stability of ϕ∗(H) ⊗
Sℓ(Ω∨) by Yau’s theorem and µ(Hn−ℓ,ℓ) ≤ 0 imply

µ(ϕ∗H)− µ(Sℓ(Ω)) ≤ µ(Hn−ℓ,ℓ) ≤ 0.

Putting the above two slope inequalities together we obtain

µ(ϕ∗H)− µ(Sn(Ω)) ≤ 0.

�

Addendum 2.4. If in Proposition 2.1 Y0 is a generalized Hilbert modular variety
of dimension m ≥ 1, then on may choose ρ = m

m+1
.
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Proof. If Y0 is a Hilbert modular variety, then in the Claim 2.3 one has an isomor-
phism

Hn−q,q ∼= ϕ∗(H)⊗ Sq(Ω∨).

This in turn implies that the slope of H is

µ(ϕ∗H)− µ(

n
⊕

i=0

Si(Ω)) ≤ 0.

Note that
⊕n

i=0 S
i(Ω) = Sn(OY ′ ⊕ Ω). Then

µ(ϕ∗Hν) ≤ ν · µ(

g
⊕

i=0

Si(Ω)) = ν · µ(Sn(OY ′ ⊕ Ω)) = ν · n ·
m

m+ 1
· µ(Ω).

�

3. Canonical Class Inequality

Lemma 3.1. Let f : X → Y be a semi-stable non-isotrivial family of minimal
n-folds of general type over a curve Y of genus b and with s = #S singular fibres
over S. Then

v(ωX/Y ) ≤
(n+ 1)n

2
· c1(ωF )

n · deg Ω1
Y (log S) =

(n+ 1)n

2
· v(ωF ) · deg Ω

1
Y (log S).

If b ≥ 1 then

v(ωX) ≤ v(ωF ) ·
((n+ 1)(n+ 2)

2
v(ωY ) +

n(n + 1)s

2

)

.

Proof. The non-isotriviality implies that f∗ω
ν
X/Y is ample for all ν ≥ 2 with f∗ω

ν
X/Y 6=

0. For ν large enough, and for all µ the multiplication maps

Sµ(f∗ω
ν
X/Y ) −→ f∗ω

ν·µ
X/Y

are surjective over some open dense subscheme. In particular for µ sufficiently large
there is an ample invertible sheaf H of degree larger than 2g − 1, and a morphism

⊕

H −→ f∗ω
ν·µ
X/Y

which is again surjective over some open dense subscheme. This implies that

H1(Y, f∗ω
ν
X/Y ) = 0

for all large ν. If b ≥ 1 one also obtains that H1(Y, f∗ω
ν
X) = 0. By the Riemann-

Roch theorem for vector bundles on curves the first vanishing implies that

dim(H0(X,ωνX/Y )) = dim(H0(Y, f∗ω
ν
X/Y )) = deg(f∗ω

ν
X/Y ) + rk(f∗ω

ν
X/Y ) · (1− b).

The slope inequality in Proposition 2.1, together with the improvement obtained
in the addendum 2.4 imply that

dim(H0(X,ωνX/Y )) ≤ rk(f∗ω
ν
X/Y ) ·

(

ν · n ·
1

2
· deg(Ω1

Y (log S)) + (1− b)
)

.

Since rk(f∗ω
ν
X/Y ) is given by a polynomial of degree n = dim(X) − 1 and with

highest coefficient
νn

n!
· c1(ωF )

n =
νn

n!
· v(ωF )
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one finds that

v(ωX/Y ) ≤
(n+ 1)n

2
· v(ωF ) · deg Ω

1
Y (logS).

For the second inequality we repeat the same calculation for ωX instead of ωX/Y ,
and obtain

dim(H0(X,ωνX)) = deg(f∗ω
ν
X) + rk(f∗ω

ν
X/Y ) · (1− b)

= deg(f∗ω
ν
X/Y ) + rk(f∗ω

ν
X/Y ) · (ν · (2b− 2) + (1− b)) =

deg(f∗ω
ν
X/Y ) + rk(f∗ω

ν
X/Y ) · (2ν − 1) · (b− 1)

≤ rk(f∗ω
ν
X/Y ) ·

(

ν · n ·
1

2
· deg(Ω1

Y (logS)) + (2ν − 1) · (1− b)
)

.

Again, taking the limit for ν → ∞ one obtains the inequality

v(ωX) ≤ (n+ 1) · v(ωF ) ·
(n

2
(2b− 2 + s) + (2b− 2)

)

.

Since (2b− 2) = v(ωY ) one obtains the second inequality stated in Lemma 3.1. �

Lemma 3.2. Let f : X → Y be a family of n-fold over a base Y of dimension
m and satisfying the condition required in Prop. 2.1. Further more let l0 be the
smallest integer such that |l0ωY (S)| defines birational map. Then there exists a
constant c depending only on n, m and l0 such that

v(ωX/Y ) ≤ c · v(ωF ) · v(ωY (S)).

Proof. We prove the statement for the case m = 2. The general case follows from
by taking hypersurface in |l0ωY (S)| and by induction on dimY.

We assume l0 = 1. For f∗ω
ν
X/Y we take nν + 1 smooth curves C1, · · ·Cnν+1 from

|ωY (S)| in the generic position, and let

Dν =
nν+1
∑

i=1

Ci.

Consider the exact sequence

0 → H0(Y, f∗ω
ν
X/Y (−Dν)) → H0(Y, f∗ω

ν
X/Y ) → H0(Dν , f∗ω

ν
X/Y |Dν

) → · · ·

Then one has the vanishing

H0(Y, f∗ω
ν
X/Y (−Dν)) = 0,

for otherwise there would there exists an invertible subsheaf

OY (Dν) → f∗ω
ν
X/Y .

But it contradicts to

(nν + 1)ωY (S) · ωY (S) = ωY (S) ·Dν ≤ ν · n · ρ · ωY (S) · ωY (S).

Hence one has
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h0(Y, f∗ω
ν
X/Y ) ≤ h0(Dν , f∗ω

ν
X/Y |Dν

) ≤

nν+1
∑

i=1

h0(Ci, f∗ω
ν
X/Y |Ci

).

Note that

f∗ω
ν
X/Y |Ci

= f∗ω
ν
XCi

/Ci

for the subfamily f : XCi
→ Ci.

Since now all Ci are curves with fixed genus, the vanishing for H1(Ci, f∗ω
ν
XCi

/Ci
)

in 3.1 still holds true for ν >> 1. Hence, as in 3.1 we have

h0(f∗ω
ν
XCi

/Ci
) ≤ h0(F, ωνF ) ·

n

2
· ν · deg Ω1

Ci
(S) = h0(F, ωνF ) ·

n

2
· ν · 2 · ωY (S)ωY (S),

and

h0(X,ωνX/Y ) = h0(Y, f∗ω
ν
X/Y ) ≤ (nν + 1)h0(F, ωνF ) ·

n

2
· ν · 2 · ωY (S) · ωY (S).

Dividing the last inequality by νn+2 and taking the limit for ν → ∞ we finish
the proof. �

As an interesting application, one can get an inequality between c1 and c3 on the
total space of a smooth family f : X → Y of minimal surfaces of general type over
a curve Y .

Corollary 3.3. Let f : X → Y be a non-isotrivial smooth family of minimal
surfaces of general type over a curve Y of genus b. Then we have

c31(X) < 18c3(X).

Proof. Lemma 3.1 says that

c31(X) ≤ 6c21(F )c1(Y ) = 12(b− 1)c21(F ),

where F is a fiber. Now Miyaoka-Yau inequality for F says c21(F ) ≤ 3c2(F ). So we
obtain

c31(X) ≤ 18c2(F )c1(Y ).

By using the following exact sequence for f : X → Y ,

0 → f ∗Ω1
Y → Ω1

X → Ω1
X/Y → 0,

to compute the Chern class, one has c3(X) = c2(F )c1(Y ) = 2(b− 1)c2(F ). Finally
we get the inequality for Chern class c31(X) ≤ 18c3(X).

Suppose that c31(X) = 18c3(X). Thus F satisfies c21(F ) = 3c2(F ), i.e., F is a
ball quotient surface. Then the rigidity of ball quotient of dimension ≥ 2 implies
the isotriviality of f . It contradicts to our assumption. Therefore we get a strict
inequality c31(X) < 18c3(X). �
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