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Abstract

A deterministic system of interacting agents is considered as a model for economic
dynamics. The dynamics of the system is described by a coupled map lattice with
near neighbor interactions. The evolution of each agent results from the competition
between two factors: the agent’s own tendency to grow and the environmental influ-
ence that moderates this growth. Depending on the values of the parameters that
control these factors, the system can display Pareto or Boltzmann-Gibbs statistical
behaviors in its asymptotic dynamical regime. The regions where these behaviors
appear are calculated on the space of parameters of the system. Other statistical
properties, such as the mean wealth, the standard deviation, and the Gini coefficient
characterizing the degree of equity in the wealth distribution are also calculated on
the space of parameters of the system.
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It is currently well established that income or wealth distribution in many
western societies presents essentially two phases. This means that the society
can be differentiated in two disjoint populations in which the probability dis-
tribution of wealth has a different functional form in each of them [1,2,3,4,5].
Analysis of real economic data from U.K. and U.S.A. [6] has shown that one
phase possesses an exponential or Boltzmann-Gibbs probability distribution
that involves about 95% of individuals, mainly those with low and medium
wealths, and that the other phase, consisting of the the 5% of individuals
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with highest wealths, shows a power law distribution or Pareto behavior. Sev-
eral economic models based on diverse probabilistic mechanisms for interac-
tion between agents have been proposed in order to reproduce these types of
statistical behavior [7,8,9,10,11]. However, in most cases, both classes of dis-
tributions do not appear in a simple model; changes in the interaction rules
between agents are required in order to obtain either type of behavior.

Randomness is an essential ingredient in all the former models. Thus, agents
behave as a classical gas without notion of locality [5]. The interaction between
agents occurs in pairs chosen at random, and these pairs exchange a random
quantity of wealth in each transaction; this leads to an asymptotic state where
the wealth in the system follows a Boltzmann-Gibbs distribution. The tran-
sition from a Boltzmann-Gibbs distribution to a Pareto behavior requires a
change of structural properties of the system. A power law distribution can be
reached, for instance, by introducing a strong inhomogeneity in the properties
of the agents [4,10]. Thus, very different setups are needed in those models
in order to simulate the collective behavior of real economic systems. On the
other hand, interactions among real economic agents cannot be regarded as
fully random. In fact, most economic transactions are driven by some kind of
mutual interests or rational forces.

In this article, we study the statistical properties of a recently introduced
deterministic, network-based multi-agent dynamical model possessing mini-
mal ingredients [12]. In particular, we show that this simple model is capable
of displaying Boltzmann-Gibbs as well as Pareto statistical behaviors in its
asymptotic states.

The system consists of N agents placed at the nodes of a network. Each agent,
representing an individual, a company, a country or other economic entity,
is identified by an index i, with i = 1, . . . , N . The dynamics of each agent
is described by a discrete-time map that expresses the competition between
its own tendency to grow and an environmental influence that controls this
growth. Although the model can be defined on any network of interacting
agents, for simplicity we shall consider here a one-dimensional lattice with
periodic boundary conditions. The dynamics of the system is described by the
coupled map equations [12]

xi
t+1 = ri xi

t exp(− | xi
t − aiΨ

i
t |),

Ψi
t = 1

2
(xi−1

t + xi+1
t ),

(1)

where xi
t ≥ 0 gives the state of the agent i at discrete time t, and it may

denote the wealth of this agent; the factor rix
i
t expresses the self-growth ca-

pacity of agent i, characterized by a parameter ri; Ψi
t represents the local field

acting at the site i at time t; and ai measures the coupling of agent i with its
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Fig. 1. (a) Semilog plot of the probability distribution P (x) of the states of the
agents xi

t at time t = 104, for a = 0.6 and r = 4. (b) Log-log plot of P (x) at time
t = 104, for a = 0.92 and r = 8.

neighborhood; it can also be interpreted as the local environmental pressure

exerted on agent i [13]. The negative exponential function acts as a control

factor that limits this growth with respect to the local field. With the dynam-
ics given by Eqs.(1) the largest possibility of growth for agent i is obtained
when xi

t ≃ aiΨ
i
t, i.e., when the agent has reached some kind of adaptation to

its local environment.

For simplicity, in this paper we focus on a homogeneous system where all
agents possess the same growth capacity, ri = r, and are subject to a uni-
form selection pressure from their environment, ai = a. Thus, the parameter
a expresses the homogeneous wish of the agents to reach a wealth level pro-
portional to that of their environment. The value a = 1 means a desire of
being totally balanced with the neighborhood. The case a < 1 could be in-
terpreted as some kind of lack of attitude in the population for improving its
relative wealth. When a > 1 the agents possess an excess of will (selfishness)
for overcoming their local neighbors.

We study the collective behavior of the system described by Eqs.(1) in the
space of parameters (a, r). For all the simulations shown, the system size is
N = 105 and the values of the initial conditions are uniformly distributed at
random in the interval xi

0 ∈ [1, 100]. Also, a transient of 104 iterations is dis-
carded before arriving to the asymptotic regime where all the calculations are
carried out. When indicated, time averages are done over the next 100 itera-
tions after the transient, and this result is newly averaged over 100 different
realizations of the initial conditions with the same process.

Figure 1 shows the probability distribution of the states of the agents P (x)
at time t = 104 for different values of the parameters a and r. In Fig. 1(a),
a semilog plot of P (x) shows that, for the parameters used, the probability
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Fig. 2. Correlation coefficient β of the scaling exponents for the semilog fitting of
the Boltzmann-Gibbs (circles) and for the log-log fitting of the Pareto (squares)
distributions, as a function of the parameter a for two different values of r. The
value β = −0.96 is indicated by a horizontal line. The values of β shown are the
result of averaging the values obtained over 100 iterations for each parameter values,
after discarding 104 transients. (a) r = 4. (b) r = 8.

can be well described by a Boltzmann-Gibbs distribution P (x) ∼ e−µx, where
µ = 0.59. A thermodynamical simile can be established by defining a kind of
‘temperature’, h = 1/µ = 1.69, that is related with the mean wealth of the
agents in the ensemble. For other values of the parameters, P (x) can display
a Pareto-type behavior, as shown in the log-log plot of Fig. 1(b). In this case,
P (x) ∼ x−α, with an exponent α = 2.84, a value in agreement with the
exponents derived from real economic data [1,14,15].

The exponents µ and α in the distributions shown in Fig. 1 are obtained by
linear regression using the least-squares method; this gives a value of the corre-
lation coefficient greater than 0.98 in each case. Boltzmann-Gibbs and Pareto
distributions also appear for other values of the parameters (a, r). Figure 2
shows the correlation coefficient β corresponding to the semilog fitting of the
Boltzmann-Gibbs as well as the log-log fitting of the Pareto distributions as
a function of the parameter a, for two different values of r. We consider that
either of these fittings are accurate enough when |β| > 0.96. The intervals of
the parameter a where this condition has been achieved can be identified in
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Fig. 2.

Figure 3 shows the regions where the probability distribution P (x) displays
Boltzmann-Gibbs and Pareto behaviors in the space of parameters (a, r) for
the system Eqs.(1). Both parameters a and r are varied in intervals of size 0.02
and for each pair (a, r) the semilog and the log-log linear regressions described
in Fig. 1 are performed after discarding 104 transients and averaging over the
following 100 iterations, and only those results yielding a correlation coefficient
|β| > 0.96 are shown in Fig. 3.
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Fig. 3. (a) Regions where Boltzmann-Gibbs behavior P (x) ∼ e−µx appears on the
space of parameters (a, r) are indicated by the label BG. The color code on the
right indicates the values of the scaling exponent µ obtained by the procedure
explained in Fig. 1(a) and fullfilling the condition |β| > 0.96. (b) Regions where
Pareto behavior P (x) ∼ x−α occurs on the plane (a, r) are labeled by P. The color
code on the right indicates the values of the exponent α obtained as in Fig. 1(b)
and satisfying |β| > 0.96. In both cases, for each pair of values (a, r) calculations of
the scaling exponents are performed after discarding 104 transients and averaging
over the following 100 iterations.

We note that Boltzmann-Gibbs behavior is found for lower values of the local
environmental pressure a. When the value of a increases, the population enters
in a competitive regime that provokes the appearance of the Pareto behavior in
the system. The scaling exponents obtained for the Pareto behavior observed
in Fig. 3(b) are in the range α ∈ [2.3, 3.0]; these values are similar to those
found in actual economic data [1,14,15].

The mean field of the system or average wealth per agent at a time t is defined
as

Ht =
1

N

N
∑

i

xi
t, (2)
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Fig. 4. (a) Mean field Ht of the system at t = 104 for the regions where Boltzman-
n-Gibbs and Pareto behaviors are found on the plane (a, r), indicated respectively
by the labels BG and P. The color code on the right indicates the values taken by
Ht. (b) The quantity 〈σ〉 on the space of parameters (a, r). The color code on the
right indicates the values of 〈σ〉.

Figure 4(a) shows the asymptotic value of the mean field for the regions where
Boltzmann-Gibbs and Pareto behaviors are observed on the space of param-
eters (a, r). Note that, although the values of the initial states of the agents
are randomly distributed on the interval [1, 100], the system evolves to an
asymptotic state where Ht takes values on the smaller interval [0, 3]. On the
other hand, for some values of the parameters a and r, the states of agents
in the system at a given time exhibit a large dispersion. Similarly, for those
parameters, the values of the state of any agent present large fluctuations over
long times. To characterize these fluctuations, we define the instantaneous
standard deviation of the mean field as

σt =

(

1

N

N
∑

i=1

[

xi
t − Ht

]2

)1/2

. (3)

After discarding 104 transients, we calculate the mean value of σt over 100
iterations, and then average this result over 100 realizations of initial condi-
tions. The resulting average dispersion, denoted by 〈σ〉, is shown in Fig. 4(b)
on the plane (a, r) for the same regions indicated in Fig 4(a). Note that for
some regions of parameters the quantity 〈σt〉 can be much greater than the
value of the mean field. For instance, about the line a = 1.9, the mean field is
small, Ht ≈ 1, but 〈σt〉 ≈ 6, showing that the fluctuations can be very large
in this system. Thus, in spite of its simplicity, the deterministic model given
by Eqs. (1) can exhibit great spatiotemporal complexity.
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Fig. 5. (a) Gini coefficient at t = 104 as a function of the parameters a and r. The
labels BG and P indicate the regions where Boltzmann-Gibbs and Pareto behaviors
are observed on the plane (a, r). The color code on the right indicates the values
taken by the Gini coefficient. (b) Gini coefficient vs. a, with fixed r = 8, where the
labels BG and P correspond to the regions indicated in (a).

The large dispersions observed in Fig. 4(b) reflect the inequity in the wealth
distribution among agents in the system. To characterize the degree of in-
equality in the wealth distribution we use the Gini coefficient defined at a
time t as [16]

Gt =
1

2N2Ht

N
∑

i,j=1

|xi
t − xj

t |. (4)

A perfectly equitable distribution of wealth at time t, where xi
t = xj

t , ∀i, j,
yields a value Gt = 0. The opposite situation, where one agent has the to-
tal wealth

∑N
i=1 xi

t, has a value of Gt = 1. Figure 5(a) shows the asymptotic
value of the Gini coefficient on the plane of parameters (a, r). Note that the
Gini coefficient reaches larger values, i.e. Gt ∈ [0.6, 0.8], in the regions associ-
ated to Pareto regimes, while it takes lower values, i.e. Gt ∈ [0.4, 0.6], in the
region corresponding to Boltzmann-Gibbs behavior. This results agree with
our qualitative understanding that equity is more favored in the presence of a
larger middle economic class in a society, as expressed by a Boltzmann-Gibbs
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distribution. A plot of Gt as a function of a for a fixed value r = 8 is shown in
Fig. 5(b), where the Boltzmann-Gibbs and Pareto regions are also indicated.

In summary, the deterministic model Eqs. (1) shows statistical behaviors de-
scribed by Boltzmann-Gibbs and Pareto distributions in different regions of
its parameters. The appearance of these collective properties does not require
the addition of ramdonness or any structural change in the system. Only some
appropriate tuning of the parameters of the system is needed to obtain ei-
ther type of behavior. This property contrasts with most models for economic
behavior in the literature which require changes in their dynamical rules in
order to yield an exponential or a power law distribution of states. Since it
is currently accepted that most western societies consist of two differentiated
economic classes characterized by different distribution functions [4], coupled
map models such as Eqs. (1) can be useful to study the formation of these two
economic populations. Our results support the view that determinism alone
can give rise to some relevant collective behaviors observed in economic sys-
tems. This basic model can be readily extended to include the considerations
of more complex networks of interactions, heterogeneities, and the coevolution
of dynamics and the topology of connectivity, among other interesting issues.
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