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Abstract: Financial econometrics has become an increasingly popular re-
search field. In this paper we review a few parametric and nonparametric
models and methods used in this area. After introducing several widely
used continuous-time and discrete-time models, we study in detail depen-
dence structures of discrete samples, including Markovian property, hid-
den Markovian structure, contaminated observations, and random samples.
We then discuss several popular parametric and nonparametric estima-
tion methods. To avoid model mis-specification, model validation plays a
key role in financial modeling. We discuss several model validation tech-
niques, including pseudo-likelihood ratio test, nonparametric curve regres-
sion based test, residuals based test, generalized likelihood ratio test, si-
multaneous confidence band construction, and density based test. Finally,
we briefly touch on tools for studying large sample properties.

Keywords and phrases: Diffusion model, hidden Markov model, jump
diffusion model, Markov chain, model validation, nonlinear time series, non-
parametric density estimate, nonparametric curve estimate, stochastic dif-
ferential equation, stochastic volatility.

Received January 2008.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Continuous-time models . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Continuous-time diffusion models . . . . . . . . . . . . . . . . . . 3
2.2 Jump diffusion processes . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Continuous-time stochastic volatility models . . . . . . . . . . . . 7

3 Discrete-time models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Nonlinear autoregressive and stochastic regression models . . . . 8
3.2 Discrete-time stochastic volatility models . . . . . . . . . . . . . 10

4 Dependence structure of discrete samples . . . . . . . . . . . . . . . . 10
4.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Random samples and high-frequency financial data . . . . . . . . 11
4.3 Error-in samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . 13

∗This is an original survey paper.
†This paper was accepted by Donald Richards, Associate Editor for the IMS.

1

http://arXiv.org/abs/0801.1599v2
http://www.i-journals.org/ss
http://dx.doi.org/10.1214/08-SS034
mailto:zuz13@stat.psu.edu


Z. Zhao/Nonparametric methods in financial econometrics 2

5 Model estimation: parametric methods . . . . . . . . . . . . . . . . . . 14
5.1 Likelihood based method . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Generalized method of moments . . . . . . . . . . . . . . . . . . 16
5.3 Other parameter estimation methods for diffusion models . . . . 17
5.4 Parameter estimations in stochastic volatility models . . . . . . . 17

6 Model estimation: nonparametric methods . . . . . . . . . . . . . . . . 18
6.1 Nonparametric density estimates . . . . . . . . . . . . . . . . . . 18
6.2 Nonparametric function estimation . . . . . . . . . . . . . . . . . 19
6.3 Semi-parametric estimation via nonparametric density . . . . . . 22
6.4 Nonparametric integrated volatility estimation . . . . . . . . . . 23

7 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 Pseudo-likelihood ratio test . . . . . . . . . . . . . . . . . . . . . 24
7.2 Model validation via nonparametric curve regression . . . . . . . 25
7.3 Residuals based test . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 Generalized likelihood ratio test . . . . . . . . . . . . . . . . . . . 26
7.5 Simultaneous confidence band . . . . . . . . . . . . . . . . . . . . 27
7.6 Density based test . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7 Other tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Tools for asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1 Mixing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2 Physical dependence measure . . . . . . . . . . . . . . . . . . . . 30
8.3 Martingale decomposition . . . . . . . . . . . . . . . . . . . . . . 32

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1. Introduction

Over the past few decades, financial econometrics has become an increasingly
popular research field among the economics, finance, statistics and probabil-
ity communities, and such a trend will undoubtedly continue. We refer to the
books by Franke et al. [84], Hull [105] and Neftci [138] for an elementary intro-
duction to mathematical finance; Duffie [60] for asset pricing theory; Steele [150],
Karatzas and Shreve [116] and Karlin and Taylor [117] for extensive treatments
of stochastic calculus and martingales; Fan and Yao [77] and Li and Racine
[127] for nonparametric methods in time series; Gao [87] for semi-parametric
methods in econometrics; and Tsay [155] for an excellent exposition of financial
time series analysis among others. In this survey paper, we provide a selective
overview of some popular parametric and nonparametric models and methods
in financial econometrics.

One of the main objectives of financial econometrics is to understand and
model the evolving dynamics behind the financial markets. To model the price
dynamics of assets that are subject to uncertainties, various continuous-time
models in the form of stochastic differential equations and discrete-time series
models have been proposed with the hope that they could provide a reasonable
approximation to the true data-generating dynamics. In Sections 2 and 3, we
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review some popular continuous-time and discrete-time models, respectively. In
practice, since only discrete observations are available, dependence structures
of such discrete observations are discussed in Section 4.

Given a model, a natural problem is to estimate the unknown quantities of
the model based on discrete observations. Section 5 reviews various parameter
estimation methods when we have sufficient prior knowledge that the model
has a parametric form with unknown parameters. Nonparametric models can
reduce modeling bias by imposing no specific model structure other than certain
smoothness assumptions, and therefore they are particularly useful when we
have little information or we want to be reflexible about the underlying model.
Section 6 gives a brief account of some useful nonparametric methods. Since the
payoff for derivatives depends critically on the price process of the underlying
security, it is very important that the price model of the underlying security be
correctly specified. Such model validation problems are addressed in Section 7.
Section 8 contains some useful tools for the study of large sample properties of
parametric and nonparametric estimates.

Fan [75] gives an excellent overview of nonparametric methods in financial
econometrics. The present paper adds new material that was not covered by Fan
[75], including jump diffusion models, stochastic volatility models, discrete-time
models, dependence structure of discrete samples, more detailed discussion on
parametric and nonparametric methods and model validations, and some tools
for studying large sample properties.

2. Continuous-time models

2.1. Continuous-time diffusion models

A European call option gives the holder the right to buy the underlying asset
St, at the expiration date, or maturity, T for a certain strike price K, but the
holder does not have to exercise that right. Therefore, the payoff for a European
option written on St is max(ST −K, 0), and this payoff depends critically on the
behavior of the underlying asset St. For an introduction to financial derivatives,
see Hull [105].

As a milestone of quantitative finance, Black and Scholes [39] assume the
following model for St to derive their celebrated pricing formula for European
call options:

dSt = µStdt+ σStdWt, (2.1)

where {Wt}t≥0 is a standard Brownian motion, and µ and σ are the drift and
diffusion coefficients, respectively. By Itô’s Lemma, the solution of (2.1) is the
geometric Brownian motion (GBM)

St = exp[(µ− σ2/2)t+ σWt]. (2.2)

As the simplest model for modeling stock prices, GBM is still widely used in
the modern financial community.
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Under the “risk-neutral” world, we would expect that the interest discounted

payoff with the discount factor exp(−
∫ T

0
rtdt) for compound interest rt should

be a martingale and hence all stocks earn the same rate as the risk-free rates rt.
In the early literature of finance, interest rates are considered to be constant;
see [39] and [135]. The latter assumption works reasonably well if we consider
only a short period of time during which interest rates remain approximately
the same, while it causes important discrepancies over a long time span. For
example, interest rates on one-year U.S. Treasury bills ranged from as high as
15% in the early 1980’s to as low as less than 1% in 2003. Interest rates are
not tradable assets, while derivatives (for example, interest rate swaps, futures,
bond options) written on them are. In fact, the interest rate derivatives market
is the largest derivatives market with an average daily turnover of about $ 60
trillion dollars; see [81].

To price interest rate derivatives, Vasicek [156] proposes the following model
for interest rates rt,

drt = β(α − rt)dt+ σdWt, α > 0, β > 0. (2.3)

The quantity α determines the long-run average interest rate. If rt > α, then
β(α − rt) < 0 pulls interest rates downward; while when rt < α, β(α − rt) >
0 pushes rates upward. Therefore, (2.3) bears a mean-reversion explanation
with α being the mean value and β the strength of the mean-reversion. Model
(2.3) is the well-known Ornstein-Uhlenbeck process whose solution, assuming
X0 is Gaussian distributed with mean α and variance σ2/(2β), is a stationary
Gaussian process fully characterized by the mean α and covariance function

Cov(rs, rt) =
σ2

2β
e−β|t−s|.

Model (2.3) assumes constant volatility σ, which hardly matches empirical
observations. For example, volatilities tend to be clustered and larger observa-
tions are associated with larger volatilities. A more realistic model would take
into account the non-constant volatility. Cox, Ingersoll and Ross [53] derive the
“CIR” model

drt = β(α− rt)dt+ σr
1/2
t dWt. (2.4)

Assume that 2αβ ≥ σ2, (2.4) admits a non-negative solution rt that possess a
noncentral chi-square transition density, while the marginal density is a Gamma
density. Another model for interest rates used in Courtadon [52] is drt = β(α−
rt)dt + σrtdWt. Chan, Karolyi, Longstaff and Sanders [48] further extend the
“CIR” model to the “CKLS” model,

drt = β(α − rt) + σrγ
t dWt. (2.5)

For other specifications of interest rate models, see [45; 51; 62; 133]. Aı̈t-Sahalia
[2] finds that the 7-day Euro-dollar deposit rate has a strong nonlinear mean-
reversion only when the rate is beyond the range 4%–17%. To address this issue,
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he proposes the nonlinear drift model

drt = (α0 + α1rt + α2r
2
t + α3/rt)dt+

√

β0 + β1rt + β2r
γ
t dWt, (2.6)

which includes all the aforementioned models as special cases.
A nonparametric one-factor diffusion model has the form

dXt = µ(Xt)dt+ σ(Xt)dWt. (2.7)

Here {Xt} might be stock prices, interest rates, the S&P 500 index, or other
financial quantities; µ(·) and σ(·) are termed drift or instantaneous return func-
tion, and diffusion, volatility, or instantaneous return variance function, respec-
tively. In particular, a parametric counterpart of (2.7) is

dXt = µθ(Xt)dt+ σθ(Xt)dWt, (2.8)

where (µθ, σθ) is a known parametric specification with unknown parameter
θ ∈ R

d. By proper specifications of (µθ, σθ), we can recover all the parametric
models discussed above. Conditions for existence of weak solutions and strong
solutions have been derived in Karlin and Taylor [117]. If the price process is
assumed to follow the diffusion model (2.7), then among the key quantities of
interest are the unknown drift µ(·), diffusion σ(·), and the probabilistic prop-
erties of Xt. For option pricing, it is very important that the price model of
the underlying security be correctly specified parametrically (model validation)
or consistently estimated nonparametrically (nonparametric estimation). Such
model estimation and validation questions are addressed in Sections 5, 6 and 7.

2.2. Jump diffusion processes

There was little doubt that the stock returns based on logarithm are independent
Gaussian random variables until the year of 1963 when Mandelbrot published
his classical paper [132]. Mandelbrot [132] studied the cotton price changes
and found that: (i) The histograms of price changes are too peaked relative to
Gaussian distributions; and (ii) the tails of the distributions of the cotton price
changes are so extraordinarily long that it may be reasonable to assume that
the second moment is infinite. Mandelbrot [132] further argued that a good
alternative model for cotton price changes is the stable distribution with index
1.7, pioneering the approach of modeling financial data using Lévy processes.
See also the discussion in Fama [73].

A Lévy process is a stochastic process with right-continuous sample path and
independent and stationary increments. Special examples of Lévy processes in-
clude Brownian motions, Poisson processes, and stable processes among others.
The latter two processes are jump type processes. Here we focus on diffusion
processes with Poisson jumps. Such jump diffusion processes have been proposed
to capture the heavy-tailedness feature of returns. Other types of Lévy processes
based models have also been proposed. See, for example, Eberlein and Keller
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[66] and Eberlein et al. [67] for hyperbolic Lévy motions and their applications
in fitting German stock returns; Aı̈t-Sahalia and Jacod [7; 8], Eberlein et al.
[65], Eberlein and Raible [68], Nolan [140], Woerner [159] for estimations under
Lévy process settings. Zhao and Wu [174] study nonparametric inferences for
nonstationary process driven by α-stable Lévy processes; see also the references
thereof.

The first attempt to incorporate jumps into diffusion model was made by
Merton [136]. The basic idea is that we may assume there are two types of
randomness driving the stock prices: the first is a Brownian motion generating
continuous sample path and small movements, while the second one is large but
infrequent jumps representing sudden shocks/news. In particular, [136] assumes
that stock prices follow the following jump diffusion model

dSt/St− = (α− λκ)dt+ σdWt + JtdNt, (2.9)

where Nt is a counting Poisson process for jumps with intensity λ, Jt is an
independent jump size if a jump occurs at t, the jumps are assumed to be
iid, and κ = E(Jt). The inclusion of the coefficient λκ in the drift makes St

unpredictable.
By the Doléans-Dade formula, (2.9) admits the following solution

St/S0 = exp[(α− σ2/2 − λκ)t+ σWt]

Nt
∏

i=1

JTi
,

with the convention
∏0

i=1 = 1, where Ti, 1 ≤ i ≤ Nt, denote the times at which
jumps occur. A typical choice of Jt is lognormal random variable so that St/S0

has lognormal distribution. Merton [136] derives an option pricing formula for
call options written on a security whose price process follows (2.9).

Over the past three decades, (2.9) has been extended in various directions by
specifying different structures for the drift, diffusion, and jump components. For
example, assuming that the magnitudes of the jumps are dependent, Oldfield
et al. [141] propose an autoregressive jump diffusion model. Ball and Torous
[22] replace the Poisson jump process by a Bernoulli jump process and argue
that the latter process could yield more satisfactory empirical and theoretical
analysis, including computational advantages and the attainment of the Cramér-
Rao lower bound for maximum likelihood estimation. Ramezani and Zeng [143]
and Kou [122] use an asymmetric double exponential distribution for log(Jt),
and show that the resulting model can capture asymmetric leptokurtic features
and “volatility smile” features frequently observed in financial data. In Bates
[32], the volatility σ in (2.9) is assumed to be a stochastic process of a mean-
reverting type,

dσ2
t = (θ − βσ2

t )dt+ s
√

σ2
t dW

′
t , (2.10)

for another Brownian motion {W ′
t} which could be correlated with {Wt}. Jo-

rion [115] performs a significance test of jump components and concludes that
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many exchange rates display significant jump components; see also Lee and
Mykland [124]. Duffie et al. [64] study option pricing for multi-dimensional
affine jump diffusion models in which the drift vector, volatility matrix and
jump components are assumed to be affine functions of the state variable St.
For other contributions on jump diffusion processes and their applications, see
[14; 21; 31; 33; 110; 111; 129] and references therein.

2.3. Continuous-time stochastic volatility models

Stochastic volatility (SV) model has emerged as a powerful alternative to the
traditional deterministic volatility model. In contrast to deterministic volatility
models that assume the volatility is a deterministic function of the stock prices,
SV models assume that the volatility is also a stochastic process. The paper by
Hull and White [106] is among the first to study SV models. They consider the
model

dSt = µStdt+ σtStdWt and dσ2
t = βσ2

t dt+ νσ2
t dW

′
t , (2.11)

where {Wt} and {W ′
t} are two standard Brownian motions whose increments

have correlation ρ. The volatility {σ2
t } is a geometric Brownian motion. Hull

and White [106] find that the pricing formula for a European call option under
the SV model (2.11) behaves differently from the classical Black-Scholes (B-S)
formula. Under B-S formula, at-the-money options tend to be overpriced while
deep-in-the-money and deep-out-of-the-money options tend to be underpriced.

Since Hull and White [106], various SV models have been proposed. For
example, Scott [146] introduces a mean-reverting Ornstein-Uhlenbeck process
for the volatility dσt = β(α − σt)dt + νdW ′

t , Melino and Turnbull [134] assume
the CKLS type model [cf. (2.5)] dSt = β(α − St)dt + σtS

γ
t dWt for the Canada

Dollar/U.S. Dollar spot exchange rates St with the volatility process log(σt)
being an Ornstein-Uhlenbeck process; see also Wiggins [158], and Andersen and
Lund [16].

In high-frequency setting, instantaneous returns are usually negligible relative
to volatilities and hence can be taken to be zero. Under this setting, a general
nonparametric continuous-time diffusion model with stochastic volatility is

d log(St) = σtdWt, d log(σ2
t ) = r(log(σ2

t ))dt+ s(log(σ2
t ))dW ′

t , (2.12)

where {Wt} and {W ′
t} are two standard Brownian motions with correlation

ρ = Corr(dWt, dW
′
t ). When ρ < 0, this model is often used to model leverage

effect. When bad news releases, equity price St drops and dWt < 0. The negative
correlation then implies that dW ′

t > 0 and hence an increase in volatility σ2
t .

For example, Yu [165] proposes d log(σ2
t ) = α+β log(σ2

t )dt+σvdW
′
t , and Omori

et al. [142] study its discrete version.
The aforementioned SV models are built out of Brownian motions and a

natural extension is to replace Brownian motions by more general processes.
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Barndorff-Nielsen and Shephard [28] introduce another class of SV models based
on Lévy processes by assuming that the logarithm of an asset price follows

d log(St) = (µ+ βσ2
t )dt+ σtdWt and dσ2

t = −λσ2
t dt+ dZλt, (2.13)

where λ > 0 and {Zt} is a general Lévy process with stationary and independent
increments. The Lévy process {Zt} other than Brownian motions has jumps and
therefore the volatility {σ2

t } may exhibit big jumps. On the other hand, due to
the continuity of {Wt}, the asset price {St} is still continuous. Barndorff-Nielsen
and Shephard [28] show that many specific SV models can be built out of (2.13)
by specifying either the marginal process {σt} or the Lévy process {Zt}.

In (2.12), let Xi = log(Si∆) − log(S(i−1)∆) be the aggregated log returns
during time period [(i− 1)∆, i∆]. The unobserved stochastic volatility process
{σ2

t }t≥0 is a stationary Markov process. However, the returns {Xi} do not form a
Markov chain as in the deterministic volatility model (2.7). Instead, when {Wt}
and {W ′

t} are independent, they form a hidden Markov model; see Section 4.4.
Finally, we point out that it is a common practice to use a discrete version of
(2.12) to facilitate computational and theoretical derivations; see Section 3.2.

3. Discrete-time models

So far we have discussed continuous-time models. Another powerful tool in
studying dynamics of variables in financial markets is time series analysis. In
practice, all continuous-time models are observed at discrete times, therefore we
may model these discretely observed measurements using time series models. In
fact, despite the fact that (2.7) is written in a continuous-time form, one often
uses the following Euler discretization scheme

Xt+∆ −Xt = µ(Xt)∆ + σ(Xt)(Wt+∆ −Wt), t = 0,∆, 2∆, . . . ,

as an approximation to facilitate computational and theoretical derivation. The
accuracy of such Euler discretization is studied in Jacod and Protter [107]. We
devote this section to reviewing discrete time series models.

3.1. Nonlinear autoregressive and stochastic regression models

A discrete version of the continuous-time model (2.7) is the nonparametric au-
toregressive conditional heteroscedastic (NARCH) model

Xi = µ(Xi−1) + σ(Xi−1)εi, (3.1)

where εi, i ∈ Z, are iid random variables. If σ(·) is a constant function, then
(3.1) is called a nonparametric autoregressive (NAR) model. Special cases of
(3.1) include linear AR model: Xi = aXi−1 + εi, threshold AR [Tong [154]]
model: Xi = amax(Xi, 0)+ bmin(Xi, 0)+ εi, and exponential AR [Haggan and
Ozaki [93]] model: Xi = [a + b exp(−cXi−1)]Xi−1 + εi among others. The lat-
ter three models have constant conditional variances. In an attempt to model
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United Kingdom inflation during the time period 1958–1977, Engle [69] proposes
the class of autoregressive conditional heteroscedastic (ARCH) models. The es-
sential idea of ARCH models is that the conditional variances are non-constant
but rather change as time evolves. In particular, ARCH model of order one has
the form

Xi =
√

α2
0 + α2

1X
2
i−1εi, α0 > 0, 0 < α1 < 1. (3.2)

Model (3.1) can generate heavy-tailed distributions. To see this, consider
the simple model Xi = σ(Xi−1)εi, and assume that ε0 has standard normal
distribution. Then, by Jensen’s inequality,

kurtosis(Xi) =
E(X4

i )

[E(X2
i )]2

=
E[σ4(Xi−1)ε

4
i ]

[E(σ2(Xi−1)ε2i )]
2

= 3
E[σ4(Xi−1)]

[E(σ2(Xi−1))2]
≥ 3.

For example, consider the ARCH(1) model in (3.2). It is easy to show that
E(X4

i )/[E(X2
i )]2 = 3(1−α2

1)/(1−3α2
1) > 3 if 3α2

1 < 1 and E(X4
i )/[E(X2

i )]2 = ∞
if 3α2

1 ≥ 1. The heavy-tailedness feature implied by model (3.1) makes it a suc-
cessful candidate in many financial applications where it is frequently observed
that returns exhibit heavy tails; see [155].

A more general version of (3.1) is the following stochastic regression model
of order one

Xi = µ(Yi) + σ(Yi)εi. (3.3)

Here Yi and Xi are the covariate variable and response, respectively, and the
error εi is independent of Yj , j ≤ i. In the special case of Yi = Xi−1, (3.3) reduces
to (3.1). Depending on the context, we may model (Yi)i∈N as a sequence of either
iid random variables or time series. For example, if Yi is the measurement for
i-th subject, then we may assume that (Yi)i∈N are iid. On the other hand, if Yi

is the measurement for a subject at time i, then it is natural to assume that
(Yi)i∈N form a time series. In the latter case, a possible model for Yi might be
the NARCH model

Yi = µ̃(Yi−1) + σ̃(Yi−1)ηi, (3.4)

where ηi, i ∈ Z are iid random variables. To ensure that εi is independent of
Yj , j ≤ i, we assume that εi is independent of ηj , j ≤ i. See Zhao and Wu
[172; 173] and references therein.

Due to the so called “curse of dimensionality”, it is practically infeasible to
extend the nonparametric model (3.1) to orders beyond two. Other extensions
of model (3.1) include ARCH model with order p, generalized ARCH (GARCH)
model in Bollerslev[40] and exponential GARCH (EGARCH) model in Nelson
[139] to new a few. For extensive expositions of applications of ARCH, GARCH
models and their variants in financial econometrics, see the survey papers [34;
41; 42; 57; 148] and the books by Gourieroux [92] and Tsay [155] (Chapter 3).
Semi-parametric approach is studied in Gao [87].



Z. Zhao/Nonparametric methods in financial econometrics 10

3.2. Discrete-time stochastic volatility models

An Euler discretization of (2.12) is the following discrete-time stochastic volatil-
ity model

Xi = σiηi and σ2
i = r(σ2

i−1) + s(σ2
i−1)εi, (3.5)

where {εi}i∈Z and {ηi}i∈Z are two iid sequences. To guarantee positivity of the
volatility σ2

i , it is common to model the logarithm of volatility instead. For
example, Taylor [152] proposes an AR(1) model for log(σ2

i ):

Xi = σiηi and log(σ2
i ) = λ log(σ2

i−1) + εi. (3.6)

Note that a constant term in the right hand side of (3.6) is unnecessary since such
a term can always be absorbed into ηi in (3.5). In (3.6), the innovations εi, i ∈ Z,
are assumed to be iid normals with mean zero and variance σ2

ε and independent
of ηi in (3.5). The variance σ2

ε of εi measures the uncertainty of future volatility.
In the special of σ2

ε = 0 and λ = 1, the volatility is a deterministic constant.
Thanks to the linear autoregressive relationship, (3.6) is often called ARSV(1)
model or lognormal stochastic autoregressive volatility (SARV) model. Due to
its simple structure and mathematical tractability, (3.6) has been extensively
studied in the literature; see Broto and Ruiz [46], Shephard [148], Taylor [153],
and references thereof. Ball and Torous [22] incorporate the discrete version of
Chan et al. [48] and propose the following SV model for interest rates:

rt = (α+ β)rt−1 + σt−1r
γ
t−1εt and log σt = ρσt−1 + ν(1 − ρ) + ηt. (3.7)

Wiggins [158] also uses a similar model under continuous-time setting.
In (3.6), a common choice for the density of εi is the standard normal density

φ. Then the conditional distribution of Xi given σi is Gaussian. Therefore,
the marginal density, denoted by fX , of Xi is a mixture of normal densities
σ−1

i φ(x/σi) with respect to the density fσ of σi: fX(x) =
∫

σ−1φ(x/σ)fσ(σ)dσ.
As in the case of ARCH model in Section 3.1, {Xi} from (3.6) exhibit heavier
tails than that of the normal errors {εi}. Other heavy-tailed distributions of the
errors {εi} are studied in, for example, Harvey et al. [100], Bardnorff-Nielsen
[27], Gallant et al. [85], and Liesenfeld and Jung [128].

Recently, model (3.6) with (ηi, εi+1), i ∈ Z, forming iid copies of bivariate
normal vector (η, ε), Cov(η, ε) < 0, have been introduced to model leverage
effect; see Yu [165] and Omori et al. [142]. For applications of SV models and
their estimations see the survey papers by Broto and Ruiz [46], Ghysels et al.
[91], and Shephard [148].

4. Dependence structure of discrete samples

Let {Xt}t∈T be a generic process with time index T . For example, {Xt}t∈T

might be the continuous-time models in Section 2 with T = [0,∞) or the
discrete-time models in Section 3 with T = {0, 1, 2, . . . .}. Regardless of whether
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T is continuous-time or discrete-time, in practice, the process {Xt}t∈T is only
observed at discrete time points which could be possibly random. Moreover,
the observations could be contaminated with errors. One of the main objectives
in financial modeling is to study the dependence structure behind the data-
generating mechanism based on discrete observations. In this section we review
some main dependence features for discrete observations from financial models.

4.1. Markov chains

Markov chains are widely used in virtually every scientific subjects, including
biology, engineering, queueing theory, physics among others. In financial econo-
metrics, due to the property of independent and stationary increments of Brow-
nian motions, it would be reasonable to expect that the Markovian property is
in the cards. In fact, we deserve even more: under some growth conditions on the
drift µ and diffusion σ, {Xt}t≥0 defined by the stochastic differentiation equa-
tion (2.7) is strong Markovian [for a definition, see pp. 149–152 in Karlin and
Taylor [117]]. Therefore, discrete observations {Xi ≡ Xi∆}i≥0 form a Markov
chain. Here ∆ > 0 is a small but fixed number representing sampling frequency.
The process {Xi}i≥0 in (3.1) is also Markovian.

The Markovian property plays an important role in statistical estimation
and inference. Let {Xi}i∈Z be a stationary Markov chain. Denote by π(x; θ)
and p(x|x′; θ) the marginal density function of X0 and the transition density
function of Xi+1 at x given Xi = x′, respectively. Here θ is parameter. Given
observations Xi, 0 ≤ i ≤ n, the log likelihood function is given by

ℓ(X0, . . . , Xn; θ) =

n
∑

i=1

log[p(Xi|Xi−1; θ)] + log[π(X0; θ)]

≈
n

∑

i=1

log[p(Xi|Xi−1; θ)]. (4.1)

The latter is often termed conditional likelihood by ignoring the marginal den-
sity. Additionally, by the Markovian property, it suffices to study transition
density of lag one. In fact, let pk(x|x′) be the k-step transition density. Then
pk(x|x′) =

∫

p1(x
′′|x′)pk−1(x|x′′)dx′′. Therefore, pk can be obtained recursively

from the one-step transition density p1.

4.2. Random samples and high-frequency financial data

In contrast to low-frequency financial data that are sampled regularly on a daily,
weekly or monthly basis, high-frequency financial data are usually sampled at
irregular random times. Let 0 = τ0 < τ1 < · · · < τNT

≤ T be NT + 1 discrete
observations up to time T . Let ∆i = τi − τi−1 be the sampling intervals. In
low-frequency setting, ∆i = ∆ is assumed to be constant. In high-frequency
framework, ∆i, i = 1, 2, . . . , are assumed to be random variables. In fact, most
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real financial market transactions arrive irregularly and randomly. Among many
examples are credit card purchases and stock buy/sale transactions.

To study the transaction times, Engle and Russell [70] propose a class of
autoregressive conditional duration model given by

∆i = ψiεi, ψi = E(∆i|∆i−1,∆i−2, . . . ,∆1), (4.2)

where εi, i = 1, 2, . . . , are iid random variables independent of ψi. Depending on
different specifications, (4.2) includes many examples, including, for instances,
m-memory model ψi = γ +

∑m
j=0 αj∆i−j and ACD(m, q) model ψi = γ +

∑m
j=0 αj∆i−j+

∑q
j=0 βjψi−j . When εi follows standard exponential distribution,

the latter model is termed exponential ACD (EACD) model. See [70] for more
details. Zhang et al. [169] further extend the linear ACD model to threshold ACD
(TACD) model by allowing the coefficients in the ACD model to vary according
to the behavior of a threshold variable. Zhang et al. [169] use generalized Gamma
distribution for εi, resulting in GACD model, and find strong evidence that
stock dynamics behavior differently during fast transaction periods and slow
transaction periods.

In addition to the randomness introduced by the underlying process, the
randomness from the random sampling also plays an important role in statistical
inferences. In the presence of random sampling, one needs to consider likelihoods
for bivariate observations (Xi,∆i). Aı̈t-Sahalia and Mykland [9] argue that the
loss from not using sampling intervals is even greater than the loss due to the
discreteness of samples. Duffie and Glynn [63] study random samples from a
general Markov process.

4.3. Error-in samples

In practice, we may not observe Xt directly but a contaminated version X∗
t

of it. For example, assume that Xi is the actual stock returns based on loga-
rithm during the i-th time period, and X∗

i is the observed returns with errors.
This phenomenon is closely related to the market microstructure and becomes
more pronounced under high-frequency setting. For example, for a continuous
semimartingale, it is well-known that the realized volatility computed using
discrete observations converges in probability to the quadratic variation of the
semimartingale as the sampling frequency increases. This, however, contradicts
with empirical observations that realized volatility using high-frequency data
generally does not stabilize; see Brown [47]. One possible explanation for this
phenomenon is that the underlying process is contaminated with market mi-
crostructure errors.

There are two popular market microstructure error models in the literature:
additive errors and rounding errors. The additive errors model assumes that
X∗

i = Xi+ξi with error ξi. The errors {ξi} are assumed to be iid and independent
of {Xi}. See, for example, Aı̈t-Sahalia et al.[10], Hansen and Lunde [96], Zhang
[167], Zhang et al. [168], and Zhou [175] to name a few. For rounding errors
model, X∗

i is taken to be the nearest multiple of a smallest unit α (say, 1 cent
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in stock prices). That is, X∗
i = α[Xi/α], where [·] denotes the integer rounding

operation. See Delattre and Jacod [59] and Zeng [166]. Li and Mykland [126]
study a more general error model via Markov kernel:

P(X∗
ti
≤ x|{Xt}t≥0) = P(X∗

ti
≤ x|Xti

) = Q(Xti
, x). (4.3)

That is, given {Xt}t≥0, the contaminated version X∗
i only depends on Xti

.
Observations with contaminated errors make statistical inferences more diffi-

cult in a few aspects. Let us consider the additive errors Y ∗
i = Xi +ξi. First, the

contaminated process {X∗
i }i≥0 may not form a Markov chain even if the origi-

nal series do. Instead, it becomes a hidden Markov chain with the hidden chain
{Xi}i≥0; see Section 4.4. For likelihood based methods, we need to integrate
out the unobservable process {Xi}i≥0. Second, working with contaminated ob-
servations is essentially a deconvolution problem: extracting information about
Xi based on X∗

i . The latter problem is usually quite difficult. For example,
nonparametric kernel density estimators for density function of Xi have very
slow rate of convergence; see Stefanski and Carroll [151], Liu and Taylor [130],
and Fan [74]. Third, volatility computed from {X∗

i }i≥0 has two components:
volatility from the true process {Xi}i≥0 and the errors {ξi}i≥0. The latter term
represents the bias and needs to be taken care of; see Aı̈t-Sahalia et al. [10],
Zhang [167], and Zhang et al. [168].

4.4. Hidden Markov models

The Markov chain assumption works well for deterministic volatility models,
that is, the volatility σ is a deterministic function of the state variable Xt. Ex-
amples include the continuous-time model (2.7) and the nonlinear autoregressive
model (3.1). In many applications, however, the Markov chain assumption is too
restrictive. For example, in (2.12), let Xi = log(Si∆) − log(S(i−1)∆) be the ag-
gregated log returns during time period [(i− 1)∆, i∆]. Because the volatility σ2

t

itself is an unobserved stochastic process with serial dependence, {Xi}i≥0 does
not form a Markov chain. Similarly, {Xi}i≥0 from the discrete-time stochastic
volatility model (3.5) is not Markovian. For stochastic volatility models, hidden
Markov models (HMM) offer a good alternative; see Genon et al. [90] and Zhao
[170]. Following Bickel and Ritov [37], Leroux [125] and Zhao [170], we give a
definition of HMM.

Definition 1. A stochastic process {Xi}i∈Z with state space (R,B(R)) is a
hidden Markov model with respect to the hidden chain {Yi}i∈Z with state space
(Y,B(Y)) if

(i) {Yi}i∈Z is a strictly stationary Markov chain.
(ii) For all i, given {Yj}j≤i, {Xj}j≤i are conditionally independent, and the

conditional distribution of Xi depends only on Yi.
(iii) The conditional distribution of Xi given Yi = y does not depend on i.

If {Xi}i∈Z itself is a stationary Markov chain, then it is also a HMM with re-
spect to the observable Markov chain {Yi = Xi−1}i∈Z. Therefore, HMM includes
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Markov chain as a special case. Zhao [170] has shown that, many continuous-time
and discrete-time models used in financial econometrics are special examples of
HMM. For example,

• In (2.7), {Xi} is a HMM with respect to the observable chain {Yi = Xi−1}.
• In (2.12), the aggregated log returns {Xi = log(Si∆) − log(S(i−1)∆)} is a

HMM with respect to the unobservable chain {Y (1)
i = (σ2

t+(i−1)∆)t∈[0,∆]}
or {Y (2)

i = (σ2
(i−1)∆,

∫ i∆

(i−1)∆ σ
2
t dt)};

• In (3.5), {Xi} is a HMM with respect to the unobservable Markov chain
{Yi = σi}.

• In (3.3) and (3.4), {Xi} is a HMM with respect to the observable chain
{Yi}.

HMM can also be used to describe observations with contaminated errors in
Section 4.3. For example, consider the additive error model X∗

i = Xi +ξi, where
the errors {ξi}i≥0 are assumed to be iid and independent of {Xi}i≥0. Clearly, if
{Xi}i≥0 is a Markov chain, then {X∗

i }i≥0 is a HMM with respect to the unob-
servable chain {Xi}i≥0. Examples satisfying this condition include models (2.7),
(3.1), and the hyperbolic Lévy motion model in [67]. On the other hand, the
HMM structure may still hold even if {Xi}i≥0 does not form a Markov chain.
For example, consider the stochastic volatility model (3.5), then {Xi}i≥0 is not
a Markov chain, but {X∗

i }i≥0 is still a HMM with respect to the unobservable
chain {Yi = σi}i≥0 provided that ηi and εi in (3.5) and the errors ξi are in-
dependent. A similar statement holds true for the continuous-time stochastic
volatility model in Section 2.3. Genon et al. [90] and Zhao [170] also show that
certain dependence structure (for example, mixing properties) of the hidden
chain {Yi} carries over to {(Xi, Yi)}, and hence many tools for Markov chain
are also applicable to HMM.

5. Model estimation: parametric methods

In this section we review some popular parametric estimation methods in fi-
nancial econometrics. When we have a sufficient amount of prior information
about the underlying model, for example, the model is from a parametric family
{Mθ, θ ∈ Θ}, where Mθ is a known parametric form with unknown parameter
θ, then the main focus becomes the estimation of the parameter θ. Parametric
methods address estimation problems in such contexts.

5.1. Likelihood based method

Given observations {Xi}0≤i≤n, if we know the parametric form of the model that
generates {Xi}0≤i≤n, then maximum likelihood is the natural method. Suppose
that {Xi}i≥0 form a stationary Markov chain with invariant density π(x; θ) and
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transition density p(x|x′; θ). Then the log likelihood function is

ℓ(X0, . . . , Xn; θ) =

n
∑

i=1

log[p(Xi|Xi−1; θ)] + log[π(X0; θ)]

≈
n

∑

i=1

log[p(Xi|Xi−1; θ)]. (5.1)

The maximum likelihood estimate (MLE) is θ̂ = argmaxθ ℓ(X0, . . . , Xn; θ). Con-
sider, for example, model (2.1). Let Xi = log(Si∆)− log(S(i−1)∆) be the aggre-
gated returns during [(i − 1)∆, i∆]. Then {Xi}1≤i≤n are iid normal random
variables with mean (µ − σ2/2)∆ and variance σ2∆. Therefore, we have ex-
plicit form in (5.1). For Vasicek model (2.3), {Xi = ri∆}i≥0 have Gaussian
transition density with mean (1 − ρ)α + ρXi−1 and variance σ2(1 − ρ2)/(2β),
where ρ = exp(−β∆). For the CIR model (2.4), the transition density is a
noncentral chi-square distribution with parameters fully determined by α, β
and σ. It is also easy to write down the transition density for many paramet-
ric time series models. For example, in (3.1), let εi be iid standard normals.
Denote by φ(x) the standard normal density. Then p(Xi|Xi−1; θ) = φ{[Xi −
µθ(Xi−1)]/σθ(Xi−1)}/σθ(Xi−1). For many continuous-time models, however,
one practical issue arises. Except for models (2.1), (2.3) and (2.4), transition
densities for many other parametric models do not admit closed forms. One
way out is to use the following Euler approximation scheme for (2.7):

Xt+∆ = Xt + µ(Xt)∆ + σ(Xt)∆
1/2εt, t = 0,∆, 2∆, . . . , (5.2)

where {εi∆}i≥0 are iid standard normals. In fact, most continuous-time models
used in finance are estimated based on the approximation (5.2). The approxi-
mation works well in high-frequency setting. An alternative approach is the ap-
proximation method in Aı̈t-Sahalia [3; 4] where the likelihood is approximated
by a sequence of likelihoods based on Hermite polynomials. See the survey paper
by Aı̈t-Sahalia [5] on likelihood methods for (2.8) and its multivariate version.

For hidden Markov models in Section 4.4, since the hidden chain {Yi}0≤i≤n is
not observable, we need to integrate out {Yi}0≤i≤n in order to obtain the likeli-
hood function for the observations {Xi}0≤i≤n. To be precise, denote by f(x|y; θ)
the conditional density of Xi at x given Yi = y, by Q(·|y; θ) the transition prob-
ability measure of Yi given Yi−1 = y, and by Q(·; θ) the invariant probability
measure of Y0. Then the likelihood function for observations {Xi}0≤i≤n is

L(X0, . . . , Xn; θ) =

∫ n
∏

i=0

f(Xi|yi; θ)Q(dy0; θ)
n

∏

i=1

Q(dyi|yi−1; θ). (5.3)

Due to the high dimensional integral, direct computation and maximization of
L(X0, . . . , Xn; θ) is computationally infeasible. This makes estimation of stochas-
tic volatility models quite difficult; see Section 5.4.



Z. Zhao/Nonparametric methods in financial econometrics 16

5.2. Generalized method of moments

The generalized method of moments [GMM, Hansen [95]] is a popular parameter
estimation method in finance. Assume that we have a stationary process {Xt}t≥0

whose data-generating mechanism involves parameter θ. The essential idea of
GMM works as follows:

(a) Derive a set of theoretical moments conditions. That is, for properly chosen
function gθ, find constant Cg,θ such that

E[gθ(X0)] = Cg,θ, or E[g̃θ(X0)] = 0 with g̃θ = gθ − Cg,θ. (5.4)

(b) Minimize certain measure of the discrepancies between the empirical and
the theoretical moments. Namely, for a chosen criterion norm δ,

θ̂ = argmin
θ

δ
[ 1

n

n
∑

i=1

g̃θ(Xi)
]

= argmin
θ

δ
[

n
∑

i=1

g̃θ(Xi)
]

, (5.5)

For example, if δ(u) = u2, then we have least-squares type estimate. In (5.5),
one often uses weighted discrepancies for a set of functions g̃θ. For large sample
properties of GMM, see Hansen [95].

The key step in GMM is step (a). We now introduce the idea in Hansen
and Scheinkman [97] to derive moments conditions for a stationary Markov
process {Xt}t≥0. Let {Jt}t≥0 be a family of operators defined by Jtg(x) =
E[g(Xt)|X0 = x]. Notice that J0g(x) = g(x). The operators {Jt}t≥0 uniquely
determine the transition density of Xt given X0 by taking g(x) = exp(iux), u ∈
R. Introduce the infinitesimal generator [see Karlin and Taylor [117] and Hansen
and Scheinkman [97]] of Xt, L, given by

Lg(x) =
∂Jtg(x)

∂t

∣

∣

∣

t=0
= lim

t↓0

Jtg(x) − g(x)

t
. (5.6)

By stationarity, E[Jtg(X0)] = E[g(X0)]. Therefore, assuming that we can ex-
change the order of expectation and differentiation, (6.6) implies that

E[Lg(X0)] = 0. (5.7)

The expression (5.7) holds for all functions g satisfying some regularity condi-
tions. Thus, we can, in principle, produce infinitely many moments conditions.

By Itô’s formula, the infinitesimal generator of {Xt}t≥0 from the stochastic
differentiation equation (2.7) is given by

Lg(x) =
∂g(x)

∂x
µ(x) +

∂2g(x)

∂x2

σ2(x)

2
. (5.8)

So, for a given parametrization (µ, σ) = (µθ, σθ), we can use (5.8) and GMM to
estimate θ; see Hansen and Scheinkman [97]. Duffie and Glynn [63] apply GMM
to estimate parameters based on random samples from a Markov process.
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Condition (5.7) only uses information from marginal stationarity. A more
efficient approach would incorporate transition or conditional information into
moments conditions. Since most transition densities except a few rare cases do
not have explicit form, any approach relying on transition information needs
some approximation technique. For example, for the CKLS model (2.5), we
can apply the Euler approximation scheme to obtain approximated moments
conditions:

E(rt) = α, E(ǫt+∆|rt) ≈ 0, E[ǫ2t+∆|rt] ≈ σ2r2γ
t ∆,

where ǫt+∆ = rt+∆ − rt − β(α− rt)∆.
In (5.4), the assumption that Cg,θ needs to be of a known form limits sig-

nificantly the applicability of the GMM estimator. To overcome this difficulty,
Duffie and Singleton [61] introduce a simulated moments estimation method
which estimates the parameters of interest by matching the sample moments of
the actual and simulated process.

5.3. Other parameter estimation methods for diffusion models

We briefly mention other parameter estimation methods for model (2.8). Den-
sity based parameter estimation is to minimize discrepancy between the non-
parametric density estimate and the theoretical parametric density or its para-
metric estimate. Consider, for example, model (2.7). Under parametric set-
ting (µ, σ) = (µθ, σθ), the theoretical stationary density of {Xt} is given by

fθ = fµθ,σθ
in (6.1). Let f̂ be the nonparametric kernel density estimate in

(6.2). Then θ can be estimated by

θ̂ = argmin
θ

n
∑

i=1

[f̂(Xi) − fθ(Xi)]
2. (5.9)

Aı̈t-Sahalia [2] establishes
√
n-consistency for θ̂.

Other contributions include martingale estimation function method in Bibby
and Sørensen [35] and Kessler and Sørensen [118] among others.

5.4. Parameter estimations in stochastic volatility models

As argued in Section 5.1, it is computationally infeasible to estimate parameters
in stochastic volatility models using direct maximum likelihood methods. Here
we briefly review some alternatives. One popular approach is various moment
based methods in, for example, Andersen and Lund [16], Andersen and Sørensen
[17], Gallant and Tauchen [86], Melino and Turnbull [134], Taylor [152], and
Wiggins [158]. The basic idea is to express the parameters of interest in terms of
population (conditional) moments and replace the latter by sample (conditional)
moments, or employ the generalized methods of moments (GMM) in Section
5.2. Andersen and Sørensen [17] study the finite sample performance of GMM
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estimation of the stochastic volatility model (3.6). Andersen et al. [15] examine
small-sample properties of the efficient method of moments proposed by Bansal
et al. [26] and Gallant and Tauchen [86]. Other methods include quasi-maximum
likelihood in Ruiz [144] and Harvey et al. [100], Bayesian Markov-chain Monte
Carlo method in Chib et al. [50], Jacquier et al. [108; 109] and Kim et al. [119],
and the method in Genon et al. [89]. See the survey paper by Broto and Ruiz
[46].

6. Model estimation: nonparametric methods

6.1. Nonparametric density estimates

One important goal of financial econometrics is to study the distribution of
returns from financial markets. Such distribution can provide rich information
about the underlying process driving the financial markets. For example, Man-
delbrot [132] finds that cotton price changes have heavy tails relative to normal
distributions. This motivated him to use stable distribution as a possible alter-
native over the traditional normal distribution. For the past three decades, the
leptokurtic property and volatility smile observed in financial data have been the
driven force for searching for more appropriate models than the Black-Scholes
model to account for empirical characteristics of financial data.

To appreciate the idea more, consider model (2.7). Let f be the marginal
density function of the stationary solution Xt on D = (Dl, Du) with −∞ ≤
Dl < Du ≤ +∞. Under some regularity conditions, f is given by

f(x) =
c(x0)

σ2(x)
exp

{

∫ x

x0

2µ(y)

σ2(y)
dy

}

, (6.1)

where the choice of the lower bound point x0 ∈ D is irrelevant, and c(x0) is a
normalizing constant to ensure that f is a probability density on D; see Aı̈t-
Sahalia [2]. Therefore, the marginal density f has an intrinsic connection to
the drift µ and the diffusion σ, which can be used to do model validation or
model parameter estimation. For example, Aı̈t-Sahalia [2] and Zhao [170] study
model validation problem H0 : (µ, σ) = (µθ, σθ) for model (2.7) by comparing
nonparametric density estimate and parametric density estimate under H0; see
Section 7.6. Aı̈t-Sahalia [1] constructs nonparametric estimate of the diffusion
function σ through nonparametric density estimate.

Let {Xt}t∈T be a generic stationary process. For example, it could be the
continuous-time process (2.7), discrete-time process including aggregated re-
turns in (2.12), nonlinear time series in Section 3.1, among others. Given discrete
observations {Xi}1≤i≤n, the classical nonparametric kernel density estimate for
the density f of X1 is given by

f̂(x) =
1

nbn

n
∑

i=1

Kbn
(Xi − x), where Kbn

(u) = K(u/bn). (6.2)
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See Silverman [147]. Wu and Mielniczuk [162] study the asymptotic behavior of

f̂ for linear process. Assuming some mixing conditions, it is possible to establish
asymptotic normality for f̂ with optimal rate O(n−2/5).

Recently, Schick and Wefelmeyer [145] and Kim and Wu [120] propose convolution-
type efficient density estimates that achieve the parametric rate O(n−1/2). To
appreciate the idea, consider the model

Xi = µθ(Xi−1) + εi, (6.3)

where (εi)i∈Z are iid and E(ε0) = 0, and µθ is a known parametric form with
unknown parameter θ. The popular AR, TAR, and EAR models are of form

(6.3). The ARCH model Xi =
√

a2 + b2X2
i−1εi is also of form (6.3) after trans-

formation: log(X2
i ) = log(a2 + b2X2

i−1) + log(ε2i ). Denote by fµθ(X) and fε the
density functions of µθ(X0) and ε0, respectively. By convolution,

f(x) =

∫

fµθ(X)(y)fε(x− y)dy. (6.4)

Then the convolution-type estimate procedure works as follows:

(a) Obtain a
√
n-consistent estimate θ̂ of θ by least-squares method or M-

estimation method.
(b) Compute µθ̂(Xi−1) and ε̂i = Xi − µθ̂(Xi−1), 1 ≤ i ≤ n.

(c) Obtain nonparametric kernel density estimates f̂µθ(X) and f̂ε of fµθ(X)

and fε, respectively, by the estimated values µθ̂(Xi−1) and ε̂i via (6.2).

(d) In (6.4), replace fµθ(X) and fε by their estimates, and obtain f̂ .

Kim and Wu [120] establish a
√
n central limit theorem for the resulting convolution-

type estimate f̂ . Schick and Wefelmeyer [145] obtain a similar result for lin-
ear process. Zhao [171] studies efficient density estimation for conditional het-
eroscedastic models.

Since the distributional property of a stationary Markov process can be char-
acterized by the marginal and transition density functions, let us now consider
the transition density of a Markov process {Xt}t∈T based on discrete observa-
tions {Xi}1≤i≤n. By the Markovian property, it suffices to consider the transition
density at time lag one, that is, the conditional density function π(x|x′) of Xi at
x given thatXi−1 = x′. Denote by π(x, x′) and f(x) the joint density of (X0, X1)
and the marginal density of X0, respectively. Since π(x|x′) = π(x, x′)/f(x), a
nonparametric estimate of π(x|x′) can be constructed by plugging in the non-
parametric estimates of the latter two densities.

6.2. Nonparametric function estimation

In contrast to parametric methods, nonparametric methods on function esti-
mation do not assume any parametric form of the function other than certain
smoothness assumption. Suppose, for instance, that we want to estimate the
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mean regression function E(Xi|Yi = y). Let f(y) and f(x, y) be the densities of
Y1 and (X1, Y1), respectively. Then we have

E(Xi|Yi = y) =
1

f(y)

∫

xf(x, y)dx ≈
∑n

i=1XiKbn
(x− Yi)

∑n
i=1Kbn

(x − Yi)
. (6.5)

Expression (6.5) can be used to construct nonparametric estimates for drift
and volatility functions in financial models. Consider model (3.3), assume that
E(ε0) = 0 and E(ε20) = 1. Then µ(y) = E(Xi|Xi = y) and σ2(y) = E{[Xi −
µ(Yi)]

2|Yi = y}. The idea is as follows:

(a) Apply (6.5) to get a nonparametric estimate µ̂ of µ.
(b) Compute residuals ε̂i = Xi − µ̂(Yi).
(c) Apply (6.5) to (ε̂2i , Yi) to nonparametrically estimate σ2.

See Fan and Yao [76] and Zhao and Wu [174] for related works. The latter papers
also show that the volatility function can be estimated as well as if we know the
drift function. The intuition is that the bias term resulting from estimating the
drift is of order O(b2n) and is squared to O(b4n) when estimating the volatility.

To apply the above idea to the estimation of the continuous-times model
(2.7), we follow Stanton [149] and introduce the infinitesimal generator of Xt,
L, given by

Lg(x, t) = lim
∆↓0

E[g(Xt+∆, t+ ∆)|Xt = x] − g(x, t)

∆

=
∂g(x, t)

∂t
+
∂g(x, t)

∂x
µ(x) +

∂2g(x, t)

∂x2

σ2(x)

2
(6.6)

in view of Itô’s formula. As a special case, if the function f does not depend on
t, then (6.6) reduces to (5.8). Apply a Taylor’s expansion to (6.6),

E[g(Xt+∆, t+ ∆)|Xt] = g(Xt, t) + Lg(Xt, t)∆ +
1

2
L2g(Xt, t)∆

2 + · · · . (6.7)

Thus, a first order approximation of Lg(Xt, t) is

Lg(Xt, t) =
1

∆
E{[g(Xt+∆, t+ ∆) − g(Xt, t)]|Xt} +O(∆). (6.8)

Taking g(x, t) = x, then Lg(Xt, t) = µ(Xt) and

µ(x) =
1

∆
E[(Xt+∆ −Xt)|Xt = x] +O(∆). (6.9)

Similarly, taking g(x, t) = (x−Xt)
2, we have

σ2(x) =
1

∆
E[(Xt+∆ −Xt)

2|Xt = x] +O(∆). (6.10)

Therefore, (6.9) and (6.10) can be used to construct nonparametric estimates
of µ and σ in conjunction with (6.5).
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For the simplified model dXt = σ(Xt)dWt, Arfi [18] uses (6.10) to estimate
σ2 via kernel smoothing. Other contributions on nonparametric estimation of
(2.7) include Bandi [23], Bandi and Phillips [24], Florens-Zmirou [82], Foster
and Nelson [83], and Jiang and Knight [112]. Higher-order approximations are
considered in Stanton [149] to reduce biases. Fan and Zhang [78], however, argue
that the bias reduction is achieved at the cost of exponential increase of the
variance. Therefore, they suggest that one should avoid using too higher-order
approximations in practice.

For the continuous-times model (2.7), an alternative approach is based on
the Euler approximation scheme (5.2). Then we can estimate µ and σ through
the expressions:

E[∆−1(Xt+∆ −Xt)|Xt = x] = µ(x);

E[∆−1(Xt+∆ −Xt − µ(Xt)∆)2|Xt = x] = σ2(x).

For (5.2) to approximate (2.7) with a reasonable accuracy, ∆ needs to be very
small. Therefore, (5.2) is often useful in dealing with high-frequency data over
a long time span: ∆ = ∆n → 0 and n∆n → ∞.

The estimate (6.5) is basically a local constant fit based on weighted least-
squares. There are two natural variants. The first one is the local linear method.
Let µ(y) = E(Xi|Yi = y). The local linear estimate of (µ(y), µ′(y)) is

(µ̂(y), µ̂′(y)) = argmin
(a,b)

n
∑

i=1

[Xi − a− b(Yi − y)]2Kbn
(y − Yi). (6.11)

Local linear estimates can reduce boundary effect. For model (3.3), Fan and Yao
[76] use (6.11) to estimate µ first, and then apply (6.11) to the squared residuals
[Xi − µ̂(Yi)]

2 to estimate σ2.
Another variant of (6.5) is the least-absolute-deviation (LAD) estimate. In

model (3.3), assume that median(ε0) = 0 and median|ε0| = 1. Then µ(y) =
median(Xi|Yi = y) and σ(y) = median[|Xi − µ(Yi)||Yi = y]. Thus, the LAD
estimates of µ and σ are

µ̂(y) = argmin
µ

n
∑

i=1

∣

∣

∣
Xi − µ

∣

∣

∣
Kbn

(y − Yi), (6.12)

σ̂(y) = argmin
σ

n
∑

i=1

∣

∣

∣
|Xi − µ̂(Yi)| − σ

∣

∣

∣
Kbn

(y − Yi). (6.13)

Basically, LAD estimate is a local median type estimate and hence it is ro-
bust against outliers. Under a very general dependence structure, Zhao and Wu
[172] study the asymptotic properties of the LAD estimates for (3.3). The re-
sults obtained are applicable to a variety of time series models, including linear
processes and nonlinear models (3.1) and (3.3).
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6.3. Semi-parametric estimation via nonparametric density

Semi-parametric models are between parametric and nonparametric ones by im-
posing parametric form on part of the model while keeping other parts nonpara-
metric. They are particularly useful when we have prior knowledge about part
of the data generating process while staying flexible on the remaining parts. For
example, consider model (2.7). We have two semi-parametrizations: (i) µ = µθ

for a known parametric form µθ with unknown parameter θ; and (ii) σ = σθ for
a known parametric form σθ with unknown parameter θ. The two frameworks
have different ranges of applicability. Many empirical studies suggest fitting a
simple form for µ. For example, [1; 48; 53; 156] use linear form for µ, and [2]
uses nonlinear drift form (2.6) to fit interest rates. For high-frequency data (say,
daily, hourly, or 5-minute), it is even reasonable to assume µ to be constant or
zero since we are more interested in the volatility instead. Volatility is very im-
portant in options pricing. Options written on volatile assets are more expensive.
In such circumstances, it is desirable to treat the volatility nonparametrically to
avoid mis-specification. On the other hand, in some cases it may be reasonable
to assume a parametric form for the volatility function while keeping the drift
nonparametric; see Kristensen [123] and Banon [25]. For an extensive exposition
of semi-parametric methods, see Gao [87].

Here, we briefly review the estimation methods in [1] and [25] for the two
semi-parametrizations of model (2.7). Let p(∆, x|x′) be the transition density
of Xt+∆ at x given Xt = x′, and π(x) the stationary density of Xt. Then the
Kolmogorov forward equation associated with (2.7) is

∂p(∆, x|x′)
∂∆

= −∂[µ(x)p(∆, x|x′)]
∂x

+
∂2[σ2(x)p(∆, x|x′)]

2∂x2
. (6.14)

By stationarity
∫

p(∆, x|x′)π(x′)dx′ = π(x). Multiply (6.14) by π(x′) and take
integral with respect to x′,

d2[σ2(x)π(x)]

dx2
= 2

d[µ(x)π(x)]

dx
. (6.15)

In Aı̈t-Sahalia [1], he assumes µ = µθ. Integrate (6.15) twice to obtain

σ2(x) =
2

π(x)

∫ x

0

µθ(u)π(u)du. (6.16)

Let θ̂ be a consistent estimate of θ, and π̂(·) a nonparametric kernel density

estimate constructed as in (6.2). Then we can plug θ̂ and π̂ into (6.16) to obtain
a nonparametric estimate of σ2(x). For µθ(x) = β(α − x), θ = (α, β), θ can be
estimated through the regression equation E(Xt+∆|Xt) = α + e−β∆(Xt − α).
This approach has an apparent advantage: it always works regardless of the size
of ∆ while Stanton’s [149] method requires high-frequency data ∆ → 0. See [1]
for more details. Banon [25] integrates (6.15) once to obtain

µ(x) =
1

2π(x)

d[σ2(x)π(x)]

dx
. (6.17)
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Banon [25] considers a constant but unknown σ. The drift µ is nonparametrically
estimated using (6.17) with estimated σ and density π(·).

6.4. Nonparametric integrated volatility estimation

Most finance theory lies within semimartingale framework. A stochastic process
{Xt}t≥0 (assuming X0 = 0) is said to be a continuous semimartingale with
respect to a filtration process {Ft}t≥0 if

Xt = Mt +At, t ≥ 0, (6.18)

where {At,Ft}t≥0 is an adapted process with bounded variation paths on any
finite subinterval of [0,∞), and {Mt,Ft}t≥0 is a continuous local martingale;
see p. 149 in Karatzas and Shreve [116]. Denote by 〈X〉t the quadratic varia-
tion process of {Xt}t≥0—the unique adapted and increasing process such that
〈X〉0 = 0 and {X2

t −〈X〉t} is a martingale (cf. Doob-Meyer decomposition). For

continuous semimartingale, 〈X〉t = X2
t − 2

∫ t

0 XsdXs. The fundamental result
states that

lim
maxi |ti+1−ti|→0

n−1
∑

i=0

(Xti+1
−Xti

)2 = 〈X〉t, in probability, (6.19)

for all partitions 0 = t0 < t1 < · · · < tn−1 < tn = t. The left hand side is often
called realized volatility.

The latter result has important implications in finance theory. Consider the
general stochastic volatility model

d log(St) = µtdt+ σtdWt, (6.20)

where the drift {µt} and the volatility {σt} are two adapted stochastic processes.

In this special case, it can be shown using Itô’s Lemma that 〈log(S)〉t =
∫ t

0
σ2

sds
is the integrated volatility (contrast to the spot volatility σt). Therefore, without
assuming any structure on {µt} and {σt} other than some regularity conditions,
we can estimate the integrated volatility nonparametrically using the realized
volatility

∫ t

0

σ2
sds ≈

∑

0=t0<t1<···<tn−1<tn=t

[log(Sti+1
) − log(Sti

)]2. (6.21)

In practice, one can compute daily, weekly, or monthly realized volatility based
on high-frequency (say, 5-minute) data. Research along this line has been ini-
tiated by Andersen and Bollserslev [12], and Barndorff-Nielsen and Shephard
[28]. Barndorff-Nielsen and Shephard [29] further obtain the asymptotic nor-
mality of the realized volatility. See the survey paper by Barndorff-Nielsen and
Shephard [30]. Recent contributions include Andersen et al. [13], Mykland and
Zhang [137], Zhang [167], and Zhang et al. [168]. The latter two papers deal
with integrated volatility estimation for noisy high-frequency data. Zhao and
Wu [174] study integrated volatility estimation for Lévy processes.
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7. Model validation

As we have discussed in Section 2 and Section 3, there has never been a lack of
parametric models. Parametric models can provide parsimonious interpretation
of the data generating mechanism underlying the process, yet this is true only
when the parametric models are correctly specified. For any parametric model,
there is always a mis-specification risk that could lead to wrong conclusions. In
fact, a correct specification for the price of the underlying asset is particularly
important for the pricing of derivatives written on that asset. Therefore, one
has to validate the adequacy of the parametric model before applying it to
real data. Suppose that Q is the unknown characteristic of interest behind the
underlying data generating mechanism. For example, in (2.7) and (3.1), we may
take Q = (µ, σ). For a given specification Qθ with possible unknown parameter
θ, we want to test the null hypothesis H0 : Q = Qθ. This problem is often
termed specification testing, model validation, model checking, goodness-of-fit,
among others. There is a huge amount of literature on model validations. In this
section we review some popular model validation techniques. In the rest of this
section we implicitly assume that the alternative hypothesis is that the relevant
functions are fully nonparametric.

7.1. Pseudo-likelihood ratio test

We briefly introduce the pseudo-likelihood ratio test (PLRT) in Azzalini and
Bowman [19]. The PLRT is to compare the pseudo-likelihoods under both the
null and the alternative. To appreciate the idea, we consider the simple regres-
sion model Yi = µ(Xi) + ei. Suppose that we are interested in testing the null
hypothesis H0 : µ(x) = a+ bx for some a, b ∈ R.

Under H0, we have a simple linear regression problem. Denote by X and Y

the design matrix and the vector of responses, respectively. Under H0, the fitted
values are Ŷ0 = H0Y, where H0 = X(XT X)−1XT . The the residuals vector
e = Y − H0Y, and the residual sum of squares RSS0 = eTe = YT (I − H0)Y.
Under the alternative hypothesis of nonparametric setting, µ can be estimated
by nonparametric regression methods (6.5) or (6.11) in Section 6.2. The fitted

values Ŷ1 = H1Y, where H1 is a weighting matrix depending on X, and the
residual sum of squares RSS1 = YT (I − H1)

T (I − H1)Y. Then a naive PLRT
is given by

T =
RSS0 − RSS1

RSS1
.

Azzalini and Bowman [19] point out that the null distribution of T depends
on the linear coefficient b, which makes T unsuitable for hypothesis testing.
To overcome this difficulty, they view the residuals vector e = Y − H0Y =
(I−H0)Y as the new responses vector and apply the PLRT to e instead of Y.
They propose the new test statistic based on e:

T ∗ =
eTe− eT (I − H1)

T (I − H1)e

eTe
.
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A large value of T ∗ indicates rejection of H0. Under a normality assumption on
the distribution of e, the null distribution of T ∗ is related to quadratic form of
normal variables; see the references in [19]. It is clear that one can extend the
idea to more general model validations settings, although the test statistic for
nonlinear parametric models may not possess an explicit form as in the linear
regression case; see [20] and [72] on related works.

7.2. Model validation via nonparametric curve regression

In a stimulating paper, Härdle and Mammon [99] introduce a nonparamet-
ric curve regression based model validation procedure. Because nonparametric
curve estimate (for example, kernel smoothing) is always a consistent estimate of
the function of interest regardless of the underlying model, it is therefore natural
to compare the parametric curve estimate under the null to the nonparametric
curve estimate. Consider Yi = µ(Xi) + ei. The popular nonparametric estimate
of µ is

µ̂(x) =

∑n
i=1 YiKbn

(x−Xi)
∑n

i=1Kbn
(x−Xi)

. (7.1)

Under H0 : µ = µθ, we apply parametric methods to obtain a consistent esti-
mate of θ, denoted by θ̂. To mimic the structure of (7.1), we obtain the following
parametric estimate

µ̂θ̂(x) =

∑n
i=1 µθ̂(Xi)Kbn

(x−Xi)
∑n

i=1Kbn
(x −Xi)

. (7.2)

Härdle and Mammon [99] use an L2 distance between µ̂ and µ̂θ̂ as the test
statistic for H0. See also Horowitz and Spokoiny [104].

An alternative approach is to compare the residuals sum squares under the
null parametric model to that using nonparametric model. See Hong and White
[103] along this line.

7.3. Residuals based test

A good statistical model would make the residuals behave like white noises.
Therefore, a natural method of model checking is to study the residuals both
graphically and quantitatively.

A stationary series {εi}i∈N is white noise if and only if its spectral density
g is constant σ2/(2π), where σ2 is the variance of the white noise. Therefore,
testing the white noise assumption of εi is equivalent to testing g(ω) = σ2/(2π)
for all frequencies ω ∈ [0, 2π]. Let I(ω) be a spectral density estimate, say,
periodogram. Fisher’s test statistic is given by

T =
max1≤k≤n I(ωk)
∑n

k=1 I(ωk)/n
,
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where ωk = 2πk/n. A large value of T indicates rejection of the null. Under the
null hypothesis, normalized T has an asymptotic extreme value type limiting
distribution. See Section 7.4.1 in Fan and Yao [77].

Another test of white noise is based on the fact that a stationary white noise
has zero autocorrelations for non-zero lags. Therefore, one can construct test
statistics to measure discrepancies between sample autocorrelations and zero.
Box and Pierce [43] and Ljung and Box [131] use the following test statistic:

T (1)
m = n

m
∑

k=1

ρ̂(k)2 and T (2)
m = n(n+ 2)

m
∑

k=1

ρ̂(k)2

n− k
,

where ρ̂(k) is the estimated autocorrelation at lag k and m is the maximum lag.
Under the null hypothesis that {εi} is a sequence of iid random variables, both
test statistics have asymptotic chi-square distributions. Other residuals based
tests include Fan and Li [80], and Hong and White [103].

7.4. Generalized likelihood ratio test

In an attempt to address nonparametric model validations problem, Fan et al.
[79] developed generalized likelihood ratio test (GLRT). The basic idea behind
their test is to compare profile likelihood under alternative to maximum like-
lihood under the null. Let f be the function or vector of functions of interest,
and η the nuisance parameters. Denote by ℓ(f, η) the logarithm of the likeli-
hood for a given dataset. Suppose that we are interested in testing the null
H0 : f = fθ, θ ∈ Θ. The GLRT works as follows:

(a) For given η, estimate f by f̂η nonparametrically.

(b) Estimate η by maximizing likelihood ℓ(f̂η, η).

(c) Compute the profile likelihood ℓ(f̂η̂, η̂).

(d) Under H0, estimate (θ, η) by the maximum likelihood estimator (θ̂, η̂0) =
argmaxθ,η ℓ(fθ, η).

(e) Compute the difference between the profile likelihood and the maximum
likelihood,

T = ℓ(f̂η̂, η̂) − ℓ(fθ̂, η̂0).

A significant positive value of T indicates the rejection of H0.

The cutoff value of T can be obtained by establishing asymptotic distribution of
T . For example, Fan et al. [79] consider varying-coefficient model and show that
the so-called Wilks phenomenon holds. That is, the asymptotic distribution of
T under null hypothesis does not depend on nuisance parameters. The latter
property can be used to determine the cutoff value via either the asymptotic
distribution or Monte Carlo simulation for better accuracy.

As commented by Fan and Yao [[77], pp. 406], GLRT has been developed
for independent data, but the idea can be extended to time series data; see
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Chapter 9 in their book. In fact, one can easily apply the GLRT procedure to
model validations problem for models in Sections 2 and 3 in conjunction with the
nonparametric function estimation methods in Section 6.2 and the parameter
estimation methods in Section 5.

7.5. Simultaneous confidence band

Let µ be a function of interest. Suppose our goal is to test the null hypothesis
H0 : µ = µθ for a parametric form µθ with unknown parameter θ. One way of
achieving this goal is to construct simultaneous confidence band (SCB) for µ.
For α ∈ (0, 1) and a pair of functions ℓn(·) and un(·) based on data, we say that
ℓn(·) and un(·) is a SCB for µ on a bounded interval [T1, T2] with asymptotically
correct nominal level (1 − α) if

lim
n→∞

P{ln(x) ≤ µ(x) ≤ un(x) for all x ∈ [T1, T2]} = 1 − α. (7.3)

A typical value of α is 5%. With the SCB, we can test the parametric hypothesis
H0 : µ = µθ based on the following procedure:

(a) Construct (1 − α) nonparametric SCB for µ: [ℓn(·), un(·)];
(b) Under H0, apply parametric methods to obtain an estimate θ̂ of θ;
(c) Check whether ln(x) ≤ µθ̂(x) ≤ un(x) holds for all x ∈ [T1, T2], that is,

whether the parametric estimate µθ̂ is entirely contained with the SCB. If
so, then we accept H0 at level α. Otherwise H0 is rejected.

The first work on SCB construction appears in Bickel and Rosenblatt [38] for
nonparametric kernel density of iid data. The idea is extended to mean regression
and time trend function SCB construction by Johnston [113], Härdle [98], Knafl
et al. [121] and Eubank and Speckman [71] for iid data and Wu and Zhao [164] for
non-stationary time trend with time series errors. More recently, Zhao and Wu
[173] have successfully applied the SCB based approach for model validations
problem to the S&P 500 index. They find that an AR(1)-ARCH(1) model is an
adequate fit for the S&P 500 index returns.

7.6. Density based test

The basic idea of density based tests is to measure distance between the non-
parametric density estimate and parametric density estimate with large distance
indicating inadequacy of the parametric model. We can use two different densi-
ties: marginal density and transition density.

Consider data {Xi∆}0≤i≤n from model (2.7). Under H0 : (µ, σ) = (µθ, σθ),
the theoretical marginal density is given by fθ = fµθ,σθ

in (6.1). Model validation
procedure based on the marginal density works as follows:

(a) Under H0, obtain estimate θ̂ of the parameter θ using parametric methods
in Section 5.
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(b) Obtain the parametric density estimate f̂θ = fθ̂ = fµ
θ̂
,σ

θ̂
.

(c) Construct nonparametric kernel density estimate f̂ as in (6.2).

(d) Compute certain distance between the parametric density estimate f̂θ and
the nonparametric density estimate. For example,

Dn =
1

n

n
∑

i=1

[f̂(Xi∆) − f̂θ(Xi∆)]2.

Reject H0 ifDn exceeds certain level. The critical value can be obtained by
either studying asymptotic behavior of Dn or through bootstrap methods.

This idea is applied by Aı̈t-Sahalia [2] to daily data of 7-day Euro-dollar deposit
rate during time period 1 June 1973 to 25 February 1995. He rejects all existing
parametric models and proposes the new model (2.6). Clearly, this idea can be
extended to deal with time series models by utilizing the convolution density
estimate in Section 6.1. Recently, Zhao [170] studies model validation problem
by constructing nonparametric simultaneous confidence band (see also Section
7.5) for marginal density and checking whether the implied parametric density
estimate is entirely contained within the constructed band. Zhao [170] demon-
strates that this density band based approach is widely applicable. For other
contributions on density based test, see Gao and King [88] and Hong and Li
[102].

Marginal density only captures part of the distributional properties of stochas-
tic processes. For a Markov chain, another natural choice is the transition den-
sity. For model validations based on transition density, one can use the same
procedure listed above by replacing the marginal density by the corresponding
transition density. As in Section 6.1, one often needs to turn to the Euler ap-
proximation scheme (5.2) or the approximation in Aı̈t-Sahalia [4]. Aı̈t-Sahalia
et al. [6] propose a transition density based test for continuous diffusion models
and jump diffusion models. One could argue that a more efficient model vali-
dation procedure would incorporate information from both marginal transition
densities. This would be a future research direction.

7.7. Other tests

We mention some other representative works. Anderson [11] introduces a goodness-
of-fit test based on spectral density. Chen et al. [49] propose an empirical like-
lihood based test which is shown to be asymptotic equivalent to the nonpara-
metric curve regression based test in Section 7.2. More references are collected
in Chapters 3 and 5 of Gao [87] where semi-parametric specifications are also
studied.
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8. Tools for asymptotics

8.1. Mixing conditions

The Markovian property and mixing conditions for Markov chain play an im-
portant role in large sample theory in financial econometrics. A popular mixing
coefficient is the ρ-mixing coefficient. Let {Xt}t≥0 be a continuous-time station-
ary Markov process. For a random variable X we write ‖Z‖ = [E(Z2)]1/2 if the
latter is finite.

Denote by Gt and Gt the sigma fields generated by {Xs}s≤t and {Xs}s≥t,
respectively. Let L2 be the set of square integrable random variables. Then the
ρ-mixing coefficient of {Xt}t≥0 is defined as

ρt = sup
s≥0

ρ(Gs,Gs+t),

with

ρ(G,H) = sup{|Corr(G,H)| : G⊙ G, H ⊙H, G,H ∈ L2}.

where G(H)⊙G(H) means that G(H) is measurable with respect to G(H). For
a random variable X , denote by σ(X) the sigma field generated by X . Since
{Xt}t≥0 is a stationary Markov process, by Theorem 4.1 in Bradley (1986),

ρt = ρ(σ(X0), σ(Xt)) = sup
g1(X0),g2(Xt)∈L2

{|Corr[g1(X0), g2(Xt)]|}. (8.1)

Let {Jt}t≥0 be a family of operators defined by Jtg(x) = E[g(Xt)|X0 = x]
for ‖g(Xt)‖2 < ∞. Assuming that E[g1(X0)] = E[g2(X0)] = 0. By the Cauchy-
Schwartz inequality,

|Cov[g1(X0), g2(Xt)]| = |E{g1(X0)E[g2(Xt)|X0]}| ≤ ‖g1(X0)‖‖Jtg2(X0)‖,

which entails by (8.1)

ρt ≤ sup
E[g(X0)]=0

‖Jtg(X0)‖
‖g(X0)‖

.

Notice that the stationarity and Markovian property of {Xt}t≥0 imply that
{Jt}t≥0 forms a semigroup in the sense that Js+t = JsJt. If there exists a
fixed t0 > 0 and constant λ ∈ (0, 1) such that ‖Jt0g(X0)‖2 ≤ λ‖g(X0)‖2 holds
for all measurable function g satisfying E[g(X0)] = 0, then we say that the
operator Jt0 is a strong contraction. Under this condition, the family {Jt}t≥0 of
operators is exponentially contracting. That is, ‖Jtg(X0)‖ ≤ ‖g(X0)‖2O(λt/t0 )
for all ‖g(X0)‖ < ∞,E[g(X0)] = 0 and t > 0; see Banon [25]. Consequently,
the process {Xt}t≥0 has an exponentially decaying ρ-mixing coefficient and is
called geometric ρ-mixing.

Sufficient conditions under which the operators {Jt}t≥0 possess the expo-
nentially contracting property have been obtained in Banon [25], Hansen and
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Scheinkman [97], Genon-Catalot et al. [90] to new a few. Therefore, under such
conditions, the discrete observations {Xi}i≥0 is ρ-mixing with exponentially
decaying ρ-mixing coefficient. Polynomial mixing condition is also available in
Veretennilov [157]. For limit theorems under various mixing conditions, see the
papers by Bradley [44], Hannan [94], Jones [114], Davydov [54], Dehling et al.
[58].

8.2. Physical dependence measure

Wu [160] proposes the concept of physical dependence measure, a very powerful
tool in studying nonlinear time series, for example, (3.1) or (3.3) and (3.4). To
fix the idea, consider stationary process given by

Xi = G(. . . , εi−1, εi), i ∈ Z, εi : iid, (8.2)

where G is a measurable function such that Xi is well defined. Examples of (8.2)
include the popular ARMA, fractional ARIMA linear models, the nonlinear
NARCH model (3.1), the random iterated functions Xi = F (Xi−1, εi) for a
random map F (·, εi) that maps Xi−1 to Xi depending on the innovation εi,
among others.

Let (ε′i)i∈Z be a iid copy of (εi)i∈Z. Define

X ′
i = G(. . . , ε−1, ε

′
0, ε1, . . . , εi).

Then X ′
i is a coupled version of Xi with the innovation ε0 therein being replaced

by the iid copy ε′0. Following Wu [160], define the coupling coefficient:

θq(i) = ‖X ′
i −Xi‖q, Θq(n) =

n
∑

i=0

θq(i), q > 0, (8.3)

where, for a random variable Z, ‖Z‖q = [E(|Z|q)]1/q if the latter is finite. By
the construction of Xi and X ′

i, θi can be viewed as the contribution of ε0 in
predicting the future valueXi. Therefore, Θq(n) can be viewed as the cumulative
contribution of ε0 in predicting the whole future sequence Xi, 0 ≤ i ≤ n. Let
Θq(∞) = limn→∞ Θq(n). If Θq(∞) < ∞, then we may interpret (Xi)i≥0 as a
process with short-range dependence.

Dedecker and Prieur [56] consider the following coupling coefficients,

θ∗q (i) = ‖X∗
i −Xi‖q, where X∗

i = G(. . . , ε′−1, ε
′
0, ε1, . . . , εi). (8.4)

The difference between the two coupling versions X ′
i and X∗

i of Xi is that the
former replaces ε0 with ε′0 while the latter replaces εj with ε′j for all j ≤ 0.
See [56] for more details. If q ≥ 1, by the triangle inequality, we have θ∗q(i) ≤
∑∞

j=i θq(i) and θq(i) ≤ θ∗q(i+1)+θ∗q(i). If θq(i) = O(ρi) for some ρ ∈ (0, 1), then
the two coupling coefficients are equivalent. In many other cases, θq(i) is often
smaller than θ∗q (i). Consider, for example, the linear process Xi =

∑∞
j=1 ajεi−j .

If E(|ε0|q) <∞ for some q ≥ 1, then θq(i) = O(|ai|) and θ∗q (i) = O(
∑∞

j=i |aj |).
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Let S0 = 0 and Snt = S⌊nt⌋ + (nt − ⌊nt⌋)X⌈nt⌉, 0 ≤ 0 ≤ 1, be the partial
sum process of (Xi)

n
i=1. The following result is useful in studying asymptotic

behavior of nonlinear time series.

(i) [Wu [160], Dedecker and Merlevède [55]]. Assume Θ2(∞) <∞, then

{Snt/
√
n, 0 ≤ t ≤ 1} ⇒ {σWt, 0 ≤ t ≤ 1}, (8.5)

where σ = ‖
∑∞

i=0[E(Xi| . . . , ε−1, ε0) − E(Xi| . . . , ε−2, ε−1)]‖2 < ∞, and
{Wt}0≤t≤1 is a standard Brownian motion.

(ii) [Wu [161]]. Further assume that
∑∞

0 iθq(i) <∞ for some 2 < q ≤ 4. Then
on a possible richer probability space, there exists a Brownian motion
{Wt}t≥0 such that Snt can be uniformly approximated by Wnt in the
following sense:

sup
0≤t≤1

|Snt − σWnt| = Oa.s.[n
1/4(logn)1/2+1/q(log logn)2/q]. (8.6)

The convergence (8.5) and the approximation (8.6) have different ranges of ap-
plicability. The approximation in (8.5) can often be used in studying asymptotic
behavior of parametric methods, for example, maximum likelihood estimate,
least-square estimates, M-estimation, generalized moment method. The approx-
imation in (8.6) is particularly useful in nonparametric statistical inferences. For
example, in nonparametric inference for time trend function, one needs to deal
with quantities of the following form

Vn(t) =

n
∑

i=1

ωn(i/n, t)Xi, (8.7)

where ωn(i/n, t), 1 ≤ i ≤ n, are non-negative weights summing to one. Due to
the dependence in (Xi)1≤i≤n and the non-stationarity introduced by ωn(i/n, t),
it is usually difficult to study Vn(t) directly. Write ωi = ωn(i/n, t). Assume that
(8.6) holds with q = 4. By the summation by parts formula,

Vn(t) =

n
∑

i=1

ωi(Si − Si−1) =

n
∑

i=2

(ωi−1 − ωi)Si−1 + ωnSn

=
n

∑

i=2

(ωi−1 − ωi)σWi−1 + ωnWn +Oa.s.(n
1/4 logn)Ωn

=

n
∑

i=1

ωiσ(Wi −Wi−1) +Oa.s.(n
1/4 logn)Ωn,

where Ωn =
∑n

i=2 |ωi − ωi−1| + ωn. For many nonparametric estimates with
bandwidth bn, Ωn = O[(nbn)−1]. See Wu and Zhao [164].

Because θq(i) is directly related to the data-generating mechanism, it often
has tractable bound. For example, consider the linear processXi =

∑∞
j=1 ajεi−j ,
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then θq(i) = O(|ai|) provided that E(|εq
0|) < ∞. For nonlinear models defined

by the recursive equation

Xi = Rεi
(Xi−1) (8.8)

for a random function Rεi
depending on εi. Wu and Shao [163] obtain sufficient

conditions under which: (i) (8.8) admits a unique stationary solution of the
form (8.2); and (ii) the function G satisfies the geometric moment contraction
property θq(i) = O(ρi).

8.3. Martingale decomposition

The physical dependence measure in Section (8.2) becomes more powerful in
nonparametric inferences when it is used in conjunction with martingale decom-
position. Here we shall illustrate the idea using nonparametric kernel density
estimate. Let {Xi}1≤i≤n be a stationary Markov chain with transition density
function p(x|x′) and invariance density f(x). Consider the popular nonparamet-
ric kernel density estimate

f̂(x) =
1

nbn

n
∑

i=1

Kbn
(Xi − x), where Kbn

(u) = K(u/bn). (8.9)

Let Fi be the sigma filed generated by Xj , j ≤ i. By the Markovian property,

E[Kbn
(Xi − x)|Fi−1] = bn

∫

K(u)p(x− ubn|Xi−1)du.

Let

In(x) =

n
∑

i=1

{p(x|Xi−1) − E[p(x|Xi−1)]}.

Then we have the decomposition

n
∑

i=1

[Kbn
(Xi − x) − EKbn

(Xi − x)] = Mn(x) + bn

∫

K(u)In(x− ubn)du,

where

Mn(x) =

n
∑

i=1

{Kbn
(Xi − x) − E[Kbn

(Xi − x)|Fi−1]}.

Notice that Mn(x) is a martingale with respect to Fn, and therefore various
martingale results are applicable. Using the physical dependence measure in
Section 8.2, one can show that, for certain short-range dependent processes,
bn

∫

K(u)In(x − ubn)du is of order Op(
√
nbn) and negligible relative to the

martingale part Mn(x). Similar martingale decomposition techniques have been
successfully applied to nonparametric inferences in Zhao and Wu [173] and Zhao
[170].
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Stochastic volatility models as hidden Markov models and statistical ap-
plications. Bernoulli 6 1051–1079. MR1809735

[91] Ghysels, E., Harvey, A.C. and Renault, E. (1996). Stochastic
volatility. In G.S. Maddala and C. R. Rao (eds.), Statistical Methods in
Finance, pp. 119–191. North Holland, Amsterdam. MR1602124

[92] (1997). ARCH Models and Financial Applications. Springer-Verlag, New
York. MR1439744

[93] Haggan, V. and Ozaki, T. (1981). Modelling nonlinear random vi-
brations using an amplitudedependent autoregressive time series model.
Biometrika 68 189–196. MR0614955

[94] Hannan, E.J. (1979). The central limit theorem for time series regression.
Stoch. Proc. Appl. 9 281–289. MR0562049

[95] Hansen, L.P. (1982). Large sample properties of generalized method of
moments estimators. Econometrica 50 1029–1054. MR0666123

[96] Hansen, P.R. and Lunde, A. (2006). Realized variance and market
microstructure noise (with comments and a joinder by the authors). J.
Bus. Econom. Statist. 24 127–218. MR2234447

[97] Hansen, L.P. and Scheinkman, J.A. (1995). Back to the future: Gener-
ating moment implications for continuous time Markov processes. Econo-
metrica 63 767–804. MR1343081
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