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HOPF FIBRATION: GEODESICS AND DISTANCES

DER-CHEN CHANG, IRINA MARKINA, AND ALEXANDER VASIL’EV

Abstract. Here we study geodesics connecting two given points on odd-dimensional
spheres respecting the Hopf fibration. This geodesic boundary value problem is completely
solved in the case of 3-dimensional sphere and some partial results are obtained in the
general case. The Carnot-Carathéodory distnce is calculated. We also present some
motivations related to quantum mechanics.

1. Introduction

Sub-Riemannian geometry is proved to play an important role in many applications, e.g.,
in mathematical physics, geometric mechanics, robotics, tomography, neurosystems, and
control theory. Sub-Riemannian geometry enjoys major differences from the Riemannian
being a generalization of the latter at the same time, e.g., the notion of geodesic and length
minimizer do not coincide even locally, the Hausdorff dimension is larger than the manifold
topological dimension, the exponential map is never a local diffeomorphism. There exists a
large amount of literature developing sub-Riemannian geometry. Typical general references
are [1, 7, 15, 20].

The interest to odd-dimensional spheres comes first of all from finite dimensional quan-
tum mechanics modeled over the Hilbert space Cn where the dimension n is the number
of energy levels and the normalized state vectors form the sphere S

2n−1 ⊂ C
n. The prob-

lem of controlled quantum systems is basically the problem of controlled spin systems,
which is reduced to the left- or right-invariant control problem on the Lie group SU(n).
In other words, these are problems of describing the sub-Riemannian structure of S2n−1

and the sub-Riemannian geodesics, see e.g., [4, 15]. The special case n = 2 is well stud-
ied and the sub-Riemannian structure is related to the classical Hopf fibration, see, e.g.,
[21, 22]. At the same time, the sub-Riemannian structure of S3 comes naturally from the
non-commutative group structure of SU(2) in the sense that two vector fields span the
smoothly varying distribution of the tangent bundle, and their commutator generates the
missing direction. The missing direction coincides with the Hopf vector field corresponding
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to the Hopf fibration. The sub-Riemannian geometry on S3 was studied in [8, 11, 13], see
also [5]. Explicit formulas for geodesics were obtained in [9] by solving the corresponding
Hamiltonian system, in [11] from a variational equation, in [5] exploiting the Lie theory, in
[14] applying the structure of the principle S1-bundle. One of the important helping prop-
erties of odd-dimensional spheres is that there always exists at least one globally defined
non-vanishing vector field.

Observe that S3 is compact and many properties and results of sub-Riemannian geometry
differ from the standard nilpotent case, e.g., Heisenberg group or Engel group. In the case
S
2n−1, n > 2, we have no group structure and the main tool is the global action of the

group U(1). For example, in our paper we explicitly show that any two points of S3 can
be connected with an infinite number of geodesics.

Because of important applications, we start our paper with the description of n-level
quantum systems and motivation given by Berry phases. Further we continue with general
formulas for geodesics. Then we concentrate our attention on the geodesic boundary value
problem finding all sub-Riemannian geodesics between two given points. In the case of
S2n−1 we solve it for the points of the fiber and for S3 we solve it for arbitrary two points.
The Carnot-Carathéodory distance is calculated.

Acknowledgement. This work was initiated while the authors visited the National Cen-
ter for Theoretical Sciences, Hsinchu, Taiwan R.O.C. The authors acknowledge support and
hospitality extended to them by the director of the center professor Wen-Ching Winnie Li
and the staff.

2. n-level quantum systems

The mathematical formulation of quantum mechanics is based on concepts of pure and
mixed states. A complex separable Hilbert space H with Hermitian product 〈·, ·〉 (or 〈·|·〉 in
Dirac notations) is called the state space. The exact nature of this Hilbert space depends on
the concrete system. For an n-level quantum system, H = Cn with the standard Hermitian
product 〈z|w〉 = ∑n

j=1 zjw̄j. An observable is a self-adjoint linear operator acting on the

state space. A state ρ is a special case of observable which is Hermitian ρ† = ρ, normalized
by tr ρ = 1, and positive 〈w|ρ|w〉 ≥ 0 for all vector |w〉 ∈ H, where ρ|w〉 denotes the result of
the action of the operator ρ on the vector |w〉. A pure state is the one-complex-dimensional
projection operator ρ = |z〉〈z| onto the vector |z〉 ∈ H, i.e., an operator satisfying ρ2 = ρ.
Other states are called mixed states.

The space of pure states is isomorphic to the projectivization HP of the Hilbert space
H. So equivalently we can define pure states as normalized vectors 〈z|z〉 = 1 modulo a
complex scalar eiθ, where θ is called a phase. In the case of the n-level quantum system
H = Cn, normalization and the phase factor allow us to represent the space of pure states
as the complex projective space CPn−1 ≡ Cn

P
. The second operation of phase factorization

is realized by the higher-dimensional Hopf fibration

S
1 →֒ S

2n−1 → CP
n−1,
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where S2n−1 is the real (2n− 1)-dimensional sphere embedded into Cn, and the base space
CPn−1 is the set of orbits of the action S1 on S2n−1.

In what follows, the pure states ρ are the elements of the projective space CPn−1, at the
same time we use the notation of state |z〉 ∈ S2n−1 to refer to a normalized representative
of the phase-equivalence class ρ. The real dimension of the space of pure states is 2n− 2.
The projective space CPn−1 endowed with the Kählerian Fubini-Study metric on CPn−1

becomes a metric space, in which this Riemannian metric is given by the real part of the
Fubini-Study metric and it coincides with the push-forward of the standard Riemannian
metric (the real part of the Hermitian one) on the (2n− 1)-sphere by the Hopf projection.

In the case n = 2 the projective complex plane CP is isomorphic to the sphere S2 (called
the Bloch sphere for 2-level systems in physics), which is thought of as the set of orbits of
the classical Hopf fibration

S
1 →֒ S

3 → S
2.

Each pair of antipodal points on the Bloch sphere corresponds to a mutually exclusive pair
of states of the particle, namely, spin up and spin down. The Bloch sphere and the Hopf
fibration describe the topological structure of a quantum mechanical two-level system, see
[21, 22]. The interest to two-level systems, an old subject, recently has gained a renewed
interest due to recent progress in quantum information theory and quantum computation,
where two-level quantum systems became qubits coupled in q-registers. A qubit state is
represented up to its phase by a point on the Bloch sphere. The topology of a pair of
entangled two-level systems is given by the Hopf fibration

S
3 →֒ S

7 → HP,

where H is the space of quaternions and HP ∼= S4 is its projectivization, see [16]. Generally,
for entangled n-level systems we have

S
3 →֒ S

4n−1 → HP
n−1.

The underlying manifold for the Lie group SU(2) is S3. Considering the higher dimensional
group SU(n), we see that it acts on S2n−1. However its dimension is n2 − 1 > 2n − 1,
n > 2, and its manifold only contains the invariant sphere S2n−1. Returning back to the
information theory motivation, the relevant group for p-qubits is SU(2p), see, e.g., [6, 18].

Let us now concentrate on n-level systems. Time evolution of a quantum system in the
Schrödinger picture assumes time-dependent states while observables are conserved. Time
evolution of a quantum state is described by the Schrödinger equation

d

dt
|z(t)〉 = −i

~
H|z(t)〉,

where H is a special observable, the Hamiltonian, a Hermitian operator corresponding to
the total energy of the system. Its spectrum is the set of possible outcomes of energy
measurements which we suppose to be discrete and non-degenerate. The normalization
condition is preserved by time evolution of the quantum system. The Bloch equation for
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the projection operator corresponding to the state |z(t)〉 becomes the Hamiltonian equation

d

dt
ρ(t) =

−i
~
[H, ρ],

where [H, ρ] stands for the operator commutator. Observe that the state |z〉 is viewed
as an element of S2n−1 while the operator ρ is thought of as an element of CPn−1. Thus
the solutions to the Schrödinger equation describe trajectories on S2n−1, and the solution
to the Bloch equation describe trajectories on CPn−1. The solution to the Schrödinger
equation with the Hamiltonian H(t), −iH(t) ∈ su(n), is of the form |z(t)〉 = g(t)|z(0)〉,
where g(t) ∈ SU(n). Observe that if H is an Hermitian operator and if we denote by
h0 = 1

n
(trH − 1), then H = H − h01 is an Hermitian operator and tr(H − h01) = 1.

The operator H0 = h01 is called the free Hamiltonian. If the system is considered under
some external fields (e.g., an electromagnetic field) whose amplitudes are represented by
some functions h1(t), ..., hm(t), then H(t) = H0+

∑m

k=1 hk(t)Hk, where Hk are self-adjoint
operators representing the coupling between the system and the external fields. One of
the topical problems is population transfer: to find the amplitudes hk(t), k = 1 . . .m, such
that the system starts at an eigenstate |z0〉 of the free Hamiltonian H0 and ends at time
T at another eigenstate |zl〉 of H0

The controllability problem resides in the so-called bracket-generating condition by Chow
and Rashevsky [10, 19]. The system is controllable if and only if the Lie hull

Lie (iH0, iH1, . . . , iHm) = su(n).

Suppose that the operator ρ(t), being viewed as an element of the projective space,
evolves as a loop in time t ∈ [0, T ], ρ(0) = ρ(T ). A crucial concept in many quantum
mechanical effects is so-called the Berry phase (or Berry-Pancharatnam following [3, 17]).
The state |z(t)〉 of the system evolves according to the Schrödinger equation. Suppose that
|z(T )〉 = eiΘ|z(0)〉. Then Θ = Θgeom + Θdyn, where Θgeom is the Berry phase and Θdyn

stands for the standard dynamical phase given by

Θdyn = −1

~

∫ T

0

〈z(t)|H|z(t)〉dt.

Observe that the instantaneous energy 〈z(t)|H|z(t)〉 is real because H is self-adjoint. The
geometric Berry phase refers to the curvature of the bundle. It emphasizes that the single-
time probabilistic description does not exhaust the physical content of quantum mechanics
and appears because of the bundle structure of the space of states (see, e.g., [2]). As
Berry [3] mentions, Barry Simon commented in 1983 that the geometric phase factor has
an interpretation in terms of holonomy because the phase curvature two-form emerges
naturally as the first Chern class of a Hermitian line bundle.

Let us suppose that the Hamiltonian H is perturbed Hε(t) by a varying parameter ε(t),
ε(0) = ε(T ) slowly enough so that the adiabatic approximation is applied with T large.
The systems undergoes transport along the closed path in the parametric space ε. The
adiabatic theorem states that if the system starts at an eigenstate of the Hamiltonian
Hε(0), then it will end in the corresponding eigenstate of the Hamiltonian Hε(T ) at the final
point under small perturbation remaining in its instantaneous eigenstate in all intermediate
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points t ∈ [0, T ]. This theorem has been known from early years of quantum mechanics
due to Max Born and Vladimir Fock.

Once the controllability problem is solved one can look for a more efficient way to
construct loops in the projective space of pure states. A typical way is to minimize the
energy of transfer. The corresponding optimal control problem is equivalent to finding
sub-Riemannian geodesics on S2n−1. The precise meaning of this will be explained in the
following section.

3. Sub-Riemannian structure and geodesics on S2n−1

3.1. Hopf fibration. We consider the (2n−1)-dimensional sphere S2n−1 as a real manifold
embedded into the complex space Cn. The Riemannian metric d on the sphere is the
restriction of the Euclidean metric from R2n, that is, the real part of the Hermitian product
〈·, ·〉 in Cn. The complex Hopf fibration h is a principal circle bundle

S
1 →֒ S

2n−1 h−→ CP
n−1

over the complex projective space CPn−1. This roughly means that the preimage h−1(m)
of any point m ∈ CPn−1 is isomorphic to the unit circle S1 endowed with the Lie group
structure of U(1). The set h−1(m) ⊂ S2n−1 is called the fiber, and CPn−1 is the base space,
see, e.g., [7, 15].

The intersection of a complex line with the unit sphere S
2n−1 gives a unit circle S

1 that
is equipped with the group structure of U(1). The action of e2πit ∈ U(1) on S2n−1 is defined
by

e2πitz = e2πit(z1, . . . , zn) = (e2πitz1, . . . , e
2πitzn).

We will use both real (x1, y1, . . . , xn, yn) and complex coordinates zk = xk + iyk, k =
1, . . . , n.

The horizontal tangent space HTz at z ∈ S2n−1 is the maximal complex subspace of the
real tangent space Tz. The unit normal real vector field N(z) at z ∈ S

2n−1 is given by

N(z) =
n
∑

k=1

(xk∂xk
+ yk∂yk) = 2Re

n
∑

k=1

zk∂zk .

The real vector field

V (z) = iN(z) =
n
∑

k=1

(−yk∂xk
+ xk∂yk) = 2Re

n
∑

k=1

izk∂zk

is globally defined and non-vanishing and we call it the vertical vector field. The vector
space spanR{N(z), V (z)} is a two dimensional subspace of Cn that inherits the standard
almost complex structure from Cn, in other words we have an isomorphism

spanR{N(z), V (z)} ∼= spanC{N(z) + iN(z)}
of vector spaces. The orthogonal complement to spanC{N(z) + iN(z)} with respect to
the Hermitian product is exactly the horizontal tangent space HTz ⊂ Tz. If we denote
by ϕ(t) = e2πitz, t ∈ [0, 1), the fiber at a point z ∈ S2n−1, then it is easy to see that
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ϕ̇(t) = 2πV (ϕ(t)). Thus, spanR{V (z)} is the tangent space of the fiber ϕ at z = ϕ(t), that
we denote by FTz. The vertical tangent bundle of ϕ we denote by FT , and the horizontal
tangent bundle is denoted by HT . Then,

(1) Tz = HTz ⊕ FTz,

where the direct sum means the orthogonal decomposition with respect to the Riemannian
metric d at each z ∈ S2n−1. The restriction of d to the horizontal and vertical subspaces is
denoted by dH and dF , respectively.

The group SU(n) acting in C
n leaves S

2n−1 invariant and preserves the orthogonal de-
composition (1).

Concluding the above construction we will work with a sub-Riemannian manifold that
is the triple (S2n−1,HT, dH) consisting of the smooth manifold S2n−1, the horizontal sub-
bundle (or distribution HT ), and the sub-Riemannian metric dH. The same horizontal
bundle can be obtained by considering the standard C-R geometry of odd-dimensional
spheres or thinking of S2n−1 as a contact manifold endowed with the one-form [13, 14]

(2) µ =
n
∑

k=1

(−yk dxk + xk dyk).

We are looking for sub-Riemannian geodesics, or energy minimizing curves γ(t) on S2n−1.
Since the curves have to belong to the sphere and to be horizontal, we conclude that the
tangent vector γ̇(t) is orthogonal to complex line spanC(N + iN). Indeed,

(3) Re 〈γ, γ̇〉 = 0, Re 〈iγ, γ̇〉 = −Im 〈γ, γ̇〉 = 0 =⇒ 〈γ̇, γ〉 = 0, ∀ t ∈ [0, 1].

3.2. Equations of geodesics. The Hamiltonian function in sub-Riemanian geometry is
defined by using the notion of co-metric [15, 20]. As it was mentioned above, the sub-
Riemannian metric dH is defined by the restriction of the Euclidean metric from R2n to
the horizontal sub-bundle HT . The restriction of the Euclidean metric from R2n to fibers
FT gives the metric dF with respect of which the vertical vector field V has length one.
Given dH we may define a linear mapping gH(z) : T

∗
z → Tz. This linear map gH is uniquely

defined by the following conditions:

1. im(gH(z)) = HTz at any point z ∈ S2n−1,
2. p(v) = dH(gH(z)[p], v) for v ∈ HTz , p ∈ T ∗

z at each z ∈ S
2n−1.

We denote by T⊥
z the one-dimensional kernel of gH(z) at z ∈ S2n−1. The generator of the

kernel is the contact form or connection one-form (2). The linear map gH(z) is positively
definite on T ∗

z /T
⊥
z and symmetric: p(gH(z)[ω]) = dH(gH(z)[p], gH(z)[ω]) = ω(gH(z)[p]),

p, ω ∈ T ∗
z , z ∈ S2n−1. The map gH is called co-metric.

Analogously, we define a linear map gF(z) : T
∗
z → Tz by

1. im(gF(z)) = FTz at any point z ∈ S2n−1

2. p(w) = dF(gF(z)[p], w) for w ∈ FTz, p ∈ T ∗
z at each z ∈ S2n−1.
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Now we are able to set up two Hamiltonian functions: the horizontal Hamiltonian func-
tion HH(z, p) and the vertical one HF(z, p), (z, p) ∈ T ∗. We write

HH(z, p) =
1

2
p(gH(z)[p]), HF(z, p) =

1

2
p(gF(z)[p]).

Lemma 1. The horizontal HH and vertical HF Hamiltonian functions are Poisson invo-
lutive:

{HH, HF} = 0.

Proof. Consider a neighborhood in T ∗S2n−1 constructed by means of a local trivialization
of the circle bundle

S
1 →֒ S

2n−1 h−→ CP
n−1.

Let U be an open neighborhood in CPn−1, W = h−1(U), and ψ is a local trivialization
map ψ : W → U × S1. The linear map ψ∗(z) generated by ψ defines a diffeomorphism on
cotangent bundles T ∗W ∼= T ∗U × T ∗S1.

Notice that the decomposition TU ×TS1 is orthogonal with respect to the metric d, and
the metrics dH and dF were defined as the restriction of d onto TU and TS1 respectively.
We write (x, p) = (x1, . . . , x2n−2, p1, . . . , p2n−2) ∈ T ∗U and (y, µ) ∈ T ∗S1 within the proof
of the theorem. Thus, the metric dF has unit real 1× 1-matrix in the basis of the vertical
vector fields V and the corresponding co-metric gF defined by the same matrix. Therefore,
they are independent of the points z ∈ S

2n−1. Moreover, since V is normal and orthogonal
to H everywhere we conclude that HF(x, p, y, µ) = 1

2
µ2, where µ is the dual form to V

and counting the dimension of µ ∈ T⊥. The metric dH is independent of y by definition
so does the co-metric gH. Moreover, the co-metric gH is independent of µ by µ ∈ T⊥. We
conclude, that HH depends only on (x, p). We calculate

{HH, HF} =
2n−2
∑

k=1

(∂HH
∂pk

∂HF
∂xk

− ∂HH
∂xk

∂HF
∂pk

)

+
∂HH
∂µ

∂HF
∂y
− ∂HH

∂y

∂HF
∂µ

= 0.

�

Theorem 1. A normal sub-Riemanian geodesic γ(s) starting at a point a ∈ S2n−1 is given
by the formula

(4) γ(s) = γR(s)e
−is d(v,V (a)) = (a cos(‖v‖s) + v

‖v‖ sin(‖v‖s))e
−is d(v,V (a)),

where v is the initial velocity of the Riemannian geodesic γR(s): γ̇R(a) = v at the initial
point a, and d(v, V (a)) is the projection of the initial velocity to the vertical direction at a.

Proof. We start with a discussion of relations between two definitions of Riemannian
geodesics: by the Riemannian exponential map and as the projection of the solution to
the Hamiltonian system to the underlying manifold. It is a well known connection, but
we recall it for completeness. To obtain a Riemannian geodesic γR(s) starting at a point
a ∈ S2n−1 with the initial velocity vector v ∈ TaS2n−1 we can make use of the Riemann-
ian exponential map expd(sv) defined by the metric d. Let us recall, that given a metric
d = {dij} the Riemannian Hamiltonian function Hd(z, p) =

1
2
dijpi(z)pj(z) is defned, where
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the co-metric dij is the inverse matrix for the metric d. The solution to the Hamilton-
ian system defines the flow Φ(q0, p0, t) on the cotangent bundle T ∗S2n−1, where (q0, p0) is
the initial point. Moreover, the metric tensor d defines the identification of tangent and
cotangent bundles. Thus, the Riemannian geodesic γR(s) = expd(sv) is the result of the
following superpositions

expd(sv(a)) : TaS
2n−1 ι→֒ TS2n−1 d←→ T ∗

S
2n−1 Pr−→ S

2n−1.

Here the first map ι is the inclusion of the tangent space at a ∈ S2n−1 into the tangent
bundle T ∗S2n−1. The second map is the identification of the tangent and cotangent bundles
by means of the metric d, which also gives the initial data (q0, p0) = (a, d(v, ·)) for the flow
Φ(q0, p0, s). The last map projects the Hamiltonian flow Φ(q0, p0, s) to the sphere.

Pick up a vector v ∈ TaS
2n−1 and write v = vH + vF due to the orthogonal decom-

position (1). We can construct expdH
(svH) and expdF

(svF ) by means of the procedure
described above using the horizontal HH and the vertical HF Hamiltonian functions. The
identification between the tangent and cotangent spaces is realized by the linear maps
dH : HT → T ∗

S
2n−1, gH : T ∗

S
2n−1 → TS2n−1 and dF : FT → T ∗

S
2n−1, gF : T ∗

S
2n−1 →

TS2n−1, respectively. Then

expd(tv) = expdH
(tvH) ◦ expdF

(tvF)

since the Hamiltonian functions HH, HF , Hd are all Poisson involutive, the corresponding
flows commute. We observe also that the group exponential map expS1 : u(1) → U(1)
agrees with the Riemannian exponential map expdF

: u(1) ∼= FTa → S1 [12]. If we write

γR(s) = expd(sv), γsR(s) = expdH
(svH), e

is|vF | = expdF
(svF), then

(5) γsR(t) = γR(s)e
−is|vF | = γR(s)e

−is d(v,V (a)),

here we used the notation |vF | = d(v, V (a)) for the projection of the initial velocity onto
the vertical direction V (a) at a.

It is well known that the Riemannian geodesic on sphere is a great circle and can be
written as

(6) γR(s) = a cos(‖v‖s) + v

‖v‖ sin(‖v‖s).

Here a is the starting point, v is the initial velocity, and ‖v‖2 = d(v, v) is the real norm
of v. Combining (5) and (6) we obtain (4).

To be sure that the geodesic is horizontal we verify the product

〈γ̇sR, γsR〉 = −id(v, V (a))〈γR, γR〉+ 〈γ̇R, γR〉.
Since γR ∈ S2n−1, then 〈γR, γR〉 = 1, Re 〈γ̇R, γR〉 = 0, and we need to calculate Im 〈γ̇R, γR〉.
We write ak = αk + iβk and vk = υk + iωk. Then V (a) =

∑n

k=1(−βk∂xk
+ αk∂yk) and

iIm 〈γ̇R(s), γR(s)〉 = iIm
∑n

k=1

(

− (αk + iβk)‖v‖ sin(‖v‖s) + (υk + iωk) cos(‖v‖s)
)

×
(

(αk − iβk) cos(‖v‖s) + (υk−iωk)
‖v‖ sin(‖v‖s)

)

= i
∑n

k=1

(

− βkυk + αkωk

)

= id(v, V (a)).
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This completes the proof of the theorem. �

Remark 1. We have used the ideas developed in [15] for general principal G-bundles, in
our case for the circle bundle of (2n − 1)-dimensional spheres and the sub-Riemannian
metric given by the restriction of the Euclidean metric. The equations for geodesics in
the particular case of S3 were obtained in [9] by solving the Hamiltonian system, in [5] by
applying the general Lie group theory and in [11] as a solution to a variational equation. It
was shown in [13] that sub-Riemannian geometry on S3 induced by CR-stucture of S3 →֒ C2,
by the Hopf fibration, and by Lie group structure S3 of unit quaternions coincide.

Remark 2. The solution to a variational equation in [11] depends on a real parameter
λ that the authors call curvature. This parameter for a geodesic starting at the point
a coincides with d(v, V (a)) as was shown in [14]. The variational equation can not be
generalized into the higher dimensions, but as we will see the value d(v, V (a)) will play an
important role in the behavior of geodesics. We continue to use the notation |vF(a)| =
d(v, V (a)).

Remark 3. The group SU(n) acts in Cn transitively on S2n−1 = SU(n)/ SU(n− 1), more-
over, the action is conformal isometrically. Therefore, the normal vector field N is in-
variant under the action of SU(n). Since the orthogonal structure HT ⊕ spanC(N + iN)
is preserved under the action of SU(n) we conclude that the vector field V = iN is also
invariant under the action of SU(n). Thus if φ ∈ SU(n), then

S
2n−1 ∋ a 7→ φa ∈ S

2n−1,

FTa ∋ V (a) 7→ φ∗V (a) = V (φa) ∈ FTφa, HTa 7→ HTφa.
Furthermore,

|vF(a)| = d(v, V (a)) = d(φv, V (φa)) = |vF(φa)|, d(v, v) = d(φv, φv)

vH(a) 7→ φvH(a) = vH(φa).

Any geodesic parametrized by arc length, that is ‖vH‖ = 1, is uniquely determined by
the initial point a, and the initial horizontal vH(a) and the vertical vF (a) velocities. Let us
denote such a curve by γ(s; a, vH, vF). Then

φγ(s; a, vH, vF) = γ(s;φa, φ∗vH, φ∗vF).

4. Open and closed sub-Riemannian geodesics on S
2n−1

Let us suppose that geodesic (4) is parametrized by arc length: ‖vH‖ = 1. Then ‖v‖ =
√

1 + |vF |2. We are looking for the points of intersection with the vertical fiber at a, whose
equation is given by aeiφ, φ ∈ [0, 2π).

Theorem 2. Under the above notations we claim

1. If |vF |√
1+|vF |2

= p

q
< 1 is rational with p, q > 0 relatively prime, then for n = (2q)m,

m = 1, 2, . . ., the geodesic is a closed curve which meets the base point a for the first time for
m = 1, and then, it is periodic with minimal period 2π

√

q2 − p2. The length of each closed
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loop of the geodesic is 2π
√

q2 − p2. The geodesic intersects the fiber at points ae
iπn

(

q−p

q

)

,
n = 1, 2, . . . , 2q, for the first time and then periodically returns back. The length of the

part of the geodesic between the intersection points is equal to π
√

q2−p2

q2
.

2. If |vF |√
1+|vF |2

is irrational, then the geodesic is open and is diffeomorphic to the straight

line. It meets the fiber for ŝ = π√
1+|vF |2

n, n = 1, 2, . . ., at the points ae
iπn

(

1− |vF|√
1+|vF|2

)

.

Proof. In order to proof the theorem we need to find the moment s = ŝ, such that the
equation

e−is|vF |
(

a cos
(

s
√

1 + |vF |2
)

+
v

√

1 + |vF |2
sin
(

s
√

1 + |vF |2
)

)

= a

is verified. Due to Remark 3 it is sufficient to check the base point a = (1, 0, . . . , 0). It
follows that for s = ŝ = π√

1+|vF |2
n, n = 1, 2, . . ., the geodesic intersects the fiber at the

points ae
iπn

(

1− |vF|√
1+|vF|2

)

.

If the geodesic is closed, then ae
iπn

(

1− |vF |√
1+|vF|2

)

= a. We conclude that if |vF |√
1+|vF |2

is rational and |vF |√
1+|vF |2

= p

q
< 1 where p, q are relatively prime and positive, then for

n = 2q the geodesic returns back to a for the fist time, and then it becomes periodic
passing through the point a for each n = (2q)m, m = 1, 2, 3, . . .. The minimal period is

obtained by setting n = 2q and |vF |2 = p2

q2−p2
in ŝ and equals 2π

√

q2 − p2. The Carnot-

Carathéodory length of one closed loop is equal to ŝ = 2π
√

q2 − p2. The first loop of

a closed geodesic at the moments ŝ =
π
√

q2−p2

q
n, n = 1, 2, . . . , 2q, intersects the vertical

circle at the points ae
iπn

(

q−p

q

)

. The Carnot-Carathéodory length of each part between

intersections is
π
√

q2−p2

q
.

If the fraction |vF |√
1+|vF |2

is irrational, then the geodesic is open and is diffeomorphic

to the straight line. It also intersects the vertical circle at the moments s = π√
1+|vF |2

n

at the points ae
iπn

(

1− |vF|√
1+|vF|2

)

. The Carnot-Carathéodory length of each part between
intersections is π√

1+|vF |2
. �
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We can prove the following theorem (see also [11]) using the group structure of S3, which
is isomorphic to SU(2). The elements of SU(2) are the matrices

(

z1 z2
−z̄2 z̄1

)

,

where z1, z2 ∈ C, and |z1|2 + |z2|2 = 1, hence we also denote the elements of SU(2) by unit
vectors (z1, z2). Denote by e the unity (1, 0) of the group.

Theorem 3. The left translation φγ of a geodesic γ(s; e, vH, |vF |) by φ ∈ SU(2), φ =

(ρ, iv
√

1− ρ2), where ρ2 =
(

1 + (
√

1 + |vF |2 − |vF |)2
)−1

, belongs to the Clifford torus
{(w1, w2) ∈ S3 : |w1|2 = ρ2}.
Proof. To prove the theorem we need to find an element φ = (φ1, φ2) ∈ SU(2), such that

φγ(s; e, vH, |vF |) = (w1(s), w2(s)), with |w1|2 = ρ2,

where ρ is a constant depending on |vF |. We remind that the action of SU(2) on the sphere
S
3 is defined by

φ(z1, z2) = (φ1, φ2)(z1, z2) = (φ1z1 − φ2z̄2, φ1z2 + φ2z̄1).

The initial velocity vector v at the point (1, 0) has the form v = (i|vF |, eiα), where we
write eiα for the initial horizontal velocity vH. According to Remark 3, the coordinate w1

can be written as

w1 = e−is|vF |
(

φ1 cos
(

s
√

1 + |vF |2
)

+
(φv)1

√

1 + |vF |2
sin
(

s
√

1 + |vF |2
)

)

,

where (φv)1 = i|vF |φ1−e−iαφ2. Since we are interested only in a fixed value of |w1| = ρ > 0,

we can choose two free parameters in φ = (φ1, φ2). We set φ1 = ρ. Then |w2| =
√

1− ρ2,
and we take argφ2 = α − π

2
in order to make (φv)1 pure imaginary and to simplify the

calculation of |w1|2. Then

|w1|2 = ρ2
(

cos2
(

s
√

1 + |vF |2
)

+
(|vF |+

√
1−ρ2

ρ
)2

1 + |vF |2
sin2

(

s
√

1 + |vF |2
)

)

.

The equality
(|vF |+

√
1−ρ2

ρ
)2

1+|vF |2 = 1 gives ρ2 =
(

1 + (
√

1 + |vF |2 − |vF |)2
)−1

. This proves the

theorem. �

5. Boundary value problem and distance on S2n−1

Let us find the distance from the point a to a point p in a fiber, i. e., p ∈ aeiω, ω ∈ (0, π).

Theorem 4. The Carnot-Carathéodory distance dc−c(a, p) from a ∈ S2n−1 to the point
p = aeiω is

dc−c(a, p) =
√

ω(2π − ω).
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Proof. We assume that the geodesic γ(s, a, vH, |vF |) is parametrized by arc length and
ω ∈ (0, π). We need to solve the equation

e−is|vF |
(

a cos
(

s
√

1 + |vF |2
)

+
v

√

1 + |vF |2
sin
(

s
√

1 + |vF |2
)

)

= aeiω.

Arguing as in Theorem 2, we conclude that the geodesic intersects the fiber at the moments

ŝ = π√
1+|vF |2

n at the points ae
iπn

(

1− |vF|√
1+|vF|2

)

, n = 1, 2, . . .. We are interested in finding

|vF |, such that the geodesic γ(s, a, vH, |vF |) meets the point aeiω for the first time, or in
other words for n = 1. Thus,

π
(

1− |vF |
√

1 + |vF |2
)

= ω =⇒ |vF |2 =
(π − ω)2
ω(2π − ω) =⇒ ŝ =

√

ω(2π − ω).

Since the geodesic is parametrized by arc length, the value ŝ gives us the length of the
geodesic joining the points a and p. If the point p tends to a (or in other words ω → 0),
then the velocity |vF | tends to infinity and the length tends to 0.

The geodesic is not unique. Varying the directions of the horizontal velocities we obtain
uncountably many geodesics parametrized by the (2n − 3)-sphere. But all of them have
the same length.

There are geodesics that end at point p at times ŝ = π√
1+|vF |2

n, n > 1. The initial

velocity for the n-th case is

(|vF |)n =
πn− ω

ω(2πn− ω) .

For any fixed ω we have

(|vF |)n −→
n→∞

1

2ω
, ŝn =

√

ω(2πn− ω) −→
n→∞

∞.

If ω ∈ (π, 2π), then we can switch ω to −ω by spherical symmetry. If ω ∈ (0, 2π)+2πm,

m = 1, 2, . . ., then in order to find |vF | we have to solve the equation
(

1− |vF |√
1+|vF |2

)

= ω+πm
πn

for different combinations of m and n. The condition ω+πm
πn
∈ (0, 1) reduces this case to

the one considered above with the argument ω ∈ (0, π).

Since
√

ω(2π − ω) is the minimal length among all the geodesics, it gives the Carnot-
Carathéodory distance, see [20]. �

5.1. Boundary value problem and distance on S3. Since the study of boundary value
probem for arbitrary points of S2n−1, n > 2 is rather difficult, we concentrate our attention
on the case of S3. As it was shown in [13] the sub-Riemannian structure given by the
Hopf fibration and by the group structure SU(2) on S3 coincide. Therefore, we simplify
considerations taking the base point a = 1 = (1, 0) in complex coordinates. If v =
(v0 + iv1, v2 + iv3), then v0 = 0, v1 = |vF |, and v2, v3 are arbitrary. The formulas for
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geodesics turn into (z1(s), z2(s)), where

z1(s) = e−iv1s(cos(‖v‖s) + i
v1
‖v‖ sin(‖v‖s)),

z2(s) = e−iv1s
v2 + iv3
‖v‖ sin(‖v‖s).

In what follows we do not assume parametrization of geodesics by arc length, we suppose
that all of them are parametrized in the interval [0, 1]. For convenience, we rewrite geodesic
equations with the following notations

u :=
v1
‖v‖ , reiα :=

v2 + iv3
‖v‖ , ρ := ‖v‖.

Then

(7) z1(s) = e−iuρs(cos ρs + iu sin ρs),

(8) z2(s) = re−i(uρs+α) sin ρs.

Let us denote the endpoint at s = 1 of the geodesic by (z1, z2), z1 = |z1|eiθ1 , z2 = |z2|eiθ2 .
Then,

(9) z1 = e−iuρ(cos ρ+ iu sin ρ),

(10) z2 = re−i(uρ+α) sin ρ.

Given an endpoint (z1, z2), i.e., given the values of |z1|, arg z1 ∈ [−π, π), and arg z2 ∈
[−π, π), the unknown parameters are u, ρ, and α. The last parameter α is the simplest
one, which one defines it at the end of all computations relating it to arg z2.

Remark 4. Observe that u may belong only to the open interval u ∈ (−1, 1). If u = ±1,
then r = 0 by u2 + r2 = 1, and z2(s) ≡ 0, which implies that formulas (7–8) reduce to the
fixed point (1, 0).

• Exceptional cases. Let us start with the cases when the endpoint (z1, z2) lies on
the vertical line or on the horizontal sphere S2. In the first case z2 = 0.

– Vertical line and loops. The general case was considered in the previous
subsection in Theorem 4.

– Antipodal point (−1, 0) is the intersection of the vertical line starting at (1, 0)
and S2 considered as the base space for the fiber at (1, 0). We distinguish this
case because this point is the intersection of the horizontal sphere S

2 and the
vertical line, i.e., these points can be connected with geodesics either lying on
S2 for all s ∈ [0, 1], or leaving S2.

Proposition 1. The geodesics connecting the antipodal points (1, 0) and (−1, 0)
are given by formulas (7) and (8), s ∈ [0, 1] with
∗ ρ = πm, m ∈ N;
∗ u = (2p+ 1)/m for even m, where p is integer and −m

2
≤ p ≤ m

2
− 1;

∗ u = 2p/m for odd m, where p is integer and −m−1
2
≤ p ≤ m−1

2
;
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∗ α is arbitrary.
The length of these geodesics is d = π

√

m2 − (2p+ 1)2 for even m and d =

π
√

m2 − 4p2 for odd m. The Carnot-Carathéodory distance is dc−c = π and it
is realized by the geodesic with u = 0, ρ = π, which lies on S2.

Proof. The value r 6= 0, see Remark 4. So we have ρ = πm > 0. We avoid
the case m = 0 because the speed is 0 and there is no motion at all. Then
e−iπmu cos πm = −1 and

u =
2p+ 1

2q
, q ∈ N or u =

2p

2q + 1
, q ∈ N ∪ {0}, p ∈ Z,

where m = 2q or 2q + 1 respectively. In the first case, −q ≤ p ≤ q − 1, and
in the second −q ≤ p ≤ q. The rest of the unknowns are r =

√
1− u2 and an

arbitrary α. The length of the geodesics is defined as

d2p+1,2q = π
√

4q2 − (2p+ 1)2, or d2p,2q+1 = π
√

(2q + 1)2 − 4p2.

In the first case, the minimal length of geodesics d = π
√
3 is realized for q = 1,

p = 0 or q = 1, p = −1. In the second case, d = π for q = p = 0. Thus,
the Carnot-Carathéodory distance is given for u = 0 and the corresponding
geodesic joining (1, 0) and (−1, 0) lies on S2 and it is the half of a big circle
(mod(α)). �

Example. Let us write down explicit formulas for three geometrically different
(with respect to the rotational symmetry in α) geodesics for u = −1/2, 0, 1/2.
For u = ±1/2, the geodesics do not lie on S2 whereas for u = 0 the geodesic
lies entirely on S2.
{

z1(s) = e±iπs(cos 2πs± i
2
u sin 2πs),

z2(s) =
√
3
2
ei(±πs+α) sin 2πs,

{

z1(s) = cosπs,
z2(s) = eiα sin πs.

The last geodesic is the minimizer giving the Carnot-Carathéodory distance.
– Horizontal sphere. If the ending point (z1, z2) belongs to the vertical line,
then there are infinitely many geodesics joining the origin with (z1, z2). This
phenomenon is typical for sub-Riemannian geometry and it is seen in many
examples, for instance, for the Heisenberg group. However, in the case of the
sub-Riemannian sphere, the number of geodesics joining two points even of the
horizontal sphere is also infinite.

Proposition 2. Let (z1, z2) ∈ S2. There are countable number of geodesics
connecting the points (1, 0) and (z1, z2). The value z1 is real. These geodesics
are given by formulas (7) and (8), s ∈ [0, 1] where
∗ ρ = ρm, m ∈ N are solutions to the equation

cos ρ

cos

(

ρ

√

z21 − cos2 ρ

| sin ρ|

) = z1;
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∗ u = um = ±
√

z2
1
−cos2 ρm
sin2 ρm

;
∗ α = arg z2 − umρm.

The Carnot-Carathéodory distance is dc−c = | arccos z1| and it isrealized by the
geodesic with u = 0, ρ = arccos z1, which lies on S2.

Proof. If the point (z1, z2) belongs to the sphere S2, then Im z1 = 0. Let us
assume z1 ∈ (0, 1). This implies

(11) u sin ρ cos uρ = cos ρ sin uρ.

If u = 0, then there is a unique geodesic lying on S2 joining (1, 0) with (z1, z2)
modulo repeating big circles, Im z2 = 0. Its minimal length is d = | arccos z1|.
Indeed, we have ‖v‖ = ρ in this case which presents the horizontal speed and
which is preserved under the motion.
If cos ρ sin uρ = 0 and u 6= 0, then ρ = π

2
+ πn or uρ = πn. In both cases we

come to the conclusion that u = ±1, which we get rid of, see Remark 4.
In what follows we consider only the case u ∈ [0, 1) because the case u ∈ (−1, 0]
is treated similarly. If cos ρ sin uρ does not vanish, then all values sin ρ, cos ρ,
sin uρ, cos uρ are non-vanishing too, and hence, uρ, ρ 6= πn and uρ, ρ 6= π

2
+πn.

So the parameters u and ρ satisfy the system of equations

(12)
tanuρ

uρ
=

tan ρ

ρ
, z1 =

cos ρ

cosuρ
.

Combining them we obtain the explicit function

(13) u2 =
z21 − cos2 ρ

sin2 ρ
,

which is defined in each interval ρ ∈ Dn ≡ (arccos z1+πn, π(n+1)−arccos z1),
which is open because u 6= 0 and we choose arccos z1 ∈ (0, π/2). Substituting
u = u(ρ) in any of two equations from the system (12) we obtain the equation

(14)
cos ρ

cos

(

ρ

√

z21 − cos2 ρ

| sin ρ|

) = z1.

Let us denote the left-hand side of the latter equality by Φ(ρ) for every z1 ∈
(−1, 1) fixed, see its graph in Figure 1. The function Φ is rather complicated
to investigate completely.
However, the derivative is calculated as

Φ′(ρ) = − sin ρ

cos uρ
(1− u2)(1− ρ cot ρ),

substituting u from (13). Observe again that the function Φ is defined only on
⋃∞

n=1Dn where it vanishes at the points π
2
+ πn ∈ Dn. We have

Φ′(
π

2
+ πn) =

(−1)n+1(1− z21)
cos(z1(

π
2
+ πn))

6= 0,∞.
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Figure 1. Graph of the function Φ(ρ) for z1 = 0.7.

The first equation from system (12) implies that solution to (14) may be
searched only for ρ > π. The vertical asymptotes are at the points ρ = ρm,
where ρm are the roots of the equation

(15) ρ

√

z21 − cos2 ρ

| sin ρ| =
π

2
+ πm, m = 1, 2, 3 . . . .

Let us denote by Ψ(ρ) the left-hand side of the latter equation. The func-
tion Ψ(ρ) is continuous in each interval Dn and vanishes at its endpoints, see
Figure 2 and 3. Moreover,

z1(
π

2
+ πn) < max

Dn

Ψ(ρ) < (n + 1)π − arccos z1

in this interval.
Thus, there are at least two values of m for n ∈ N, n > n0 ≡ n0(z1), such that
solutions to equation (15) exist and they are different from π

2
+ πn. Let us

denote by ρ′n and ρ′′n the solutions to (15), such that π
2
+πn ∈ (ρ′n, ρ

′′
n) and there

are no other solutions in this interval. Then the function Φ(ρ) has asymptotes
at ρ′n and ρ′′n, it is continuous in the interval (ρ′n, ρ

′′
n), vanishes at

π
2
+ πn, and

ranges in (−∞,∞) on (ρ′n, ρ
′′
n). Therefore, the equation (14) has at least one

solution in (ρ′n, ρ
′′
n). Since n ranges in N, n > n0 for n0 sufficiently large, we

have an infinite number of geodesics joining two points on the horizontal sphere
S2.
The inequality π

2

√
1− x2 > arccosx for x ∈ (0, 1) assures that the geodesic

entirely lying on S2 realizes the minimal distance. �
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Figure 2. Graph of the function Ψ(ρ) for z1 = 0.7.
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Figure 3. Zoom of the graph of the function Ψ(ρ) for z1 = 0.7 in the interval D4.

• General case. Assume that the endpoint (z1, z2) does belong neither to the vertical
line nor to the horizontal sphere S

2. The equation (10) implies

rρ ≥ r| sin ρ| = |z2|,
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Figure 4. Graph of the function B(u).

where rρ is the length of the geodesic. At the same time, the relation

cot ρ = σ1σ2

√

|z1|2 − u2
|z2|

= σ1σ2

√

r2 − |z2|2
|z2|

,

follows from (10) with

σ1 = sgn [cos ρ], σ2 = sgn [sin ρ].

Observe that ρ = πm corresponds to the exceptional case (z1, z2) in the vertical line,
and hence, the function cot ρ is well-defined and finite. The equation (9) implies

ei(θ1+ρu) =
cos ρ+ iu sin ρ

√

cos2 ρ+ u2 sin2 ρ
=
σ1
√

|z1|2 − u2 + iσ2u|z2|
r|z1|

, ρ 6= πm.

– Case σ1 > 0, σ2 > 0. The equations for u and ρ > 0 become

ρ = arccot

√

|z1|2 − u2
|z2|

+ 2πq, q ∈ N ∪ {0},

θ1 = arccot

√

|z1|2 − u2
u|z2|

− u arccot
√

|z1|2 − u2
|z2|

+ 2π(p− uq), p ∈ Z.

where the branch of arccot is chosen to be in the interval (0, π). Observe that

arccot

√

|z1|2 − u2
|z2|

∈ (0,
π

2
].
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Figure 5. Graph of the function B(u) + 2π(p− 3u), |z1| = 0.7.

If u > 0, then also

arccot

√

|z1|2 − u2
u|z2|

∈ (0,
π

2
].

Denote

B(u) = arccot

√

|z1|2 − u2
u|z2|

− u arccot
√

|z1|2 − u2
|z2|

.

One finds its graph in Figure 4. Obviously it is an odd function and |B(u)| ≤ π
2
.

The inequalities −π < θ1 < π and |u| < 1 imply −3π
2
< 2π(p − uq) < 3π

2
.

Therefore, −3
4
− q < p < q + 3

4
, or −q ≤ p ≤ q. The equation θ1 = B(u)

corresponds to the choice q = 0, p = 0. We visualize possible choices of p for
q = 3 in Figure 5.

– Case σ1 < 0, σ2 < 0. The equations for u and ρ > 0 turn into

ρ = arccot

√

|z1|2 − u2
|z2|

+ π(2q + 1), q ∈ N ∪ {0},

θ1 = arccot

√

|z1|2 − u2
u|z2|

− u arccot
√

|z1|2 − u2
|z2|

+ π((2p+ 1)− u(2q + 1)),

p ∈ Z with the same branch of arccot as in the previous case. The inequalities
−π < θ1 < π and |u| < 1 imply −q − 1 ≤ p ≤ q + 1.

– Cases σ1σ2 = −1. These two cases come down to the previous ones changing
ρ→ −ρ.

• Carnot-Carathéodory distance. The length of a geodesic is calculated as
ρ
√
1− u2, where u and ρ are defined below.
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Figure 6. Graph of the function B(u) + 2π(p− u) for p = −1, 0, 1.

– Let 0 < |θ1| ≤ π
2
(1−|z1|). In the case σ1 > 0, σ2 > 0, there is a unique solution

u = u0 to the equation B(u) = θ1 (see Figure 4). The corresponding value for ρ
with q = 0 we denote by ρ0. All solutions to the equation B(u)+2π(p−uq) = θ1
with q > 0 we denote by up,q and the corresponding value of ρ we denote by
ρp,q. The function

√
1− x2

(

arccot

√

|z1|2 − x2
|z2|

)

is even and increases in x ∈ [0, |z1|], which implies that

ρ0

√

1− u20 =
√

1− u20

(

arccot

√

|z1|2 − u20
|z2|

)

≤ π

2
|z2| < 2πq|z2| ≤

≤
√

1− u2p,q



arccot

√

|z1|2 − u2p,q
|z2|

+ 2πq



 = ρp,q

√

1− u2p,q.

Similarly other choices of σ1 and σ2 do not give the minimizing geodesic. So if
0 < |θ1| ≤ π

2
(1− |z1|), then the minimal length is

d =
√

1− u20

(

arccot

√

|z1|2 − u20
|z2|

)

,

where u0 is a unique solution to the equation B(u) = θ1.
– Let |θ1| > π

2
(1 − |z1|). Then there is no solution to the equation B(u) = θ1.

The situation is even more complicated. We visualize it in Figure 6. If q = 1 we
can guarantee a solution to the equation B(u) + 2π(p− u) = θ1 for |z1| ≥ 3/4.
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Therefore, in the case when the equation B(u)+2π(p−u) = θ1 has a solution,
let us consider q = 1 and q > 1. The function

√
1− x2

(

arccot

√

|z1|2 − x2
|z2|

+ 2π

)

attains its maximum in the interval x ∈ [−|z1|, |z1|] at the point x = 0. More-
over, we have an elementary trigonometric inequality

arccot

√
1− x2
x

< 2πx, x ∈ (0, 1].

Hence, in the case σ1 > 0, σ2 > 0 and q ≥ 2, we have the following chain of
inequalities

ρp,1

√

1− u2p,1 =
√

1− u2p,1



arccot

√

|z1|2 − u2p,1
|z2|



 ≤ arccot
|z1|
|z2|

<

< 2πq|z2| ≤
√

1− u2p,q



arccot

√

|z1|2 − u2p,q
|z2|

+ 2πq



 = ρp,q

√

1− u2p,q.

Thus, d = min
p=−1,0,1

ρp,1

√

1− u2p,1.
– In general case, we are able to give an algorithm of finding geodesics and
the length. Let qm be a minimal non-negative integer for which the equation
B(u) + 2π(p− qu) = θ1 has a solution. Then the distance is calculated as

d = min

{

ρp,qm

√

1− u2p,qm
∣

∣

∣

∣

among p = {−qm,−qm + 1, . . . ,−1, 0, 1, . . . , qm − 1, qm

}

.

References

[1] A. Agrachev, Yu. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Math. Sci.,
87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004, 412 pp.

[2] Ch. Anastopoulos, N. Savvidou, Quantum mechanical histories and the Berry phase, Intern. J. Theor.
Phys. 41 (2002), no. 3, 529–540.

[3] M. V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392 (1984),
45–57.
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