
ar
X

iv
:1

00
9.

54
20

v1
  [

m
at

h.
L

O
] 

 2
8 

Se
p 

20
10

EXAMPLES IN DEPENDENT THEORIES

ITAY KAPLAN AND SAHARON SHELAH

Abstract. We show a counterexample to a conjecture by Shelah regarding
the existence of indiscernible sequences in dependent theories.

1. Introduction

In the summer of 2008, Saharon Shelah announced in a talk in Rutgers that he
had proved some very important results in dependent (NIP) theories. One of these
was the existence of indiscernible, an old conjuncture of his. Here is the definition:

Definition 1.1. Let T be a theory. For a cardinal κ, n 6 ω and an ordinal δ,
κ → (δ)T ,n means: for every sequence 〈aα |α ∈ κ 〉 ∈ κ

(Cn), there is a non-constant
sub-sequence of length δ which is an indiscernible sequence.

In stable theories, it is known that for any λ satisfying λ = λ|T |, λ+ → (λ+)T ,n

(proved by Shelah in [10], and follows from local character of non-forking). The first
such claim of this kind was proved by Morley in [3] for ω-stable theories. Later, in
[9], Shelah proved

Theorem 1.2. If T is strongly dependent, then for all λ > |T |, i|T |
+ (λ) → (λ+)T ,n

for all n < ω.

Shelah conjectured that this is true as well under just the assumption of NIP.
This conjuncture is connected to a result by Shelah and Cohen: in [1], they proved
that a theory is stable iff it can be presented in some sense in a free algebra in a
fix vocabulary but allowing function symbols with infinite arity. If this result could
be extended to: a theory is dependent iff it can be represented as an algebra with
ordering, then this could be used to prove existence of indiscernibles.
Despite announcing it, there was a mistake in the proof for dependent theories, and
here we shall see a counter-example. In this paper, we shall show that

Theorem 1.3. There is a countable dependent theory T such that if κ is smaller
than the first inaccessible cardinal, then for all n ∈ ω, κ 6→ (ω)T ,n.

It appears in a more precise way as theorem 3.8 below.
An even stronger result can be obtained, namely

Theorem 1.4. For every θ there is a dependent theory T of size θ such that for
all κ and δ, κ → (δ)T ,1 iff κ → (δ)

<ω
θ .

where
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Definition 1.5. κ → (δ)
<ω
θ means: for every coloring c : [κ]

<ω → θ there is

an homogeneous sub-sequence of length δ (i.e. there exists 〈αi |i < δ〉 ∈ δλ and
〈cn |n < ω 〉 ∈ ωθ such that c (αi0 , . . . ,αin−1

) = cn for every i0 < . . . < in−1 < δ).

One can see that κ → (δ)
<ω
θ implies κ → (δ)T ,1, so this is the best result possible.

However, the proof is considerably harder, so we will give the proof in a subsequent
paper.

The second part of the paper is devoted to giving a related example in the field of
real numbers, R. By 1.2, and as Th (R) is strongly dependent, we know we cannot
prove the same theorem, so we allow dealing with sequences of infinite tuples of
elements of the model (ω-tuples in fact). The exact statement is:

Theorem 1.6. If λ is smaller than the first inaccessible cardinal, then for all
n ∈ ω, κ 6→ (ω)RCF,ω.

This is theorem 4.4.
The third part of the paper is devoted to another kind of counterexample. In a

series of papers ([7, 6, 8, 5]), Shelah has proved (among other things) that depen-
dent theories give rise to a “generic pair” of models (and in fact this characterize
dependent theories). This is explained in more details in the section. The natural
question is whether the theory of the pair is again dependent. The answer is no.
We present an example of an ω-stable theory all of whose generic pair (and even
weakly generic – see there) have the independence property.

Notes. Many strong results that have been announced in that talk in 2008 remain
true. For instance, the main theorem there is that a theory is dependent iff the
number of types up to isomorphism is small and there is a so called polarized
theorem (see more in [5]).
We also should note that a related result can be found in an unpublished paper
in Russian by Kudajbergenov that states that for every ordinal α there exists a
dependent theory (but it may be even strongly dependent) Tα such that |Tα| =
|α| + ℵ0 and iα (|Tα|) 6→ (ℵ0)Tα,1 and thus seem to show that the bound in 1.2 is
tight.

Idea of the construction. The counterexample is a “tree of trees” with functions
connecting the different trees. For every η in the tree ω>2 we shall have a predicate
Pη and an ordering <η such that (Pη,<η) is a dense tree. In addition we shall have
functions Gη,ηˆ{i} : Pη → Pηˆ〈i〉 for i = 0, 1. The idea is to prove that κ 9 (µ)T ,1

by induction on κ, i.e. to prove that in P〈〉 there are no indiscernibles. To use the
induction hypothesis, we push the counter examples we already have for smaller
κ-s to deeper levels in the tree ω>2 .

2. Preliminaries

2.1. Notation. We use standard notation. a,b, c are elements, and ā, b̄, c̄ are
finite or infinite tuples of elements.
C will be the monster model of the theory.
Sn (A) is the set of complete types over A, and S

qe
n (A) is the set of all quantifier

free complete types over A.
For a finite set of formulas with a partition of variables, ∆ (x̄; ȳ), S∆(x̄;ȳ) (A) is the
set of all ∆-types over A, i.e. maximal consistent subsets of
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{ϕ (x̄, ā) ,¬ϕ (x̄, ā) |ϕ (x̄, ȳ) ∈ ∆& ā ∈ A }. Similarly we define tp∆(x̄;ȳ)

(

b̄/A
)

as

the set of formulas ϕ (x̄, ā) such that ϕ (x̄, ȳ) ∈ ∆ and C |= ϕ
(

b̄, ā
)

.

2.2. Dependent theories. For completeness, we give here the definitions and
basic facts we need on dependent theories.

Definition 2.1. A first order theory T is dependent if it does not have the in-
dependence property which means: there is no formula ϕ (x̄, ȳ) and elements in
〈

āi, b̄s |i < ω, s ⊆ ω
〉

in C such that ϕ
(

āi, b̄s

)

iff i ∈ s.

We shall need the following fact (see [10, II, 4])

Fact 2.2. Let T be any theory. Then for all n < ω, T is dependent iff �n iff �1

where for any k < ω,

�k For every finite set of formulas ∆, and ϕ (x̄; ȳ) such that lg (x̄) = k, there
is a polynomial f such that for every finite set A ⊆ M |= T ,

∣

∣S∆(x̄;ȳ) (A)
∣

∣ 6

f (|A|).

Also, later, we shall need the notion of p(ω) for an invariant type p and a basic
fact about them:

Definition 2.3. Suppose p (x) and q (y) are global invariant types, i.e. invariant
over a small set A. Then p⊗ q (x,y) is a global invariant type defined as follows:
for any B ⊇ A, let a |= p|B and b |= q|Ba, then p⊗q =

⋃

B⊇A tp (a,b/B). One can

easily check that it is well defined and invariant over A. Let p(n) = p ⊗ p . . . ⊗ p
where the product is done n times. So p(n) is a type in (x0, . . . , xn−1), and p(ω) =
⋃

n<ω p(n) and it is a type in (x0, . . . , xn, . . .).

Fact 2.4. (see [2, Lemma 2.5]) If T is NIP then for a set A the function with
domain global invariant types over A that takes p to p(ω) ↾ A is injective.

3. An example of lack of indiscernibles

Let Sn be the finite binary tree n>2. On a well ordered tree such as Sn, we
define <suc as follows: η <suc ν if ν is a successor of η in the tree.
Let Ln be the following language:

Ln = {Pη,<η,∧η,Gη,ν |η,ν ∈ Sn,η <suc ν } .

Where:

• Pη is a unary predicate ; <η is a binary relation symbol ; ∧η is a binary
function symbol ; Gη,ν is a unary function symbol.

Let T∀
n be the following theory:

• Pη ∩ Pν = ∅ for η 6= ν.
• (Pη,<η,∧η) is a tree, where ∧η is the intersection function on Pη, i.e.
x ∧η y = max {z ∈ Pη |z 6η x& z 6η y } (so if for example, x /∈ Pη, then
x∧η y = x).

• Gη,ν : Pη → Pν, meaning that outside Pη, Gη,ν is the identity, and no
further restrictions.

Thus we have:

Claim 3.1. T∀
n is a universal theorem.
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Claim 3.2. T∀
n has JEP and AP.

Proof. Easy to see. �

From this we deduce,

Corollary 3.3. T∀
n has a model completion, Tn which eliminates quantifiers, and

moreover: if M |= T∀
n+1, M

′ = M ↾ Ln and M ′ ⊆ N ′ |= T∀
n then N ′ can be enriched

to a model N of T∀
n+1 so that M ⊆ N. Hence if M is an existentially closed model

of T∀
n+1, then M ′ is an e.c. model of T∀

n. Hence Tn ⊆ Tn+1.

Proof. The moreover part: for each η ∈ Sn+1\Sn, we define PN
η = PM

η and in the
same way ∧η. The functions Gη,ν for η ∈ Sn and ν ∈ Sn+1 will be extensions of
Gη,ν. �

Now we show that Tn is dependent, but before that, a few easy remarks:

Observation 3.4.

(1) If A ⊆ M |= T∀
0 is a finite substructure (so just a tree, with no extra

structure), then for all b ∈ M, the structure generated by A and b is
A ∪ {b} ∪ {max {b∧ a |a ∈ A }}.

(2) If M |= T∀
n and η ∈ n>2, we can define a new structure Mη |= T∀

n−lg(η)

whose universe is
⋃

{

PM
ηˆν

∣

∣ν ∈ n−lg(n)>2
}

by: P
Mη

ν = PM
ηˆν, and in the

same way we interpret every other symbol (for instance,

G
Mη
ν1,ν2

= GM
ηˆν1,ηˆν1

). For every formula ϕ (x̄) ∈ Ln−lg(η) there is a formula

ϕ′ (x̄) ∈ Ln such that for all ā ∈ Mη, M |= ϕ′ (ā) iff Mη |= ϕ (ā) (we get
ϕ′ by concatenating η before any symbol).

(3) For M as before and η ∈ n>2, for any k < ω there is a bijection between{
p (x0, . . . , xk−1) ∈ Sqe

k (M) |∀i < k (Pη (xi) ∈ p)
}

and
{
p (x0, . . . , xk−1) ∈ S

qe
k (Mη)

∣

∣∀i < k
(

P〈〉 (xi) ∈ p
)}

.

Proof. (3): The bijection is given by (2). This is well defined, meaning that if
p (x0, . . . , xk−1) is a type over Mη such that ∀i < k

(

P〈〉 (xi) ∈ p
)

, then {ϕ′ (x̄) |ϕ (x̄) ∈ p }

determines a complete type over M, such that ∀i < k (Pη (xi) ∈ p). This is because

any atomic formula of the form F (x̄, ā) <ν G
(

x̄, b̄
)

where ā, b̄ ∈ M and F, G are

terms is either trivially false, as in the case ν 6> η, or trivially equivalent to a for-
mula with no involvement of the x̄s at all (as in the case a∧η x <ν b where a /∈ Pη)

or it is equivalent to a formula of the form F′ (x̄, ā ′) <ν G ′
(

x̄, b̄ ′
)

where ā ′, b̄ ′ are

from Mη (for example, if F = x0 ∧ Gν,η (a), then a ′ = Gν,η (a)). Obviously it is
injective and onto. �

Proposition 3.5. Tn is dependent.

Proof. We use fact 2.2. It is sufficient to find a polynomial f (x) such that for every
finite set A,

∣

∣S1 (A)
∣

∣ 6 f (|A|).
First we note that for a set A, the size of the structure generated by A is bounded
by a polynomial in |A|: it is generated by applying ∧〈〉 on P〈〉 ∩A, applying G〈〉,〈1〉

and G〈〉,〈0〉, and then applying ∧〈0〉,∧〈1〉 and so on. Every step in the process is
polynomial, and it ends after n steps.
Hence we can assume that A is a substructure, i.e. A |= T∀

n.
The proof is by induction on n. To easy notation, we shall omit the subscript η
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from <η and ∧η.
First we deal with the case n = 0. In T0, P〈〉 is a a tree with no extra structure,
while outside P〈〉 there is no structure at all. The number of types outside P〈〉 is
bounded by |A|+ 1 (because there is only one non-algebraic type). In the case that
P〈〉 (x) ∈ p for some type p over A, we can characterize p by characterizing the
type of x ′ := max {a∧ x |a ∈ A }, i.e. the cut that x ′ induces on the tree, and by
knowing whether x ′ = x or x > x ′ (we note that in general, every theory of a tree
is dependent by [4]).
Now assume that the claim is true for n. Suppose η ∈ n+1>2 and 1 6 lg (η). By
3.4(3), there is a bijection between the types p (x) over A where Pη (x) ∈ p and the
number of types p (x) in Tn+1−lg(η) over Aη where P〈〉 ∈ p. Aη |= T∀

n+1, and so by
the induction hypothesis, the number of types over Aη is bounded by a polynomial
in |Aη| 6 |A|. As the number of types p (x) such that Pη (x) /∈ p for all η is bounded
by |A| + 1 as in the previous case, we are left with checking the number of types
p (x) such that P〈〉 (x) ∈ p.
In order to describe p, we first have to describe p restricted to the language{
<〈〉,∧〈〉

}
, and this is polynomially bounded. Let x ′ = max {a∧ x |a ∈ A }. By

the remark above, if A ∪ {x} is not closed under ∧〈〉, x
′ is the only new element in

the structure generated by A∪ {x} in P〈〉. Hence , we are left to determine the type

of the pairs
(

G〈〉,〈i〉 (x) ,G〈〉,〈i〉 (x
′)
)

over A for i = 0, 1 (if x ′ is not new, then it’s
enough to determine the type of G〈〉,〈i〉 (x)). The number of these types is equal to
the number of types of pairs in Tn over A〈i〉. As Tn is dependent we are done by
fact 2.2. �

Definition 3.6. Let L =
⋃

n<ω Ln, T =
⋃

n<ω Tn and T∀ =
⋃

n<ω T∀
n (it follows

that T is the model completion of T∀).

Note that we need the moreover part of 3.3 to know that Tn ⊆ Tn+1.
We easily have

Corollary 3.7. T is complete, it eliminates quantifiers and is dependent.

We shall prove the following theorem:

Theorem 3.8. For any two cardinals µ 6 κ such that in [µ, κ] there are no inac-
cessible cardinals, κ 9 (µ)T ,1.

We shall prove a slightly stronger statement, by induction on κ:

Claim 3.9. Given µ and κ, such that either κ < µ or there are no (uncountable)

strongly inaccessible cardinals in [µ, κ], there is a model M |= T∀ such that
∣

∣

∣PM
〈〉

∣

∣

∣ > κ

and PM
〈〉 does not contain a non-constant indiscernible sequence (for quantifier free

formulas) of length µ.

Remark 3.10. From now on, indiscernible will only mean “indiscernible for quantifier
free formulas”; this clearly suffices.

Proof. Suppose we have µ. The proof is by induction on κ. We divide into cases:

Case 1. κ < µ. Clear.

Case 2. κ = µ = ℵ0. Denote ηj = 〈1 . . . 1〉, i.e. the constant sequence of length
j and value 1. Find M |= T∀ such that its universe contains a set {ai,j |i, j < ω }

where ai,j 6= ai′,j′ for all (i, j) 6= (i ′, j ′), ai,j ∈ Pηj
and in addition Gηj,ηj+1

(ai,j) =
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ai,j+1 if j < i and Gηj,ηj+1
(ai,j) = a0,j+1 otherwise. We also need that PM

〈〉 =

{ai,0 |i < ω }. Any model satisfying these properties will do (so no need to specify
what the tree structures are). Now. if in PM

〈〉 = {ai,0 |i < ω } there is a non-constant

indiscernible sequence, 〈aik,0 |k < ω 〉, then there is a large enough j such that

Gηj,ηj+1
◦ . . . ◦Gη0,η1

(ai0,0) = Gηj,ηj+1
◦ . . . ◦Gη0,η1

(ai1,0) .

But for every large enough k, Gηj,ηj+1
◦ . . . ◦ Gη0,η1

(ai1,0) 6= Gηj,ηj+1
◦ . . . ◦

Gη0,η1
(aik,0) – contradiction.

Case 3. κ is singular. Suppose κ =
⋃

i<σ λi where σ, λi < κ for all i < σ. By the

induction hypothesis, for i < σ there is a model Mi |= T∀ (for λi) such that in PMi

〈〉

there is no non-constant indiscernible sequence of length µ. Also, there is a model
N (for σ) such that in PN

〈〉 there is no non-constant indiscernible sequence of length

µ. We may assume that the universes of all these models are pairwise disjoint and
disjoint from κ.
So there are enumerations without repetition {ai |i < σ } ⊆ PN

〈〉 , and

{bj |
⋃

{λl |l < i } 6 j < λi } ⊆ PMi

〈〉 that witness
∣

∣

∣
PN
〈〉

∣

∣

∣
> σ,

∣

∣

∣
PMi

〈〉

∣

∣

∣
> λi > |λi\

⋃

{λl |l < i }| resp. Let M̄ be a model extending each Mi and

hence containing the disjoint union of the sets
⋃

i<σ Mi (exists by JEP).

Define a new model M |= T∀:
(

PM
〈〉 ,<〈〉

)

= (κ,∈) (so ∧〈〉 = min);
(

PM
〈1〉ˆη,<η

)

=
(

PN
η ,<η

)

and
(

PM
〈0〉ˆη,<〈0〉,η

)

=
(

PM̄
η ,<η

)

. In the same way define ∧η for all η

of length > 1. The functions are also defined in the same way: GM
〈1〉ˆη,〈1〉ˆν =

GN
η,ν and GM

〈0〉ˆη,〈0〉ˆν = GM̄
η,ν. We are left to define G〈〉,〈0〉 and G〈〉,〈1〉. So let:

G〈〉,〈1〉 (α) = amin{i|α∈λi } and G〈〉,〈0〉 (α) = bα for all α < κ.

Note that if I is an indiscernible sequence contained in PM
〈1〉 then I is an indiscernible

sequence in N contained in PN
〈〉 , and the same is true for 〈0〉 and M̄ resp.

Assume 〈αj |j < µ 〉 is an indiscernible sequence in PM
〈〉 . Then

〈

G〈〉,〈1〉 (αj) |j < µ
〉

is

a constant sequence (by the choice of N). So there is i < σ such that
⋃

{λl |l < i } 6

αj < λi for all j < µ. So
〈

G〈〉,〈0〉 (αj) = bαj
|j < µ

〉

is a constant sequence (it’s

indiscernible in PM̄
〈〉 and in fact contained in PMi

〈〉 ), hence 〈αj |j < µ 〉 is constant, as

we wanted.

Case 4. κ is regular uncountable. By the hypothesis of the claim, κ is not strongly
inaccessible, so there is some λ < κ such that 2λ > κ. By the induction hypothesis
on λ, there is a model N |= T∀ such that in PN

〈〉 there is no non-constant indiscernible

sequence of length µ. Let {ai |i 6 λ } ⊆ PN
〈〉 witness that

∣

∣

∣PN
〈〉

∣

∣

∣ is at least λ.

Define M |= T∀ as follows: PM
〈〉 = λ>2 and the ordering is inclusion (equiva-

lently, the ordering is by initial segment). ∧〈〉 is defined naturally: f ∧〈〉 g =

f ↾ min {α |f (α) 6= g (α) }.
For all η, let PM

〈1〉ˆη = PN
η , and the ordering and the functions are naturally induced

from N. The main point is that we set G〈〉,〈1〉 (f) = alg(f). Let PM
〈0〉ˆη, G〈0〉ˆη,〈0〉ˆν,

etc. have any legal values according to T∀. Let G〈〉,〈0〉 be any function.
Suppose that 〈fi |i < µ 〉 is an non-constant indiscernible sequence:
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If f1 < f0 (i.e. f1 <〈〉 f0), we shall have an infinite decreasing sequence in a well-
ordered tree – a contradiction.

If f0 < f1, 〈fi |i < µ 〉 is increasing, so
〈

GM
〈〉,〈1〉 (fi) = alg(fi) |i < µ

〉

is non-constant

– contradiction (as it is an indiscernible sequence in M and hence in PN
〈0〉).

Let hi = f0 ∧ fi+1 for i < µ (where ∧ = ∧〈〉). This is an indiscernible sequence,
and by the same arguments, it cannot increase or decrease, but as hi 6 f0, and
(

P〈〉,<〈〉

)

is a tree, it follows that hi is constant.
Assume f0 ∧ f1 < f1 ∧ f2, then f2i ∧ f2i+1 < f2(i+1) ∧ f2(i+1)+1 for all i < µ,
and again 〈f2i ∧ f2i+1 |i < µ 〉 an increasing indiscernible sequence and we have a
contradiction.
By the same reasoning, it cannot be that f0∧ f1 > f1∧ f2. As both sides are less or
equal than f1, it must be that f0∧f2 = f0∧f1 = f1∧f2. But that is a contradiction
(because if α = lg (f0 ∧ f1), then |{f0 (α) , f1 (α) , f2 (α)}| = 3).

�

4. RCF

Here we give a related theorem about the theory of Real closed fields, i.e.
Th (R,+, ·, 0, 1,<). Fix RCF as our theory, so C |= RCF.
For our proof we need a more lenient version of the arrow relation (see 4.2 below),
this helps with the induction hypothesis.

Notation 4.1. The set of all open intervals (a,b) (where a < b and a,b ∈ C) is
denoted by I.

Definition 4.2. For a cardinal κ, n 6 ω (i.e. n < ω or n = ω) and an ordinal δ,

κ → (δ)
interval
n means: for every sequence of (non-empty, open) n-tuples of intervals

〈

Īα |α < κ
〉

∈ κ
(In) (so for each α, Īα = 〈Iεα |ε < n 〉), there is a subset u ⊆ κ

of order type δ, and
〈

b̄ε |ε ∈ u
〉

such that b̄ε ∈ Īε (i.e. b̄ε =
〈

b0
ε, . . . ,b

n−1
ε

〉

and

bi
ε ∈ Iiε) such that

〈

b̄ε |ε ∈ δ
〉

is a non-constant indiscernible sequence.

Remark 4.3. Note that

(1) If κ → (δ)
interval
n then κ → (δ)

interval
m for all m 6 n.

(2) If κ 6→ (δ)
interval
n then κ 6→ (δ)RCF,n (why? if

〈

Īα |α < κ
〉

witness that

κ 6→ (δ)
interval
n , then choose b̄α ∈ Īα (as above) such that

〈

b̄α |α < κ
〉

is without repetitions, and by definition it will not have an indiscernible
sub-sequence of length δ).

(3) If λ < κ and κ 6→ (δ)
interval
n then λ 6→ (δ)

interval
n .

We shall prove the following theorem:

Theorem 4.4. For any two cardinals µ 6 κ such that in [µ, κ] there are no inac-

cessible cardinals, κ 9 (µ)
interval
ω .

The proof follows from a sequence of claims:

Claim 4.5. If κ < µ then κ 6→ (µ)
interval
n for all n 6 ω.

Proof. Obvious. �
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Claim 4.6. If κ = µ = ℵ0 then κ 6→ (µ)
interval
1 .

Proof. For n < ω, let In = (n,n + 1). �

Claim 4.7. Suppose κ =
⋃

{λi |i < σ } and n 6 ω. Then, if σ 6→ (µ)
interval
n and

λi 6→ (µ)
interval
n then κ 6→ (µ)

interval
2+2n .

Proof. By assumption, we have a sequence of intervals
〈

R̄i |i < σ
〉

that witness

σ 6→ (µ)
interval
n and for each i < σ we have

〈

S̄β

∣

∣

∣

⋃

j<i λj < β < λi

〉

that witness

λi 6→ (µ)
interval
n .

First, fix an increasing sequence of elements 〈bi |i < σ 〉.
For α < κ, let β = β (α) = min {i < σ |α < λi } and for i < 2 + 2n, define:

• If i = 0, let Iiα =
(

b2β(α),b2β(α)+1

)

.

• If i = 1, let Iiα =
(

b2β(α)+1,b2β(α)+2

)

.

• If i = 2k+ 2, let Iiα = Rk
β(α)

.

• If i = 2k+ 3, let Iiα = Skα.

Suppose u ⊆ κ of order type µ and
〈

b̄ε |ε ∈ u
〉

is a non-constant indiscernible

sequence such that b̄ε ∈ Īε (as above). Denote b̄ε =
〈

bε
0, . . . ,b

ε
2+2n−1

〉

. Note that

bε
1 < bε′

0 iff β (ε) < β (ε′) (we need two intervals for the only if direction).
Hence 〈β (ε) |ε ∈ u 〉 is increasing or constant. But if it is increasing then we have a

contradiction to the choice of
〈

R̄i |i < σ
〉

. So it is constant, and suppose β (ε) = i0

for all ε ∈ u. But then u ⊆ λi0\
⋃

j<i0
λj and we get a contradiction to the choice

of
〈

S̄β

∣

∣

∣

⋃

j<i0
λj < β < λi0

〉

. �

Claim 4.8. Suppose λ 6→ (µ)
interval
n . Then 2λ 6→ (µ)

interval
4+2n .

Proof. Suppose
〈

Īα |α < λ
〉

witnesses that λ 6→ (µ)
interval
n .

By adding two intervals to each Īα, we can ensure that it has the extra property
that if c̄1 ∈ Iα1

and c̄2 ∈ Īα2
then c1

1 < c0
2 iff α1 < α2 (as in the previous claim).

Notation: write c̄1 <∗ c̄2 for c1
1 < c0

2 , it is not really an ordering (it is not transitive)

but on tuples c̄ that belong to some Īα, it is transitive.
By this we have increased the length of Īα to 2 + n.
We shall find below a definable 4-place function f such that:

♥ For every 2 ordinals, δ, ζ, If
〈

R̄α |α < δ
〉

is a sequence of ζ-tuples of in-

tervals, then there exists a sequence of 2ζ-tuples of intervals,
〈

S̄η
∣

∣η ∈ δ2
〉

such that for all k < ζ and η1 6= η2, if b1 ∈ S2k
η1

,b2 ∈ S2k+1
η1

and b3 ∈

S2k
η2

,b4 ∈ S2k+1
η2

then f (b1,b2,b3,b4) is in Rk
lg(η1∧η2)

.

Apply ♥ to our situation to get
〈

J̄η
∣

∣η ∈ λ2
〉

such that J̄η =
〈

Jiη |i < 4 + 2n
〉

and

for all k < 2 +n and η1 6= η2, if b1 ∈ J2kη1
,b2 ∈ J2k+1

η1
and b3 ∈ J2kη2

,b4 ∈ J2k+1
η2

then

f (b1,b2,b3,b4) is in Ik
lg(η1∧η2)

.

This is enough (the reasons are exactly as in the regular case of the proof of Theo-
rem 3.8, but we shall repeat it for clarity):
To simplify notation, we regard f as a function on tuples: in each pair of consecutive
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coordinates it acts as f, so if b̄1 ∈ J̄η1
, b̄2 ∈ J̄η2

then f
(

b̄1, b̄2

)

is in Īlg(η1∧η2) (more

precisely, f
(

b̄1, b̄2

)

= 〈ak |k < 2 + n 〉 where ak = f
(

b1
2k,b1

2k+1,b
2
2k,b2

2k+1

)

∈

Ii
lg(η1∧η2)

for k < 2 + n).

Suppose u = 〈ηi |i < µ 〉 ⊆ λ2 and
〈

b̄ηi
|i < µ

〉

is a non-constant indiscernible se-

quence such that b̄ηi
∈ J̄ηi

(as above).

Let hi = η0∧ηi+1 for i < µ. If lg (h0) < lg (h1) then f
(

b̄η0
, b̄ηi+1

)

<∗ f
(

b̄η0
, b̄ηi+2

)

for all i < µ, so 〈lg (hi) |i < µ 〉 is increasing, and so f
(

b̄η0
, b̄ηi+1

)

contradicts our

choice of
〈

Īα |α < λ
〉

. Hence (because hi 6 η0) hi is constant.

Assume η0 ∧ η1 < η1 ∧ η2, then f
(

b̄η0
, b̄η1

)

<∗ f
(

b̄η1
, b̄η2

)

so f
(

b̄η1
, b̄η2

)

<∗

f
(

b̄η2
, b̄η3

)

, and so lg (η0 ∧ η1) < lg (η1 ∧ η2) < lg (η2 ∧ η3) hence, f
(

b̄η0
, b̄η1

)

<∗

f
(

b̄η2
, b̄η3

)

and it follows that 〈lg (η2i ∧ η2i+1) |i < µ 〉 is increasing. And this is

again a contradiction.
By an analog analysis, it cannot be that η0∧η1 > η1∧η2. As both sides are less or
equal than η1, it must be that η0 ∧ η2 = η0 ∧ η1 = η1 ∧ η2. But that is impossible
(because if α = lg (η0 ∧ η1), then |{η0 (α) ,η1 (α) ,η2 (α)}| = 3).

Claim. ♥ is true.

Proof. Let f (x,y, z,w) = (x− z) / (y−w) (do not worry about division by 0, we
shall explain below).
It is enough, by the nature of ♥, to assume ζ = 1 (we treat each family of intervals
separately). By compactness, we may assume that δ is finite, and to avoid confu-
sion, denote it by m. So we have a finite tree, m>2, and a sequence of intervals
〈Ri |i < m 〉. Each Ri is of the form (ai,bi). Let ci = (bi + ai) /2. Let d ∈ C be
any element greater than any member of A := acl (ai,bi |i < m ), and 0 < e ∈ C

such that e < d−k for all k ∈ N. For each η ∈ m2, let aη =
∑

i<m η (i) cid
m−i,

and bη =
∑

i<m η (i)dm−i.
Let S0

η = (aη − e,aη + e) and S1
η = (bη − e,bη + e).

This works:
Assume b1 ∈ S0

η1
,b2 ∈ S1

η1
and b3 ∈ S0

η2
,b4 ∈ S1

η2
.

We have to show (b1 − b3) / (b2 − b4) ∈ Rlg(η1∧η2). Denote k = lg (η1 ∧ η2).

aη1
−aη2

is of the form εckd
m−k+F (d) where ε ∈ {−1, 1}, and F (d) is a polynomial

over A of degree 6 m−k−1. bη1
−bη2

is of the form εdm−k+G (d), where ε is the
same for both (and G is a polynomial over Z of degree 6 m−k−1). Now, b1−b3 ∈
(aη1

− aη2
− 2e,aη1

− aη2
+ 2e), and b2 − b4 ∈ (bη1

− bη2
− 2e,bη1

− bη2
+ 2e),

and hence we know that b2 − b4 6= 0. It follows that (b1 − b3) / (b2 − b4) is inside
an interval whose endpoints are

{(
εckd

m−k + F (d) + 2e
)

/
(

εdm−k +G (d)± 2e
)}

.
But

(

εckd
m−k + F (d) + 2e

)

/
(

εdm−k +G (d)± 2e
)

∈ Rk

by our choice of d and e, and we are done. �

�

The proof of Theorem 4.4 now follows by induction on κ: Fix µ, and let κ be
the first cardinal for which the theorem fails. Then by 4.5, κ > µ. By claim 4.6,
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ℵ0 < κ. By claim 4.7, κ cannot be singular. By claim 4.8, κ cannot be regular,
because if it were, there would be a λ < κ such that 2λ > κ (because κ is not
strongly inaccessible). Note that we did use claim 4.5 to deal with cases where we
couldn’t use the induction hypothesis (for example, in the regular case, it might be
that λ < µ).

More remarks. Theorem 4.4 can be generalized to allow parameters:
Suppose C |= RCF, and A ⊆ C.

Definition 4.9. κ →A (µ)
interval
ω means the same as in definition 4.2, but we

demand indiscernible sequences to be indiscernible over A.

Then we have:

Theorem 4.10. For any cardinal |A| 6 κ such that in [|A| , κ] there are no inac-

cessible cardinals, κ 9A (ℵ0)
interval
ω .

Proof. The proof goes exactly as in the proof of Theorem 4.4, but the base case for
the induction is different. There it was µ = κ = ℵ0. Here it is κ = |A|. Indeed,
enumerate A = {ai |i < µ }. Let ε ∈ C be greater than 0 but smaller than any
element in acl (A). For α < µ, let Iα = (ai,ai + ε).
Suppose there is a subset u = {εi |i < ω } ⊆ µ and 〈bi |i < ω 〉 such that bi ∈ Iεi

and 〈bi |i < ω〉 is non-constant and indiscernible. Let i0 = iε0
, i1 = iε1

. Suppose
without loss of generality that ai0 < ai1 , then b0 ∈ (ai0 ,ai0 + ε), so b0 < ai1 . But
ai1 < b1 – contradiction. �

5. Generic pair

Here we give an example of an ω-stable theory, such that for all weakly generic
pairs of structures M ≺ M1 the theory of the pair (M,M1) has the independence
property. Here is the definition:

Definition 5.1. A pair (M,M1) as above is weakly generic if for all formula ϕ (x)

with parameters from M, if ϕ has infinitely many solutions in M, then it has a
solution in M1\M.

This definition is driven by the well known “generic pair conjecture” (see [7, 5]),
and it is worth while to give the precise definitions.

Definition 5.2. Assume λ = λ<λ > |T | (in particular, λ is regular), 2λ = λ+,
and for all α < λ+, Mα |= T is of cardinality λ. Suppose 〈Mα |α < λ+ 〉 is an
increasing continuous sequence. Furthermore, M =

⋃

α<λ+ Mα is a saturated
model of cardinality λ+. The generic pair property says that there exists a club
E ⊆ λ+ such that for all α < β ∈ E, the pair (Mα,Mβ) has the same isomorphism
type.

Proposition 5.3. This is a property of M, and does not depend on the particular
choice of 〈Mα〉.

Proof. Suppose M satisfies the definition 5.2. The means that |M| = λ+, M is
saturated, there are 〈Mα |α < λ+ 〉 such that M =

⋃

α<λ+ Mα, and there is a club
E ⊆ λ+ such that for all α,β ∈ E such that α < β, the pair (Mα,Mβ) has the same
isomorphism type. Suppose M =

⋃

α<λ+ Nα for another increasing continuous
sequence 〈Nα |α < λ+ 〉. Let E0 = {δ < λ+ |Nδ = Mδ }. This is a club of λ+, and so
E ∩ E0 is also a club of λ+ showing that 〈Nα〉 has the same property. �
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Justifying definition 5.1 we have

Claim 5.4. Assume that M has the generic pair property, and N ≺ N1 |= T .
Then (1) implies (2) where:

(1) (N,N1) have the isomorphism type of a pair (Mα,Mβ) as in definition 5.2
above.

(2) (N,N1) is weakly generic as in definition 5.1.

Proof. So suppose that E, 〈Mα |α < λ+ 〉 is as in definition 5.2. Suppose α,β ∈ E

and α < β. We are given a formula ϕ (x) with parameter from Mα, such that
ℵ0 6 |ϕ (Mα)|. But by saturation of M, λ+ = |ϕ (M)|, and M =

⋃

α∈E Mα, hence
there is some α < β ′ ∈ E such that ϕ (Mβ) 6= ∅, but as (Mα,Mβ) ∼= (Mα,Mβ′),
we are done. �

The generic pair property is very important in dependent theories. In fact, they
characterize them: In [6, 5, 7, 8] it is proved that T is dependent iff for large enough
regular λ every model of T has the generic pair property (assuming GCH).
Hence it makes sense to ask whether the theory of the pair is dependent.
The answer is no:

Theorem 5.5. There exists an ω-stable theory such that for every weakly generic
pair of models M ≺ M1, the theory of the pair (M,M1) has the independence
property.

We shall describe the example:
Let L = {P,R,Q1,Q2} where R,P are unary predicates and Q1,Q2 are binary rela-
tions.
Let M̃ be the following structure for L:

(1) The universe is

M̃ = {u ⊆ ω ||u| < ω } ∪

{(u, v, i) |u, v ⊆ ω, |u| < ω, |v| < ω, i ∈ ω&u ⊆ v ⇒ i < |v|+ 1 } .

(2) The predicates are interpreted as follows:

• PM̃ = {u ⊆ ω ||u| < ℵ0 },

• RM̃ is M\
(

PM
)

,

• QM̃
1 =

{

(u, (u, v, i))
∣

∣

∣
u ∈ PM̃

}

and

• QM̃
2 =

{

(v, (u, v, i))
∣

∣

∣v ∈ PM̃
}

.

Let T = Th
(

M̃
)

.
As we shall see in the next claim, T gives rise to the following definition:

Definition 5.6. We call a structure (B,∪,∩,−,⊆, 0) a pseudo Boolean algebra
(PBA) when it satisfies all the axioms of a Boolean algebra except: There is no
greatest element 1 (i.e. remove all the axioms concerning it).

Pseudo Boolean algebra can have atoms like in Boolean algebras (nonzero ele-
ments that do not contain any smaller nonzero elements).

Definition 5.7. Call a PBA of finite type if every element is a union of finitely
many atoms.
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Notation 5.8. For a PBA A, and C ⊆ A a sub-PBA, let
AC :=

{
a ∈ A

∣

∣∃c ∈ C
(

a ⊆A c
)}

, and for a subset D ⊆ A, let at (D) be the set of
atoms contained in D.

Proposition 5.9. Every PBA of finite type is isomorphic to (P<∞ (κ) ,∪,∩,−,⊆, ∅)
for some κ where P<∞ (κ) is the set of all finite subsets of κ. Moreover: Assume
A,B are infinite PBAs of finite type and C ⊆ A,B is a common sub-PBA. Then, if

(1) |at (A\AC)| = |at (B\BC)|.
(2) For every c ∈ C, A and B agree on the size of c (the number of atoms it

contains).

Then there is an isomorphism of PBAs f : A → B such that f ↾ C = id.

Proof. The first part follows from the easy observation that in a PBA of finite type,
every element has a unique presentation as a union of finitely many atoms. So if A
is a PBA, and its set of atoms is {ai |i < κ }, then take ai to {i}.
For the moreover part, first we do a back-and-forth, adding elements a ∈ A and
b ∈ B to the domain and range of a partial isomorphism (starting with id ↾ C) to
extend it to an isomorphism from AC to BC.
Let a ∈ A. First assume a is an atom and that a ⊆ c for some c ∈ C. Let d ⊆ c be
of maximal size such that d ∈ C. Then a ⊆A c− d, and there must be some b ∈ B

such that b ⊆B c− d (because the size of c and d is the same). Take a to b.
If a is not an atom, but a ⊆ c for some c ∈ C, then by the previous case we may
assume that the domain of the isomorphism already contains all of c’s atoms. So
c ∈ C (as their union) and we are done.
Now, |at (A\AC)| = |at (B\BC)|, so any bijection between the set of atoms induces
an isomorphism. �

Claim 5.10. T is ω-stable.

Proof. First add new relations to the language, which are all definable –

{Sn,⊆n,π1,π2,∩n,∪n,−n, e |n > 1 }

where Sn is a unary relation defined on P, ⊆n is a binary relation defined on P,
π1,π2 are two unary functions from R to P, ∩n,−n are binary functions from Sn
to Sn and e is a constant in P. Their interpretation in M̃ are as follows:

• π1 ((u, v, i)) = u, π2 ((u, v, i)) = v.
• For each 1 6 n < ω, Sn (v) ⇔ |v| 6 n.
• For each 1 6 n, u ⊆n v iff |u| 6 n, |v| 6 n and u ⊆ v.
• u ∩n v = u ∩ v for all u, v ∈ Sn.
• u−n v = u\v for v ⊆n u.
• u ∪n v = u ∪ v for u, v ∈ Sn.
• e = ∅.

Note that they are indeed definable:

(1) π1 (x) is the only y such that Q1 (y, x), and similarly for π2.
(2) Let E (x,y) by an auxiliary equivalence relation defined by π1 (x) = π1 (y)∧

π2 (x) = π2 (y).
(3) e is the unique element in P such that there exists exactly one element z ∈ R

such that π1 (z) = x = π2 (z).
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(4) x ⊆n y is defined by “Sn (x) , Sn (y) and the number of elements in the E

class of some (equivalently any) element z such that π1 (z) = x, π2 (z) = y
is at most n+ 1”.

(5) Sn (x) is defined by “P (x) and e ⊆n x” (In particular, e ∈ Sn for all n).
(6) ∩n and −n are then naturally definable using ⊆n. For instance x−n y = z

iff x,y, z are in Sn, z ⊆n x and for each e 6= w ⊆n y, w *n z.
(7) x ∪n y = z iff x,y ∈ Sn, z ∈ S2n, x,y ⊆2n z and z−2n x ⊆2n y.

Furthermore, ⊆k↾ Sn =⊆n for n 6 k. Hence every model M of T gives rise
naturally to an induced PBA: BM :=

(
⋃

n SMn ,∪M,∩M,−M,⊆M, eM
)

where ∪M =
⋃
{
∪M
n |n < ω

}
, and similarly for ⊆M,−M and ∩M (see definition 5.6).

Claim. In the extended language, T eliminates quantifiers.

Proof. Suppose M,N |= T are saturated models, |M| = |N| and A ⊆ M,N is a
common substructure (where |A| < |M|). It’s enough to show that we have an
isomorphism from M to N fixing A.
By Proposition 5.9, we have an isomorphism f from BM to BN preserving A (by
saturation and the choice of language, the condition of the proposition are satisfied).
On PM\

(

BM ∪A
)

there is no structure and it has the same size as PN\
(

BN ∪A
)

(namely |N|), so we can extend the isomorphism f to cover PM.
We are left with covering RM: let a ∈ RM, and ai = πi (a) for i = 1, 2. Then,
we already know f (a1) , f (a2). Suppose a1 ⊆n a2 for minimal n. Then there are
exactly n elements in z ∈ M with π1 (z) = a1,π2 (z) = a2, also in N, and the
number of such z-s not in A is the same for both M, N. Hence we can take this
E-equivalence class from M to the appropriate class in N.
If not, i.e. a1 *n a2 for all n, then there are infinitely many elements z in N and
in M with π1 (z) = a1, π2 (z) = a2, and again we take this E-class in M outside of
A to the appropriate E-class in N. �

Now we can conclude by a counting types argument. Let M be a countable
model of T . Let p (x) be a non-algebraic type over M. There are some cases:

Case 1. Sn (x) ∈ p for some n. Then the type is determined by the maximal
element c in M such that c ⊆n x (this is easy, but also follows from Proposition
5.9).

Case 2. Sn (x) /∈ p for all n but P (x) ∈ p. Then x is already determined – there
is nothing more we can say on x.

Case 3. R (x) ∈ p. Then the type of x is determined by the type of (π1 (x) ,π2 (x))

over M.

So the number of types over M is countable. �

Proposition 5.11. A generic pair of models of T has the independence property.

Proof. Suppose (M,M1) is a generic pair (see definition 5.1). We think of it as a
structure of the language LQ, where Q is interpreted as M. Consider the formula

ϕ (x,y) = P (x)∧ P (y)∧ ∃z /∈ Q (Q1 (x, z)∧Q2 (y, z)) .

This formula has IP: Let {ai |i < ω } ⊆ M be elements from PM such that a ∈ SM1
(as in the language of the proof of 5.10), i.e. they are atoms in the induced PBA,
and ai 6= aj for i 6= j. For any finite s ⊆ ω of size n, there is an element bs ∈ PM

be such that ai ⊆
M
n bs for all i ∈ s. Then for all i ∈ ω, ϕ (ai,bs) iff i /∈ s:
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If ϕ (ai,bs) there are infinitely many z-s in M such that Q1 (ai, z) ∧ Q2 (bs, z)
(otherwise they would all be in M). This means that ai *M

n bs – a contradiction.
On the other direction, the same exact argument works, but this time use the fact
that the pair is generic. �
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