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BOUNDING AN INDEX BY THE LARGEST CHARACTER

DEGREE OF A SOLVABLE GROUP

MARK L. LEWIS

Abstract. In this paper, we show that if p is a prime and G is a p-

solvable group, then |G : Op(G)|p ≤ (b(G)p/p)1/(p−1) where b(G) is the
largest character degree of G. If p is an odd prime that is not a Mersenne
prime or if the nilpotence class of a Sylow p-subgroup of G is at most p,
then |G : Op(G)|p ≤ b(G).

1. Introduction

This note was motivated by the preprint [5]. In the preprint [5], Jafari
proved the following: Let G be a solvable group and let p be an odd prime.
If b(G) < p3, then |G : Op(G)|p < p3. This result was an improvement on
Theorem 12.29 of [3] which stated that if b(G) < p, then |G : Op(G)|p < p

and Theorem 12.3 of [3] which stated that if b(G) < p3/2, then |G : Op(G)|p <
p2. It also improved the result that Benjamin proved in [1], that if G is p-
solvable and b(G) < p2, then |G : Op(G)|p < p2. Benjamin also proved in her
paper that if G is a solvable group and b(G) < pα, then |G : Op(G)|p < p2α,
and if |G| is odd, then |G : Op(G)| ≤ pα.

Furthermore, in [8], Qian showed that if G is any group and b(G) < p2,
then |G : Op(G)|p < p2. In [9], Qian and Shi showed that if G is any group,
then |G : Op(G)|p < b(G)2 and |G : Op(G)|p ≤ b(G) if G is has an abelian
p-Sylow subgroup.

In this note, we will use Jafari’s argument to prove the following theorem:

Theorem 1. Let G be a solvable group and let p be a prime. If b(G) < pp,
then |G : Op|p < pp.

In addition, we will use Jafari’s arguments to prove the following result
which is along the lines of the result proved by Qian and Shi when the group
has an abelian Sylow p-subgroup.

Theorem 2. Let G be a solvable group, let p be a prime, and suppose that a

Sylow p-subgroup of G has nilpotence class less than p. Then |G : Op(G)|p ≤
b(G).

Further, Jafari’s arguments can also be used to prove a result along the
lines of the one that Benjamin proved for groups of odd order.
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Theorem 3. Let G be a solvable group, and let p be an odd prime that is

not a Mersenne prime. Then |G : Op(G)|p ≤ b(G).

In general, it is not true that |G : Op(G)|p ≤ b(G). We will present exam-
ples of solvable groups where |G : Op(G)|p exceeds b(G). In our examples,
b(G) = pp+1, G has a Sylow p-subgroup whose nilpotence class is p, and
p can be any Mersenne prime. Our examples show that the hypotheses in
each of Theorems 1, 2, and 3 are in some sense optimal. However, we are
able to obtain a general bound using Jafari’s argument. To do this, we need
a Theorem of Isaacs regarding the existence of a “large” orbit. The result
we obtain is the following:

Theorem 4. Let G be a solvable group, and let p be either 2 or a Mersenne

prime. Then |G : Op(G)|p ≤ (b(G)p/p)1/(p−1)
.

Notice that (b(G)p/p)1/(p−1) < b(G)p/(p−1) ≤ b(G)2, so this bound is
better than the bound found by Qian and Shi for general groups and by
Benjamin for p-solvable groups. Of course, we are assuming the stronger
hypothesis that G is solvable in our result.

In the final section, we prove that these bounds still hold when G is a
p-solvable group. At this time, we have not determined whether these same
bounds can be proved for any group G or whether the hypothesis that G is
p-solvable is necessary to obtain our improved bounds.

2. Solvable Groups

The following is essentially Theorems 4.4 and 4.8 of [6].

Lemma 2.1. Let P be a p-group, and assume that P acts faithfully and

coprimely on an abelian group V . Assume one of the following conditions:

(1) p is odd and not a Mersenne prime.

(2) Zp ≀ Zp is not a section of P .

Then P has a regular orbit on V .

Proof. We work by induction on |V |. We may assume that P > 1, and since
P acts faithfully, this implies that |V | > 1. Since the action of P is faithful
and coprime on V , we see that the action of P on V/Φ(V ) is faithful and
coprime. Using the inductive hypothesis, the result follows if Φ(V ) > 1.
Thus, we may assume that Φ(V ) = 1. Therefore, we can V as a completely
reducible P -module, possibly of mixed characteristic.

If V is not irreducible under the action of P , then we have V = U ⊕W
where U and W are nontrivial P -submodules of V . Applying the inductive
hypothesis, we obtain elements u ∈ U and w ∈ W so that CP (u) = CP (U)
and CP (w) = CP (W ). It follows that CP (u + w) = CP (u) ∩ CP (w) =
CP (U) ∩ CP (W ) = 1, and we are done. Thus, we may assume that V is
irreducible under the action of P . If p is odd and not a Mersenne prime, we
can apply Theorem 4.4 of [6] to obtain the result. If Zp ≀ Zp is not a section
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of P , then we can apply Theorem 4.8 of [6] to obtain the result. In either
case, the lemma is proved. �

Notice that the proof of this next theorem is essentially the proof of
Theorem 1 in [5]. Notice that hypothesis (3) gives Theorem 1 and hypothesis
gives Theorem 3.

Theorem 2.2. Let G be a solvable group, and let p be a prime. Assume

one of the following conditions:

(1) p is odd and not a Mersenne prime.

(2) Zp ≀ Zp is not a section of G.

(3) b(G) < pp.

Then |G : Op(G)|p ≤ b(G).

Proof. Assume the theorem is false and suppose that G is a counterexample
of minimal order. Observe that if G is a counterexample, then G/Op(G)
is a counterexample. By the minimality of |G|, we deduce that Op(G) =
1. Let P be a Sylow p-subgroup of G, and observe that |P | = |G|p =
|G : Op(G)|p. Let F be the Fitting subgroup of G. Since G is a nontrivial
solvable group, it follows that F must be a nontrivial p′-group. We know
that CG(F ) ≤ F . Observe that b(PF ) ≤ b(G). If FP < G, then since G
is a counterexample with |G| minimal, we have that |P | < b(PF ) ≤ b(G)
which is a contradiction. Thus, we may assume that G = FP . Since P
acts coprimely and faithfully on the nilpotent group F , it follows that P
acts coprimely and faithfully on the abelian group F/Φ(F ). Using Brauer’s
permutation lemma (Theorem 6.32 of [3]), P acts faithfully and coprimely
on the abelian group Irr(F/Φ(F )). Conditions (1) or (2) hold, then we can
apply Lemma 2.1. Thus, we assume that condition (3) holds. We can find
a subgroup Q in P so that |P : Q| = p. We know that b(FQ) ≤ b(G) < pp,
so we may apply the inductive hypothesis to FQ, to obtain the conclusion
that |Q| ≤ b(FQ) < pp. This implies that |P | < pp+1, and so, Zp ≀Zp cannot
be a section of P (since |Zp ≀ Zp| = pp+1). Thus, we may apply Lemma 2.1
in all cases. By Lemma 2.1, there is a linear character λ ∈ Irr(F/Φ(F )), so
that the stabilizer of λ in P is trivial, and thus, the stabilizer of λ in G is F .
This implies that λG is irreducible, and so, |P | = |G : F | = λG(1) ≤ b(G).
This proves the theorem. �

As an immediate corollary, we obtain Theorem 2.

Corollary 2.3. Let G be a solvable group, and let p be a prime. As-

sume that a Sylow p-subgroup of G has nilpotence class less than p. Then

|G : Op(G)|p ≤ b(G).

Proof. Notice that if Zp ≀ Zp is a section of G, then it must be a section of
some Sylow p-subgroup of G. This would imply that a Sylow p-subgroup of
G has nilpotence class at least p which is a contradiction. Thus, Zp ≀ Zp is
not a section of G, and we can apply Theorem 2.2 to obtain the result. �
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Using the following result of Isaacs, we can remove the extra hypotheses
on p or on the structure of a Sylow subgroup used in the previous results.
Unfortunately, we have to weaken our conclusion in this case, and we will
present examples to show that the weaker conclusion is necessary. The
following is proved as Theorem A in [4]. While it does not prove that there
is a regular orbit, it does prove that there is a “large” orbit.

Theorem 2.4. [4] Let P be a p-group that acts faithfully and coprimely on a

group V . Then there exists an element v ∈ V so that |CP (v)| ≤ (|P |/p)1/p.

With this result in hand, we can prove the following which includes The-
orem 4.

Theorem 2.5. Let G be a solvable group and let p be a prime. Then

|G : Op(G)|p ≤ (b(G)p/p)1/(p−1)
.

Proof. We work by induction on |G|. Using the inductive hypothesis, we
may assume that Op(G) = 1. Let P be a Sylow p-subgroup of G, and
note that |P | = |G|p = |G : Op(G)|p. Let F be the Fitting subgroup of
G. Since G is solvable, we know that CG(F ) ≤ F and F is a p′-group.
Observe that b(PF ) ≤ b(G). If PF < G, then we obtain the result by
the inductive hypothesis. Hence, we may assume G = PF . Now, P acts
faithfully and coprimely on the nilpotent group F . Thus, P will act faithfully
and coprimely on F/Φ(F ). Applying Theorem 2.4, we can find a linear

character λ ∈ Irr(F/Φ(F )) so that |CP (λ)| ≤ (|P |/p)1/p. Thus, if T is the
stabilizer of λ in G, then T = FCP (λ), and so

|G : T | = |P : CP (λ)| ≥
|P |

(

|P |
p

)1/p
=

(

|P |p−1p
)1/p

.

By Clifford’s theorem, we know that it follows that |G : T | ≤ b(G). This im-

plies that
(

|P |p−1p
)1/p

≤ b(G), and we conclude that |P | ≤ (b(G)p/p)1/(p−1),
as desired. �

We now present examples to see that the additional hypothesis is needed
in Theorem 2.2 and to see that the bound in Theorem 2.5 is appropriate.
All of these examples can be found as Example 4.5 of [6].

(1) Let p be a Mersenne prime, so p = 2f − 1 ≥ 3. We take P = Zp ≀Zp,

and we take V to be p copies of GF(2f ). In [6], they show that P
acts faithfully on V , and that P does not have any regular orbits in
its action on V . Let G be the semi-direct product of P acting on
V . We claim that b(G) = pp. On the other hand, Op(G) = 1, so
|G : Op(G)|p = |G|p = |P | = pp+1 which is larger than b(G). On the

other hand, (b(G)p/p)1/(p−1) = ((pp)p/p)1/(p−1) = (pp
2−1)1/(p−1) =

pp+1. Thus, for this group, the bound in Theorem 2.5 is optimal.
(2) In this example, we take p = 2. Let q be a Fermat prime, so q =

2f + 1 ≥ 3. Let P = Z2f ≀ Z2 and let V be 2 copies of GF(q). In
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[6], they show that P acts faithfully on V , and has no regular orbit.
Let G be the semi-direct product of P acting on V . We claim that
b(G) = 22f . On the other hand, O2(G) = 1, so |G : O2(G)|2 = |G|2 =
|P | = 22f+1.

3. p-solvable groups

This next lemma follows from a corollary of Gluck’s regular orbit theorem.

Lemma 3.1 (Corollary 5.7(b) of [6]). Let p be a prime an odd prime, and

suppose that P is a p-group that is a permutation group on Ω. Then there

exists a set ∆ ⊆ Ω so that P∆ = 1.

We also need the following lemma which is proved in [7].

Lemma 3.2 (Proposition 2.6 of [7]). Let A act faithfully and coprimely on

a nonabelian simple group S. Then A has at least 2 regular orbits on Irr(S).

Using these two results, we obtain a character that induces irreducibly in
the key situation where we have a p-group that is acting on a direct product
of copies of a nonabelian simple group.

Lemma 3.3. Let S be a nonabelian simple group, and let p be a prime that

does not divide |S|. Suppose V = S1 × · · · × Sn where Si
∼= S. Assume P

is a p-group that acts faithfully on V via automorphisms, and assume the

action of P transitively permutes the Si’s. If G is the semi-direct product of

P acting on V , then there exists θ ∈ Irr(V ) so that θG is irreducible.

Proof. Let Ω = {S1, . . . , Sn}. Let Q be the kernel of the action of P on Ω.
Notice that since p does not divide |S|, it follows that p is odd. Thus, we
can use Lemma 3.1 to obtain a set ∆ ⊆ Ω so that CP (∆) = Q. Since
P acts transitively on Ω, it follows that P acts transitively on the set
{CQ(S1), . . . ,CQ(Sn)}. Let Ri = Q/CQ(Si), and this implies that there
is a group R so that R ∼= Ri for all i. Notice that R acts on S. By Lemma
3.2, we know that R has two regular orbits on Irr(S). Hence, we can find
µ, ν ∈ Irr(S) in different R-orbits so that CP (µ) = CP (ν) = 1. For each
i, let µi and νi be the characters in Irr(S) that correspond to µ and ν
respectively.

We now define θ ∈ Irr(V ) as follows. For each i, we take θi = µi if
Si ∈ ∆ and θi = νi if Si 6∈ ∆, and then, θ = θ1 × · · · × θn. Observe that
CP (θ) ≤ CP (∆) = Q, and so,

CP (θ) = CQ(θ) = ∩n
i=1CQ(θi) = ∩n

i=1CQ(Si) = 1.

This implies that the stabilizer of θ in G is V . Hence, θG is irreducible. �

We now prove that the results that we proved when G is solvable still hold
when G is p-solvable. To simplify the next result we define the following
function f . We define f(G, p) = b(G) if p is odd and not a Mersenne prime
or if p = 2 or p is a Mersenne prime and G has no section isomorphic to
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Zp ≀ Zp. We define f(G, p) = (b(G)p/p)1/(p−1) if either p = 2 or p is a
Mersenne prime and G has a section isomorphic to Zp ≀ Zp

Theorem 3.4. Let G be a p-solvable group where p is some prime. Then

|G : Op(G)|p ≤ f(G, p).

Proof. We will work by induction on |G|. Suppose H is a section of G. We
claim that f(H, p) ≤ f(G, p). If p is odd and not a Mersenne prime, then
f(H, p) = b(H) ≤ b(G) = f(G, p). Suppose for now that p = 2 or p is a
Mersenne prime. If G does not have a section isomorphic to Zp ≀ Zp, then
neither does H, and again, we have f(H, p) = b(H) ≤ b(G) = f(G, p). If
H has a section isomorphic to Zp ≀ Zp, then so does G, and so, f(H, p) =

(b(H)p/p)1/(p−1) ≤ (b(G)p/p)1/(p−1) = f(G, p). Finally, we must consider
the case where G has a section isomorphic to Zp ≀ Zp and H does not.
In this case, since Zp ≀ Zp is a section of G, it follows that G must have
an irreducible character whose degree is at least p, and hence, p ≤ b(G).

Thus, b(G)1/(p−1)p ≤ b(G)p, and b(G) ≤ (b(G)p/p)1/(p−1). We deduce that

f(H, p) = b(H) ≤ b(G) ≤ (b(G)p/p)1/(p−1) = f(G, p). This proves the claim
in all cases.

Using the inductive hypothesis onG/Op(G), we may assume thatOp(G) =
1. Also, using the Frattini argument, one can now show that Op(G/Φ(G)) =
1, and so, using the inductive hypothesis on G/Φ(G), we may assume that
Φ(G) = 1. If all the minimal normal subgroups of G are solvable, then let F
be the Fitting subgroup of G, and it is known that there is a subgroup A so
that G = FA and F ∩A = 1. It is easy to see that CA(F ) will be a normal
subgroup of G, and since F contains all the minimal normal subgroups of
G, we conclude that CA(F ) = 1, and hence, CG(F ) ≤ F . So it suffices to
show that the result holds in FP , but FP is solvable, and we have seen that
the result holds in solvable groups.

Thus, we may assume that G has a nonsolvable minimal normal subgroup
V . Since G is p-solvable, we see that p does not divide |V |. Notice that this
implies that p must be odd. We know that CG(V ) is normal in G, so
Op(CG(V )) ≤ Op(G) = 1. Let H = VCG(V )P . Now, Op(H) and V are
normal in H and of coprime orders, so Op(H) ≤ CG(V ), and this implies
that Op(H) = 1. Thus, we may use the inductive hypothesis to assume that
G = H = VCG(V )P . Observe that V = S1 × · · · × Sn where Si

∼= S and S
is a nonabelian simple group. This implies that V ∩CG(V ) = 1. By Lemma
3.3, we can find θ ∈ Irr(V ) so that CP (θ) = CP (V ). Let γ ∈ Irr(CG(V )) so
that γ(1) = b(CP (V )). Notice that the stabilizer of θ × γ is VCG(V ). This
implies that (θ×γ)G is irreducible, and hence, b(G) > |P : CP (V )|b(CG(V )).
By the inductive hypothesis applied in CG(V ), we have that |CP (V )| ≤
f(CG(V ), p). If either p is not a Mersenne prime or Zp ≀ Zp is not involved
in G, then f(G, p) = b(G) and f(CG(V ), p) = b(CG(V )), and the result
follows. Thus, we may assume that p is a Mersenne prime and Zp ≀ Zp is
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involved in G. Then we have that

f(G, p) = (b(G)p/p)1/(p−1) > (|P : CP (V )|pb(CG(V ))p/p)1/(p−1) .

This expression can be rewritten as follows: |P : CP (V )|p/(p−1) (b(CG(V ))p/p)1/(p−1).
Using the definition of f(CG(V ), p), and the fact that p/(p− 1) > 1, we see
that this is larger than |P : CP (V )|f(CG(V ), p), and obtain

f(G, p) > |P : CP (V )|f(CG(V ), p) ≥ |P : CP (V )||CP (V )| = |P |.

This proves the theorem. �
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[7] A. Moretó and P. H. Tiep, Prime divisors of character degrees, J. Group Theory 11

(2008), 341-356.
[8] G. Qian, Notes on the largest irreducible character degree of a finite group, Proc.

AMS 132 (2004), 1899-1903.
[9] G. Qian and W. Shi, The largest character degree and the Sylow subgroups of finite

groups, J. Algebra 277 (2004), 165-171.

Department of Mathematical Sciences, Kent State University, Kent, OH

44242

E-mail address: lewis@math.kent.edu


	1. Introduction
	2. Solvable Groups
	3. p-solvable groups
	References

