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Abstract

The realizations of a Gaussian field are investigated in the limit where its L2-norm is large.

Concentration onto the eigenspace associated with the largest eigenvalue of the covariance of the

field is proved. When the covariance is trace class, the concentration is in probability for the

L2-norm. A stronger concentration, in mean for the sup-norm, is proved for a smaller class of

Gaussian fields, and an example of a field belonging to that class is given. A possible connection

with Bose-Einstein condensation is briefly discussed.
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I. INTRODUCTION

This paper is devoted to the characterization of the realizations of a Gaussian field on

a finite domain of Rd in the limit where its L2-norm is large. Our primary motivation was

to get a better understanding of linear amplification in systems driven by the square of a

Gaussian noise. Nevertheless, the possibility of interpreting our results in terms of Bose-

Einstein condensation indicates that this study may be of interest in a much wider range of

physical situations. We will briefly elaborate on this interpretation at the end of Sec. V. In

this introductory part we restrict ourselves to the random amplifier setting.

A good starting point to explain the problem we are interested in is the work by Mounaix,

Collet, and Lebowitz (MCL) [1]. MCL investigated the divergence of the average solution

to the stochastic PDE,






∂tE(x, t)− i
2m

∆E(x, t) = λ|ϕ(x, t)|2E(x, t),
t ≥ 0, x ∈ T

d
L, and E(x, 0) = 1,

(1)

where m is a complex mass with Im(m) ≥ 0, λ > 0 is the coupling constant, ϕ is a

zero mean complex Gaussian noise, and T
d
L is a d-dimensional torus of length L. Using

a distributional formulation for the solution to (1), MLC proved that for a finite and non

zero m, the value of λ at which the qth moment of |E(x, t)| w.r.t. ϕ diverges is given by

λq = 1/q supx(·)∈B(x,t) κ1[x(·)], where B(x, t) is the set of all the continuous paths in T
d
L

arriving at x(t) = x, and κ1[x(·)] is the largest eigenvalue of the covariance of ϕ(x(τ), τ)

for 0 ≤ τ ≤ t. The question then arises whether the presence of the non local quantity

supx(·)∈B(x,t) κ1[x(·)] in the expression for λq is the signature of a corresponding non local

structure (i.e. large scale) in the realizations of ϕ giving rise to a large amplification.

The results given in the present paper answer that question in the two particular cases

m−1 = 0 and m → 0. The general case of a finite and non zero m considered by MCL is

still out of our reach. For m−1 = 0, the solution to (1) at fixed x reads

E(x, t) = exp
(

λ‖ϕ(x, ·)‖22,[0, t]
)

, (2)

where ‖ · ‖2,[0, t] denotes the L2-norm on [0, t]. The corresponding λq is easily found to be

given by λq = 1/qκ1, where κ1 is the largest eigenvalue of the covariance of ϕ(x, τ) for

0 ≤ τ ≤ t and fixed x. For m→ 0, it is easy to show that E(x, t) reduces to

E(x, t) = exp

(

λ

Ld
‖ϕ‖22,Td

L
×[0, t]

)

, (3)
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where ‖ · ‖2,Td

L
×[0, t] is the L

2-norm on T
d
L × [0, t]. In this case, λq is given by λq = Ld/qκ1,

where κ1 is now the largest eigenvalue of the covariance of ϕ(x, τ) for (x, τ) ∈ T
d
L × [0, t].

Expressions (2) and (3) are formally identical, and in both cases the divergence of the

moments of |E(x, t)| is determined by the realizations of ϕ with an arbitrarily large L2-norm

on the appropriate domain. Thus, for both m−1 = 0 and m→ 0, the problem reduces to the

investigation of the realizations of a Gaussian field in the limit where its L2-norm is large.

In the context of laser-plasma interaction, the question was first addressed in [2] heuris-

tically and numerically for m−1 = 0. It was shown there that the realizations of ϕ with a

large L2-norm tend to have a non random profile, ϕ̂ ≡ ϕ/‖ϕ‖2, given by the (normalized)

eigenfunction associated with κ1, assumed not to be degenerate. In the present work, we in-

vestigate the problem from a rigorous mathematical point of view and we extend the results

to the case of a degenerate κ1.

The outline of the paper is as follows. In Section II we specify the class of ϕ we consider

and we give some necessary definitions. Section III deals with the concentration of ϕ in

probability onto the eigenspace associated with κ1 when ‖ϕ‖2 is large. A stronger concen-

tration is established in Section IV for a smaller class of ϕ. Finally, the connection between

our results and Bose-Einstein condensation is briefly discussed in Section V.

II. DEFINITIONS

Let ϕ(x) be a complex Gaussian field 1 on a bounded subset of Rd, Λ, with zero mean,

Cov[ϕ(x), ϕ(y)] = 0, and Cov[ϕ(x), ϕ(y)∗] = C(x, y). Let TC be the covariance operator

acting on f(x) ∈ L2(Λ), defined by (using Dirac’s bracket notation)

〈x|TC |f〉 =
∫

Λ

C(x, y)f(y) ddy, (4)

with x, y ∈ Λ. Write µ1 ≥ µ2 ≥ · · · > µn ≥ · · · the eigenvalues of TC , φn(x) the correspond-

ing orthonormal eigenfunctions, and κ1 > κ2 > · · · > κn > · · · the distinct values taken

by the µn with degeneracies g1, g2, · · · , gn, · · · . Let {sn} be a sequence of i.i.d. complex

Gaussian random variables with zero mean, Cov(sn, sm) = 0, and Cov(s∗n, sm) = δnm. We

1 This is the case of interest in laser-plasma interaction and nonlinear optics in which ϕ is the (complex)

time-enveloppe of the laser electric field. With the help of some minor modifications, our results carry

over straightforwardly to the cases where ϕ is real.
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consider the class of ϕ(x) which can be written as a Karhunen-Loève expansion [3]

ϕ(x) =
+∞
∑

n=1

sn
√
µnφn(x), (5)

with µn ց 0 fast enough as nր +∞ (to be specified later on).

Finally, we write dP the Gaussian probability measure on the appropriate function space2

of ϕ and E the corresponding expectation.

III. CONCENTRATION OF ϕ̂ IN PROBABILITY FOR A LARGE ‖ϕ‖2

In this section we characterize the structure of ϕ(x) by proving concentration of the

profile ϕ̂(x) ≡ ϕ(x)/‖ϕ‖2 in probability when ‖ϕ‖2 is large. Let the subscripts ‖ and ⊥
respectively denote the projections onto and orthogonal to the g1-dimensional eigenspace

associated with κ1. One has,

Proposition 1 If TC is trace class, then for every ε > 0,

lim
r→+∞

P
(

‖ϕ̂⊥‖2 > ε | ‖ϕ‖22 > r
)

= 0. (6)

Proof. For every r > 0,

P
(

‖ϕ̂⊥‖2 > ε | ‖ϕ‖22 > r
)

≤ P

( ‖ϕ⊥‖2√
r

> ε

∣

∣

∣

∣

‖ϕ‖22 > r

)

. (7)

Let dP⊥ and dP‖ denote the probability measures of ‖ϕ⊥‖22 and ‖ϕ‖‖22, respectively. By

statistical independence of ϕ⊥ and ϕ‖ one has,

P

(‖ϕ⊥‖2√
r

> ε , ‖ϕ‖22 > r

)

=

∫ +∞

u=ε2r

dP⊥(u)

∫ +∞

v=r

dP‖(v − u). (8)

From (5) one gets,

dP‖(v) =
H(v)vg1−1

(g1 − 1)!κg11
exp

(

− v

κ1

)

dv, (9)

where H(v) is the Heaviside step function. Since H(v)vg1−1 is an increasing function of v it

follows from (9) that, for every u ≥ 0,

dP‖(v − u) ≤ exp

(

u

κ1

)

dP‖(v).

2 Typically L2(Λ) or C0(Λ), depending on the speed at which µn ց 0 as n ր +∞.
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Thus, (8) is bounded by

P

(‖ϕ⊥‖2√
r

> ε , ‖ϕ‖22 > r

)

≤ P
(

‖ϕ‖‖22 > r
)

∫ +∞

u=ε2r

exp

(

u

κ1

)

dP⊥(u)

≤ P
(

‖ϕ‖22 > r
)

∫ +∞

u=ε2r

exp

(

u

κ1

)

dP⊥(u), (10)

and from (7) and (10) one gets

P
(

‖ϕ̂⊥‖2 > ε | ‖ϕ‖22 > r
)

≤
∫ +∞

u=ε2r

exp

(

u

κ1

)

dP⊥(u). (11)

It remains to prove that the right-hand side of (11) tends to zero as r → +∞. By exponential

Markov inequality, one has for every positive a < 1/κ2,

P
(

‖ϕ⊥‖22 > u
)

≤ e−au
E
[

exp
(

a‖ϕ⊥‖22
)]

= e−au
∏

n≥2

(1− aκn)
−gn . (12)

The existence of the product on the right-hand side of (12) is insured by TC being trace class.

Now, by taking a = (κ−1
1 + κ−1

2 )/2 it can be seen from (12) that P (‖ϕ⊥‖22 > u) is bounded

above by a constant times exp[−(κ−1
1 + κ−1

2 )u/2]. As a result, exp(u/κ1) is dP⊥-integrable

which completes the proof of Proposition 1. �

IV. A STRONGER CONCENTRATION OF ϕ̂ FOR A LARGE ‖ϕ‖2

The concentration of ϕ̂(x) onto the fundamental eigenspace of TC can be made stronger

by considering a smaller class of ϕ(x). This is the subject of the following proposition, where

‖ · ‖∞ denotes the uniform norm on Λ.

Proposition 2 Assume ϕ(x) is a.s. continuous and 〈x|T 1/2
C |x〉 is bounded in Λ, then,

lim
r→+∞

E
(

‖ϕ̂⊥‖∞ | ‖ϕ‖22 > r
)

= 0. (13)

Proof. Let ψ(x) be the Gaussian field defined by

ψ(x) =

+∞
∑

n=1

sn(µn/κ1)
1/4φn(x). (14)

Since ϕ(x) is a.s. continuous in Λ, the convergence in (5) is pointwise with probability one3.

Thus, from (5), the Schwartz inequality, and (14) one gets |ϕ⊥(x)| ≤ κ
1/4
1 ‖ψ⊥‖2〈x|T 1/2

C |x〉1/2,

3 It is even uniform over Λ, with probability one. See Theorem 3.1.2. in Ref. [3].
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for every x in Λ. Since 〈x|T 1/2
C |x〉 is assumed to be bounded in Λ, ∃B > 0 such that

supx∈Λ〈x|T
1/2
C |x〉1/2 ≤ κ

1/4
1 B, (the factor κ

1/4
1 has been introduced for convenience), and one

has

‖ϕ̂⊥‖∞ ≤ √
κ1B ‖ψ⊥‖2/‖ϕ‖2. (15)

It follows from (15) and ‖ϕ‖2 ≤
√
κ1 ‖ψ‖2 [which follows from (5) and (14)] that, for every

ε > 0,

P
(

‖ϕ̂⊥‖∞ > ε , ‖ϕ‖22 > r
)

≤ P

(

‖ψ⊥‖2
√

r/κ1
>

ε

B
, ‖ψ‖22 >

r

κ1

)

. (16)

From (8) with ε = 0 and (9) one gets,

P
(

‖ϕ‖22 > r
)

=

∫ +∞

u=0

exp

(

u

κ1

)

dP⊥(u)

∫ +∞

v=r

H(v − u)(v − u)g1−1

(g1 − 1)!κg11
exp

(

− v

κ1

)

dv, (17)

which yields in the large r limit,

P
(

‖ϕ‖22 > r
)

∼
(

r

κ1

)g1−1
exp(−r/κ1)
(g1 − 1)!

∫ +∞

u=0

exp

(

u

κ1

)

dP⊥(u) (r → +∞)

=

(

r

κ1

)g1−1
exp(−r/κ1)
(g1 − 1)!

∏

n≥2

1

(1− κn/κ1)gn
. (18)

One finds similarly

P

(

‖ψ‖22 >
r

κ1

)

∼
(

r

κ1

)g1−1
exp(−r/κ1)
(g1 − 1)!

∏

n≥2

1

(1−
√

κn/κ1)gn
(r → +∞), (19)

and

lim
r→+∞

P (‖ψ‖22 > r/κ1)

P (‖ϕ‖22 > r)
=
∏

n≥2

(

1− κn/κ1

1−
√

κn/κ1

)gn
def
= C∞. (20)

Note that since 〈x|T 1/2
C |x〉 is bounded in Λ and |Λ| < +∞, T

1/2
C is trace class, which insures

the existence of C∞. As a result, there is a constant C > C∞ such that, for r large enough,

P

(

‖ψ‖22 >
r

κ1

)

≤ CP
(

‖ϕ‖22 > r
)

, (21)

and by (16), (21), and the proof of Proposition 1 for ψ,

lim
r→+∞

P
(

‖ϕ̂⊥‖∞ > ε | ‖ϕ‖22 > r
)

= 0. (22)
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From the obvious inequality ‖ϕ̂⊥‖∞ ≤ ε+ ‖ϕ̂⊥‖∞1{‖ϕ̂⊥‖∞>ε} and (15) one gets the estimate

‖ϕ̂⊥‖∞ ≤ ε+
√
κ1B ‖ψ⊥‖2‖ϕ‖−1

2 1{‖ϕ̂⊥‖∞>ε}, which gives, after conditional averaging,

E
(

‖ϕ̂⊥‖∞ | ‖ϕ‖22 > r
)

≤ ε+BE

(√
κ1

‖ψ⊥‖2
‖ϕ‖2

1{‖ϕ̂⊥‖∞>ε}

∣

∣

∣

∣

‖ϕ‖22 > r

)

≤ ε+BE

(

‖ψ⊥‖2
√

r/κ1
1{‖ϕ̂⊥‖∞>ε}

∣

∣

∣

∣

∣

‖ϕ‖22 > r

)

(23)

≤ ε+BE

( ‖ψ⊥‖22
r/κ1

∣

∣

∣

∣

‖ϕ‖22 > r

)1/2

P
(

‖ϕ̂⊥‖∞ > ε | ‖ϕ‖22 > r
)1/2

.

Using ‖ψ⊥‖2 ≤ ‖ψ‖2 and ‖ϕ‖2 ≤
√
κ1‖ψ‖2 one has,

E

( ‖ψ⊥‖22
r/κ1

∣

∣

∣

∣

‖ϕ‖22 > r

)

≤ κ1
rP({‖ϕ‖22 > r)

∫ +∞

r/κ1

xE[δ(‖ψ‖22 − x)] dx. (24)

Since P(‖ψ‖22 > r/κ1) behaves like exp(−r/κ1) as r → +∞ [to within algebraic corrections,

see (19)], the integral on the right-hand side of (24) behaves like
∫ +∞

r/κ1

xE[δ(‖ψ‖22 − x)] dx ∼ r

κ1
P

(

‖ψ‖22 >
r

κ1

)

(r → +∞). (25)

Now, (24), (25), and (20) yields

lim sup
r→+∞

E

( ‖ψ⊥‖22
r/κ1

∣

∣

∣

∣

‖ϕ‖22 > r

)

≤ C∞. (26)

Then, from (23), (22), and (26) one gets

lim sup
r→+∞

E
(

‖ϕ̂⊥‖∞ | ‖ϕ‖22 > r
)

≤ ε. (27)

It remains to take ε arbitrarily small and (27) reduces to (13), which completes the proof of

Proposition 2. �

The following proposition provides an example of a class of ϕ for which Proposition 2

holds. Take d = 1 and Λ = [0, 1]. One has,

Proposition 3 If C(x, y) has the fourth order partial derivative (∂4/∂x4)C(x, y) continuous

on [0, 1]2, then Proposition 2 holds.

Proof. First we prove that 〈x|T 1/2
C |x〉 is bounded in Λ. From the inequalities ‖φn‖2∞ ≤

‖φn‖22+2‖φn‖2‖φ′
n‖2, ‖φ

(p)
n ‖2 ≤ ‖φ(2p)

n ‖1/22 ‖φn‖1/22 , and the normalization ‖φn‖2 = 1 one gets

‖φn‖2∞ ≤ 1 + 2‖φ(4)
n ‖1/42 , which yields the estimate

〈x|T 1/2
C |x〉 =

∞
∑

n=1

√
µn |φn(x)|2 ≤

∞
∑

n=1

√
µn (1 + 2‖φ(4)

n ‖1/42 ). (28)
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Since (∂4/∂x4)C(x, y) is continuous on [0, 1]2 it is also bounded on [0, 1]2 and there is a

positive constant a (independent of n) such that

‖φ(4)
n ‖2 =

1

µn

[

∫ 1

0

∣

∣

∣

∣

∫ 1

0

∂4C(x, y)

∂x4
φn(y) dy

∣

∣

∣

∣

2

dx

]1/2

≤ 1

µn

[

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∂4C(x, y)

∂x4

∣

∣

∣

∣

2

dx dy

]1/2

≤ a

µn
.

Injecting this inequality into the right-hand side of (28) and using the fact that under the

conditions of Proposition 3, µn = o(1/n5) as n→ +∞ [4], one finds

〈x|T 1/2
C |x〉 ≤

∞
∑

n=1

(

µ1/2
n + 2a1/4µ1/4

n

)

< +∞. (29)

We now prove that ϕ(x) is a.s. continuous. Since C(x, y) is continuous (and bounded) on

[0, 1]2, it follows from

|φn(x)− φn(x
′)| ≤ 1

µn

[
∫ 1

0

|C(x, y)− C(x′, y)|2dy
]1/2

,

and dominated convergence that φn(x) is continuous on [0, 1]. Thus, for any given integer

N > 0,
∑N

n=1 sn
√
µnφn(x) is a.s. continuous on [0, 1]. Now, by Borel-Cantelli lemma and

the asymptotic behavior of µn for large n (see above), one has |sn| ≤ 1/µ
1/8
n a.s. as n→ +∞.

This result, together with the inequalities ‖φn‖∞ ≤ 1 +
√
2 ‖φ(4)

n ‖1/82 and ‖φ(4)
n ‖2 ≤ a/µn,

yield |sn|
√
µn |φn(x)| ≤ µ

3/8
n +

√
2 a1/8µ

1/4
n a.s. as n → +∞. Therefore, (5) converges

uniformly over [0, 1] with probability one, and ϕ(x) is a.s. continuous. �

V. SUMMARY AND PERSPECTIVES

In this paper, we have studied the realizations of a Gaussian field, ϕ, in the limit where its

L2-norm is large. We have first proved concentration of ϕ in probability onto the eigenspace

associated with the largest eigenvalue of the covariance of ϕ, κ1, when ‖ϕ‖2 is large (Propo-
sition 1). Considering then a smaller class of ϕ, we have established a stronger type of

concentration (Proposition 2). Finally, we have given an example of a class of ϕ for which

that stronger type of concentration holds (Proposition 3). These results extend the heuristic

and numeric results of [2] and give them a mathematically rigorous meaning.

We can now answer the question we asked in Sec. I for m−1 = 0 and m→ 0. The reason

for the presence of κ1 in the expression for λq when E(x, t) is given by (2) or (3) is clear: the

8



divergence of the moments of |E(x, t)| is determined by realizations of ϕ that concentrate

onto the eigenspace associated with κ1. Those realizations do have a large scale stucture

encoded in the reduction of the spectrum of ϕ as it concentrates onto the κ1-eigenspace.

The components orthogonal to the κ1-eigenspace do not play any role in the onset of the

divergence of the moments of |E(x, t)|.
So far, our results have been essentially mathematical and their physical meaning is still to

be given. A possible interpretation follows from the similarity between our problem and the

spherical model of a ferromagnet [5]. The role of the spins in the spherical model is played by

the sn in (5), and the fixed magnetization constraint is replaced with a fixed ‖ϕ‖22. The well
known connection between the spherical model and the ideal Bose gas [6] then suggests that

the concentration of ϕ for a large ‖ϕ‖22 may be interpreted as a Bose-Einstein condensation

in which the eigenspace associated with κ1 plays the role of the ground state in the Bose

gas. The following point seems to plead in favor of this interpretation. Define,

E||(r) = E
[

‖ϕ‖‖22
∣

∣ ‖ϕ‖22 > r
]

,

E⊥(r) = E [‖ϕ⊥‖22 | ‖ϕ‖22 > r] .
(30)

Using the estimate [see (11)],

P
(

‖ϕ⊥‖22 > v
∣

∣ ‖ϕ‖22 > r
)

≤
∫ +∞

u=v

exp

(

u

κ1

)

dP⊥(u),

one has,

E⊥(r) =

∫ +∞

0

v dP⊥

(

v | ‖ϕ‖22 > r
)

=

∫ +∞

0

P
(

‖ϕ⊥‖22 > v
∣

∣ ‖ϕ‖22 > r
)

dv

≤
∫ +∞

0

dv

∫ +∞

u=v

exp

(

u

κ1

)

dP⊥(u)

=

∫ +∞

0

u exp

(

u

κ1

)

dP⊥(u) < +∞,

where we have used the fact that dP⊥ is absolutely continuous with a density behaving

like exp(−r/κ2) as r → +∞ [to within algebraic corrections, see (18) in which κi and

gi are respectively replaced with κi+1 and gi+1]. Since this estimate is independent of r,

ρ⊥ = supr∈R+ E⊥(r) < +∞, and from the inequality E||(r)+E⊥(r) > r [see (30)] one obtains,

E||(r) > r − ρ⊥,

E⊥(r) ≤ ρ⊥.
(31)
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It follows immediately from (31) that for r & 2ρ⊥, the only contribution of the eigenspace as-

sociated with κ1 is greater than the one of all the other eigenmodes (which remains bounded).

Such a behavior is typical of a Bose-Einstein condensation onto the eigenspace associated

with κ1.

Of course, like any other phase transition, no sharp condensation can occur in a finite

size system. The “thermodynamic” limit, |Λ| → +∞ with fixed ‖ϕ‖22/|Λ|, must be taken

to get unambiguous results. In this limit, one is faced with the problem that the κn, with

n ≥ 2, get closer and closer to κ1 as |Λ| → +∞, which makes it difficult to tell them apart

from κ1 and may jeopardize condensation by leading to a concentration onto a larger space

than the eigenspace associated with κ1. For a homogeneous field4, one expects that issue to

be all the more acute as the density of states at large wavelengths, close to the ground state

(here, the condensate), is large. This will be the case at low space dimensionality d. Such a

dimensional effect is well-known in traditional Bose-Einstein condensation of an ideal Bose

gas which needs d ≥ 3 to exist. A thorough study of the concentration properties of ϕ in

the thermodynamic limit, from the Bose-Einstein condensation point of view, is currently

in progress along the same line as Evans et al. [7]. This will be the subject of a future work.

Acknowledgements

Ph. M. warmly thanks Satya N. Majumdar and Alain Comtet for fruitful discussions,

and in particular for pointing out the connection with Bose-Einstein condensation.

[1] Mounaix, Ph., Collet, P., Lebowitz, J. L.: Propagation effects on the breakdown of a linear

amplifier model: complex-mass Schrödinger equation driven by the square of a Gaussian field.

Commun. Math. Phys. 264, 741-758 (2006); Erratum. Commun. Math. Phys. 280, 281-283

(2008)

[2] Mounaix, Ph., Divol, L.: Breakdown of hot-spot model in determining convective amplification

in large homogeneous systems. Phys. Rev. Lett. 93, 185003 1-4 (2004)

4 i.e. with correlation function C(x, y) = C(x − y).

10



[3] Adler, R. J., Taylor, J. E.: Random fields and geometry, Springer Monographs in Mathematics,

(Springer, New York, 2007)

[4] Chang, C.-H., Ha, C.-W.: On eigenvalues of differentiable positive definite kernels. Integr. Equ.

Oper. Theory 33, 1-7 (1999)

[5] Berlin, T. H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821-835 (1952)

[6] Gunton, J. D., Buckingham, M. J.: Condensation of the ideal Bose gas as a cooperative tran-

sition. Phys. Rev. 166, 152-158 (1968)

[7] Evans, M. R., Majumdar, S. N., Zia, R. K. P.: Canonical analysis of condensation in factorised

steady states. J. Stat. Phys. 123, 357-390 (2006), and references therein

11


