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Abstract

For the solution of full-rank ill-posed linear systems a new approach based on the Arnoldi
algorithm is presented. Working with regularized systems, the method theoretically recon-
structs the true solution by means of the computation of a suitable function of matrix. In
this sense the method can be referred to as an iterative refinement process. Numerical ex-
periments arising from integral equations and interpolation theory are presented. Finally,
the method is extended to work in connection with the standard Tikhonov regularization
with a right hand side contaminated by noise.

Keywords: Ill-conditioned linear systems. Arnoldi algorithm. Matrix function. Tikhonov regu-
larization.

1 Introduction

In this paper we consider the solution of ill-conditioned linear systems

Ax = b. (1)

We mainly focus the attention on linear systems in which A ∈ R
N×N is full rank with singular

values that gradually decay to 0, as for instance in the case of the discretized Fredholm inte-
gral equations of the first kind. In order face this kind of problems one typically apply some
regularization technique such as the well known Tikhonov regularization (see e.g. [17] for a wide
background). The Tikhonov regularized system takes the form

(ATA+ λHTH)xλ = AT b, (2)

where λ ∈ R is a suitable parameter and H is the regularization matrix. The system (2) should
have singular values bounded away from 0 in order to reduce the condition number and, at the
same time, its solution xλ should be closed to the solution of the original system.
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For this kind of problem the method initially presented in this paper is based on the shift and
invert transformation

Z = (A + λI)−1, (3)

where λ > 0 is a suitable parameter and I is the identity matrix. Provided that λ is large enough,
if A is positive definite (F (A) ⊂ C+, where F (A) denotes the field of values) the shift A+λI, that
represents the most elementary example of regularization, has the immediate effect of moving the
spectrum (that we denote by σ(A)) away from 0 so reducing the condition number. Moreover,
since

x = A−1b = f(Z)b,

where

f(z) =

(
1

z
− λ

)−1

= (1− λz)−1z, (4)

the idea is to solve the system Ax = b by computing f(Z)b. For the computation of f(Z)b, we use
the standard Arnoldi method projecting the matrix Z onto the Krylov subspaces generated by
Z and b, that is Km(Z, b) = span{b, Zb, ..., Zm−1b}. By definition of Z the method is commonly
referred to as the Restricted-Denominator (RD) rational Arnoldi method [11], [25].

Historically, a first attempt to reconstruct the solution from xλ that solves

(A+ λI) xλ = b, (5)

was proposed by Riley in [28]. The algorithm is just based on the approximation of f(Z) by
means of its Taylor series. Indeed we have

A−1b =
1

λ

∞∑

k=1

(λZ)kb, (6)

that leads to the recursion

xk+1 = y + λZxk, x0 = 0, y = Zb. (7)

It is easy to see that the method is equivalent to the iterative improvement

(A+ λI) ek = b− Axk
xk+1 = xk + ek

generally referred to as iterated Tikhonov regularization or preconditioned Landweber iteration
(see e.g. [14], [19], [21], [22], [26]). The main problem concerning this kind of algorithms is that
they can be extremely slow because the spectrum of Z accumulates at 1/λ (cf. (3), (6)). This,
of course, large values of λ, that is, when A+ λI is well conditioned. ¿From the point of view of
the computation of function of matrices this is a well known problem, i.e., the the computation
by means of the Taylor series generally provides poor results unless the spectrum of the matrix
is close to the expansion point. Indeed, from well known results of complex approximation, the
rate of convergence of a polynomial method for the computation of a function of matrix depends
on the position of the singularity of the function, with respect to the location of the spectrum of
the matrix.

We also point out that, in [6], the authors construct an improved approximation via extrap-
olation with respect to the regularization parameter, using the singular values representation of
the solution. Extrapolation techniques can also be applied to accelerate (7), as suggested in [5]
and also indicated by Fasshauer in [12].



For problems in which the right hand side is affected by noise, instead of working with the
transformation (3) or implicitly with systems of type (5), we shall work with the standard regu-
larization (2) and hence on the transformation

Z = (ATA+ λLTL)−1.

As we shall see, the subsequent Arnoldi-based algorithm for the reconstruction of the exact
solution will be almost identical to the one based on (3), but the use of a regularization matrix
L different from the identity allows to define methods less sensitive to perturbations on the right
hand side.

The paper is organized as follows. In Section 2, we describe the Arnoldi method for the
computation of f(Z)b and, in Section 3, we present a theoretical a-priori error analysis. In
Section 4, we show an a-posteriori representation of the error. In Section 5, we analyze the
choice of the parameter λ. Some numerical experiments taken out from Hansen’s Matlab toolbox
on regularization [16, 18], and from the theory of interpolation with radial basis functions are
presented in Section 6. Finally, in Section 7, we extend our method to the Tikhonov regularization
in its general form (2) showing also some tests with data affected by noise.

2 The Arnoldi method for f(Z)b.

For the construction of the subspaces Km(Z, b), the Arnoldi algorithm generates an orthonormal
sequence {vj}j≥0, with v1 = b/ ‖b‖, such that Km(Z, b) = span {v1, v2, ..., vm} (here and below the
norm used is always the Euclidean norm). For every m we have

ZVm = VmHm + hm+1,mvm+1e
T
m, (8)

where Vm = [v1, v2, ..., vm], Hm is an upper Hessenberg matrix with entries hi,j = vTi Zvj and ej is
the j-th vector of the canonical basis of Rm. Formula (8) is just the matrix formulation of the
algorithm.

The m-th Arnoldi approximation to x = f(Z)b is defined as

xm = ‖b‖ Vmf(Hm)e1.

Regarding the computation f(Hm), since the method is expected to produce a good approximation
of the solution in a relatively small number of iterations, that is form≪ N , one typically considers
a certain rational approximation to f , or the Schur-Parlett algorithm (see e.g. [15, Chapter 11]
or [20]).

Denoting by Πm−1 the vector space of polynomials of degree at most m − 1, it can be seen
that

xm = pm−1(Z)b, (9)

where pm−1 ∈ Πm−1 interpolates, in the Hermite sense, the function f at the eigenvalues of
Hm [29].

As already mentioned, this kind of approach is commonly referred to as the RD rational
Arnoldi method since it is based on the use of single pole rational forms of the type

Rm−1(x) =
qm−1(x)

(x+ a)m−1
, a ∈ R, qm−1 ∈ Πm−1, m ≥ 1,

introduced and studied by Nørsett in [27] for the approximation of the exponential function. In
other words, with respect to A, formula (9) is actually a rational approximation.



It is worth noting that, at each step of the Arnoldi algorithm, we have to compute the vectors
wj = Zvj , j ≥ 1, which leads to solve the systems

(A+ λI)wj = vj , j ≥ 1.

Since v1 = b/ ‖b‖, the corresponding w1 is just the scaled solution of a regularized system (with
the rough regularization A→ A+λI). In this sense if λ arises from the standard techniques that
seek for the optimal regularization parameter λopt (L-curve, Generalized Cross Validation, etc.)
this procedure can be employed as a tool to improve the quality of the approximation w1‖b‖.
Anyway we shall see that, using the Arnoldi algorithm, larger values for λ are more reliable.

3 Error analysis

The error Em := x−xm can be expressed and bounded in many ways (see e.g. the recent paper [1]
and the references therein). In any case, however, the sharpness of the bound essentially depends
on the amount of information about the location of the field of values of Z, defined by

F (Z) :=

{
xHZx

xHx
, x ∈ C

N\ {0}
}
.

The bound we propose is based on the use of Faber polynomials. We need some definitions and
we refer to [30] or [31] for a wide background of what follows.

Let Ω be a compact and connected set of the complex plane. By the Riemann mapping
theorem there exists a conformal surjection

ψ : C \ {w : |w| ≤ 1} → C \ Ω, ψ (∞) =∞, ψ′ (∞) = γ, (10)

that has a Laurent expansion of the type

ψ(w) = γw + c0 +
c1
w

+
c2
w2

+ · · ·

The constant γ is the capacity of Ω. If Ω is an ellipse or a line segment then ci = 0 for i ≥ 2.
Given a function g analytic in Ω, it is known that defining pm−1 as the truncated Faber series
of exact degree m − 1 with respect to g and ψ, then pm−1 provides an asymptotically optimal
uniform approximation to g in Ω, that is

lim
m→∞

sup ‖pm−1 − g‖1/mΩ = lim
m→∞

sup
∥∥p∗m−1 − g

∥∥1/m

Ω
, (11)

{
p∗m−1 (z)

}
m≥1

being the sequence of polynomials of best uniform approximation to g in Ω. Prop-

erty (11) is also called maximal convergence. Let moreover φ : C \ Ω→ C \ {w : |w| ≤ 1} be the
inverse of ψ. For any r > 1, let Γr be the equipotential curve

Γr := {z : |φ (z)| = r} ,
and let us denote by Ωr the bounded domain with boundary Γr. Let r̂ > 1 be the largest number
such that g is analytic in Ωr for each γ < r < r̂ and has a singularity on Γr̂. Then, it is known
that the rate of convergence of the sequence {pm−1 (z)}m≥1 is given by

lim
m→∞

sup ‖pm−1 − g‖1/mΩ =
1

r̂
. (12)

For this reason we know that superlinear convergence is only attainable for entire functions, where
asymptotically one can set r̂ := m. In order to derive error bounds for the computation of f(Z)b
we need the following classical result



Theorem 1 [10] Let Ω be a compact and convex subset such that g is analytic in Ω. For
1 < r < r̂ the following bound holds

‖pm−1 − g‖Ω ≤ 2 ‖g‖Γr

(
1

r

)m

1− 1

r

. (13)

Using the above theorem, for our function f(z) = z/(1 − λz), singular at 1/λ, we can state
the

Proposition 2 Assume that Ω is an ellipse of the complex plane, symmetric with respect to the
real axis with associated conformal mapping ψ(w) = γw + c0 + c1/w. Assume that ψ(1) < 1/λ
and let r̂ be such that ψ(r̂) = 1/λ. Let moreover m be the smallest integer such that

r̂

m+ 1
< r̂ − 1.

Then for m ≥ m

‖pm−1 − f‖Ω ≤
2 em r̂

m(r̂ − 1)− 1

1

λ2ψ′(r̂)

m+ 1

r̂m
, (14)

and for m < m

‖pm−1 − f‖Ω ≤
4

λ2 (r̂ − 1)ψ′(r̂)

(
2

r̂ + 1

)m
r̂ + 1

r̂ − 1
. (15)

Proof. Let r = r̂ − ε, with 0 < ε < r̂ − 1. By the properties of Ω, we have

‖f‖Γr
=

ψ(r)

1− λψ(r) ,

and, by direct computation

ψ(r) = ψ(r̂)− γε+ c1ε

(r̂ − ε)r̂ .

Hence using ψ(r̂) = 1/λ we find

‖f‖Γr
≤ ψ(r̂)

1− λ
(
ψ(r̂)− γε+ c1ε

(r̂ − ε)r̂

) ,

=
1

λ2ε

(
γ − c1

(r̂ − ε)r̂

) ,

≤ 1

λ2εψ′(r̂)
.

By (13), we thus obtain

‖pm−1 − f‖Ω ≤
2

λ2εψ′(r̂)

1

(r̂ − ε)m
1

1− 1

r̂ − ε

. (16)

Now setting

ε =
r̂

m+ 1
, (17)



since this value minimizes
1

ε (r̂ − ε)m ,

let m be the smallest positive integer such that

r̂

m+ 1
< r̂ − 1.

By inserting (17) into (16) and using

1

1− 1

r̂ − ε

≤ mr̂

m(r̂ − 1)− 1
,

we find (14). For m < m we can take for instance

ε =
r̂ − 1

2
. (18)

Substituting (18) into (16) we obtain (15).

Remark 3 Note that the assumption ψ(1) < 1/λ in Proposition 2 just means that the ellipse is
strictly on the left of the singularity of f .

Regarding the field of values of Z, F (Z), it is well known that it is convex, that σ(Z) ⊂ F (Z),
and that F (Hm) ⊆ F (Z) (where Hm is defined in Section 2). Of course if F (A) ⊂ C+ (A is
positive definite) then F (Z) ⊂ {z ∈ C : 0 < Re(z) < 1/λ} and the corresponding f is analytic in
F (Z). Using these properties we can state the following result

Theorem 4 Assume that F (A) ⊂ C+. Let Ω be an ellipse (with associated conformal mapping
ψ, and inverse φ) symmetric with respect to the real axis and such that F (Z) ⊆ Ω with f analytic
in Ω. Then, for m large enough, we have

‖Em‖ ≤ 4 eC
r̂

r̂ − 1

1

ψ′(r̂)
K
m+ 1

r̂m
,

where K = 1/λ2, r̂ = φ(1/λ), and C = 11.08 (C = 1 if A is symmetric).

Proof. Using the properties of the Arnoldi algorithm, we know that for every pm−1 ∈ Πm−1,

Vmpm−1(Hm)e1 = pm−1(Z)b. (19)

Hence, from (19), it follows that, for m ≥ 1 and for every pm−1 ∈ Πm−1,

Em = x− xm = f(Z)b− pm−1(Z)b− Vm(f(Hm)− pm−1(Hm))e1. (20)

Since ‖Vm‖ = 1 we have (see [9])

‖Em‖ ≤ 2C ‖pm−1 − f‖F (Z) . (21)

Therefore taking pm−1 as the (m− 1)-th truncated Faber (Chebyshev) series, the result follows
from Proposition 2 since F (Z) ⊆ Ω.



Remark 5 By (20), if both Z and Hm are diagonalizable then C in (21) is a constant depend-
ing on the condition number of the diagonalization matrices and Ω can be taken as an ellipse
containing σ(A).

Theorem 4 is surely important from a theoretical point of view since it states that the Arnoldi
algorithm produces asymptotically optimal approximations. However, if we consider for simplicity
the symmetric case, we can also understand that it cannot be used to suggest the choice of λ.

Indeed, let λ1 & 0 and λN be respectively the smallest and the largest eigenvalues A. Then
F (A) = [λ1, λN ] and

F (Z) =

[
1

λN + λ
,

1

λ1 + λ

]
=: Iλ.

In this case, by (21) we have

‖Em‖ ≤ 2max
Iλ
|f(z)− pm−1(z)| .

As already mentioned, the conformal mapping ψ associated to Iλ takes the form

ψ(w) = γw + c0 +
c1
w

(22)

where

γ =
1

4

(
1

λ1 + λ
− 1

λN + λ

)
=

1

4

λN − λ1
(λ1 + λ) (λN + λ)

,

c0 =
1

2

(
1

λ1 + λ
+

1

λN + λ

)
=

1

2

λN + λ1 + 2λ

(λ1 + λ) (λN + λ)
, (23)

c1 = γ.

For r > 1, Ωr is the confocal ellipse (foci in
1

λN + λ
and

1

λ1 + λ
) described by ψ(reiθ), 0 ≤ θ < 2π.

Since f(z) is singular at 1/λ, r̂ is the solution (> 1) of

γr̂ + c0 +
γ

r̂
=

1

λ
(24)

that is
r̂ = u+

√
u2 − 1, (25)

where

u =
2λ1λN

λ(λN − λ1)
+
λN + λ1
λN − λ1

. (26)

Thus, r̂ monotonically decreases with respect to λ and r̂ →∞ for λ→ 0.
The above arguments simply show that the error analysis does not take into account of the

computational problems in the inversion of A + λI for λ ≈ 0. The method is very fast for
λ ≈ 0 because, at each step, we are inverting something very close to the original operator A. In
order to derive a more useful estimate one should modify the above analysis imposing in some
way the requirement λ ≫ λ1. In some sense this will be done in Section 5 where we consider
the conditioning in the computation of f(Z)b that is obviously closely related to the rate of
convergence of any iterative method.



4 A-posteriori error representation

By a result on Padé–type approximation proved in [3], we know that the Hermite interpolation
polynomial of the function

g(s) =
1

1− st
at the zeros of any polynomial νm of exact degree m in s is given by

Rm−1(s) =
1

1− st

(
1− νm(s)

νm(t−1)

)
.

Setting λ = t−1, we have that

f(ξ) =
1

ξ−1 − λ = −λ−1g
(
ξ−1

)
,

and so

− λ−1Rm−1(ξ
−1) =

1

1− ξ−1λ−1

(
1− νm(ξ

−1)

νm(λ)

)
(27)

interpolates f(ξ). By (9) let pm−1 ∈ Πm−1 be the polynomial that interpolates, in the Hermite
sense, the function f(z) at the eigenvalues of Hm, ξ1, ..., ξm′, m′ ≤ m, with multiplicity ki,
i = 1, ..., m′.Then

p
(j)
m−1(ξi) = −λ−1R

(j)
m−1(ξ

−1
i ) = f (j)(ξi), 1 ≤ i ≤ m′, 0 ≤ j ≤ ki − 1.

By (27) and using the above relation is it easy to see that νm(s) = det(sI − H−1
m ). In this way,

by direct computation,

xm = pm−1(Z)b,

= A−1b− A−1

(
νm(Z

−1)

νm(λ)

)
b. (28)

Since, of course, A−1 and Z−1 commute, we find

‖xm − x‖
‖x‖ ≤ ‖νm(A+ λI)‖

|νm(λ)|
.

A posteriori error estimate can be derived in this way. Since

νm(s) = det(sI −H−1
m ),

=
sm det(Hm − s−1I)

detHm

,

defining qm(ξ) = det(Hm − ξI), we have

‖xm − x‖
‖x‖ ≤ ‖(A+ λI)mqm(Z)‖

λm |qm(λ−1)| . (29)

It is worth noting that, using the relation

qm(Z)b =
(∏m

j=1
hj+1,j

)
vm+1,

(see [25]), we obtain from (28)

‖xm − x‖ =

(∏m
j=1 hj+1,j

)

λm |qm(λ−1)|
∥∥A−1(A+ λI)mvm+1

∥∥ ,

which proves the convergence in a finite number m∗ ≤ N of steps of the method in exact arith-
metics. Note that by (28) the corresponding νm∗ is the minimal polynomial of A + λI for the
vector b.



5 The choice of λ

As already mentioned, the arguments of Section 3 reveal that the standalone error analysis of
the computation of f(Z)b is not reliable to suggest the choice of λ, since κ(Z)→ κ(A) as λ→ 0
(κ(·) denoting the standard condition number of a matrix). In other words, it does not take into
account that, at each step, we need to solve a system with the matrix A+ λI. At the same time,
focusing the attention on the accuracy (so neglecting the rate of convergence) one could expect
that ”large” values of λ should allow an improvement of it, since the linear systems with A+ λI
would be solved more accurately. The numerical experiments show that this is not true, as shown
in Fig. 1, where we consider the problem BAART, taken out from the Hansen’s Matlab toolbox
Regtools (see [16] and [18]).
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Figure 1: BAART(40) - Minimum attained error with respect to the number of iterations for
different values of λ.

Indeed the diagram of Fig. 1 represents the standard situation, that is, increasing λ, we have
a loss of accuracy. The behavior on the leftmost part of the diagram is clear since it is due to the
conditioning of Z for λ small. On the rightmost part we have again a loss of accuracy but now it
depends on the numerical instability in the computation of f(Z) for λ large (the problem can be
easily observed even working scalarly). This observation leads us to consider the conditioning in
the computation of f(Z)b for having a good strategy to define λ.

The absolute and the relative condition number for the computation of g(X) where g is a
given function and X a square matrix are given by (cf. [20] Chapter 3)

κa(g,X) = lim
ε→0

sup
‖E‖≤ε

‖g(X + E)− g(X)‖
ε

, (30)

κr(g,X) = κa(g,X)
‖X‖
‖g(X)‖ , (31)



and these definitions imply that

‖g(X + E)− g(X)‖ ≤ κa(g,X) ‖E‖+O(‖E‖2).

Proposition 6 For the function f(z) = (1− λz)−1z we have the bound

κr(f, Z) ≤
‖(I − λZ)−2‖ ‖Z‖
‖(Z−1 − λI)−1‖ . (32)

Proof. In order to derive first the absolute condition number we have

f(Z + E)− f(Z) =
[
(Z + E)−1 − λI

]−1 − (Z−1 − λI)−1,

=
[
(I + Z−1E)−1Z−1 − λI

]−1 − (Z−1 − λI)−1,

=
[
Z−1 − λI + Λ(Z,E)

]−1 − (Z−1 − λI)−1,

where

Λ(Z,E) :=

∞∑

k=1

(−1)k(Z−1E)kZ−1.

Hence

f(Z + E)− f(Z) =
[
I + (Z−1 − λI)−1Λ(Z,E)

]−1
(Z−1 − λI)−1 − (Z−1 − λI)−1,

=
∑∞

j=0
(−1)j(Z−1 − λI)−jΛ(Z,E)j(Z−1 − λI)−1 − (Z−1 − λI)−1, (33)

and finally

‖f(Z + E)− f(Z)‖ ≤
∥∥(Z−1 − λI)−1Z−1EZ−1(Z−1 − λI)−1

∥∥+O(‖E‖2),

so that
κa(f, Z) ≤

∥∥(I − λZ)−2
∥∥ ,

that proves (32) using (31) and the definition of f(z). Note that by (33)

L(Z,E) := (I − λZ)−1E(I − λZ)−1

is the Fréchet derivative of f at Z applied to E.
This Proposition simply shows that the problem is well conditioned for λ → 0 and ill condi-

tioned for λ ≫ 0, that matches with the error analysis of Section 3. Of course the situation is
opposite to what happens for the solution of the linear systems with A + λI during the Arnoldi
process. Therefore the idea, confirmed by many numerical experiments, is to define λ such that
κr(f, Z) ≈ κ(A+ λI), that is, to consider the bound (32) and solve the equation

‖(I − λZ)−2‖ ‖Z‖
‖(Z−1 − λI)−1‖ = ‖(A+ λI)‖

∥∥(A + λI)−1
∥∥ .

In the SPD case everything becomes clear since we have

‖(I − λZ)−2‖ ‖Z‖
‖(Z−1 − λI)−1‖ =

λ+ λ1
λ1

‖(A+ λI)‖
∥∥(A + λI)−1

∥∥ =
λN + λ

λ1 + λ

that for λ1 → 0 leads to
λ =

√
λ1λN +O(λ1).



Remark 7 If the underlying operator is bounded then one may consider the approximation

√
λ1λN ≈

1√
κ(A)

for λ1 → 0.

Remark 8 In the SPD case, taking λ∗ =
√
λ1λN and putting it into (25)-(26), we find that the

asymptotic convergence factor of the method is given by

‖Em‖1/m →
1

r̂
=
λ
1/4
N − λ1/41

λ
1/4
N + λ

1/4
1

=
κ(A)1/4 − 1

κ(A)1/4 + 1
.

Remark 9 The choice of λ∗ has another interesting meaning. Indeed, let us consider the problem
of the computation of g(A)b with g singular only at 0 and A SPD. Using the transformation
z = (a+ λ)−1 (cf. (3)), if the corresponding g∗(z) = g(z−1 − λ) has a non-removable singularity
at 0, then the optimal choice of λ is given by solving the equation

c0 =
1

2λ
(34)

(cf. (22) and (23)), that is, the midpoint of [0, 1/λ] must be equal to the midpoint of Iλ, because
in this way we have simultaneously ψ(−r̂) = 0 and ψ(r̂) = 1/λ. A straightforward computation
shows that solving (34) leads exactly to λ∗. For instance, in [23] the author uses the RD Arnoldi
method to compute

√
Ab and obtains the same result even if following a different approach.

Remark 10 The condition number of A+ λ∗I is given by

κ(A + λ∗I) =
λN +

√
λ1λN

λ1 +
√
λ1λN

=

√
λN
λ1

=
√
κ(A).

In the nonsymmetric case, the analysis is a bit more difficult but many numerical experiments
have shown that just having information on the conditioning of A, the choice λ ≈ κ(A)−1/2 is
generally satisfactory, that is, we are rather close to the minimum of a curve similar to the one
of Fig. 1. For very ill-conditioned problems we suggest to define λ a bit larger, say in the range
10κ(A)−1/2 ÷ 100κ(A)−1/2, since the errors generated by the solution of the linear systems might
be much larger than the machine precision.

6 Numerical experiments

In order to test the efficiency of our method, that from now on we denote by RA (Rational
Arnoldi), we consider here some numerical experiments where we compare it with other classical
iterative solvers. The RA method have have been implemented in Matlab following the line of
Algorithm 1 described below.

It is worth noting that we make use of the LU (or Cholesky) factorization to solve the linear
system at each step. The reason is to reduce the computational cost since the factorization is
computed only once at the beginning, taking also into account that A + λI should be relatively
well conditioned. Anyway, for large scale non-sparse problems an iterative approach producing
an inner-outer iteration should be considered.

We consider four classical test problems taken out from Hansen’s Matlab toolbox Regtools,
GRAVITY, FOXGOOD, SHAW and BAART. These discrete linear problems arise from the
discretization of Fredholm integral equations of the first kind. In all experiments, we consider a



Algorithm 1 - RA Algorithm for solving Ax = b.

1: Require A ∈ R
N×N, b ∈ R

N , λ ∈ R

2: Define f = (1− λz)−1z

3: if (A+ λI) is SPD, then Compute L s.t. (A+ λI) = LLT

else Compute L,U s.t. (A+ λI) = LU , end if

4: v1 ← b/‖b‖, V1 ← [v1]

5: for m = 1, 2, . . . do

5.1: Update Hm ∈ R
m×m by Arnoldi’s algorithm

Remark: In the Arnoldi’s algorithm, we compute wm = Zvm

solving (A+ λI)wm = vm, that is wm = U−1L−1vm or wm = (LT )−1L−1vm.

5.2: Compute f(Hm) by Schur-Parlett algorithm

5.3: xm ← ‖b‖Vmf(Hm) e1

5.4: Output xm, approximation of f(Z)b = A−1b

5.5: Update Vm+1 = [v1, . . . , vm+1] ∈ R
N×(m+1) orthonormal basis for

Km+1(Z, b), by Arnoldi’s algorithm

end for

noise-free right hand side, that is, we define b = Ax. The numerical results have been obtained
with Matlab 7.9, on a single processor computer Intel Core2 Duo T5800.

Tables 1 and 2 below summarize the results. For comparison, we consider the codes ART,
CGLS, LSQR B and MR2 taken out from Hansen’s toolbox, CG, GMRES and MINRES that are
resident Matlab functions, and Riley’s method. The number between parentheses beside the name
of the test is the dimension of the system. In all tests λRA and λRiley denote the chosen values
of the parameters for the RA and Riley’s method respectively. Since no general indication about
the choice of the parameter for Riley’s method is available in the literature, in all experiments we
heuristically select a nearly best one. In the tables we consider the minimum attained error norm
err, the corresponding residual res and the number of iterations nit. Each method was stopped
when the number of iterations reaches the dimension of the system. The missing numbers are
due to the structure of the coefficient matrix (symmetric, SPD, and so on).

GRAVITY(100) FOXGOOD(80)

λRA, λRiley 1e-9, 1e-11 1e-8, 1e-10
err res nit err res nit

RA 1.6e-5 8.1e-9 2 6.8e-7 2.9e-10 5

CG 1.7e-4 7.5e-11 96
ART 8.4e-2 5.8e-3 100 2.3e-3 8.8e-6 80
CGLS 6.3e-6 9.6e-14 80
LSQR B 1.7e-3 2.0e-8 100 2.9e-6 1.1e-14 80
MR2 1.9e-3 2.3e-8 66 2.3e-6 1.6e-15 57
MINRES 1.8e-4 4.6e-11 100 2.0e-5 1.6e-15 80
RILEY 1.3e-3 8.0e-11 2 6.3e-6 5.2e-10 2

Table 1: Results for GRAVITY and FOXGOOD.



SHAW(64) BAART(120)

λRA, λRiley 1e-9, 1e-10 1e-8, 1e-10
err res nit err res nit

RA 3.3e-3 2.0e-7 7 8.3e-6 1.3e-8 6

GMRES 9.6e-6 1.4e-15 15
ART 7.7e-1 6.8e-2 64 3.4e-1 2.7e-2 120
CGLS 2.8e-2 5.1e-10 64 2.4e-2 1.7e-14 120
LSQR B 2.8e-2 1.5e-10 62 2.4e-2 2.4e-15 120
MR2 1.6e-1 3.7e-6 15
MINRES 1.0e-2 1.2e-11 64
RILEY 9.6e-3 8.0e-10 2 1.3e-5 1.3e-10 2

Table 2: Results for SHAW and BAART.

The results of Tables 1 and 2 are of course encouraging, especially considering the accuracy
with respect to the number of iterations. Indeed, both RA and Riley’s method require a linear
system to solve at each step, and so it is fundamental to keep the number of iterations low.
However, it is worth pointing out that, in the experiments, such linear systems are solved with
the LU or Cholesky factorization, so that most part of the computational cost is due to the first
iteration.

A classical drawback of many iterative solvers for ill-conditioned problems is the so-called
semi-convergence (see e.g. [2]), that is the iterations initially approach the exact solution but
quite rapidly diverges. This phenomenon is very common in particular for iterative refinement
methods (thus for Riley’s and RA) where there is a heavy propagation of errors. Of course,
unless a sharp error estimator is available, this undesired behavior can be quite dangerous for
applications. In order to understand what we can do to face this problem, in Fig. 2 we consider
the error behavior of the RA method for BAART changing the value of the parameter.

Looking at Fig. 2, we can observe that increasing λ the procedure becomes absolutely stable,
even if we have to pay a small price in terms of accuracy. Therefore, for applications in which
it is not possible to monitor in some way the accuracy step by step, the semi-convergence can
be prevented taking κ(A)−1/2 ≪ λ ≤ κ(A)−1/4, thus looking for a compromise between accuracy
and stability. On the other side, reducing λ, the method is really fast but also highly unstable.
This last consideration is particularly true for Riley’s method, where, at least for these kind of
problems, one always observes a rapid divergence after a couple of iterations, also for relatively
large values of λ.

In this Section, we also look at another classical example coming out from approximation
theory. We consider in particular the reconstruction of the Franke’s bivariate test function via
interpolation by means of Gaussian Radial Basis Functions (RBF) with shape coefficients equal
to 1 (see e.g. [13] for a background). For simplicity, instead of scattered points, we consider here
the very special case of a grid of 15×15 equally spaced points on the square [0, 1]×[0, 1] that leads
to a SPD linear systems of dimension 225 whose condition number is about 1021. In Fig. 3, the
surfaces obtained with the Cholesky factorization, the CG and the RA method (with λ = 10−11)
are plotted. Since the exact solution of the system is unknown, we used the residual as a stopping
criterion, so that the CG result corresponds to the iteration 190 (residual ≈ 1.6e− 1), while the
RA result corresponds to the iteration 10 (residual ≈ 1.4e− 1).

While the result with the Cholesky factorization was expected (a similar test have been pre-
sented in [12]), the difficulties with Krylov methods were not. Indeed, the CG method has shown
to be the best Krylov method for this problem, but the results are poor if compared with those
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Figure 2: BAART(120) - Error behavior for λ = 10−4, 10−6, 10−8, 10−10.

of the RA method. We have to point out that, for this case, the reconstruction given by the RA
and the Riley’s method are very similar.

7 Extension to Tikhonov regularization

In many applications it is often necessary to deal with ill-conditioned linear systems in which the
right hand side is affected by noise. Defining eb as a perturbation (of course unknown) of the
right hand side b, one is forced to solve in some way

Ax̃ = b̃, b̃ := b+ eb, (35)

hoping that the computed solution of (35) is close to the solution of Ax = b. In this situation,
the RA method does not seem to be so powerful and robust as in the noise-free case. Moreover,
unless the noise level is very low, it is also difficult to design a strategy to define the parameter
λ. Indeed, in order to adopt the theory of Section 5 based on the analysis of the conditioning,
we should need, for instance, to construct an invertible linear filter F such that Feb ≈ 0. In this
way F−1Ax ≈ b̃, and hence information on the choice of λ can be obtained considering κ(F−1A).
Anyway this kind of approach is beyond the purpose of this paper, and we prefer to extend the
idea of the RA method in order to make it able to work directly with Tikhonov regularization in
its standard form.

As well known Tikhonov regularization is based on the solution of the minimization problem

min
x

(∥∥∥Ax− b̃
∥∥∥
2

+ λ ‖Hx‖2
)
, λ > 0, (36)

where the matrix H is generally taken as an high-pass filter (e.g. the second derivative) so that
the term ‖Hx‖2 plays the role of the penalization term in a constrained minimization. The main



Figure 3: Interpolation of Franke’s bivariate test function by means of Gaussian RBF.

problem is that the noise generally involves also frequencies of the exact solution so that it is not
possible to solve (36) letting λ→∞ as in standard constrained minimization. Anyway, defining
suitably λ (see [17] for a background), the corresponding solution xλ is expected to be somehow
similar to the desired noise-free solution. The problem (36) leads to the solution of the regularized
system

(ATA+ λHTH)xλ = AT b̃, (37)

where the matrix ATA+ λHTH is also expected to be better conditioned than A.
Following the idea of the RA method, we consider here the transformation

Z = (ATA+ λHTH)−1.

Since the exact solution can be written as x =
(
ATA

)−1
AT b, we have

x =
(
Z−1 − λHTH

)−1
AT b,

= f(Q)
(
HTH

)−1
AT b,

where

Q = Z
(
HTH

)
=

((
HTH

)−1
ATA+ λI

)−1

.

Note that we are assuming to work with the exact right hand side even if, in practice, the method
is applied with b̃.

Hence we can compute the solution working with the Arnoldi algorithm based on the con-

struction of the Krylov subspaces Km(Q,
(
HTH

)−1
AT b). Thus, starting from v1 = v/ ‖v‖, where

v is the solution of (
HTH

)
v = AT b, (38)



we need to compute, at each step of the algorithm, the vectors wj = Qvj , j ≥ 1, that is, we need
to solve systems of the type

(ATA+ λHTH)wj =
(
HTH

)
vj.

Note that by (38) and the arising definition of v1, the first step of the Arnoldi algorithm yields
the Tihhonov regularized solution xλ (cf. (37)). Hence, also in this case, the procedure can be
interpreted as an iterated Tikhonov regularization.

In order to appreciate the potential of this extension (that we indicate by RAT, Rational-
Arnoldi-Tikhonov) we consider the test problem SHAW and BAART with a right hand side
contaminated by an error eb defined by

eb =
δ ‖b‖√
N

u,

where δ is the relative noise level, and u is a vector containing random values drawn from a normal
distribution with mean 0 and standard deviation 1. In the experiments, we define δ = 10−3, and,
as suggested in [8], we take as regularization matrix

H =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



∈ R

N×N .

Indeed, at least for these experiments, this choice produces better results than the classical
(N − 2) × N matrix representing the second derivative operator. Since the noise is randomly
generated, for both examples we consider two tests, and we compare the RAT method (with
different values of the parameter λ) with GMRES, ART, LSQR B and MR2. The results are
collected in Table 3.

SHAW(64) BAART(120)

test #1 test #2 test #1 test #2
λ err nit err nit err nit err nit

RAT 1e-3 0.287 5 0.215 3 0.046 2 0.046 2
1e-2 0.293 5 0.242 5 0.028 3 0.035 3
1e-1 0.226 9 0.230 7 0.022 3 0.029 3
1e-0 0.297 7 0.269 8 0.010 3 0.013 3
1e+1 0.199 14 0.269 8 0.007 3 0.009 3
1e+2 0.293 18 0.173 10 0.008 4 0.007 3
1e+3 0.288 11 0.268 13 0.008 4 0.010 4
1e+4 0.575 10 0.522 7 0.008 4 0.010 4

GMRES 0.392 7 0.374 7 0.059 3 0.056 3
ART 0.837 64 0.837 11 0.344 120 0.340 120
LSQR B 0.361 14 0.375 10 0.142 6 0.147 4
MR2 0.355 12 0.288 9

Table 3: Minimum attained error and corresponding iteration number for SHAW and BAART
with Gaussian noise of level δ = 10−3



Similarly to the noise-free case, we also consider the stabilizing effect of a careful choice of λ.
Indeed, in Figure 4 we plot the error behavior of some of the methods considered for the solution
of SHAW(64). Taking λ = 10 for the RAT method, we can overcome the problem of semi-
convergence keeping at the same time a good level of accuracy contrary to other well performing
methods such as GMRES and LSQR B.
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Figure 4: Error behavior for SHAW(64) with noise. RAT method is implemented with λ = 10.

8 Conclusions

Our experience with the RA and the RAT methods leads us to consider these methods as reliable
alternatives to the classical iterative solvers for ill-conditioned problems. Since they actually
are iterative refinement processes, the attainable accuracy is almost never worse that the other
solvers. While this property could be somehow expected, maybe the most important feature of
these methods is their robustness. Indeed, contrary to other iterative refinement processes such
as the Riley’s algorithm, the methods work pretty well for a large window of values of λ. Hence,
having a good error estimator or working with applications in which it is possible to monitor the
result step by step, one may reduce λ in order to save computational work; in the opposite case,
one may increase λ slowing down the method but assuring a stable convergence. To this purpose,
we intend to use, in a forthcoming work, the estimates of the norm of the error described in [4]
and [7] which are based on an extrapolation procedure of the moments of the matrix of the system
with respect to the residuals of the iterative method.

Acknowledgement: The authors are grateful to Marco Donatelli, Igor Moret, Giuseppe Ro-
driguez, and Marco Vianello for many helpful discussions and comments.



References

[1] B. Beckermann, L. Reichel, Error estimation and evaluation of matrix functions via the Faber
transform, SIAM J. Numer. Anal., 47 (2009) 3849–3883.

[2] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
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