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LOGARITHMS OF ITERATION MATRICES, AND PROOF OF A
CONJECTURE BY SHADRIN AND ZVONKINE

MATTHIAS ASCHENBRENNER

ABSTRACT. A proof for a conjecture by Shadrin and Zvonkine, relating the en-
tries of a matrix arising in the study of Hurwitz numbers to a certain sequence
of rational numbers, is given. The main tools used are iteration matrices of
formal power series and their (matrix) logarithms.

This note is devoted to the study of the somewhat mysterious-looking sequence
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(S)
of rational numbers. I first encountered this sequence in ongoing joint work with van
den Dries and van der Hoeven on asymptotic differential algebra [4]. It also appears
in a conjecture made in a paper by Shadrin and Zvonkine [31] in connection with a
generating series for Hurwitz numbers (which count the number ramified coverings
of the sphere by a surface, depending on certain parameters like the degree of the
covering and the genus of the surface). I came across [31] by entering the numerators
and denominators of the first few terms of (S) into Sloane’s On-Line Encyclopedia
of Integer Sequences [1]. (The numerator sequence is A134242, the denominator
sequence is A134243.) In this note we prove the conjecture from [31]. In the course
of doing so, we identify a formula for the sequence (S): denoting its nth term by
en (501 =0,c0=1,¢3= —% etc.), we have

T I = Y R

I<ni<--<np_1<nr=n

Here and below, we denote by {i } the Stirling numbers of the second kind: {JZ} is
the number of equivalence relations on a j-element set with i equivalence classes.
They obey the recurrence relation

R R B

with initial conditions
0 0 J .
o= i ={af =0 was0
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For example, we have

T
R T R
1-L(EH+ G5+ G+ 1—2(15+25+10)+
(GG + OHD G - =4 36325+ 7-10+6-10)- =—§=C5
1{2}{3}{4} %3'6'10

A key concept for our study of (S) is the iteration matriz of a formal power series;
these matrices are well-known in the iteration theory of analytic functions [20, 21]
and in combinatorics [11]. The iteration matrix of a power series f € Q[[z]] of
the form f = z + 2%¢g (g € Q[[z]]) is a certain bi-infinite upper triangular matrix
with rational entries associated to f. After stating the conjecture of Shadrin and
Zvonkine in Section 1 and making some preliminary reductions, we summarize some
general definitions and basic facts about triangular matrices in Section 2 and intro-
duce the group of iteration matrices in Section 3. In Section 4 we determine its Lie
algebra of infinitesimal generators, by slightly generalizing results of Schippers [30].
These results tie in with a notion from classical iteration theory: the infinitesimal
generator of the iteration matrix of a formal power series f as above is uniquely
determined by another power series itlog(f) € 22Q[[2]], introduced by Jabotinsky
[21] and called the iterative logarithm of f by Ecalle [13]. Some of the properties of
iterative logarithms are discussed in Section 5, before we return to the proof of the
conjecture of Shadrin-Zvonkine in Section 7. The exponential generating function
(egf) of the sequence (cy,), that is, the formal power series

1, 1, 1, 1
;C”n!_f 27 Tt TImet T

turns out to be nothing else than the iterative logarithm of the power series e — 1.

The iterative logarithm itlog(f) of any formal power series f satisfies a certain
functional equation found by Jabotinsky [20]. In the case of f = e* — 1, this
equation leads to a convolution formula for Stirling numbers (and another formula
for the terms of the sequence (cy,)):

o B )
1<ni<--<np_1<np=n ni n2 Np—1
(_1)k n n Nk
Z k+1 'rL2 n3 n (©)
1<ny <-~<ng_1<np=n—1 1 2 k—1

To our knowledge, this formula does not seem to have been noticed before. (For
instance, it does not appear in Gould’s collection of combinatorial identities [17].)
We give a proof of (C) in Section 7.

Shadrin and Zvonkine write that the sequence (S) seems to be quite irregular
[31, p. 224]. This impression can be substantiated as follows. A formal power series
f € C[[z]] is said to be differentially algebraic if it satisfies an algebraic differential




LOGARITHMS OF ITERATION MATRICES 3

equation, i.e., an equation

P(Z,f,fl,...7f(n)):0

where P is a non-zero polynomial in n 4+ 2 indeterminates with constant complex
coefficients. The coefficient sequence (f,) of every differentially algebraic power
series f =3 - fn2" € Q[[2]] is regular in the sense that it satisfies a certain kind
of (generally non-linear) recurrence relation [28, pp. 186-194]. A class of differ-
entially algebraic power series which is of particular importance in combinatorial
enumeration is the class of D-finite (also called holonomic) power series [32, Chap-
ter 6]. These are the series whose coefficient sequence satisfies a homogeneous linear
recurrence relation of finite degree with polynomial coefficients. Equivalently [32,
Proposition 6.4.3] a formal power series f € C[[z]] is D-finite if and only if f satisfies
a non-trivial linear differential equation

aof +arf + - +a f™ =0 (a; € Clz], an #0).

(This class includes, e.g., all hypergeometric series.) In Section 7 we will see that
the egf of (¢,,) is not differentially algebraic. This is a consequence of a result of
Boshernitzan and Rubel, stated without proof in [10], which characterizes when the
iterative logarithm of a power series satisfies an ADE; in Section 6 below we give a
complete proof of this fact. It is also known [8, 25] that the egf of (c,) has radius
of convergence 0. Indeed, a common generalization of these results holds true:
the egf of (¢n) does mot satisfy an algebraic differential equation over the ring of
convergent power series. The proof of this fact will be given elsewhere [3]. It seems
likely (though we have not investigated this further) that the ordinary generating
function (ogf)
n 2 1 3 1 4 2 5
;cnz =z 22 +2z 32 —+ -

of the sequence (S) is also differentially transcendental. (Note, however, that there
are examples of sequences of rationals whose egf is differentially transcendental yet
whose ogf is differentially algebraic; see [26, Proposition 6.3 (i)].)

Notations and conventions. We let d, m, n, k, possibly with decorations, range over
N =1{0,1,2,...}. All rings below are assumed to have a unit 1. Given a ring R we
denote by R* the group of units of R.

1. THE CONJECTURE OF SHADRIN AND ZVONKINE

Before we can formulate this conjecture, we need to fix some notation. Let K be
a commutative ring and let R = K{[[to,t1,...]] be the ring of powers series in the
pairwise distinct indeterminates tg,%1,..., with coefficients from K. We equip R
with the m-adic topology, where m is the ideal (¢g,t1,...) of R. In this subsection
we let 4, j range over the set of sequences i = (ig,i1,...) € NY such that i, = 0
for all but finitely many n. For each ¢ we set

thi= 1ttt € R
Hence every element f of R can be uniquely written in the form

f= Z fitt where f; € K for all 2.
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We call an element of R of the form at?, where 0 # a € K, a monomial. We put
2] :== lip + 2i1 + 3ia+ -+ (n+1)ip+--- €N,
and we define a valuation v on R by setting
u(f) = Jrcle;é%HzH € Nfor 0# f € R, v(0) := —oo < N.

Suppose from now on that K = Q[z] where z is a new indeterminate over Q.
Shadrin and Zvonkine first introduce rational numbers aq ¢+ by the equation

S ey 1 s
bz:;(d—bﬂ)!(b—l)! 1Y _éaddﬂﬂ/} (1.1)
in the formal power series ring Q[[:/]]:
ﬁ:1+¢+¢2+... (d = 0)
_ﬁ+ﬁ:¢+3¢2+w3+... (d=1)
1/2 1 1/2 =2 +6¢% + 250  + - - (d=2)

1—¢_1—2¢+1—3¢

Using the numbers ag 4+r (which turn out to be positive integers, see Lemma 1.2
below) they then define a sequence (Ly)k>o of differential operators on R: abbre-
viating the K-derivation -2- of R by 8, set

Ot
1
Ly = E ﬁ Anynit+ks *° Onpnptke tnytky Ttk 8711 o 'anz (k > O)
kyi+ethy=k
ki,...,kr>0

ni,...,np20

Note that the definition of Ly (as a K-linear map R — R) makes sense, since for
every 1, either .

bnyky =tk Ony - On, (tz)
is zero or is a monomial which has valuation ||2||+ k1 + - - -+ &, and which is divisible
by tny+ky - ** tn,.+k,.; Moreover, given j there are only finitely many 7 with ||| < |7,
and only finitely many k1,...,k, > 0 and ny,...,n, such that jn, 1k, .-, Jn.+k. >
0. The first few terms of the sequence (Lj) are

Ll - § anl,n1+ltn1+l 8’!7.17

ny
1
Ly = E an17n1+2tn1+2 aﬂl + 5 § Any,ny+10n;,np+1 tn1+1tn2+1an1 aﬂz
ni ’ ni,n2

1
Ly = E an17n1+3tn1+3 aﬂl + 5 § Any,ny+10n;,ny+2 tn1+1tn2+28711 aﬂ2+

ni ni,n2

1

5 Z a’ﬂ1,’ﬂ1+2a/’n2,’ﬂ2+l tn1+2tn2+lan1ang+
ni,n2

1

g Z Any,ny+10ns,na+10ngz,nz+1 tn1+1tn2+1tn3+18n18n28n3a
ni,n2,n3
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and in general we have
Ly = Z @y nq+ktny+k On, + higher-order operators (k> 0). (1.2)
ny
To streamline the notation we set Ly := idg. The argument above shows that

for every f € R we have v(Li(f)) = k + v(f), hence the sequence (2*Ly(f))x is
summable in R. Thus one may combine the L to a K-linear map L: R — R with

L(f) =Y 2 Li(f) = f +2Li(f) + 2Lo(f) + -+ forall f € R.
k

The operator L is used in [31] to perform a change of variables in a certain for-
mula for Hurwitz numbers coming from [15]. The following is established in [31,
Proposition A.8]:

Proposition 1.1. There are rational numbers o, 11 such that, setting

lk = Zan,n—i-ktn—i-k 811 (k > 0)

and
L=zl + 2%+,
we have L = exp(l), i.e.,
1 n
L(f)=> —I'(f)  for cvery f € R. (1.3)

(To see that the definition of I and I makes sense argue as for Ly and L above;
since v(I(f)) = v(f) + 1 we have v(I"(f)) > v(f) + n for all n, hence the sum on
the right-hand side of the equation in (1.3) exists in R.)

After proving this proposition, Shadrin and Zvonkine make the following con-
jecture about the form of the o, ik

Conjecture. For all k > 0 and all n,

kE+1

where (cx)r>1 is a sequence of rational numbers, with the first terms given by (S).

(n +k+ 1)
Ap nt+k = Ck+1

The first step in our proof of this conjecture is to realize is that the a4 41 are
essentially the Stirling numbers of the second kind. We extend the definition of
ad,d+k by setting aqq := 1 for every d.

Lemma 1.2. For every d and k,

d+k+1
ad,d+k = di1 .

Proof. We expand the left-hand side of (1.1) in powers of :

d+1 - d+1 11
(—1)d-b+1 I (—1)d-bt1ps .
; d—b+DI(b—D 1-0bp _; <bz_; (d—b+1)!(b_1)!>¢ =

i)

>0 T b=1
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Now we focus on the coefficient of 1% in the last sum. By the Binomial Theorem,
this coefficient can be written as

Faev (e =% 0) Fe ()

§=0 " b=0

-3

It is well-known that

and
SO -
2 \j) ld d+1f
(See, e.g., identities (6.19) respectively (6.15) in [18].) The lemma follows. O

By (1.2) and the above lemma we therefore have

d+k+1
Li(tq) = aq,drtarr = { di1 }thrk

and hence

Lity) = Zk:{d;_k: 1}zktd+k. (1.4)

Moreover, by definition of I, we have I (tq) = ag,d+ktd+r for all d and k > 0, hence

U(ta) = > aasn? tayn

k>0
and thus for every n > 0:
"(tq) = « e Zhtethay
d d,d+ky kst bn 1, d k4t koot -
kiy...,kn>0
This yields
1 k
exp(l)(ta) = ) ) O dtky " Qbbb dth | 2 Lk
k k14 thkn=k

and therefore, by (1.4) and Proposition 1.1:

d+k+1 1
= — O ks Otk dthy+ha ** Odeky otk 1 dk (1.5)
d+1 n!
k14 +kn=k
ki,...y kn,>0

It is suggestive to express this equation as an identity between matrices. We define
{i} := 0 for ¢ > j, and combine the Stirling numbers of the second kind into a
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bi-infinite upper triangular matrix:

1 0 0 0 0 O
11 1 1 1
13 7 15 - .
5= (i) 1 ? %g WhereSijZ{Z}- (1.6)
1

We also introduce the upper triangular matrix
o1 -+ 1 _—2 1

2 2 3 12
0 3 -2 5 —
0 6 =5 1—25
A= (aij) = 0 100 _1?5 o where a;; := 0 for i > j.
0

Then (1.5) may be written as

1
Si+1,j+1 = E l Qi itk Xitky,itki+ke " Xtk tkn_1,j

- - (A™) (i <j)
or equivalently, writing S := (S;41,j41):,; and employing the matrix exponential:

1 n
St=3" — A" = exp(4)

n=0

Therefore, in order to prove the conjecture from [31], we need to be able to express
the matrix logarithm of ST in some explicit manner. We show how this can be
done (and finish the proof of the conjecture) in Section 7 below; before that, we
need to step back and first embark on a systematic study of a class of matrices
(iteration matrices) which encompasses S and many other matrices of combinatorial
significance (Sections 2 and 3), and of their matrix logarithms (Sections 4 and 5).

2. TRIANGULAR MATRICES

In this section we let K be a commutative ring.

The K-algebra of triangular matrices. We construe K™"*N as a K-module

with the componentwise addition and scalar multiplication. The elements M =
(Mij)ijen of KN*N may be visualized as bi-infinite matrices with entries in K:

Mo Mor Moo

Mg My Mo
M =1 My My Mo
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We say that M = (M;;) € K"V is (upper) triangular if M;; = 0 for all i, j € N
with ¢ > j. We usually write a triangular matrix M in the form
Moo Mor Mo2 Mos
My Mia Mg
M = My Mas
Ms33

Given triangular matrices M = (M;;) and M = (Azj), the product
M~M:: (Zk Mik]/\\jkj)_ )
i,jEN
makes sense and is again a triangular matrix. Equipped with this operation, the
K-submodule of KN consisting of all triangular matrices becomes an associative
K-algebra trx with unit 1 given by the identity matrix. If K is a subring of a
commutative ring L, then trx is a K-subalgebra of the K-algebra tr;,. We also
define
[M,N]:= MN—-NM for M, N € tr.
Then the K-module trx equipped with the binary operation [ , ]isa Lie K-algebra.
For every n we set
tef = {M = (M;;) € trg : M;; =0 for all i,j € N with i — j +n > 1}.
We call the elements of tt} strictly triangular. It is easy to verify that the
sequence () of K-submodules of ttx is a filtration of the K-algebra trg, i.e.,
(1) % = teg;
(2) &% D ! for all n;
(3) t2 e C 2t for all m, n; and
4) N, ek = {0}
Clearly tvx is complete in the topology making tvx into a topological ring with
fundamental system of neighborhoods of 0 given by the tt’;.
The group trj of units of trx has the form
tey = Di x (1 + tr) (internal semidirect product of subgroups of try)
where D is the group of diagonal invertible matrices:
Dy = {M = (Mij) Eteg : My € K* and Mij =0 for i 75_7}

Diagonals. We say that a matrix M = (M;;) € trx is n-diagonal if M;; = 0
for j # i 4+ n. We simply call M diagonal if M is 0-diagonal. Given a sequence
a = (a;)iso € K, we denote by diag,, a the n-diagonal matrix M = (M;;) € KN
with M; i1n = a; for every ¢. The sum of two n-diagonal matrices is n-diagonal.
As for products, we have:

Lemma 2.1. Let M = diag,, a be m-diagonal and N = diag, b be n-diagonal,
where a = (a;),b= (b;) € KN. Then M - N is (m + n)-diagonal, in fact

M-N = diangrn(ai . bier)i}O-
Therefore [M, N| is (m + n)-diagonal, with
[M, N] = diag,, 1, (@i - biym — bi - @Gitn)izo,
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and for each k, the matriv M* is km-diagonal, with
M* = diagy,, (a;  Qitm ** iy (k—1)m)i>0-

Exponential and logarithm of triangular matrices. In this subsection we
assume that K contains Q as a subring. Then for each strictly triangular matrix

M, the sequences (MT!n)n>0 and ((—1)"“%)101 are summable, and the maps
1 1 M
trpe = 1+ tege: M — exp(M) := ZF
n=0
and (1)
—_ 1"
1+ trje — tege: Mo log(M) := Y (1) —"
+ v — trg og(M) Z( ) "

n>1
are mutual inverse; in particular, they are bijective. If M € t%, n > 0, then
exp(M) € 1+t and log(1 + M) € tv}. It is easy to see that

exp(M)exp(N) = exp(M + N)  for all M,N € tt}, with MN = NM. (2.1)
In particular
exp(M)* = exp(kM) for all M € ttf, k € Z.
We also note that given a unit U of trg, we have
exp(UMU™') = Uexp(M)U™"  for all M € trk

and

log (UMU™") =Ulog(M)U™"  forall M €1+ tr. (2.2)
Given M = (M;;);,; € tei we define M T := (M, 41 j+1)i; € teg. It is easy to see
that M — M™ is a K-algebra morphism trx — tvg with M € t, = M™* € t}.
Thus, for M € trk:

exp(M™) = exp(M)™", log(1+ M™") =log(1+ M)™. (2.3)

From Lemma 2.1 we immediately obtain, for all M = diag; a where a = (a;) € K":
1

(GXp M)ZJ = 7 G5 Qi1 Qi1 for all 1, € N with 7 < 7. (24)

(=)
Derivations on the K-algebra of triangular matrices. Let d be a derivation
of K,ie., amap d: K — K such that

d(a+b) =0(a) +0(b), d(ab) =0a(a)b+ ad(b) for all a,b € K.
Given M = (M;;) € trg we let
(M) := (8(M;5)) € tvk .
Then M +— 0(M): tvg — trg is a derivation of trg, i.e.,
M+ N)=0M)+09(N), o(MN)=094(M)N + Ma(N) for all M, N € trg.
Note that o(tt}) C tt for every n.

We now let t be an indeterminate over K, and we work in the polynomial ring
K* = KJt] and in the K*-algebra ttgx- (which contains trx as a K-subalgebra).
We equip K* with the derivation %. The following two elementary observations
are used in Section 4. Until the end of this subsection we assume that K contains
Q as a subring.
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Lemma 2.2. Let M € tt}.. Then

% exp(tM) = exp(tM)M.
Proof. We have (tM)™ = t"M™ for every n, hence

exp(tM) = Z (t]:j!)" _ Z M

n!
n=0 n=0

and thus

d d (t"M" tntmm
n=0 n>

(Similarly, of course, one also sees % exp(tM) = M exp(tM), but we won’t need
this fact.) O

The following lemma is a familiar fact about homogeneous systems of linear
differential equations with constant coefficients:

Lemma 2.3. Let MY, € ttj; and Y € trf... Then

dYy
o YM and Y|,_, = Yo = Y = Yyexp(tM).

Proof. Lemma 2.2 shows that if Y = Yjexp(tM) then ‘% = Y M, and clearly
Y|,_, = Yoexp(0) = Yp. Conversely, if - = YM and Y|,_, = Yo, then Z :=
Y — Ypexp(tM) € trk. satisfies 2 = 0, hence Z € tr, and Z’t:o = 0, hence
Z =0. Thus Y = Yyexp(tM). O

3. ITERATION MATRICES

Let K be a commutative ring containing Q as a subring. Let A = Q[y1,y2, - - .|
where (yn)n>1 18 & sequence of pairwise distinct indeterminates, let z be an inde-
terminate distinct from each y,,, and let

Z’n,
y= Zyng € A[[2]].
n>1 ’
Then, with  another new indeterminate, we have in the power series ring A[[z, z]J:
explr-y) = =) Bur' (3.1)

n>=0 i,JEN

where B;; = B;j(y1,¥2,...) are polynomials in Q[y1,y2,...], known as the Bell
polynomials. A general reference for properties of the B;; is Comtet’s book [11].
(Our notation slightly differs from the one used in [11]: B;; = Bj;.) We can obtain
B;; by differentiating (3.1) appropriately and setting x = z = 0:

1 90 1d

il 05927 T ildy ’
il 00z wepeo  Ud2IT | _,

B;; = exp(z - y)’

hence
1

, 2
(— ..
v = 2 Bgy

j=20
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In particular, we immediately see that By; = 0 and By; = y; for j > 1. Since
i

1 . .
Y = yiz—' + terms of higher degree (in 2)
i! i!

we also see that B;; = 0 whenever i > j and B;; = y{ for all j. It may also be
shown (see [11, Section 3.3, Theorem A]) that B;; € Z[y1,...,yj—i+1], and B;j
is homogeneous of degree i and isobaric of weight j. (Here each y; is assigned
weight j.) Given a power series f € zK[[z]], written in the form

Z”l
fZanm (fn € K for each n > 1),

n>=1

we now define the triangular matrix

1= (i), e = (Bl for o i), ene =

1 0 O 0 0 0
fi f2 f3 fa f5
It 3fife 4fifs+3f3 5fifa+10fafs -
fi 67 f2 10f2fs +15f1f5 | ¢ tepe .
ffl 10;5&
1

More generally, suppose Q = (Q,,) is a reference sequence, i.e., a sequence of
non-zero rational numbers with ¢ = 2; = 1. Then we define the Bell polynomials
with respect to 2 by setting

Y= Z Yn 2y 2" € Al[2]]

n>1
and expanding
Qy' = Z B?ij P (3.2)
j=0
where B?j = B%(yl,yg, ...) € Qy1,y2,...]. As above, one sees that Bé)j =0 and

B% =y; for j > 1, as well as Bf; = 0 whenever 7 > j and Bﬁ = y{ for all j. For

f= Z fn Qnz™ € 2K [[2]] (fn € K for each n > 1),

n>1

we define
(17 = ([f]%)i,jeN € trg where [f]% = Bf}(fl,fz, oo ficig1)-

Thus, denoting the reference sequence (1/n!) by ®, we have B;-I; = B;; for each ¢,
j and [f]® = [f] for each f € 2K][[2]]. Note that by (3.2) we have, for all reference

sequences (), 2:
Q5 no Qj Q .
Q_i [f]ij = ﬁ_ [f]ij for all 4, j, (3-3)

S

that is,
(D)7 [f12 D = (D) ()2 D® (3.4)
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where D% is the diagonal matrix

Qo
Q Ql X
D = 05 € trg .

In particular, for every reference sequence 2 we have, with 1 denoting the constant
sequence (1,1,1,...):

/] = DUD®) T [f] DF(D) " = D[] (D7)~ (3.5)

As first noticed by Jabotinsky [20, 21], a crucial property of [ ] is that it converts
composition of power series into matrix multiplication [11, Section 3.7, Theorem Al:

[fogl” =1f]" [g]"  forall f,g € 2K][]. (3.6)
To see this, repeatedly use (3.2) to obtain

D Ifogli Q2! =Qu(fog) =Qf og=> [fIi g

520 k>0

=D Ul e =D DIl | 95

k=20 J=20 J20 \k20

and compare the coefficients of z/. The matrix [f] is called the iteration matrix
of f with respect to Q in [11]. (To be precise, [11] uses the transpose of our [f].)
For [f], the term convolution matriz of f is also in use (cf. [22]), and [f]* is called
the power matriz of f in [30].

The subset zK* + 22K][[z]] of zK|[[z]] forms a group under composition (with
identity element z), and f ~ [f]* restricts to an embedding of this group into the
group try of units of trx. (In particular, [2]® = 1 for each Q.) As in [11], we say
that f € zK|[[2]] is unitary if f; = 1. The set of unitary power series in K[[z]] is
a subgroup of zK* + 22K|[2]] under composition, whose image under f ~ [f]? is
a subgroup of 1+ trk- which we denote by ./\/l?{ If Q is clear from the context, we
simply write M = M$%. By (3.5), the matrix groups M, for varying €2, are all
conjugate to each other. We call M% the group of iteration matrices over K
with respect to €.

Given f € K][[2]] of the form f = z+ 2"*1g with n > 0 and g € K[[2]] such that
g(0) # 0, we say that the iterative valuation of f is n; in symbols: n = itval(f).
(See [13].) It is easy to see that for f € zK[[z]] and n > 0, we have f € z+2"T1K[[z]]
if and only if [f]® € 1+ t’;. For each n > 0 we define the subgroup

ME" = MG (Lt ) = {[f]7: f € =+ "V K =]}
of M%. Then
Mg =MG DML DME" 2D and [ ME" = {1},
n>0
and if f € zK|[[z]] is unitary with f # z, then n = itval(f) is the unique n > 0 such
that [f]? € MP"™\ M
As shown by Erdds and Jabotinsky [16], iteration matrices can be used to define

“fractional” iterates of formal power series. Let ¢ be a new indeterminate and
K* = KJt].
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Proposition 3.1 (Erdés and Jabotinsky). Suppose K is an integral domain, and
let f € zK[[2]] be unitary. Then there exists a unique power series fll € zK*[[2]]
such that, writing fl@ .= f[! |t:a € zK|[z]] fora e K:

(1) 70 = 2
(2) fletll = flalo f for alla,b € K.

The power series flt is given by

fi = ZMU% where M := Z

j>1 n>0

(:L)([f] )" € tege

Here for every n as usual (!) = St(t —1)---(t —n+1) € Q[t].

Proof. Since [f] — 1 € trk, the sum defining M exists in ttx~, and M‘t:n = [f]"
for every n, by the binomial formula. Let f°t := Zj>1 Mlj‘j,—j, and for an element a
in a ring extension of K* write f°* := f°t|t:a. Then [f°"]1; = M1j|t:n = ([f]")1;
for every j > 1 and thus f°" is the nth iterate of f: f°" = fo fo---o f (n times).
In particular f°! = f and fom+") = fom o fon for all m, n. Hence if s is another
indeterminate, then fo(5+t) = f°s o fot (in K[s, t][[z]]), since the coefficients (of
equal powers of z) of both sides of this equation are polynomials in s and ¢ with
coefficients in K which agree for all integral values of (s,t). This shows that f°!
satisfies conditions (1) and (2) (with f° replacing fI'l everywhere). If f1l € K*[[2]]
is any power series satisfying (1) and (2), then fl") = f°" is the nth iterate of f,
for every n, and as before we deduce fItl = fot. O

The power series (% (a € K) in this proposition form a subgroup of z K [[2]] under
composition which contains f; they may be thought of as “fractional iterates” of
f. (This explains the choice of the term “iteration matrix.”)

Some examples of iteration matrices are collected below. Many more (in the case
where ) = ®) are given in [22].

Ezxample. Suppose f = —%. Then

1—2z-°
) — !
o= (12,5 en

are the Lah numbers; here and below we set (z) =0 for ¢ > j. (See [11,
Section 3.3, Theorem BJ.) Thus if Q,, = L for each n > 0, then by (3.3)

T n

Q;®; j o
Q _ "y -
[Fli; = 0,9, [f1i <z> for all 4, j,

hence

11
1

e
— W w

(1% =

— o O s
—
o

U R (3.7)

is Pascal’s triangle of binomial coefficients.
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Example. The Stirling numbers of the second kind have the egf
z(e®—1) _ J zﬁ
L {z} ik
i,j
cf. [11, Section 1.14, (IIT)] or [18, (7.54)]. Hence by (3.1) we have
[e* =11 =S5, (3.8)

where S is as in (1.6). The matrix S is a unit in tvz, and it is well-known (see [11,
Section 3.6 (IT)]) that the entries of its inverse

10 O 0 0 0
1 -1 2 -6 24
1 -3 11 =50

STt =(8;") = 1 _16 _3150 (3.9)

are the signed Stirling numbers of the first kind: S;l = (—1)<j_i[§:}, where m
denotes the number of permutations of a j-element set having ¢ disjoint cycles.
Thus (3.6) and (3.8) yields

[log(1+2)] =5~"

4. THE LIE ALGEBRA OF THE GROUP OF ITERATION MATRICES

Throughout this section we let K be a commutative ring which contains Q as a
subring. We let 2 denote a reference sequence. We need a description of the Lie
algebra of the matrix group My = M, generalizing the one of the Lie algebra
of Mg from [30]. The arguments follow [30], except that we replace the complex-
analytic ones used there by algebraic ones.

Definition 4.1. Let h = ) h,2" € zK[[z]]. The infinitesimal iteration ma-
trix of h with respect to €2 is the triangular matrix

0 0 0 0 0
hi G hy G hs ot ha
5 0 2hy  §22hy  E2hg -
(W)= ((h)35) = 3hy g—j3h2 | €tk
4hy

where (h)j} = g—;mjiﬂ.
Note that if €, Q are reference sequences, then
(DY)~ (h)2D% = (Dﬁ)’1<h>ﬁD§, (4.1)
in particular

(m)® = DYD®) ! () DY(D?) ™ = D ()* (D).
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Example 4.2. For h =" h,z" € zK[[z]] we have

0 0 0 0 0
hi % hy 3 hy 3y
2h,  3lon, dlop,

L & 2! !
4h,

4!
(t—1)!

For each n we have h € 2"*1K][[2]] if and only if (k) € t%. We define the
K-submodule

where <h>ij = hj—i—i—l for i > 0.

mp" = {(W)*: h € 2" TK[[2]]}
of t, and we set m$ := m'; so
m?{:m%l Qm%QQ---QmK D..- and ﬂm%":{o}.

n>0

If Q2 is clear from the context, we abbreviate my = m$ and m% = m%". We set

1= ()

and we write e, if the reference sequence 2 is clear from the context. The matrix

en = €t is n-diagonal; in fact

. Q; -
e, = diag,, (an z) € my.

Clearly the infinitesimal iteration matrix with respect to 2 of a power series from
zK|[[z]] can be uniquely written as an infinite sum

hieg + hoer + - - - where h,, € K for every n > 0.
Using Lemma 2.1 one verifies easily that
[em, €n] = (M — n)emin for all m, n.

This implies that
my = Ke, + Kepy1 + -+ (n>0)

is an ideal of the Lie K-algebra tr}.. The main goal of this section is to show the
following generalization of a result of Schippers [30]:

Theorem 4.3. Let n > 0. Then exp(ml;) = M’ (and hence log(M%) = mi).

Ezample 4.4. Let f = 2= € 2Q[[z]], and suppose Q,, = L for every n > 0. Then

by (2.4) and (3.7) one sees easily that

o w o

log [f] = diag;(1,2,3,4,...) = (%) € m},.

oo
I
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We give the proof of this theorem after some preparatory results. Below we let
t be a new indeterminate and K* = K[t].

Lemma 4.5. Let f € zK*[[2]] and h € zK][[Z]] satisfy

of _of,
o 0z
Then
dma _ (9,0
LI = 117,
Proof. We need to show that for all ¢ we have

d .
E[f]g = ([f]9<h)9)ij for each j.

For ¢ = 0 this is an easy computation, so suppose ¢ > 0. We have

afZ Z] ,LJQ Z‘] 1

j=>1
and hence
) fZ ] ;
Z Z Elfie] ?Quhj—ii1 | 2
92 >0 \k=1
Moreover .
aft d
o~ 2@l I3 2
720
By the hypothesis of the lemma
af 13f i1 0f af
- =if"""=—h= h
=if =uif 92 25
hence
D178 = S Rl Sy = (1°0)9)
= : i i
dt Pt Qj J
for each j as required. ([

This lemma is used in the proof of the following important proposition:

Proposition 4.6. Let h € 2" K[[z]], where n > 0, and set

fri=Y (exp t(h) )10y 27 € 24 2" TR [2]].

i>1
Then
of,  0f
o 0z h (42)
and hence
()% = exp t(h)®. (4.3)

Proof. By Lemma 2.2 we have

L exp (1) = (exp 1)) (1)
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Hence

Jjz Lj
=3 ((exp )W) .9, 2
jz1

J - 8f
= (Z(exp t<h>sz)1iihj_i+1gi> I = a_t h.
z
i1 \i

By Lemma 4.5 this yields £[f;] = [f,]?(h)?. This shows that both Y = [f,]* and
Y = exp t(h) satisfy 2 =Y (h)* and Y|t:0 = 1. Hence [f;]* = exp t(h)* by
Lemma 2.3. 0

The equation (4.2) is called the formal Loewner partial differential equation in
[30]. The following corollary, obtained by setting ¢ = 1 in (4.3) above, shows in
particular that exp(mf,) C M’ for each n > 0:

Corollary 4.7. Let h € 2" K[[z]], where n > 0, and set
Fr= (exp (h) M1 27 € 2+ 2" MK [2]].

i>1
Then [f]t = exp (h)%L.

As above we write e, = e%. Given ky,...,k, and k = k1 + --- + k,, we have

ek, - - ek, = diagy (Q?ﬁi(i-i-kl)(i-l—kl+/€2)---(i+/€1+"'+/€n_1))

>0
by Lemma 2.1. Now let M := (h)* where h € zK|[2]]. So
M = <h>Q = hieg + hoey + - --

and hence
Mn: Z hkl-i-l"'hkn"rle/ﬁ”'ekn?
ki,...ikn
that is,
MYy = S b S i k) (R has) (44)

R

for all 7, j. This observation leads to:

Lemma 4.8. Suppose n > 0. Then

n_q
(Mn)ll = h?, (Mn)lj = j,ih?_lhj + P%(hl, .. .,hj_l) forj > 2,
Q0 -1
where Pffj (Yo,...,Yj_2) € QYy,...,Y, 2] is homogeneous of degree n and isobaric

of weight j — 1, and independent of h. (Here each Y; is assigned weight i.)

Proof. Set i = 1 in (4.4). Then the only terms involving h; in this sum are those
of the form A} 'h; o J" 7™ where m € {1,...,n}. This yields the lemma. O
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An analogue of the preceding lemma (for K = C and © = 1) is Lemma 3.10 of
[30]; however, the formula given there is wrong;:

Example. Suppose h = h1z + hoz? and Q = 1. Then
0 O 0 0 0

h1  ho 0 0
2h1 2hy O
M= (h)* =
3h1 3hs
4hq
and hence

0 0 0 0 0

h% 3hihs 2h% 0

P 4h% 10Ah1ho 6h§

9h2  21hihs
16h2

According to [30, Lemma 3.10] we should have, for j > 2:
(M2)1j = 2h1hj + polynomial in hl, ey hjfl.
However (M?)12 = 3hihg is not of this form.

In the proof of Theorem 4.3 we are concerned with the case where h € 22K][[z]],
for which need a refinement of Lemma 4.8:

Lemma 4.9. Suppose h € 2°K]|[z]] and n > 0. Then

ol ifn=1,
(M™)1; = P2(hy,....hj1) ifl<n<j,
0 otherwise.

Proof. We have h; = 0, hence if n > 1 then (M"); = P,%(hl, ...,hj—1) by the
previous lemma. We have M € tr}. and hence M" € t, so (M™)1; =0if j—1 < n,
that is, if j < n. The lemma follows. O

Corollary 4.10. Suppose h € z?K|[2]]. Then for j > 2:
1

(exp M)lj = Qj

h; + Pjﬂ(hg, ceey hj_l)

where PJ-Q(Yl, ., Yj_9) € Q[Y1,...,Y, 2] is independent of h. (In particular,
(exp M)1; is polynomial in ha, ..., h;.) Moreover, P! = 0, and for j > 2, PjQ
has degree j — 1 and is isobaric of weight j — 1.
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Proof. By the previous lemma we have

i1y ) -1
(expM)lj: H(Mn)lj:Q_jhj—'—zﬁpﬁ(hl""’hj_l)'
n=1 n=2
Hence
j—1 1
PP(Yi,..., Y ) = EP,%(O,Yl, L Yo)
n=2
has the right properties. g

Theorem 4.3 now follows immediately from Corollary 4.7 and the following;:
Proposition 4.11. Let f € 2K[[2]] be unitary, n = itval(f). Then log[f]* € m’..

Proof. We define a sequence (h;);>1 recursively as follows: set hy := 0, and as-
suming inductively that hg,...,h; have been defined already, where j > 0, let
hj+1 = (fj+1 — Pg%rl(h%"'vhj))gj-‘rl' Let h := Ej}l hjzj € Zn+1K[[Z]] and
M := (h)’. Then by the corollary above, we have (exp M);; = f; for every j.
Corollary 4.7 now yields exp M = [f]® and hence log [f]? = M = (h)? e m%. O

Remark. The mistake in [30, Lemma 3.10] pointed out in the example following the
proof of Lemma 4.8 affects the statements of items 3.14 and 3.15 and the proofs of
3.13-3.17in loc. cit. (which concern the shape of log [f] for non-unitary f € 2C[[z]]);
however, based on the correct formula in Lemma 4.8 above, it is routine to make
the necessary changes. For example, the corrected version of [30, Corollary 3.14]
states that (using our notation) for h € zC[[z]] and j > 2 we have

h; (el —eh

[exp(h)*]1; = o1 ( I ) +®;(h1,...,hj—1)

where ®; is an entire function C/~1 — C.

5. THE ITERATIVE LOGARITHM

In this section we let K be an integral domain which contains Q as a subring, and
Q2 be a reference sequence. Let f € zK[[z]] be unitary. By Theorem 4.3 there exists
a (unique) power series h € 22 K[[2]] such that log [f]* = (h)®. The identities (2.2),
(3.4) and (4.1) show that h does not depend on . Indeed, we have

h=>Y" %h[n]

n>=1
where h[0] = z and h[n + 1] = h[n] o f — h[n] € 2" K[[z]] for every n.
As in [13], we call the power series h the iterative logarithm of f, and we

denote it by h = itlog(f) or h = fi. In the following we let s, ¢ be new distinct
indeterminates, and we write

= Z (exp t{f.))1,;9; 27 € 2 + 2" K[H][[2]], n = itval(f).
j>1
Note that f[*] does not depend on the choice of reference sequence Q. For an element

a of a ring extension K* of K let

=], € 2k TR,
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so fl% = 2z and fl = f. The notations flY and f1* do not conflict with the ones
introduced in Proposition 3.1: by (2.1) and (4.3) (in Proposition 4.6) we have

A2 = exp (s + 1) (0)® = exp s() - exp () = [FF)7 - [ = [l o f1)°

and hence

flstt = flsl o ¢l (5.1)
in K[s,t][[z]]. Equation (4.2) also yields
) 0 Ji
itlog(f) = o |

If a € K then (fle))¥l = flot] by the uniqueness statement in Proposition 3.1 and
hence

itlog(f19)) = aitlog(f)  foralla € K. (5.2)
Aczél [2] and Jabotinsky [20] also showed that the iterative logarithm satisfies a
functional equation (although [19] suggests that Frege had already been aware of
this equation much earlier):

Proposition 5.1 (Aczél and Jabotinsky).

ofltl 9l
- gz - (J;t =Jeo Y (5:3)
and hence if
Jo 2= f.of. (5.4)

The equation (5.4) is known as Julia’s equation in iteration theory. (See [24,
Section 8.5A].) The first equation in (5.3) is simply (4.2). To show the second

[¢l
equation % = f. o f¥, simply differentiate (5.1) with respect to s:

aftul oft (s +1t) aflst] a(f[S] ° f[t]) oflsl o
. A— = . = = = @] f .
oLV ou ds s s s

Setting s = 0 yields the desired result.

u=s-+t

Suppose now that K = C. Even if f is convergent, for given a € C the formal
power series f1% is not necessarily convergent. In fact, by remarkable results of
Baker [7], Ecalle [14] and Liverpool [27], there are only three possibilities:

(1) flel has radius of convergence 0 for all a € C, a # 0;

(2) there is some non-zero a; € C such that f[% has positive radius of conver-
gence if and only if a is an integer multiple of a;; or

(3) flel has positive radius of convergence for all a € C.

If (3) holds, then one calls f embeddable (in a continuous group of analytic
iterates of f). This is a very rare circumstance; for example, Baker [6] and Szekeres
[33] showed that if f is the Taylor series at 0 of a meromorphic function on the
whole complex plane which is regular at 0, then f is not embeddable except in the

case where .

le—cz (ce ).

In this case, itlog(f) = c2? by Example 4.4 and (5.2). Erdds and Jabotinsky [16]
showed that in general, f is embeddable if and only if f. = itlog(f) has a positive
radius of convergence. (See also [23, Theorem 9.15] or [29] for an exposition.) As a
consequence, very rarely does f, have a positive radius of convergence. (However,
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Ecalle [12] has shown that f, is always Borel summable.) In particular, we obtain
a negative answer to the question posed in [30, Question 4.3]: if f is convergent,
is f« convergent? Contrary to what is conjectured in [30], the converse question
(Question 4.1 in [30]), however, is seen to have a positive answer: if f. is convergent,
then f is convergent.

In the next section we discuss when iterative logarithms satisfy algebraic differ-
ential equations.

6. DIFFERENTIAL TRANSCENDENCE OF ITERATIVE LOGARITHMS

Before we state the main result of this section, we introduce basic terminology
concerning differential rings and differential polynomials.

Differential rings. Let R be a differential ring, that is, a commutative ring R
equipped with a derivation 8 of R. We also write y’ instead of 8(y) and similarly y(™)
instead of 8" (y), where 8" is the nth iterate of 8. The set Cr :={y € R:y =0}
is a subring of R, called the ring of constants of R. A subring of R which is closed
under 0 is called a differential subring of R. If R is a differential subring of
a differential ring R and Yy € }N%, the smallest differential subring of R containing
R U {y} is the subring R{y} := Rly,v',y",...] of R generated by R and all the
derivatives y(™ of y. A differential field is a differential ring whose underlying ring
happens to be a field. The ring of constants of a differential field F' is a subfield of
F. The derivation of a differential ring whose underlying ring is an integral domain
extends uniquely to a derivation of its fraction field, and we always consider the
derivation extended in this way. If R is a differential subring of a differential field
F and y € F*, then R, := {a/y" : a € R, n > 0} is a differential subring of F.

Differential polynomials. Let Y be a differential indeterminate over the differ-
ential ring R. Then R{Y} denotes the ring of differential polynomials in Y over
R. Asring, R{Y'} is just the polynomial ring R[Y,Y’,Y",...] in the distinct inde-
terminates Y (") over R, where as usual we write Y = Y0 v/ =y () y” =y (),
We consider R{Y} as the differential ring whose derivation, extending the deriva-
tion of R and also denoted by 9, is given by a(Y (™) = Y+ for every n. For
P(Y) € R{Y'} and y an element of a differential ring containing R as a differen-
tial subring, we let P(y) be the element of that extension obtained by substituting
y,y,... for Y)Y’ ... in P, respectively. We call an equation of the form

PY)=0 (where P € R{Y'}, P #0)

an algebraic differential equation (ADE) over R, and a solution of such an
ADE is an element y of a differential ring extension of R with P(y) = 0. We say
that an element y of a differential ring extension of R is differentially algebraic
over R if y is the solution of an ADE over R, and if y is not differentially algebraic
over R, then y is said to be differentially transcendental over R. Clearly to
be algebraic over R means in particular to be differentially algebraic over R.

Being differentially algebraic is transitive; this well-known fact follows from basic
properties of transcendence degree of field extensions:

Lemma 6.1. Let F' be a differential field and let R be a differential subring of F'.
If f € I is differentially algebraic over R and g € F is differentially algebraic over
R{f}, then g is differentially algebraic over R.
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Differential transcendence of iterative logarithms. Let now K be an inte-
gral domain containing Q as a subring, and let z be an indeterminate over K. We
view K[[2]] as a differential ring with the derivation . The ring of constants of
K|[z]] is K. We simply say that f € K|[[z]] is differentially algebraic or differ-
entially transcendental if f is differentially algebraic respectively differentially
transcendental over K[z]. If f € K[[z]] is differentially algebraic, then f is actually
differentially algebraic over K, by Lemma 6.1.

As above, we let t be a new indeterminate over K, and K* = K[t]. The goal of
this section is to show:

Theorem 6.2. Let f € zK[[2]] be unitary. Then f. € 22°K]|[2]] is differentially
algebraic if and only if f1Y € 2K*[[2]] is differentially algebraic.

Before we give the proof, we introduce some more terminology concerning dif-
ferential polynomials, and we make a few observations about how the derivation
4 of K[[z]] and composition in K[[z]] interact with each other, in particular in
connection with solutions of Julia’s equation.

More terminology about differential polynomials. Let R be a differential
ring and P € R{Y'}. The smallest ~ € N such that P € R[Y,Y”,...,Y ("] is called
the order of the differential polynomial P. Given a non-zero P € R{Y'} we define
its rank to be the pair (r,d) € N? where r = order(P) and d is the degree of P in
the indeterminate Y ("), In this context we order N? lexicographically.

For any (r + 1)-tuple ¢ = (io, ..., %,) of natural numbers and Q € R{Y'}, put

Q = Q (@) (@),

In particular, Y = Y (V') ... (Y(")ir and y? = yio (y') --- (y™)ir for y € R.
Let P € R{Y} have order r, and let 4 = (i, .. .,%,) range over N'*7. We denote
by P; € R the coefficient of Y* in P; then

PY)=> RY"

We also define the support of P as
supp P := {z : P #£ O}.
We set
1] :=io + - +ip, l2l| := i1 + 2i2 + - - + 7ip.
For non-zero P € R{Y} we call

deg(P) = ; P) = ;
eg(P) @-ésri%)ép“" wt(P) @-ésri%’ép”’”

the degree of P respectively weight of P. We say that P is homogeneous if
|i| = deg(P) for every i € supp P and isobaric if ||| = wt(P) for every ¢ € supp P.

Transformation formulas. Let X be a differential indeterminate over K[[z]]. An
easy induction on n shows that for each n > 0 there are differential polynomials
Gmn € Z{X} (1 < m < n) such that for all f € zK[[z]] and h € K[[z]] we have

(R 0 f) - (F)°" " = Gun(f) (B0 ) + Ganl(f) (ho ) + -+ + Gun(f) (o ).
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Moreover, G, has order n — m + 1, and is homogeneous of degree n — 1 and
isobaric of weight 2n —m — 1. Set Gy := 0if m > n or m = 0 < n, and
Goo := (X')~! € Z{X}x/. Then the G, satisfy the recurrence relation

Gmnt1 = (1 =20)Gmn X" + (Gl + Gi—1.0) X’ (m > 0).

Organizing the G,,, into a triangular matrix we obtain:

(X"t 0 0 0
1 —X" 3(X//)2 _ X/X(S) .
G = (Grun)min = X' —3X'X" | (6.1)
(X’)2

Note that Gy, = (X')"~! for every n. Now set
n

Hy, = Z <7:)X<m—k+1>amn € Z{X} for k=0,...,n.

m=k

So if we define the triangular matrix

X/ X// X(3) X(4)
X' 2X" 3X®)

/ "
B := (Bm) = X0 3X
where By, = (Z)X(m_kﬂ) for m >k,
then

H:=(Hp,) =B -G=
1 X" xX'X® _ (X”)2 (X/)2X(4) —4X' X" Xx(3) 4 3(X”)2

X/ xX'x" —3X/(X”)2 + 2(X/)2X(3)
(X7)? 0
(X)?

Each differential polynomial Hy, has order at most n — k 4+ 1, and if non-zero, is
homogeneous of degree n and isobaric of weight 2n — k. Note that for n > 0, Hy,
has the form

HOn = Z X(m+1)Gmn = (X/)nle(fki*l) + Hn where Hn c Z[X/, . 7X(n)],
m=1

in particular order(Ho,) = n + 1 > order(Hy,) for k=1,...,n.
Let now f € zK[[z]] and h € K[[2]] satisfy Julia’s equation
h-f'=hof.
We assume f # 0 (and hence f’ # 0). Then for every n:
(B™ o f) - (f')*" 7" = Hon(f) b+ Hin(f) I + -+ + Hun(f) B
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Let R := K{X}x/, and denote the R-algebra automorphism of R{Y} with
Yy (X')1_2" (HOn Y+ H,Y' + -+ H,p,, Y(")) for every n
also by H. Then for every P € K{Y'} we have
P(h)of= H(P)‘X:fy:h.
Note that for every i € N and n we can write
(X/)(2n71)i . H((Y(TL))’L) _ (X/)z(nfl)yl(X(nJrl))z +a;
where a; € Z[X',..., X" Y Y’ ..., Y] with degy i1 a; < i.
Hence given i = (ig,...,4,) € N'T! setting d = |i| and w = |||, we may write
(X/)wad . H(yl) _ (X/)wfd(X/)iyd 4 a;
where a; € Z[X', ..., XUV Y ¥/ Y] with degxi1) az < i
Proof of Theorem 6.2. Let f € 2K|[[z]] be unitary. Suppose first that f[*l is

differentially algebraic. Let P € K*{Y} be non-zero of lowest rank such that
P(f") = 0. Differentiating with respect to t on both sides of this equation yields

r a(f[t])(i)
t _
P +Zayw T

Here r = order(P) and P*(Y) € K*{Y} is the differential polynomial obtained by
applying % to each coefficient of the differential polynomial P. Now by Proposi-
tion 5.1 we further have

6(fgl)(i) _ (agt]>(i) _ (f* . (f[t])/)(i) _ zl: (J> (f[t])(i—j+1)f£j)

=0

Since ayw has lower rank than P, by choice of P we have 018/5) (f) # 0. Hence f.
satisfies a non-trivial (inhomogeneous) linear differential equation with coefficients
from K*{f!}, and so by Lemma 6.1, is differentially algebraic over K*. Specializing
t to a suitable rational number in an ADE over K* satisfied by f. shows that then
f+ also satisfies an ADE over K, that is, f, is differentially algebraic over K.
Conversely, suppose that f, is differentially algebraic. Let P € K{Y} be non-

zero, of some order r, such that P(f,) = 0. Then
H(P)(fY, ) = P(f.) o 1 = 0.

Let d = degy( P. By the remarks in the previous subsection, for sufficiently large
N € N we have
(XHYNHP) =Y P(X)NV Iyl 4
tiir=d

where A € K[X' ..., XD v Y’ ... Y")] with degy i1 A < d.

For such N, the differential polynomial

QX) == (X"YWH(P)|,_, € R{X}

Y=f

is non-zero, where R = K{f.}, and satisfies Q(f[!)) = 0. Thus f[ is differentially
algebraic over R and hence (by Lemma 6.1) over K*, as required. O
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Let F be a family of elements of K[[z]]. Following [10] we say that F is coher-
ent if there is a non-zero differential polynomial P € K[z]{Y} (for some n) such
that P(f) = 0 for every f € F. If F is coherent, then P with these properties
may actually be chosen to have coefficients in K; see [10, Lemma 2.1]. If F is
not coherent, then we say that F is incoherent; we also say that F is totally
incoherent if every infinite subset of F is incoherent. From the previous theorem
we immediately obtain a result stated without proof in [10]:

Corollary 6.3 (Boshernitzan and Rubel [10]). Let f € zK][[z]] be unitary and let
F o= {fI00 fU 21} be the family of iterates of f. Then exactly one of the
following holds:

(1) f« is differentially algebraic and F is coherent;

(2) f« is differentially transcendental and F is totally incoherent.

Proof. By the theorem above, it suffices to show: if fI*! is differentially algebraic,
then F is coherent, and if f[! is differentially transcendental, then F is totally
incoherent. The first implication is obvious (specialize t to n in a given ADE
for f [t]). For the second implication, suppose F is not totally incoherent. Then
there exists an infinite sequence (n;) of pairwise distinct natural numbers such that
{f"1} is coherent. Let P € K{Y}, P # 0, be such that P(f["l) = 0 for every i.
With g := P(fll) € K*[[z]] we then have g‘t:nb = 0 for every 4; thus g = 0 (since
the coefficients of g are polynomials in ¢ with coefficients from the integral domain
K* of characteristic 0). This shows that fI¥ is differentially algebraic. O

7. THE ITERATIVE LOGARITHM OF e® — 1

In this section we apply the results obtained in Sections 4 and 5 to the unitary
power series f = e* — 1 € zQ[[z]]. Recall that the iteration matrix [e* — 1] of this
power series is the matrix S = (S;;) € 1+ tt(l@ consisting of the Stirling numbers

Sij = {i} of the second kind (cf. (3.8)).

Proof of the conjecture. We first finish the proof of the conjecture stated in
Section 1. The matrix S is related to A = (ay;) € trf, via the equation

St =exp(4A),
or equivalently (cf. (2.3)):
A =log(9)".
(Recall: for a given matrix M = (M;;) € trg we defined M+ = (M, 41 j11):,; € trg.)

The conjecture postulates the existence of a sequence (¢, )n>1 of rational numbers
such that

+ 1
Qij = Cj—it1 <] _: > for i < ] (71)
This now follows easily from the results of Section 4:

Proposition 7.1. Let h = itlog(e* — 1) € 2°Q|[z]], write h = 3, -, hn2" where
h, € Q, and define ¢, :=nlh,, forn > 1. Then (7.1) holds, and

= e

I<ni<---<ng—1<nr=n

for everyn > 1.
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Proof. We have log(S) = (h) by Theorem 4.3. Hence, using the formula for (h);;
from Example 4.2 we obtain for ¢ < j, as required:

(j+1)! (j+1)! J+1
aij = (h)it1,+1 = Thj—i-i-l = m%‘—iﬂ =Gt ",
The displayed identity for ¢, follows from ¢, = (h)1, = log(S)1n. O

We note that the ¢, may also be expressed using the Stirling numbers of the
first kind, using (h) = —log(S~1):

SR O e 1| A AR

Nj—
I<ni<-<ng—1<nr=n k=1

Proof of the convolution identity. We now turn to the convolution identity (C)
for Stirling numbers stated in the introduction. Jabotinsky’s functional equation
(5.4) for f = e* — 1, writing again h = f, reads as follows:

ho(e®—1)=¢e"h.
Taking derivatives on both sides of this equation and dividing by e* we obtain:
Wo(e*—1)=h+1. (7.2)

Now define, for M € 1 + ttb:

—~

—1)"
AM) =" n+)1 (M —1)" €1+ tg,

SO
AM) - (M —1) = log(M). (7.3)
For later use we note that then for every j > 1:
J j41

> OAM) 1My g1 =Y AM)1x(M = 1) 41 =
P k=1

(A(M) - (M = 1))1,j41 = log(M)1 11, (74)
where in the last equation we used (7.3).

Taking M = S we compute

6
log(S) = 0
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and
1 0 0 0 0 0
1 -1 1 _2 1
12 _2§ §3 _1&
T |
A(S) = I =3
1 -5
1

We observe that the first row of A(S) agrees with the first row of log(.S) shifted by
one place to the left. (This is simply a reformulation of the formula (C).)

Proposition 7.2. For every j > 1,
A(S)1; = log(S)1j41-
Proof. As observed in (7.4),

: 41
ZA(S)M{] i } =c¢jy1 forj =1 (7.5)
k

On the other hand, by (7.2) we have [h'] - S = [h + A']; thus
J+1 j41 J+1
chﬂ{ k } =) WSk g1 = (W] 811 = [+ P11 = cjp1 +¢jto

k=1 k=1
and hence _
J .
1

chJrl{j _]: } = Cj+1 fOI‘j 2 1. (76)

k=1
An easy induction on j using (7.5) and (7.6) now yields A(S)1; = ¢j41 = 1og(S)1,j4+1
for each j > 1, as claimed. O

Differential transcendence of the egf of (¢,). It is easy to see that for n > 0,
the nth iterate ¢/} of § = e* — 1 is a solution of an ADE over Q of order n.
However, it is well-known that ¢/ does not satisfy an ADE over C[z] of order < n.
(See, e.g., [5, Corollary 3.7].) The egf of the sequence (¢,) is itlog ¢, hence from
Corollary 6.3 we obtain the fact (mentioned in the introduction) that this egf is
differentially transcendental. In fact, Bergweiler [9] showed the more general result
that if f is (the Taylor series at 0 of) any transcendental entire function, then
itlog(f) is differentially transcendental (equivalently, by Corollary 6.3, the family
of iterates of f is totally incoherent). Moreover, by the results quoted at the end
of the previous section, itlog ¢ is not convergent. (This can also be shown directly;
cf. [25].) See [3] for a proof of a common generalization of these two facts.
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