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ABSTRACT 
Visual tracking could be formulated as a state estimation 
problem of target representation based on observations in 
image sequences. Approaching visual tracking problem in 
the Bayesian filter framework, how to sample the state 
evolution model to generate hypothesis of high 
confidence level is a critical factor. In this paper, we 
introduce an Interacting Multiple Model Estimation 
(IMME) framework for adaptive visual tracking. The 
essence of the IMME framework is that the state is 
estimated by integrating several different models in 
parallel and by interacting among those models’ estimates 
probabilistically. Based on the IMME framework, we 
propose a new variation of particle filter named 
Interacting Multiple Model Particle Filter (IMMPF), in 
which the hypotheses can be sampled from several 
different state evolution models adaptively. Experiments 
show that, when compared with the standard particle 
filter, the IMMPF generates better hypotheses resulting in 
better tracking results, especially when the target behaves 
along several motion modes randomly.  
 

1. INTRODUCTION 
In general, most tracking systems or technologies consist 
of four parts: target representation, measurement 
localization, data association and filtering. Target 
representation and measurement localization are mostly 
bottom-up processes which has to cope with the 
appearance changes of the target, whereas data association 
and filtering are commonly top-down processes dealing 
with the dynamics of the tracked object [8]. 

Compared to the well-known parametric filters such 
as Kalman filter, the non-parametric based method, such 
as particle filter, becomes more popular because it does 
not assume functional form of the posterior. When the 
particles are property placed, weighted and propagated, 
posteriors can be estimated sequentially over time [3]. 
The state evolution model, which dominates the 
propagating of particles, plays a very important role in 
particle filter implementation. In the visual tracking 
community, following the pioneering work of 
CONDENSATION [1], various improvements have been 
proposed for visual tracking to deal with the state 
evolution problem [3,4,7,9,10].  

Initializing to solve the irregular motion problem in 
visual tracking, this paper introduces an Interacting 

Multiple Model Estimation (IMME) framework to 
adaptively estimate the target’s motion state from the 
radar tracking community. We then incorporate the 
IMME framework into the standard particle filter and 
propose a new variation of particle filter named 
Interaction Multiple Model Particle Filter (IMMPF). The 
IMMPF not only solves the irregular motion problem 
efficiently and accurately, but also provides a method to 
approach the fundamental problem of how to estimate 
dynamic system’s state from sequential observations by 
integrating several different models. In IMMPF, the fittest 
state evolution models can be determined from several 
defined models to propagate the particles adaptively and 
the final result is obtained by probabilistically weighting 
among several models’ results. 

The rest paper is organized as follows: In Section 2, 
we formulate the visual tracking problem to have the 
structure of inference on a hidden Markov model. We 
introduce the Interacting Multiple Model Estimation 
Framework in Section 3. A new variation of particle filter, 
named as IMMPF is proposed in Section 4. We give the 
experiment results in Section 5 and conclude our work in 
Section 6. 

 
2. VISUAL TRACKING PROBLEM DEFINITION 

Let target’s states and observations be represented by 
random variables X and Z, respectively. In the Bayesian 
approach to dynamic state estimation, one attempts to 
construct the posterior probability density function (pdf) 
of the state based on all available information, including 
the set of received observations. Approached the tracking 
problem by the temporal Bayesian filtering technique, we 
have a two step solution: 
1) Prediction step:  
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    The state evolution model
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P z x  are two key components in this recursive 
estimation process. 



3. THE INTERACTING MULTI-MODEL 
ESTIMATION FRAMEWORK 

For targets, it is not always reasonable to assume that 
the state evolution model 
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 will be consistent in 

distribution form throughout the tracking process.  
Under real world conditions, one scope of problem is 

that the target’s state variation can be modeled by the 
variation of parameters of some specific model. However, 
there exist a lot of practical situations that the target has 
several state evolution modes and its state variation can 
only be satisfying modeled by several different models. 
Thus, the IMME approach, which can adaptively estimate 
the target’s state by integrating several state evolution 
models, is naturally the solution to such kind of problems. 
The approach is initially proposed by [2] in radar 
community and has received little attention by visual 
tracking community [11]. 

The basic idea of IMME framework is that it does 
state estimation in parallel by integrating several different 
models according to a Markov model and does interaction 
among models’ estimates. Typically, one model can 
describe one state evolution mode. One step of IMME 
procedure can be described as followes: the previous state 
x(t) is evolved according to M models in parallel to 
generate M kinds of  hypotheses. The M models have 
been defined in prior according to the characteristic of the 
application. Observation data z(i+1) is extracted to update 
each model’s state estimate. After that, the assumed 
Markov transition properties between models is used and 
new filtered state estimates are computed for each model 
via mixing process. The estimated state is then 
transitioned according to the probability that the true 
target state makes a transition. Finally, the mode 
probabilities are updated according to the current 
observation and previous state. Thus, IMME approach can 
tell which model the target’s dynamics obey. It’s naturally 
to incorporate the IMME framework into the particle filter 
to get an adaptive sequential search algorithm to solve 
tracking problem robustly.  
 
4. INTERACTING MULTIPLE MODEL PARTICLE 

FILTER 
Problems like tracking that an estimate is required 

every time when a measurement is received, a recursive 
Bayesian filter is a convenient solution.  

Particle Filter is a technique for implementing a 
recursive temporal Bayesian filter by Monte Carlo 
simulations. The key idea is to represent the required 
posterior pdf by a set of random samples with associated 
weights and to compute estimates based on these samples 
and weights.  

There are mainly three key elements in particle filter 
implementation for sequential state estimation:  

1). Sampling 
1
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 to propagate particles to generate 
hypotheses.  
2). Defining the likelihood function ( | )

i i
P z x  to relate 

noisy observations to states. 
3). Resampling to replace the particles with small weights. 

Instead of propagating the particles by one state 
evolution model to generate only one kind hypothesis 
throughout the tracking process, we introduce the IMME 
framework into the particle filter to propose a new 
variation particle filter, which has the ability to make 
several kinds of hypotheses probabilistically.  

To describe the approach mathematically, we define 
following terms: 

i

mnP − :  The probability at time i that the target 
dynamic mode will translate from model m to model n, 
These probabilities are assumed to be known a priori here 

and satisfy: 
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predefined models which can describing the M state 
evolution modes respectively. A transition matrix, which 
stacks the i

mnP − , combines the M models according to a 
Markov model.  

i

mnP + : The conditional probability that the target 
made the transition from state m to state n at time i..  
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mP + : The probability after interaction that the target 

will translate its state according model m and satisfy 
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Then we have the following relations: 
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Let { , , | 0, ..., }k k k

i i i is x w m k N= =  denote a particle 

set at time i, where k

im  means the mode according to 
which the particle k evolves in the state space at time i. 
For each particle, we define its evolution mode according 
to the mode probability i

mP −  and approximately there 
have the relation that the number of particles that will 
evolve according to mode m is proportional to i

mP − . It 
mans that all particles are divided into M subsets 
probabilistically. Then, each subset of particles behaves 



like a standard particle filter and M filtered states are obtained according to M different evolutionary models.  
Let ix  denote the estimated state at time i and 

1ˆ m
tx + denote the estimated state at time i+1 by particles in 

subset m. First, a mixed state estimation is computed for 
each subset m: 
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Then the final estimated state 1ix +  is computed as: 
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There will be a difference residual distance  
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with the subset m at the time i+1, which 1
m

id +  is 
some distance defined between extracted observation and 
expected observation computed from 1 1( | )i iP z x+ + .Then, 
assuming measurement dimension R and Gaussian 
statistics, the likelihood function for the observation given 
model m is 
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where 1

m

iσ +  is the corresponding covariance matrix 

of the distance 1
m

id + . Finally, using Bayes’s rule, the 

updated model probability is ( 1)
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The state estimation is done in such a recursive 
process by propagating several kinds of hypotheses in 
parallel.  

 
5. EXPERIMENTS 

The tracking performance of the IMMPF is examined in 
this section. We record a 69-secondes sequence at 
resolution 320X240 pixels and 3 frames/second showing a 
toy car running on the ground. The car runs at the speed 
approximately 1m/s. At the first period, the car runs along 
a straight line. Then it turns around along a circle and 
finally, the car switches back to the motion mode along a 
straight line. That is to say the car has changed its motion 
mode two times in the whole process. The IMMPF is 
tested on this sequence in order to show its effectiveness 
on adaptive visual tracking by combining several models 
in parallel and its ability to decide the target’s motion 
mode automatically. Figure 1 shows some tracking results 
on the test sequence.   

 

 
 
Figure 1. Some tracking results on the test sequence 
 
5.1. Target State Representation and Motion Models  
We simply concatenate positions and velocities of the car 
into a four dimension state vector: 

( , , , )T

x y x yx p p v v=  (9) 

Two motion models are implemented in this experiment. 
One is the Nearly Constant Velocity Motion Model 
(NCVMM), and the other is the Nearly Constant 
Horizontal Turn Motion Model (NHTMM). The detailed 
implementation of these two models can be found in [11].  

Additionally, the Markov transition matrix between 
two motion models is assumed constant in the experiment 
and is empirically set to: 

{ }0.8 0.2

0.2 0.8
T

M = . 
 

(10) 

In our experiments, the tracking performance is 
insensitive to the little changes of this predefined 
probability matrix MT. 

5.2. Measurement Localization and the Likelihood 
Function 
In the experiment, a non-parametric object representation 
by 2D color distribution similar to [6] is employed.  For 
each hypothesis generated by state evolution model in 
previous subsection, the corresponding color distribution 
is computed and compared with the target reference color 
distribution. The Bhattacharyya distance between them 
can be regarded as the output of the likelihood model 

( | )i iP x z . 



5.3. Tracking Results 
1000 particles are used to implement both the Standard 
Particle Filter (SPF) and the IMMPF described in Section 
4. NCVMM is adopted as the state evolution model for 
the SPF as usual. Some tracking results are compared in 
Figure 2.  

From Figure 2, we can see that when the car switches 
its motion mode at first time, the SPF loses the target 
while our proposed IMMPF works well.  

Our system can work only at a rate about 3 
frames/second on a Pentium III, 667MHz PC currently. 
The implementation of our proposed IMMPF is not 
optimized yet. High processing rate can be anticipated by 
further optimization. 
Other conducted experiments, which prove the efficiency 
of the IMMPF, are not described here due to the short of 
page. 

6. CONCLUSIONS 
In this paper, we introduce an IMME framework which 
can do state estimation adaptively by combining several 
predefined models according to a Markov model. Based 
on the IMME framework, we propose a new variation of 
particle filter, named IMMPF, to solve the irregular 
motion problem in visual tracking. The IMMPF not only 
has the ability to integrate several models like the IMME 
method, but also inherits the power of particle filter to 
maintain a pool of hypotheses. 
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Figure 2. Comparison of tracking results of SPF, 

IMMPF and true position data 
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