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Abstract

We consider the It6 SDE with non-degenerate diffusion coefficient and measurable drift
coefficient. Under the condition that the gradient of the diffusion coefficient and the diver-
gences of the diffusion and drift coefficients are exponentially integrable with respect to the
Gaussian measure, we show that the stochastic flow leaves the reference measure absolutely
continuous.
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1 Introduction

Let 0 : Ry x RY — Mg,m be a matrix-valued measurable function and b : Ry x R? — RA
a measurable vector field, we denote by oy and b; the functions o(t,-) and b(t,-) respectively.
Consider the Ito stochastic differential equation (abbreviated as SDE)

dXs7t = Ut(Xs,t) dwt + bt(Xs,t) dt, t>s, Xs,s = (11)

where w; = (w},--- ,w)* is a standard m-dimensional Brownian motion defined on a proba-
bility space (2, F,P). It is well known that if o, and b; are globally Lipschitz continuous with
respect to the spacial variable z (uniformly in t), then the above equation has a unique strong
solution which defines a stochastic flow of homeomorphisms on R¢. We want to point out that
these homeomorphisms are only Holder continuous of order strictly less than 1 (unlike the so-
lution of ODE under the Lipschitz condition), hence it is not clear whether the push-forward
of the reference measure by the flow is absolutely continuous with respect to itself. When the
coefficients are time independent, recently it is proved that if in addition the quantity o(x)*x
grows at most linearly, then the stochastic flow leaves the Lebesgue measure quasi-invariant, see
[8] Theorem 1.2. The proof of this result is based on an a priori estimate for the Radon-Nikodym
density (see Theorem 2.2 in [8]) and a limit theorem (see [12] Theorem A). An interesting point
of the limit theorem lies in the fact that if the SDE (1.1) has the pathwise uniqueness, then
the locally uniform convergence of the coefficients implies the convergence of the solutions in a
certain sense. The quasi-invariance of Lebesgue measure under the stochastic flow is proved in
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[17] for SDE (1.1) with regular diffusion coefficient but the drift satisfying only a log-Lipschitz
condition, which generalizes Lemma 4.3.1 in [15].
In the context of ordinary differential equation (ODE for short)

dXer =b(Xsp)dt, t>s, Xg,=u2, (1.2)

it is known to all that if the vector field b; does not have the (local) Lipschitz continuity, then
the ODE (1.2) may have no uniqueness or may have no solution at all. On the other hand,
if by has the Sobolev or even BV,. regularity, then the celebrated DiPerna-Lions theory says
that the vector field b; generates a unique flow of measurable maps which leaves the reference
measure quasi-invariant, provided that its divergence is bounded or exponentially integrable,
see [1, 2, 4, 6]. These results have recently been generalized to the infinite dimensional Wiener
space, cf. [3, 7]. In a recent paper, Crippa and de Lellis [5] gave a direct construction of the
DiPerna-Lions flow, and this method was generalized in [8, 21] to the case of SDE with Sobolev
coeflicients.

On the other hand, a remarkable result due to Veretennikov says that if o, is bounded
Lipschitz continuous and satisfies a non-degeneracy condition, then the SDE (1.1) admits a
unique strong solution even though b; is only bounded measurable, see [19]. This result was
generalized in [10] to the case where oy is locally Lipschitz continuous, and the drift coefficient
b; is dominated by the sum of a positive constant and an integrable function. The proof is based
on a convergence result of the solutions of approximating SDEs to that of the limiting SDE,
which follows from the Krylov estimate. Further developments in this direction can be found in
[14, 20]. Having the existence of the unique strong solution to (1.1) in mind, it is natural to ask
whether the reference measures are quasi-invariant under the action of the stochastic flow? To
state the main result of this work, we introduce some notations. 4 is the standard Gaussian
measure on R¢ and for any p > 1, DY (v4) is the first order Sobolev space with respect to 4. For
a vector field B € DF(v4), 6(B) denotes the divergence with respect to the Gaussian measure
va; for a d x m matrix o € DY(v4), d(0) is a R™-valued function whose components are the
divergences §(c7) of the j-th column o7 of ¢, j = 1,--- ,m. ||o| is the Hilbert-Schmidt norm
of the matrix. We will prove

Theorem 1.1. Assume that

(i) o : Ry xR? — Mg m is jointly continuous on Ry X R?, and there is ¢, > 0 such that for
all (t,r) € Ry x R, oy(z)(0y(2))* > e11d;

(ii) for allt >0, oy € Np=1DY(74) and supg<y<i Vol p2eain ) < 00;
(iii) b: Ry x R? — R? 4s measurable and §(b;) exists for all t > 0;

(iv) for any T > 0, there is Ly > 0 such that ||oy(x)|| V [bi(z)| < Lr(1 + |z|) for all (t,x) €
[0,T] x R?;

(v) for any T >0, there is A\p > 0 such that
T
/ /dexp (V002 + 16(00) 2 + [6(b1)]) ] dryadt < +o0.
0 JR

Then the Gaussian measure vq is absolutely continuous under the action of the stochastic flow
X+ generated by equation (1.1), and the density functions belong to the class Llog L.



The main difference of this result from [8] Theorem 1.1, besides the time-dependence of the
coeflicients, is that we do not require the continuity of the drift coefficient b;, at the price of the
non-degeneracy assumption of the diffusion coefficient. Note that under the above assumptions,
SDE (1.1) has a unique strong solution (see Theorem 1.1 in [20]). Here we give a short remark
on the linear growth assumption (iv) of the coefficients. In view of the a priori estimate of the
Radon-Nikodym density in Theorem 2.1, this condition is natural for the diffusion coefficient
o. If o is bounded, then we may consider the drift coefficient b which is locally unbounded,
more precisely, b is dominated by the sum of a positive constant and a nonnegative function in
LR, x RY), as in [10, 20]. But we need also the exponential integrability of b with respect
to the Gaussian measure 74, see (2.7), since the Lebesgue integrability of a function does not
imply that it is exponentially integrable with respect to ;. Here is an example: let d = 1 and
f(z) =1 () =42, then Jg1 fdz =2 but for any € > 0, [p el dyy = +oo.

The paper is organized as follows. In Section 2 we generalize Theorem 1.1 in [8] to the case
where the coefficients depend on time. This requires a careful analysis of the dependence on
time of several quantities. Then in Section 3 we prove a limit theorem which is a modification of
Theorem 2.2 in [10]. Finally we give in Section 4 the proof of the main result. As an application
of our main result, we consider the corresponding Fokker-Planck equation and we show that if
the initial value is absolutely continuous with respect to the Lebesgue measure, then so is its
solution, see Theorem 4.3.

2 The case when b is continuous

In this section, we generalize [8] Theorem 1.1 to the case where the coefficients depend on time.
First we prove an a priori estimate for the LP-norm of the Radon-Nikodym density, which is an
extension of Theorem 2.2 in [8]. For the moment, we assume that o € C(R, x R*, RI®@R™) and
b € C(Ry xR R?) such that for any T > 0, o and b; are smooth functions of the spacial variable
x with compact support, uniformly for ¢ € [0,7]. Then it is well known that the solution X ; of

—1
(1.1) is a stochastic flow of diffeomorphisms on R?. Let K, ; = % and K, ; = w,
then by Lemma 4.3.1 in [15],

Rasr) = e (= [ GoKeute 0auw) = [ 66Kt aw). 1)

where o dw, denotes the Stratonovich differential and b, = b, — : Z;-nzl(a'uj ,Voil). Recall that

o is the Jj-th column of o, j = 1,--- ,m. Though the density K,; does not have such an
explicit expression, it is easy to know that

Koalw) = Ko (XS )]

(2.2)
Theorem 2.1. For any p > 1,

1 K5, t | o (Pxvg)
—1

= [t i s/:/Rd exp <p(t —5) [2|5(bu)| + ||O’uH2 + HVUuH2 +2(p — 1)|5(0u)|2])d7ddu] m.

Proof. The proof is similar to that of Theorem 2.2 in [8], by keeping in mind the time-
dependence of the coefficients. We first rewrite the density (2.1) using It6 integral:

¢
R =op (= [ 000 Catodwn) = [ [56)+ 5 3 (07, 95063 | et ).

J=1




It is easy to show that (see [8] Lemma 2.1)

m

SRS 1 1 P
8(bu) 5222 0, Va(i])) = 8(ba) + 5lloll® + 5 Y (Vo (Vo).

Jj=1

To simplify the notation, denote the right hand side of the above equality by ®,. Then K s,t(2)
is expressed as

R =op (= [ 0t0) alun) — [ 0u(Xute ).

Using relation (2.2), we have

/]Rd E[Kg,t(x)] ded(‘T) =E [f{s,t (X;tl (Z'))] - d’yd(x)
[Kst(y)] " Keu(y) dya(y)
= | E[(Ksi(2)) "] dya(a). (2.4)

Fixing an arbitrary r > 0, we get

(Raa(@) ™ =0 (1 [ 5000 (a7 [ (o2 )
= o (1 [ e eutodw) —1? [ 30 (Kot )
X exp < / t (r?|6(0w)|* + r®y) (Xsu(z)) du>.

Cauchy-Schwarz’s inequality gives

1/2

R ") < [Bep (2 [ 0o FKeatoaun) =272 [ stou) Cato )|
X [E exp < / t (2r%16(0w)* + 2r®y,) (X .u(2)) du)] v

1/2

= [eew ([ @ + 2o (e au) | (25)

E[(

since by the Novikov condition, the first term on the right hand side is the expectation of a
martingale. Let
@) = 2r(8(by)| + 7 (oull® + [IVoul® + 2r[d(ay)]?).

Then by (2.5), along with the definition of ®, and Cauchy-Schwarz’s inequality, we obtain

[ Besw) Vi) < | [ Bep ([ 00 (Xunlo)) ) o) F e

By Jensen’s inequality,

oo ([ 000kt an) =emp  [0- 98008000 22 )




<
“t—s

! t—s)d) (X
/ o(t=9) 80 (X (@) gy,

Define I ; = sup,<, < [pa E[K£u(x)] dya(z). Integrating on both sides of the above inequality
and by Hélder’s inequality,

t t
Lo ([ 00t an) ) < 1[5 [ 000 40,0 au

I RS
=< / E/ e(t=s) @y (y)stu(y) dva(y) du
— S s Rd

t
()
e(t s) Py,

L4(vq) HstuHLP (Pxvq) du

< /H (ts<I>()H > Ii/p
La(~, s,t
where ¢ is the conjugate number of p. Thus it follows from (2.6) and Holder’s inequality that
~ (r)
L Bl(Resto) "] dvato) < / Jote=s) 2%
1/2q
< / / RUCGOL AR I I R
“\t—s s JRd 8t

Taking 7 = p — 1 in the above estimate and by (2.4), we obtain

1/2q
s) (p—1) 1/2
/]R B (@)] dya(e <t_s / /]R et d’mdu> L.

For any nonnegative measurable function g : Ry — R, using the power series expansion of the
exponential function, it is easy to know that the quantity % fst e(t=8)9udy is increasing in ¢ and

decreasing in s. Thus we have
1/2q
(p—1)
// q(t—s) 2" d’yddu> 15142”.
R '

e (7

Solving this inequality for I, we get

IN

1/2 12
La(~, )d [s,t Y

1

t . 1
/ E[K? (2)]dyi(z) < I < < ! // exp [M@gp—”] d’mdu) v 1.
Rd ) ’ t—s s JRd p— 1

The desired result follows from the definition of <I>§Lp _1). O

The rest of this section follows the argument in Section 3 of [8], by taking care of the time-
dependence of the coefficients. We assume the following conditions:

(A1) 0 : Ry x R? — Mgm and b : Ry x R? — R? are jointly continuous and for any 7' > 0,
there is L > 0 such that ||oy(2)|| V |by(2)| < Lr(1 + |2|) for all (,7) € [0,7] x R

(A2) for any t > 0, oy € Np>1DY(74) and §(b;) exists;

(A3) for any T' > 0, there is Ay > 0, such that

T
Sri= [ [ exp Da(I9oul? +1600)? +15(b0)) dradt < +cx.
0 JR



As we choose the Gaussian measure 7, as the reference measure, it is natural to regularize
functions f : [0,7] x R? — R using the Ornstein-Uhlenbeck semigroup (P:)s~¢ on R%:

Pfio) = [ A ia VT e )t

First we have the following simple result (see [8] Lemma 3.1 for the proof).

Lemma 2.2. Assume that f : [0,T] X R? — R has linear growth with respect to the spacial
variable: there is Lt > 0 such that | f;(z)| < Ly (1 4+ |z|) for all (t,x) € [0,T] x R?, then

sup sup |P:fi(z)| < Lr(1+ My)(1 + [=]),
0<t<T 0<e<1

where My = [ga [yl dva(y). If moreover f is jointly continuous, then for any R > 0,

lim sup sup |P:fi(x)— fi(x)] = 0.
el0 0<t<T zeB(R)

We introduce a sequence of cut-off functions , € C2°(R%,[0,1]) satisfying
op(x) =11if [z <n, @p(z)=0if || >n+2 and [[Veule < 1.
Now define

of = SDnP1/nUt, by = ‘;anl/nbt

and consider
dX¢y = o (Xgy) dwy + 07 (X dt, t>s, X! =

By the discussions at the beginning of this section, we know that the density function K, of
(X&4)#7a with respect to 74 exists. We want to find an explicit upper bound for the norms of
K¢,. To this end, applying Theorem 2.1 with p = 2, we obtain

=

IS oo < |7 [ exp (2= ) 240001 + 1212 + VLI + 240D)P]
By the definitions of o}' and b}, it is easy to show that (see Lemma 3.2 in [8])

2036w + ol + Vi |* + 2167
< Pryn (20bu] + 2€]8(bu)| + Tl|owl® + 2] Vou|* + 2¢%]6(0w)[?).

Let
O = 14(|by| + [lou|®) and  ®P = 4e?(|6(b)| + [|Voull® + [5(cw)[?),

then by Jensen’s inequality and the quasi-invariance of v4 under Py /,,, we obtain

1
n I o (eWip® 5
Kl L2 pxyg) < |:t—8//Rd et )(q)“ +ou )dvddu} . (2.7)

Let F,; be the quantity in the square bracket on the right hand side of (2.7). By Cauchy’s

inequality,
L [T opsyel® : L[ s—s)e® 2
Foi < |—— e v dygdu| - e v dygdu| . (2.8)
’ t—s s JRA t—s s JRA
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By the growth conditions on b and o, we have for any u < T,
o) < 14[Lr(1 + |a]) + L3 + |z[)?] < 14L7(1 + Lr)(1 + |2])2.

As a consequence, if t — s < 1/112Lp(1 + Lr), we obtain

t t
! // eQ(t_S)ch‘l)dyddu < 1 // 628(t—8)LT(1+LT)(1+\x\)2d7ddu
t—s s JRA “t—s s JRA

_ / (28(=9)Lr (L L) (1+2])? gy
Rd

< / D/ = My (2.9)
Rd

which is finite. Again noticing that for any nonnegative measurable function g : Ry — Ry,
using the power series expansion of the exponential function, the quantity % fst e(t=5)9udy is
increasing in ¢ and decreasing in s. Hence by assumption (A3), if t — s < Ap/8e?, then

1 t ) 2 T 2
= // 2= 4y du < 8i/ / AT OOVl 46 gy dey, — 8izT. (2.10)
t S J)s JRA )\T 0 JRd )\T

Set

1 A1

= —— A
112L7(1+ Ly) 82’
then for all t — s < T, we obtain by combining (2.8)—(2.10) that

1
P < (@) g

To

To
Substituting this estimate into (2.7), we deduce that for all 0 < s <t < T with t — s < Tp,
1
MyXp\ 2
K? < Ap = . 2.11
sup K20 < Ay o= (22 ) (2.11)

Having this explicit estimate in hand, we can now prove
Theorem 2.3. Under the assumptions (A1)—(A3), there are constants Cy, Cy > 0 such that
supE / K |log K7)|dvq < 2C1T"*Aqy + CoTA%,,  forall0<s<t<T.
n21 Rd ) )

Proof. The proof is similar to Theorem 3.3 in [§8]. By (2.2) and (2.1), we have

K3 () = (2] = e ([ 0oz, + [ @ ) )

with

m

B = 500) + ol + 5 D2 (V) (Vel)I)),
j=1

where (07)7 is the j-th column of o%. Thus
E/Rd K;Lt\ log K;Lt\ dyg = E/Rd |log K;Lt(X;Lt(a:)ﬂ dvyg(z)

[ ez, dw| drae) +E [ | [ 012,00 dufdrata)

=11 + Is. (212)




Using Burkholder’s inequality, we get

E / (5(0™) (X7, (2)), dw,)

t ) 1/2
ngK/ 16(07) (X7, ()] du> ]
By Cauchy’s inequality,

I < 2[/:E/Rd 18(0™) (X7 (2))] dyale du} " (2.13)

If u € [s, s 4+ T, then by Cauchy’s inequality and (2.11),

E [ [6(0m)(X2 ()] dya(z / 607, su(y) dvaly)
]Rd

<Nt 3l 22 (v
< ATO”(S( u)”L4('yd)'

Now for u €]s + T, s + 2Tp], we shall use the flow property:
X7, (w,w) = XPq (X2 yq (2, w0), w).
Therefore,
E [ 8D @) @) =B [ |5 [X2 0 (X2, @) date)
=E o |6(o) (Xa )| es+1,(Y) dva(y)

which is dominated, using Cauchy’s inequality, by

1/2
n n 4 n
(& [, 1D (a0 1Ko
n 1/2 -1 n
< (Anlo@DEsey) A = AR SO0 s,
Repeating this procedure, we finally obtain, for all u € [s, T,
n n 2 142714427 NVHL NP 2 NI
B [ 16X du) < Al 162211, < AR ISE

where N € Z4 is the unique integer such that (N — 1)Ty < T' < NTy. This along with (2.13)
leads to

. 1/2
1132[/ A%O\Iéwﬁﬂlizwﬂm)du]

T
<oAg T2 2 [ / ) |5(JZ)|2Ndeddu]
0 JR

27N71

Since [6(o7)| < Py (lloull + €ld(ow)]), by Jensen’s inequality, the invariance of 74 under the
Ornstein-Uhlenbeck group and the assumption on o, it is easy to know that

”‘S(U-H)HLzNH(ﬁTX%) < H loull + eld(ow)] HL2N+1(£T><W) = (2.14)
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whose right hand side is finite. Here £ means the Lebesgue measure restricted on the interval
[0, T]. Therefore
I, < 20,72 Ay, (2.15)

The same manipulation works for the term Is and we get

I < C5TAR,, (2.16)
where 5
Cy = H\b\ +e|o(b.)| + §HJ.H2 + |V || < 0. (2.17)
L2 (L Xya)
Now we draw the conclusion from (2.12), (2.15) and (2.16). O

It follows from Theorem 2.3 that the family {K7},>1 is weakly compact in L*(Q x R?).
Along a subsequence, K¢, converges weakly to some K € L' (Q xRY) as n — oo. Let

C= {u € LNQ xRY): u>0, / E(ulogu)dyg < 2C,TY?Ag, + CQTA%‘\O}.
Rd

By the convexity of the function s — slog s, it is clear that C is a convex subset of L'(Q x R%).
Since the weak closure of C coincides with the strong one, there exists a sequence of functions
u™ € C which converges to K s¢ in L1(Q x RY). Along a subsequence, u(™ converges to K st
almost everywhere. Hence by Fatou’s lemma, we get

/R , E(Kylog Kyy)dyg < 20172 Aq, + CoT A% . (2.18)

Next we have

[ Bl.altog Kl doa = ( [+ >Ks,t\ log Kol d(P x 2)
Rd {Ks,t>1} {Ks,tgl}

= / K&t log Ks,t d(P X ’}/d) — / Ks,t log K&t d(P X ’}/d)
{Ks,t>1} {Ks,tgl}

Since xlogx > —e~! for all x € [0,1], we obtain from (2.18) that

/ E(Ks,t|long,t|)d7d:/
R4

, Ks,t log Ks’td(P X ’}/d) — 2/ K&t log K&t d(P X ’}/d)
QxR

{Ks,tgl}
< 20T Aqy + CoTAS, +2¢7 7.
(2.19)
Finally we can prove the main result of this section.

Theorem 2.4. Suppose the conditions (A1)~(A3) and that SDE (1.1) has pathwise uniqueness.
Then for any T > 0 and 0 < s < t < T, almost surely (Xsi)uva = Ksyya and the estimate
(2.19) holds.

Proof. The proof is similar to that of Theorem 3.4 in [8]. O



3 Limit theorem

Now we turn to establish a limit theorem, following the idea of Theorem 2.2 in [10] (see also
Theorem 1 on p.87 of [13]). First we need a version of the Krylov estimate.

Lemma 3.1. Assume that for some T > 0,
(1) o and b have linear growth with respect to the spacial variable, uniformly in t € [0,T];

(2) o is uniformly non-degenerate: there is c, > 0 such that for all (t,z) € [0,T] x R%
oi(x)o} (x) > co1d.

Let X 4(z) be a solution to (1.1), then for any Borel function f : Ry x RY — Ry and A > 0, we
have

T
B [ et Xool@)) dt < NIl goos e, e
where N is a constant depending only on T,d,cy, A and x € R?.

Proof. The proof is similar to that of [10] Corollary 3.2. In our case, the inequality (3.2) on
p.769 of [10] becomes

1
+1

TATR _da o0 d
E/ e Mf(t, Xsu(x)) dt < Cype, (A + B?)Z@D </ / \f(t,y)]d“dydt) (81
s s JB(R)

where 7p is the first exit time of X, ;(x) from the ball B(R), and by the linear growth of oy, by,
we have

TATR 1 T
A= E/ e M. §”O't(Xs’t(l'))H2dt < CT/ E(1 + [ X (2)]?) dt < CH(1+ |zf?),
and
TATR T
B = E/ e_’\t]bt(X&t(a:))\ dt < C’T/ E(1 4 | X (2)])dt < C’T(l + |z|).

Now letting R — oo in (3.1) gives the desired estimate. O

The next result, which is a stronger version of Lemma 5.2 in [10], will be used to prove the
limit theorem.

Lemma 3.2. Let n; and {n : n > 1} be Mg, -valued stochastic processes, and w, w"™ Brownian

motions such that the Ito integrals Iy = fot ns dws and I}' = Otngl dw? are well defined. Assume
that for some a > 0,

T T
Co = <IE/ ||ns||2+°‘ds> \/ (supE/ ||77§‘||2+°‘ds> < 00,
0 n>1 Jo

and Ny — ny and wi — wy in probability for allt € [0,T]. Then

lim IE< sup |}’ —It|2> =0.
n—oo \ 0<t<T
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Proof. For any R > 0, define 1 : R — R by ¥g(x) = ((—R) Vz) A R. Then tp is uniformly
continuous. For a matrix 7, we denote by ¥ g(n) the matrix (v¥r(n¥)). For all t € [0,T], since
Ny — m; in probability, we know that 1)r(n]') converges to 1¥gr(n;) in probability. Moreover, they
are uniformly bounded, then by Lemma 5.2 in [10],

> E> =0

for every € > 0. Since ¥p is bounded, the sequence fot Yr(ny) dw} is uniformly bounded in any
LP(IP), hence

t t
lim ]P’< sup /OwR(n?)dw?—/o Yr(ns) dws

2) —0. (3.2)

t t
lim E< sup /OwR(n?)dw?—/o Yr(ns) dws

n—roo \ 0<t<T

We have

2 2
+3

t t
/ br() du? — / br(ns) dws
0 0

t t
P — I < 3‘/ e dw? —/ Yr(ng) dwg
0 0

/0 wR(TIs) dws _/0 s dws
= 3(J1(t) + Jat) + J(t)). (3.3)

2
+3

By Burkholder’s inequality,

IE< sup Jl(t)> < 4E/OTH77§—¢R(17§‘)H2dS.

0<t<T

Let L7 be the Lebesgue measure restricted on the interval [0, 7], then by Holder’s inequality,

E( sup Jl(t)> < 4/ Lr > ry I8 PA(Lr @ P)
[0,T]x$2

0<t<T 7
o/ (2+a) ) 2/(24+a)
< 4[(Lr @ P)(In]| > R)] ( [ +ad<.cT®P>>
[0,7]x$2
4 T 4C)
< —]E n 2+ad ——
< geE [ ImpEreas =

Similarly we have E(J3) < i%. These estimates together with (3.3) lead to

24C;
E< sup |If—[t|2> < ao —|—3E< sup
0<t<T R 0<t<T

\

By (3.2), first letting n — oo and then R — oo, we get the reuslt. O

t t
/ Pr() dw? — / r(ns) du,
0 0

Suppose we are given two sequences o™ : [0,7] x R? — My, and b : [0,T] x R — R? of
measurable functions. Consider the SDE

We will prove

Proposition 3.3. Assume that for some T > 0,

11



(1) o™ and b are jointly continuous on [0,T] x R? and there is Ly > 0, such that for all
(t,x) € [0,T] x RY,
sup (o @)V by (x)]) < Lo (1 + |x]);

(2) {o™ :n > 1} are uniformly non-degenerate, i.e. there is C > 0 independent of n such that
for all (t,z) € [0,T] x R, o (x)(o7(x))* > C1d;

(3) for alln >1, (3.4) has a unique strong solution X74(x);

(4) asn — o0, o™ — 0 in L2(d+1)([0 T] x RY) and b — b in LE([0,T] x RY).

loc loc

Then for any x € R and T > 0, the sequence (X2 (x),w) is tight in C([s,T],R™), and there

exist a subsequence {ng : k> 1} and a probability space Q on which are defined a sequence
(Xk, "), a Brownian motion (wt,}"t) and an Fy-adapted process X, such that

(a) for each k> 1, (X2 (x),w) and (X*,w*) have the same finite dimensional distributions;
(b) almost surely, (X*, %) — (X, @) as k — oo uniformly on any finite time interval;
(¢) (X,w) is a weak solution to SDE (1.1).

Proof. For simplification of notations, we assume s = 0 and write X;* instead of Xy,. We
follow the idea of the proof of Theorem 2.2 in [10] (see also Theorem 1 on p.87 of [13]). In order
to apply the Skorohod theorem (see Theorem 4.2 in Chap. I of [11]), we need to verify that the
sequence {(X"(z),w) : n > 1} satisfy the conditions (4.2) and (4.3) on p.17 of [11]. It is enough
to do so for the sequence {X"(x) : n > 1}. For each n, X('(z) = x, hence condition (4.2) is
satisfied. Next by the uniform growth condition (1) on the coefficients, it is easy to know that
there is Cr > 0 such that

supE( sup | X[ (x) — Xﬁ(m)\‘l) <Crls—t? 0<s<t<T. (3.5)
n>1 s<u,v<t

Therefore (4.3) is also verified. Then by Skorohod’s theorem, there exist a subsequence X"* (z)
and a probability space 2 on which are defined a sequence (X k%) and a process (X, @), such
that the finite dimensional distributions of (X" (), w) and (X k, ") coincide, and almost surely,
the limits X} — X;, @F — 1; hold uniformly on any finite interval of time. We have by (3.5),

vk _ vk4 (4 2
E(IXS — X71") = E(|X{*(z) — X*(2)[") < Crls — ¢,
Using Fatou’s lemma, we obtain
E(|Xs — X¢|*) < Crls —t]?,
therefore by Kolmogorov’s modification theorem, the processes X* and X are continuous. @*
and w, being Wiener processes, are also continuous.

Let F; be the filtration generated by the original Brownian motion w; appearing in (3.4).
Then the process (X', wg)s<; are independent on the increments of the Brownian motion w after
the time ¢. By the coincidence of the finite dimensional distributions, the processes (X¥, %)<
do not depend on the increments of the Brownian motion w"* after the time ¢. This property is
preserved in the limiting procedure, that is, (X, Ws)s<¢ is also independent of the increments of
w after t. As a consequence, ﬁ)f (resp. wy) is a Brownian motion with respect to the filtration

FF (vesp. F) generated by {(X¥ %) : s <t} (vesp. {(Xs,10s) : s < t}). As the process X[ is
continuous and ]:t -adapted, the stochastlc integrals considered below make sense.

12



It remains to prove the assertion (c). By the continuity of o* and b*, it is easy to show that
for all t > 0,

t t
= [ ob(XE) aak+ [ B ds, (3.6)
0

0

since the processes (X* %) and (X" (x),w) have the same finite dimensional distributions,
and (X" (z),w) satisfies the SDE (3.4) (see [13] p.89 for a detailed proof). Now we want to
take limit £ — oo in (3.6). Fix some T' > 0 and consider ¢t < T. We first show the convergence
of the diffusion part. To this end, we fix some integer kg > 1 and define

t t
n() = [ ok aat— [ ol (X2 aat,
Ot ~ Ot
B(t) = [ o (&) dat - [ o(X.)da,
0 0
t B t _
Ly(t) = / o0(X,) dub, — / oo(X.) dis.
0 0

By Burkholder’s inequality,

T ~ ~ 1/2
Boup (0] < 2 ([ lob(x) - (b fas) |
t<T 0

< 2<E/OT o*(XF) - U§O(X§)szs>l/2.

Take ¢ € C(R; xR%,[0,1]) such that (t,z) = 1 for |(t,2)] < 1/2 and ¢(t,z) = 0 for |(t,z)| > 1;
define pr(t,x) = ¢(t/R,z/R) for R > 0. Then

T B B B 1/2
Esup |1,()] < 2<E [ ot K5 o5 —a§°<X§>H2dS>
t<T 0

1/2

T
T 2<E | 1= en(s, X)) - k(D) - afO(Xf)H2ds> @
0
We have by Lemma 3.1,

T - - -
B [ en(s, AR = oo (K7 s < N et = oM

= NeTllo* — 0" 010, (3.8)
T,R

where N is a constant independent of & > 1 and || - |’Ld+1% is the norm in L4([0,7] x B(R)).
T,

Since o and b* have uniform linear growth, the standard moment estimate gives us

supIE< sup ‘Xt| ) < Cpr(1+|zP)
k>1 \0<t<T

for any p > 1. Therefore

T 5 5 T _
IE/ |05 (XF) — oo (X5 "ds < CT/ E[(1+ |XF))*]ds < Cr(1 + |2|*). (3.9)
0 0

13



As a result, by the Cauchy inequality,
T
B[ [ (s, XE)] - oA (XE) - oo (X ds
0
~ T - 1/2
<O (1 + |2 <IE/O [1- @R(S,Xf)]2d8> : (3.10)

Combining (3.7), (3.8) and (3.10), we obtain

B T _ 1/4
Esup\mt)rs2N1/2eT/2uak—o'fouLwH)+2c;/4<1+rx\>(E / [1—¢R<S,X§>]2ds) :
t<T T,R 0

As g is continuous and 1 — pg(t,z) < 1 for all (t,2) € Ry x R% by Lebesgue’s dominated
convergence theorem, we obtain

lim sup Esup |1, (t)| < 2NY2eT/2||0 — O'kOHL2(d+1)
k—00 t<T T,R

T ~ 1/4
+20}/4(1+|x|)<1@/0 1 —@R(S,Xs)]2d8> . (3.11)

Notice that Lemma 3.1 holds true also for the process X. Indeed, we first apply Lemma 3.1
to X* and continuous functions f € L%, then by Fatou’s lemma, we obtain the inequality for
X, since the constant N is independent of k. For general Borel function f € L' a measure
theoretic argument gives the desired result. Proceeding as above for the term I3(t), we get

B T 1/4
Esupuga)\gle/QeT/Qua’%—auﬂdm+2c%/4<1+rx\>(E / [1—¢R<s,xs>]2ds) -
t<T T,R 0

(3.12)

Now we deal with I5(t). Since o*0 is continuous, it is clear that %0 (X*) converges to o%0(X,)
as k — oo. Similar to (3.9), we have for any a > 2,

T
E/ 0% (X5 ik < Corr(1 + [a]®),
0

whose right hand side is independent of £ > 1. The same estimate holds for E fOT [|oko (X )| dab.
Therefore by Lemma 3.2, we have

lim Esup |I5(t)] = 0. (3.13)
k—oco t<T
Now note that 5
t t
[ oretaat - [Cotyan < 3 mo)
0 0 i=1

By (3.11)—(3.13), we have

t _ t B
/ ok (XF) duk — / oo(X2) dibs
0 0

lim sup E sup
k—o0 t<T

B T _ 1/4
<AN2T2 )R — 0| ) +4C (1 + Ja]) <E / [1— or(s, Xs)fds)
T,R 0
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First letting £y — oo and then R — oo, we finally obtain

lim Esup =0.

k—oo <7

t t
/ ok (XE) dat — / 0s(X,) dibg
0 0

The same method works for the convergence of the drift part, hence we also have

t t
lim Esup / blj(Xf)ds—/ bs(Xs)ds| = 0.
0 0

k—o0 t<T

Thus letting £ — oo in (3.6) leads to
Xi=u +/ O'S(XS) dw, +/ bS(Xs) ds, forallt<T.
0 0

That is to say, (X,) is a weak solution to (1.1). O

Now we can prove the main result of this section.

Theorem 3.4. Assume the conditions of Proposition 3.3 and that SDE (1.1) has a unique
strong solution X (x). Then

lim E( sup |X{ () —Xs,t($)|> = 0.

n—oo s<t<T

Proof. To simplify the notations, we assume again s = 0 and denote the solutions Xy, Xo:
by X', X;. We follow the idea on p.781 of [10]. By the linear growth of ¢” and 4", the classical
moment estimate tells us that every pair of subsequences X! and X™ is tight in C([0, T], R?).
Hence (X!, X™,w) is a tight sequence in C([0, T], R?*¢*™). By Skorohod’s representation the-
orem, there exist a subsequence (X e X " w) and a probability space Q on which is defined
a sequence (X' X"k k), such that for each k > 1, (X%, X™ w) and (X%, X™ @) have
the same finite dimensional distributions, and the following convergences hold almost surely:
X — XM and X™ — X in O([0,T],R%) and @* — & in C([0,T],R™). By assertion (c) of
Proposition 3.3, we have almost surely, for all ¢ € [0, 7],

pre / o (X)) dibs + / bs (X(7)ds,
0 0

where ¢+ = 1,2. Under the assumptions, the above equation has pathwise uniqueness, hence
X't(l) = )N(t(z) almost surely for all ¢ € [0,7]. This implies that supy<;<r |)~(£’“ — )N(Zn "‘ converges
to 0 in probability. Since (X%, X" ) has the same finite dimensional distributions as (X", X"),
we obtain the convergence in probability of supg<;<p ‘th’“ — X"k ‘ to 0. By the moment estimate,

it is easy to show that the sequence supy<;<p ‘X,fk - X" k‘ is uniformly integrable. Hence

lim E< sup !Xi’“ — XtmkD =0.
k—oo  \ o<t<T

As a result, the sequence {X" : n > 1} is convergent in L'(€,C([0,T],R%)) to some X. Now
similar arguments as before show that X solves the SDE (1.1). By the pathwise uniqueness, we

know that almost surely, X; coincides with X; for all ¢ € [0,T]. So finally we have proved that
X" converge in L' (Q2,C([0,T],RY)) to X. O
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4 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1, based on Theorems 2.4 and 3.4. In the following
we suppose that o and b satisfy the conditions in Theorem 1.1. Notice that b : Ry x R — R is
only measurable, we will regularize it as in Section 2 of [4]. First we extend it to negative time
by setting by = 0 for t < 0. Let x € C(R,[0,1]) such that supp(x) C [~1,1] and [, xdz = 1.
For n > 1, define the convolution kernel x,(z) = ny(nx). Set bgn)(x) = (b.(z) * xn)(t) and

b (@) = (Puynbi™) (@).

Then b" is a smooth vector field.
Now we check that o and b" satisfy the conditions (A1)—(A3) in Section 2. For all ¢ € [0, T,
we have by the definition of y,, that

w@ung/wme@_@@gLﬂﬂruw,ﬂnwweR¢
R

Lemma 2.2 gives us
07 (2)| < Lr41(1 4+ M1)(1 + |z]). (4.1)

Next for any ¢ < T, it is easy to know that §(b}) = el/"Pl/n[(5(b.) * Xn)(t)]. By Cauchy’s
inequality, for some ¢ > 0,

T
/0 /Rd exp (C(I!VwH2 +6(ay)|? + \5(by)y)>dwdt

< [/OT/Rd exp (26(”V0’tH2 + lé(at)\2)>d’yddt]% . [/OT/Rd exp (2c\5(b?)\)d’yddt} _. (4.2)

Using Jensen’s inequality twice, we obtain
T T

// exp (26[(5(6?)])d’yddt§// exp 2cel/"P1/n‘(6(b.)*Xn)(t)Dd’yddt
0 JRrRd Rd

/ / exp 2ce| ) * Xn)( Dd’yddt

Rd
§/ / /ezce5(bs)|xn(t—s) dsdry,dt.
0 JRIJR

Noticing that §(bs) = 0 for s < 0, we deduce easily by changing the order of integration that

T 1 T+n~? T+1
/ / e2eeldb)ly (1 — s)dsdt < — + / e2eeldbs)l qs < 1 4 / e2eelobs)l g5,
0o Jr

n 0 0

Thus for all n > 1,

T T+1
/ / exp (2¢[0(b})])dyqdt < 1 +/ / 2eel0bs)l q sy (4.3)
0 Jrd 0 JRrd

Therefore, taking ¢ = Ap41/2e, we have by (4.2) and (4.3) that

/ / ( T+1 HV t||2—|-|5(0't)|2+|5(bn)|)>d’7ddt§E%I“/il(1+ET+1)l/2‘ (4.4)
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In view of (4.1) and (4.4), we denote by
Lr=Lra(14+M), Ar=>Apui/2e and Sp =32 (14 50)" (4.5)

Then the conditions (A1)-(A3) are satisfied by ¢ and b" with the constants Ly, Ay and Sq.
Note that they are independent of n > 1.
For any n > 1, consider the SDE

dX{, = oy (Xgy) dwy + 07 (X dt, t>s, X =

Under the conditions of Theorem 1.1, the above SDE has a unique strong solution X', with
infinite lifetime (see Theorem 1.1 in [20]). Set

- 1

~ ~ 2

T= = L — A )\T+31 and A= <@> ,
112LT(1 + LT) 16e T

where Mp is defined in (2.9). By the above discussions and Theorem 2.4, we have (Xg;)4vq =

K¢va and
/ E(K?,|log K7|) dya < 2C1TY2A + Cp o TA? + 2¢77, (4.6)
Rd
where, by (2.14), )
C, = H llowll + eld(ow)] HLZNJA(ETX,M)

with N = [T/T] being the minimum integer that is greater than 7/T, and by (2.17),

n mn 3
o= |01+ €lat) + 1o + 9.1

L27 (L1 x7g)

Since
67 + €l6(b7)| < Pryn [(10.] + €2[8(b)]) * xa] (£),

we have by Jensen’s inequality that

oN

/OT/Rd(V)ﬂ+€|5(bg)|)2ﬁd%ldt§/0T/Rd(/R(|bs|+€2|5(bs)|)xn(t—s)ds> dyqdt
= /OT/R/R (Ibsl + 216(6) )% xlt — 5) dsdyadt.

Changing the order of integration of the right hand side and noting that by = 0 for s < 0, we
obtain

T 21(, T+n71 9 2N
L[t elsn® anae< [ [0 (ol + 00) asdo
0 JRd R4.J0
T+1 21\7
S/ /(!bs\+62](5(bs)\) dygds.
0 Rd

Therefore

3
G < [[107] + elo@) | o R

ZN
L (Lrxva L27 (L1 xvq)

_ =: 0o,

< b1 + 108 s,
L2% (L7 %7q)

Lr11X74)

3
+ 3l 19a?
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This plus (4.6) gives us that for all 0 < s <t < T,

sup / E(K?,|log K7|) dyg < 2C1TY2A + CoTA? + 2¢71. (4.7)
]Rd

n>1

Now for any fixed 0 < s < ¢t < T, the same argument as that before Theorem 2.3 leads to the
existence of some K, ; € L'(2 x R%), which is a weak limit of a subsequence of {KZ ¢ n>1 and
satisfies

/ E(K, | log Ky y|) dyg < 20, TYV2A + CoTA? + 4e7 . (4.8)
Rd

Now we are in the position to give

Proof of Theorem 1.1. We follow the idea of the proof of Theorem 3.4 in [8]. To apply the limit
result proved in Section 3, we check that o and 6" satisfy the assumptions of Proposition 3.3. We
only have to verify the conditions for b”. By (4.1), condition (1) in Proposition 3.3 is satisfied.
(3) is a consequence of Theorem 1.1 in [20]. Now we check that b" — b in L{-T1([0,7] x R9).
It is enough to show that lim,_, [0 — b|| Lé+1(Lrxyg) = 0, where L is the Lebesgue measure
restricted on [0,7]. We have by the triangular inequality,

o™ — b”Ld“(ﬁwa) < an - Pl/nb'HLdH(ﬁTx»yd) + HPl/nb' - bHLdH(ﬁTx»yd)' (4.9)

Jensen’s inequality leads to
Hb" — Pi/b Hd ! < (P [(b. % xn)(t) — b ]) 'd qdt
1/n?- LA+ (L xg) 0 4 1/n (0 * Xn t Y,

T
< / / (b % xu)(£) — by drdt,
0 R4

By the growth condition on b (note that b, = 0 for ¢t < 0), we deduce easily that for almost every
x € R b.(x) % x, — b.(z) in L41([0,T]). By Lebesgue’s dominated convergence theorem,

B (|67 = Pyybof| s ) = 0 (4.10)

Again by the linear growth of b, we have for all ¢ € [0, T], limy—o0 || P1/nbt — btllpat1(q,) = 0.
Using once more Lebesgue’s dominated convergence, we obtain

Jim [[Prynb = Bl| o 2 sy

This plus (4.9) and (4.10) leads to the desired result. By the above discussion and Theorem 3.4,
we have for any = € RY,

lim E( sup | X1 () —X&t(a:)]) = 0. (4.11)
n—oo s<t<T ’
Since o and b have linear growth, the classical moment estimate tells us that E|X,(z)| <

C(1+|z|) and sup,,>; E[ X (7)| < C(1+|z|). Now fixing arbitrary § € L>(Q2) and ¢ € C>®(RY),
we have by (4.11) and the dominated convergence theorem,

E / )] [ (X () — (Xus ()] drale)
Rd

< 1€Vl | BIXE@) = Xealo) (o) 0 (112)
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as n tends to +o0o. Therefore

lim E | €0(XT,(2)) dya(e / £9(Xa(2)) dra. (4.13)
Rd

n—o0

On the other hand, by the above discussion, for each fixed ¢t € [0,7], up to a subsequence,

K", converges weakly in L!(Q x R?) to some K, satisfying (4.8), hence

S,

/ (X7, (2)) dyala / 9K () dra(y)
E Rdf V(y) K (y) dvaly). (4.14)

This together with (4.13) leads to

/sw oa(2)) dya( /w VK1) daly).

By the arbitrariness of { € L>°(12), there exists a full measure subset €, of € such that

9 (X t(x)) dvya(z / P(y) K (y) dyaly), for any w € Q.

Now by the separability of C°(R?), there exists a full subset (25 ¢ such that the above equality
holds for any ¢ € C°(R?). Hence (Xot)Yd = Ks 174 O

We say that two measures pu, v on R? are equivalent if 4 < v and v < p. We have the
following simple result.

Corollary 4.1. Let jig be a measure on R% which is equivalent to 4, then (Xs,t) o < po for
all 0 < s <t <T. In particular, the Lebesque measure is absolutely continuous under the action
of the flow X ;.

Proof. Let A C R? be such that uo(A) = 0. Then v4(A) = 0, hence by Theorem 1.1,
[(Xs.4)#74)(A) = 0, or equivalently, the inverse image (Xs¢) '(A) is y4-negligible. Since pg is
also absolutely continuous with respect to 4, we deduce that (X s,t)_l(A) is pup-negligible. That
is, [(Xs,)#t0](A) = 0. By the arbitrariness of the pio-negligible subset A, we conclude the first
assertion. O

Remark 4.2. If the inverse flow (X . tl)sgt of (Xs)s<t exists, then there is a simple relation

between the density functions. Indeed, let py = pyq with p(z) > 0 for vs-a.e. z € R% Then for
any f € C.(RY), we have

/f st duo—/ f( stpd%z—/ fp(X Kstd%z—/ Io( st) Kgip ' dpo.

Therefore K(} := w = p(X ) Ksup™ .

Now we apply our result to the Fokker-Planck (or forward Kolmogorov) equation associated
to the SDE (1.1), showing that under suitable conditions, the solution of the Fokker-Planck
equation consists of absolutely continuous measures with respect to the Lebesgue measure if so
is the initial value. Consider

d
gst n Z@ b} ths,t) ;1 i (a¥ i) t> 8, fiss = o, (4.15)
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where

a? = Zaikagk, i,j=1,---,d. (4.16)

Define the time dependent second order differential operator

1< d
Li=3 > a0+ > bio;
=1

ij=1
A measure valued function s, ¢ on [s, T is called a solution to the Fokker-Planck equation (4.15),

if for any o € C°(R?), the equality

d

E 90(517) dﬂs,t(l‘) = /]Rd Lt@(:E) dlu&t(x)

holds in the distribution sense on [s,T] and g is w*-convergent to po as ¢t | s. The above
equation can simply be written as

dﬂs,t
dt

= L;fk:us,ta t> S, Hs,s = MO, (417)

where Lf is the formal adjoint operator of L;. If p; is absolutely continuous with respect to
the Lebesgue measure with a density function wu, ¢, then us, is also called a solution to (4.15).
By the It6 formula, it is easy to show that the measure defined below

[0l dinaa(@) = [ BloXeao)]dpole), o all p € C2(R) (4.18)
R4 R4

is a solution of (4.15), where X ,(x) is a weak solution to the SDE (1.1). Under quite general
conditions, Figalli studied in [9] the relationship between the well-posedness of the martingale
problem of the It6 SDE and the existence and uniqueness of measure valued solutions to the
Fokker-Planck equation (see also [18] for extensive investigations in the regular case). Then
he proved the existence and uniqueness of solutions to (4.15) under some mild conditions, as a
consequence, he obtained the well-posedness of martingale problems for the It6 SDE (1.1). More
recently, LeBris and Lions [16] gave a systematical study of the Fokker-Planck type equations
with Sobolev coefficients, showing the existence and uniqueness of solutions in suitable spaces.

Besides the existence and uniqueness of solutions to (4.15), we are also interested in the
problem that whether the solution j,; has a density with respect to the Lebesgue measure A.
In the smooth case, it is well known that if the differential operator L; is uniformly elliptic, then
we have an affirmative answer even when the initial measure pg is a Dirac mass. The following
theorem gives a sufficient condition which guarantees the uniqueness of the equation (4.15) (or
equivalently (4.17)), and we also show in a special case that the unique solution has a density
with respect to the Lebesgue measure. Denote by Mi the space of measures on R? with finite
total mass.

Theorem 4.3. Suppose the conditions of Theorem 1.1. Moreover if o and b are bounded, then
for any o € ./\/li, the Fokker-Planck equation (4.17) has a unique finite nonnegative measure
valued solution.

Moreover, if the initial datum pg is equivalent to the Lebesque measure, then the unique
solution sy to (4.15) is absolutely continuous with respect to \.
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Proof. We proceed as in Theorem 3.8 of [17]. Under these conditions, we deduce from Theorem
1.1 in [20] that the It6 SDE (1.1) has a unique strong solution. Therefore the martingale problem
for the operator L; is well posed. Now Lemma 2.3 in [9] gives rise to the first part.

Next we prove the second assertion. Assume gy € M{: is equivalent to the Lebesgue measure
A with the density function ug. Then by Corollary 4.1, pg is absolutely continuous under the
action of the stochastic flow X, ; generated by (1.1). Denote by K[%(z) = M(z) the

dpo
Radon-Nikodym derivative and k' (z) = E(K.9(z)). Then for any ¢ € C2°(R?),

/ (X oy(2)) dpio(x) = / )K" (y) duo(y).
Rd

R4

Therefore by (4.18),

/ o(x) dpsi(z) = E / P(y) K3 (y) dpo = / o(y)ELS (y) dpo(y),
R4 R4 R4

which means that dé‘;(;t = k:g %, and hence the Radon-Nikodym derivative with respect to the
Lebesgue measure

d/Js,t _ d,us,t . % _ k‘“ouo.

dA dpg  dA 8¢
The proof is complete. U
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