
Distributed Load Adaptive Scheduling for High
Speed Input Queued Switch

Shutao Sun
1Graduate School

Chinese Academy of Sciences
Beijing, China

Stsun@jdl.ac.cn

Youjian Zhao
Department of Computer Science and

Technology, Tsinghua University
Beijing, China

zhaoyoujian@tsinghua.org.cn

Simin He, Yanfeng Zheng, Wen Gao1,2
2Institute of Computing Technology

Chinese Academy of Sciences
Beijing, China

{smhe, yfzheng, wgao }@jdl.ac.cn

Abstract— Input queued switching architectures have become
predominant in high speed switches and routers. In this paper,
we change the point of view from weight-based matching to
weight-based service, and propose a distributed load adaptive
scheduling (DLAS) algorithm. In DLAS, the round robin
arbiters are used to find a matching between the input ports and
output ports. Once the matching between an input-output pair is
established, the scheduler will keep it for a certain period which
is a function of the number of cells queued in corresponding
VOQ. Simulation results show that our scheme achieves high
throughput and low delay under admissible traffic. For uniform
Bernoulli i.i.d. traffic, it achieves 100% throughput, and for
nonuniform traffic, its throughput is almost 100%.

Keywords-switch; input queuing; scheduling; load adaptive

I. INTRODUCTION
 Due to better scalability than output queuing, input

queuing (IQ) [1], together with a crossbar switch fabric,
virtual output queues (VOQs) [2] [6] and fixed-size cells, is
now extensively used in high-speed routers. The scheduling of
N×N input-queued routers in each time slot is a bipartite
matching problem, and naturally many bipartite matching
algorithms, maximum or maximal, weighted or not, are
utilized in IQ scheduling.

By techniques of Lyapunov functions [3] and fluid models
[4], it is proved that some maximum weighted matching
(MWM) algorithms, e.g., LQF [6], guarantee 100%
throughput asymptotically for admissible traffic patterns.
However, such MWM algorithms have O(N3) or comparable
complexity[8], too high to be used in on-line high-speed
scheduling. iLQF, iOCF [6], iLPF [7], RPA [11] and MUCS
[13] fall into maximal weighted matching. They have
complexities ranging from O (N2) to O (N3). The complexity
of the maximal weight matching algorithms also makes them
no practical use since it prohibits the switch from scaling to
large N or high line rate.

Practical designs pay more attention to maximal size
matching algorithms, such as PIM [2], RRM, iSLIP [6], FIRM
[9], DRRM [10], WFA and WWFA [11]. Most of them are
based on parallel iterative matching, which iterates the
following 3 steps:

Request: Each unmatched input sends a request to every
output for which it has a queued cell.

Grant: If an unmatched output receives any requests, it

chooses one of them to grant. The granted input is
notified.

Accept: If the input receives at least one grant, it chooses
one of them to accept.

Generally multiple iterations are needed to reach a maximal
matching. Functional difference among the various algorithms
exists only in the way that outputs choose which inputs to
issue the grant to, and in the way inputs choose which grants
to accept. This functional difference results in significant
performance difference

PIM issues its grants and accepts by random selection. It is
proved to converge in O(logN) iterations on average. Single
iteration PIM can achieve a throughput of 63.2% under i.i.d.
Bernoulli uniform traffic.

iSLIP replaces the random mechanism of PIM with round
robin. By introducing smart round-robin pointer updating
rules to desynchronize the pointers, iSLIP can achieve 100%
throughput under uniform traffic even with single iteration.

DRRM adopts the unicast style to issue the requests, and it
replaces iSLIP's three steps with only two. Due to the
symmetry between inputs and outputs, iSLIP with single
iteration and DRRM have similar performances.

All of PIM, iSLIP and DRRM use 1-bit information of each
VOQ (empty or not) to make arbitration, which is
incompetent for coping with non-uniform traffic patterns. By
utilizing the multi-bit VOQ occupancy information to help
arbitration, iLQF improves the performance of throughput
under non-uniform traffic patterns. However, the multi-bit
information exchange and comparison complicate the
hardware design.

For a high speed switch, it is very difficult to accommodate
multiple iterations in one time slot. SLIP (iSLIP with single
iteration) and DRRM are reasonable candidates for practical
application. However, their performances become poor under
nonuniform traffic. EDRRM was proposed in [5] to improve
the performance under burst and nonuniform traffic. In
EDRRM, a VOQ will keep being served until it is exhausted;
this service principle is too greedy and induces some demerits.
First, it does not achieve 100% throughput under uniform
traffic for a range of switch size. Secondly, it always amplifies
the bursty of traffic, more serious under heavy load. Thirdly,
its throughputs under some nonuniform traffic patterns are far
from 100%.

In this paper, we aim at designing a scheduler for high
performance switch. We wish our scheme to achieve all goals
as follows: (1) Simple. Our algorithm should have the similar This work was supported by the Knowledge Innovation Program in CAS

and the National Natural Science Foundation of China under grant
No.69983008.

complexity to maximal size matching. (2) Fast. Our algorithm
should run at a quite high speed, and it had better find a good
matching within only single iteration. (3) Effective. Our
algorithm should achieve throughput near to 100%.

 A distributed load adaptive scheduling (DLAS) algorithm
is proposed to solve the problems of algorithms mentioned
above. As we know, by finding a maximal weight matching in
every time slot, algorithms, such as iLQF, achieve better
performance than maximal size matching algorithms. In fact,
maximal weight matching algorithms usually determine the
weight according to the occupancy of VOQ or the port, and
this leads the scheduling algorithms to favor the one with
heavy load. While keeping the simplicity by using the round-
robin arbiter, our algorithm achieves the same goal by
providing service according to the number of cells queued in
VOQ. Once an input and an output are matched, they will
keep the connection for a reasonable period, which is a
function of the number of cells queued in VOQ. Decisions on
the length of match keeping period are based on local
information, so it is easy to implement DLAS in parallel
manner.

Although our scheme is very simple, simulation results
show it is very efficient. Compared with DRRM, SLIP, and
EDRRM, DLAS achieves higher throughput under
nonuniform traffic. Unlike EDRRM, the throughput of DLAS
isn’t sensitive to the size of switch under uniform traffic, and
asymptotic 100% throughput is achieved. Under the same
traffic load, DLAS usually achieves smaller average cell delay.

This paper is organized as follows. In Section II we describe
DLAS algorithm in detail. Then we evaluate the proposed
algorithm by simulation in Section III. Some tricks for the
implementation of DLAS are discussed in Section IV. At last,
we end this paper with concluding remarks in Section V.

II. THE DISTRIBUTED LOAD ADAPTIVE SCHEDULING
ALGORITHM

Before we describe our scheduling algorithm, we introduce
the concept of service function and discuss what feature it
should own.

A. To determine the service principles
Our scheme serve a VOQ with consideration of the number

of cells queued in it. The problem is: what is a good service
function s = S(x), where x is the number of cells queued in a
VOQ, s is the number of cells transmitted continuously once
the VOQ begins its transmission. We believe that for a given
traffic pattern, there must be an optimal service discipline for
it. However, since there are a large number of traffic patterns
for a switch of a reasonable size, it is not easy to find a unified
service discipline to achieve the optimal performance for all
traffic patterns. So we must take a tradeoff. We try to find a
service strategy that achieves good performance for most
typical traffic patterns.

The occupancy of a VOQ is a suitable indicator of
congestion, and the larger the number of cells queued in VOQ,
the heavier the congestion. For an input queued switch with
admissible traffic load, we argue that the congestion of a
VOQ is the result of losing contention for the output ports or
having less opportunity to participate in the previous
contentions. Hence, once a congested VOQ gets an

opportunity to transmit, the scheduler should compensate it to
some extent. The more the queued cell in it, the more the
scheduler should compensate it.

To find a good service function, we will choose from a set
of candidates with two basic constraints as follows:

(1) s=S(x) is monotonically increasing with x.
(2) d=x – S(x) is monotonically increasing with x.

Constraint (1) keeps our scheme favoring the more
congested VOQ, and constraint (2) tries to keep the burst in a
reasonable range.

In this paper, we evaluate a set of service functions. We
mainly pay attention to polynomial functions. Although
logarithmic function s = log2x is easy to be implemented in
hardware, it does not achieve performance good enough under
nonuniform traffic. We exclude linear function because it is
not sensitive enough when the number of queued cells is small
and it increases too rapidly when the number of queued cells
becomes large. Based on the simulation results, we give an
advice on choosing a suitable service function.

B. Algorithm
In an N × N switch, at each input i, we maintain a separate

queue VOQij for each output j and a service counter ci. For a
matching between input i and output j, if counter ci > 0, the
matching will be kept. ci decreases by one after a cell in VOQij
is transmitted. Once ci decreases to zero, the matching is
broken. We achieve above control function by dedicated
handshake protocol and pointer updating rule. Similar to
iSLIP, DLAS adopts round robin arbiter. All inputs and
outputs are unmatched and the counters are set to 0 when a
switch starts running. Then in each time slot, the following
three steps are taken:

(1) Request: Each input i with ci > 0 sends a request to the
output corresponding to the current position of the
pointer. Each input i with ci = 0 sends a request to
every output for which it has a queued cell, except the
one to which input i sent a cell in the last time slot.

(2) Grant: If an output receives any request, it chooses the
one that appears next in a fixed round-robin schedule
starting from the current position of the pointer to
grant and moves the pointer to the position
corresponding to granted input if and only if the grant
is accepted in Step (3). The output notifies each
requesting input whether or not its request was
granted. Otherwise the output grants the input
corresponding to the current position of the pointer.

(3) Accept: If an input i receives a grant, it accepts the
one that appears next in a fixed, round-robin schedule
starting from the current position of the pointer.
Assuming the accepted output is output j, if ci=0,
input i initializes ci to S(L(VOQij), where L(VOQij) is
the number of cells queued in VOQij, and moves the
pointer of the input arbiter to the position
corresponding to the accepted output. Then input i
decreases ci by 1, if ci becomes 0, increase the pointer
to one location beyond the accepted output.

Note that the grant/accept pointer stays at the position
corresponding to granted/accepted input/output when
counter c > 0. This will keep the matching between a

matched pair if counter c of corresponding input is greater
than 0. In Step (1), after finishing a continuous
transmission (counter c becomes 0), the input pauses
sending request to its just matched output for one time slot,
and this gives its just matched output an opportunity to
grant other input, hence terminates the matching between
input and output. In Step (2), the output grants the input
corresponding to the current position of the pointer if no
request is sent to it. This mechanism can reestablish the
just broken matching if the just matched input doesn’t
receive other grant except the one from its just matched
output, even the input pauses sending a request to its just
matched output.

III. PERFORMANCE EVALUATION
Since the performance of SLIP and DRRM are roughly

comparable [14], we don’t include the simulation result for
DRRM in this paper. Before discussing our simulation results,
we describe the traffic patterns used in our simulation.

A. Burstiness
Non-bursty (Bernoulli): In each time slot, a cell is

generated by a source with some fixed probability,
independent of all previous traffic.

Bursty: The burst traffic is generated as bursty arrival of
cells (ON burst), followed by bursts of no cells (OFF burst).
All cells within an ON burst have the same destination.

B. Load distribution
Uniform: The probability density function that determines

the output is the same for all cells generated by the source. All
input ports and output ports will handle the same traffic load.

Nonuniform pattern 1: In this traffic pattern, all the inputs
have the same arrival rate. For each input i, 2/3 of arrivals are
destined to output i, and the other arrivals are destined to
output (i + 1) mod N.

Nonuniform pattern 2: In this pattern the arrival rate for
each input is the same. From input i the traffic load to output
(i + j) mod N is two times the load to output (i + k + 1) mod N,
0 = k = (N−2). For example, assuming the arrival rate of an
input is ?, the load at input 1 across outputs j is 2N − j? / (2N −1).

C. Simulation results
1) Throughput

a) Throughput under uniform traffic
Fig. 1 shows the throughput of EDRRM and DLAS with

different service function under uniform Bernoulli i.i.d traffic.
For the polynomial function we evaluate s = L1/3, s=L1/2, s
= L3/4, and s = L. DLAS−a denotes the DLAS with service
function s = Lα.

The results show that EDRRM is sensitive to switch size.
Its throughput first decreases and then increases with switch
size. For 6×6 switch, its throughput decreases to around 90%.
However, our scheme outperforms EDRRM in throughput
performance even if we choose anyone of the service

functions mentioned above. Except the DLAS-1.0 and DLAS-
0.75, the throughputs of DLAS all approach 100% (more than
99.9%). The throughput of DLAS-0.75 is also larger than
99.5%. We conjecture that for all s = Lα, 0 = a < 1, our
scheme can achieve 100% throughput under uniform
Bernoulli i.i.d traffic as long as the buffer is infinite. DLAS
with appropriate service function is no longer sensitive to the
switch size. This means our algorithm is more robust than
EDRRM.

b) Throughput under nonuniform traffic

Figs. 2 and 3 present the simulation results under
nonuniform i.i.d. traffic patterns 1 and 2. The performance of
SLIP is quite poor. For DLAS, the throughput first increases
and then decreases with a. We can see from these figures that
when a = 0.75 or 0.5, the throughput is more than 95% for
different switches. The throughputs of DLAS−0.75 and
DLAS−0.5 are almost same for different switch size.

This result prompts us to simplify our evaluation by
omitting the DLAS with poor service functions. Next, we
mainly compare the performance of DLAS−0.5 and
DLAS−0.75 with those of the existing algorithms.

2 4 6 8 10 16 32
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Switch size

T
hr

ou
gh

pu
t

EDRRM
DLAS-1
DLAS-0.75
DLAS-0.5
DLAS-0.333
DLAS-0.1

Fig.1. The throughput of DLAS and EDRRM under uniform traffic

2 4 8 16 32 45
0.8

0.85

0.9

0.95

1

Switch size

Th
ro

ug
hp

ut

EDRRM
DLAS-1
DLAS-0.75
DLAS-0.5
DLAS-0.333
SLIP

Fig. 2. The throughput for different switch size under nonuniform pattern 1

2 4 8 16 32 35
0.7

0.75

0.8

0.85

0.9

0.95

1

Switch size

Th
ro

ug
hp

ut EDRRM
DLAS-1
DLAS-0.75
DLAS-0.5
DLAS-0.333
SLIP

Fig. 3. The throughput for different switch size under nonuniform pattern 2

2) Average delay

a) Average delay under uniform traffic
Fig. 4 compares the delay performance of SLIP, EDRRM

and DLAS under uniform i.i.d traffic for a 16 × 16 switch.
The delays of DLAS–0.75 and DLAS−0.5 are comparable.
Both of them outperform SLIP and EDRRM. The delay of
EDRRM increases rapidly when the load is more than 60%.

Fig. 5 shows the average cell delay of DLAS−0.5,
DLAS−0.75 and other algorithms under uniform burst traffic
with average burst length of 16 cells for a 16 × 16 switch. The
average cell delay for our algorithms is much smaller than
those for other schemes.

b) Average delay under nonuniform traffic

Figs. 6 and 7 show the average cell delay under nonuniform
patterns for a 16 × 16 switch. DLAS is well adaptive to
different traffic models and achieves better performance.

3) Burstiness at the output ports

The burstiness of traffic has a negative effect on the
successive hops on the transmission path. We evaluate the
burstiness at the output ports after the traffic passes through a
switch.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-1

10
0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (c

el
l s

lo
ts

)

EDRRM
SLIP
DLAS-0.75
DLAS 0.5

Fig. 4. The average cell delay under uniform i.i.d traffic for a 16x16 switch

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

104

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (c

el
l s

lo
ts

)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 5. The average cell delay under uniform burst traffic for a 16 × 16 switch

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-1

10
0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (
ce

ll
sl

ot
s)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 6. Average cell delay under nonuniform pattern 1 for a 16 × 16 switch

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-1

10
0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 7. Average cell delay under nonuniform pattern 2 for a 16 × 16 switch

a) Burstiness under uniform traffic
Fig. 8 shows the average bursty length of the traffic at the

output ports of a 16 × 16 switch under uniform i.i.d traffic.
The average bursty length is near to 1 for SLIP. For other
algorithms, it increases with the traffic load. DLAS−0.75 and
DLAS−0.5 usually keep the average bursty length less than 10.
But EDRRM increases the average bursty length dramatically
with the traffic load when the load becomes heavier. Fig. 9
shows the average bursty length of the traffic at the output
ports under uniform burst traffic with average burst length of
16 cells. The average bursty length of output traffic for SLIP
is monotonically decreasing with load. But for EDRRM, it is
increasing. The DLAS−0.75 and DLAS−0.5 always keep
burst length in a reasonable range.

b) Burstiness under nonuniform traffic

Fig. 10 and Fig. 11 show the average bursty length of the
traffic at the output ports of a 16 × 16 switch under
nonuniform Bernoulli traffic. The results show that under both
nonuniform pattern 1 and nonuniform pattern 2, DLAS
produces lower burst at the output ports.

From all our simulations under different traffic patterns, we
can draw a conclusion that when 0.5 < a <0.75, the DLAS
achieves satisfactory performance. Choosing the value of a
is a tradeoff among the performances of burstiness, delay,
throughput, and robustness. Our idea can easily be extended
to other parallel iterative searching algorithms for input
queued scheduling. Increasing the times of iteration will
improve the performance. However, because of the limitation
of space, we omit the evaluation of iterative DLAS.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

Load

A
ve

ra
ge

 b
ur

st
 le

ng
th

 (
ce

lls
)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 8. The burstiness for a 16 × 16 switch under uniform i.i.d traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

Load

A
ve

ra
ge

 b
ur

st
 le

ng
th

(c
el

ls
)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 9. The burstiness under uniform burst traffic for a 16 × 16 switch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

Load

A
ve

ra
ge

 b
ur

st
 le

ng
th

 (c
el

ls
)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 10. The burstiness under nonuniform pattern 1 for a 16 × 16 switch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

Load

A
ve

ra
ge

 b
ur

st
 le

ng
th

 (
ce

lls
)

EDRRM
SLIP
DLAS-0.75
DLAS-0.5

Fig. 11. The burstiness under nonuniform pattern 2 for a 16 × 16 switch

IV. TRICKS FOR IMPLEMENTATION
DLAS has the similar complexity to that of iSLIP.

Calculation of service function can be implemented by fast
table look-up. Simulation results show that DLAS can achieve
satisfactory performance without producing large burst at
output port. This implies that we can keep a table of small size.

The algorithm proposed in this paper assumes the scheduler
can finish the calculation of service function within one time
slot. However, it is not always the case. In order to solve this
problem, we can make the scheduler work in a Service and
Break mode. The Service and Break means that once input i
and output j are matched, the input starts the transmission of
the cells queued in VOQij and counts cells transmitted. At the
same time the scheduler starts to calculate the service function.
The transmission will be terminated if there is no cell in VOQij
or the scheduler has finished the calculation of service function
and finds the input has used up its quota. If there are few cells
in VOQ, this usually means the switch is in the state of light
load. It does not matter whether the calculation can be finished
in time, and transmitting all queued cells is also OK. When
load is heavy, the queue length becomes long, and there will be
a few time slots for calculation. So DLAS can work correctly
under heavy load and we get its gain.

In addition, we can improve the fairness by limiting the
maximum value of counter ci and/or initializing ci to 1 instead
of S(L(VOQij) when input i and output j match again after they
just finished a time of continuous transmission between
themselves.

V. CONCLUSION
In this paper, we propose a distributed load adaptive

scheduling algorithm for high performance switches. We
transfer our attention from finding a maximum weight
matching to serving the input ports in round-robin manner
with a dynamic weight, which reflects the occupancy of VOQ.
The complexity of our scheme is similar to that of iSLIP, and
it is easy to be implemented in a distributed manner.

Simulation results show that if an appropriate service
function is chosen, our scheme is robust and can achieve a
throughput closing to 100% under admissible traffic even with
single iteration. We propose DLAS−a with 0.5 = a = 0.75 as a
good candidate. Our scheme outperforms some other known
algorithms in terms of delay-throughput performance under
various traffic patterns tested in simulation. The features of
our algorithm, fast, simple to implement, and of high
performance, promise us that it is quite suitable for high
performance switches.

REFERENCES
[1] M.J. Karol, M.G. Hluchyj, and S.P.Morgan. “Input versus output

queuing on a space-division packet switch,” IEEE Trans. Commun., vol.
35, Dec. 1987, pp. 1347-1356.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,” ACM Trans. Computer Systems,
vol.11, no. 4, Nov. 1993, pp. 319-352.

[3] N. McKeown, A. Mekkittikui, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch,” IEEE Trans.
Commun., vol. 47, Aug. 1999, pp. 1260-1272.

[4] JG. Dai and B. Prabhakar, “The throughput of data switches with and
without speedup,” in Proc. INFOCOM, Tel Aviv, 2000, pp. 556-564.

[5] Y. Li, S. Panwar, and H. J. Chao, “The dual round-robin matching
switch with exhaustive service”, in Proc. HPSR 2002, Kobe, Hyogo,
May 2002, pp. 58-63.

[6] N. McKeown, “Scheduling algorithms for input-queued Switches,”
Ph.D. Thesis, University of California at Berkeley, 1995.

[7] A. Mekkittikui and N. MecKeown, “A practical scheduling algorithm to
achieve 100% throughput in input-queued switches,” in Proc.
INFOCOM, San Francisco, 1998, pp.792-799.

[8] A. C. Kam and K. Siu, “Linear-complexity algorithms for QoS support
in input-queued switches with no speedup,” IEEE Journal on selected
areas in communications, vol. 17, No.6, June 1999, pp. 1040-1056.

[9] D. N. Serpanos and P.I. Antoniadis, “FIRM: A class of distributed
scheduling algorithms for high-speed ATM switches with multiple input
queues,” in Proc. INFOCOM, Tel Aviv, 2000. pp. 1634-1643.

[10] H. J. Chao and J.S. Pack, “Centralized contention resolution schemes
for a large-capacity optical ATM switch,” in Proc. IEEE ATM Wksp.,
Fairfax, VA, May 1998, pp. 11-16.

[11] H. C. Chi and Y. Tamir, “Starvation prevention for arbiters of crossbars
with multi-queue input buffers,” in Proc. COMPCON’94, San Francisco,
Feb. 1994, pp. 292-297.

[12] MA. Marsan, A. Bianco, E. Leonardi, and L. Milla, “RPA: A flexible
scheduling algorithms for input buffered switches,” IEEE Trans.
commun., vol. 47, no. 12, Dec. 1999, pp.1921-1933.

[13] H. Duan, J. W. Lockwood., S.M. Kang, and J. D. Will, “A high
performance switching OC12/OC48 queue design prototype for input
buffered ATM switches,” in Proc. INFOCOM, Kobe, 1997, pp. 20-28.

[14] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a Dual
Round-Robin switch,” in Proc. INFORM, vol. 3, April 2001, pp. 1688-
1697.

