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Abstract— Input queued switching architectures have become 
predominant in high speed switches and routers. In this paper, 
we change the point of view from weight-based matching to 
weight-based service, and propose a distributed load adaptive 
scheduling (DLAS) algorithm. In DLAS, the round robin 
arbiters are used to find a matching between the input ports and 
output ports. Once the matching between an input-output pair is 
established, the scheduler will keep it for a certain period which 
is a function of the number of cells queued in corresponding 
VOQ. Simulation results show that our scheme achieves high 
throughput and low delay under admissible traffic. For uniform 
Bernoulli i.i.d. traffic, it achieves 100% throughput, and for 
nonuniform traffic, its throughput is almost 100%.  
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I.  INTRODUCTION 
 Due to better scalability than output queuing, input 

queuing (IQ) [1], together with a crossbar switch fabric, 
virtual output queues (VOQs) [2] [6] and fixed-size cells, is 
now extensively used in high-speed routers. The scheduling of 
N×N input-queued routers in each time slot is a bipartite 
matching problem, and naturally many bipartite matching 
algorithms, maximum or maximal, weighted or not, are 
utilized in IQ scheduling. 

By techniques of Lyapunov functions [3] and fluid models 
[4], it is proved that some maximum weighted matching 
(MWM) algorithms, e.g., LQF [6], guarantee 100% 
throughput asymptotically for admissible traffic patterns. 
However, such MWM algorithms have O(N3) or comparable 
complexity[8], too high to be used in on-line high-speed 
scheduling. iLQF, iOCF [6], iLPF [7], RPA [11] and MUCS 
[13] fall into maximal weighted matching. They have 
complexities ranging from O (N2) to O (N3). The complexity 
of the maximal weight matching algorithms also makes them 
no practical use since it prohibits the switch from scaling to 
large N or high line rate. 

Practical designs pay more attention to maximal size 
matching algorithms, such as PIM [2], RRM, iSLIP [6], FIRM 
[9], DRRM [10], WFA and WWFA [11]. Most of them are 
based on parallel iterative matching, which iterates the 
following 3 steps: 

Request:  Each unmatched input sends a request to every 
output for which it has a queued cell. 

Grant:   If an unmatched output receives any requests, it 

chooses one of them to grant. The granted input is 
notified. 

Accept:     If the input receives at least one grant, it chooses 
one of them to accept. 

Generally multiple iterations are needed to reach a maximal 
matching. Functional difference among the various algorithms 
exists only in the way that outputs choose which inputs to 
issue the grant to, and in the way inputs choose which grants 
to accept. This functional difference results in significant 
performance difference 

PIM issues its grants and accepts by random selection. It is 
proved to converge in O(logN) iterations on average. Single 
iteration PIM can achieve a throughput of 63.2% under i.i.d. 
Bernoulli uniform traffic. 

iSLIP replaces the random mechanism of PIM with round 
robin. By introducing smart round-robin pointer updating 
rules to desynchronize the pointers, iSLIP can achieve 100% 
throughput under uniform traffic even with single iteration. 

DRRM adopts the unicast style to issue the requests, and it 
replaces iSLIP's three steps with only two. Due to the 
symmetry between inputs and outputs, iSLIP with single 
iteration and DRRM have similar performances. 

All of PIM, iSLIP and DRRM use 1-bit information of each 
VOQ (empty or not) to make arbitration, which is 
incompetent for coping with non-uniform traffic patterns. By 
utilizing the multi-bit VOQ occupancy information to help 
arbitration, iLQF improves the performance of throughput 
under non-uniform traffic patterns. However, the multi-bit 
information exchange and comparison complicate the 
hardware design. 

For a high speed switch, it is very difficult to accommodate 
multiple iterations in one time slot. SLIP (iSLIP with single 
iteration) and DRRM are reasonable candidates for practical 
application. However, their performances become poor under 
nonuniform traffic. EDRRM was proposed in [5] to improve 
the performance under burst and nonuniform traffic. In 
EDRRM, a VOQ will keep being served until it is exhausted; 
this service principle is too greedy and induces some demerits. 
First, it does not achieve 100% throughput under uniform 
traffic for a range of switch size. Secondly, it always amplifies 
the bursty of traffic, more serious under heavy load. Thirdly, 
its throughputs under some nonuniform traffic patterns are far 
from 100%.  

In this paper, we aim at designing a scheduler for high 
performance switch. We wish our scheme to achieve all goals 
as follows: (1) Simple. Our algorithm should have the similar This work was supported by the Knowledge Innovation Program in CAS 
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complexity to maximal size matching. (2) Fast. Our algorithm 
should run at a quite high speed, and it had better find a good 
matching within only single iteration. (3) Effective. Our 
algorithm should achieve throughput near to 100%. 

 A distributed load adaptive scheduling (DLAS) algorithm 
is proposed to solve the problems of algorithms mentioned 
above. As we know, by finding a maximal weight matching in 
every time slot, algorithms, such as iLQF, achieve better 
performance than maximal size matching algorithms. In fact, 
maximal weight matching algorithms usually determine the 
weight according to the occupancy of VOQ or the port, and 
this leads the scheduling algorithms to favor the one with 
heavy load. While keeping the simplicity by using the round-
robin arbiter, our algorithm achieves the same goal by 
providing service according to the number of cells queued in 
VOQ. Once an input and an output are matched, they will 
keep the connection for a reasonable period, which is a 
function of the number of cells queued in VOQ. Decisions on 
the length of match keeping period are based on local 
information, so it is easy to implement DLAS in parallel 
manner.  

Although our scheme is very simple, simulation results 
show it is very efficient. Compared with DRRM, SLIP, and 
EDRRM, DLAS achieves higher throughput under 
nonuniform traffic. Unlike EDRRM, the throughput of DLAS 
isn’t sensitive to the size of switch under uniform traffic, and 
asymptotic 100% throughput is achieved. Under the same 
traffic load, DLAS usually achieves smaller average cell delay. 

This paper is organized as follows. In Section II we describe 
DLAS algorithm in detail. Then we evaluate the proposed 
algorithm by simulation in Section III. Some tricks for the 
implementation of DLAS are discussed in Section IV. At last, 
we end this paper with concluding remarks in Section V. 

II. THE DISTRIBUTED LOAD ADAPTIVE SCHEDULING 
ALGORITHM 

Before we describe our scheduling algorithm, we introduce 
the concept of service function and discuss what feature it 
should own. 

A. To determine the service principles 
Our scheme serve a VOQ with consideration of the number 

of cells queued in it. The problem is: what is a good service 
function s = S(x), where x is the number of cells queued in a 
VOQ, s is the number of cells transmitted continuously once 
the VOQ begins its transmission. We believe that for a given 
traffic pattern, there must be an optimal service discipline for 
it. However, since there are a large number of traffic patterns 
for a switch of a reasonable size, it is not easy to find a unified 
service discipline to achieve the optimal performance for all 
traffic patterns. So we must take a tradeoff. We try to find a 
service strategy that achieves good performance for most 
typical traffic patterns. 

The occupancy of a VOQ is a suitable indicator of 
congestion, and the larger the number of cells queued in VOQ, 
the heavier the congestion. For an input queued switch with 
admissible traffic load, we argue that the congestion of a 
VOQ is the result of losing contention for the output ports or 
having less opportunity to participate in the previous 
contentions. Hence, once a congested VOQ gets an 

opportunity to transmit, the scheduler should compensate it to 
some extent. The more the queued cell in it, the more the 
scheduler should compensate it. 

To find a good service function, we will choose from a set 
of candidates with two basic constraints as follows: 

(1) s=S(x) is monotonically increasing with x. 
(2) d=x – S(x) is monotonically increasing with x. 

Constraint (1) keeps our scheme favoring the more 
congested VOQ, and constraint (2) tries to keep the burst in a 
reasonable range. 

In this paper, we evaluate a set of service functions. We 
mainly pay attention to polynomial functions. Although 
logarithmic function s = log2x is easy to be implemented in 
hardware, it does not achieve performance good enough under 
nonuniform traffic. We exclude linear function because it is 
not sensitive enough when the number of queued cells is small 
and it increases too rapidly when the number of queued cells 
becomes large. Based on the simulation results, we give an 
advice on choosing a suitable service function. 

B. Algorithm 
In an N × N switch, at each input i, we maintain a separate 

queue VOQij for each output j and a service counter ci. For a 
matching between input i and output j, if counter ci > 0, the 
matching will be kept. ci decreases by one after a cell in VOQij 
is transmitted. Once ci decreases to zero, the matching is 
broken. We achieve above control function by dedicated 
handshake protocol and pointer updating rule. Similar to 
iSLIP, DLAS adopts round robin arbiter. All inputs and 
outputs are unmatched and the counters are set to 0 when a 
switch starts running. Then in each time slot, the following 
three steps are taken:  

(1) Request: Each input i with ci > 0 sends a request to the 
output corresponding to the current position of the 
pointer. Each input i with ci = 0 sends a request to 
every output for which it has a queued cell, except the 
one to which input i sent a cell in the last time slot. 

(2) Grant: If an output receives any request, it chooses the 
one that appears next in a fixed round-robin schedule 
starting from the current position of the pointer to 
grant and moves the pointer to the position 
corresponding to granted input if and only if the grant 
is accepted in Step (3). The output notifies each 
requesting input whether or not its request was 
granted. Otherwise the output grants the input 
corresponding to the current position of the pointer. 

(3) Accept: If an input i receives a grant, it accepts the 
one that appears next in a fixed, round-robin schedule 
starting from the current position of the pointer. 
Assuming the accepted output is output j, if ci=0, 
input i initializes ci to S(L(VOQij), where L(VOQij) is 
the number of cells queued in VOQij, and moves the 
pointer of the input arbiter to the position 
corresponding to the accepted output. Then input i 
decreases ci by 1, if ci becomes 0, increase the pointer 
to one location beyond the accepted output. 

Note that the grant/accept pointer stays at the position 
corresponding to granted/accepted input/output when 
counter c > 0. This will keep the matching between a 



matched pair if counter c of corresponding input is greater 
than 0. In Step (1), after finishing a continuous 
transmission (counter c becomes 0), the input pauses 
sending request to its just matched output for one time slot, 
and this gives its just matched output an opportunity to 
grant other input, hence terminates the matching between 
input and output. In Step (2), the output grants the input 
corresponding to the current position of the pointer if no 
request is sent to it. This mechanism can reestablish the 
just broken matching if the just matched input doesn’t 
receive other grant except the one from its just matched 
output, even the input pauses sending a request to its just 
matched output.  

III. PERFORMANCE EVALUATION 
Since the performance of SLIP and DRRM are roughly 

comparable [14], we don’t include the simulation result for 
DRRM in this paper. Before discussing our simulation results, 
we describe the traffic patterns used in our simulation. 

A. Burstiness 
Non-bursty (Bernoulli): In each time slot, a cell is 

generated by a source with some fixed probability, 
independent of all previous traffic.  

Bursty: The burst traffic is generated as bursty arrival of 
cells (ON burst), followed by bursts of no cells (OFF burst). 
All cells within an ON burst have the same destination. 

B.  Load distribution 
Uniform: The probability density function that determines 

the output is the same for all cells generated by the source. All 
input ports and output ports will handle the same traffic load. 

Nonuniform pattern 1: In this traffic pattern, all the inputs 
have the same arrival rate. For each input i, 2/3 of arrivals are 
destined to output i, and the other arrivals are destined to 
output (i + 1) mod N. 

Nonuniform pattern 2: In this pattern the arrival rate for 
each input is the same. From input i the traffic load to output 
(i + j) mod N is two times the load to output ( i + k + 1) mod N, 
0  = k  = (N−2). For example, assuming the arrival rate of an 
input is ?, the load at input 1 across outputs j is 2N − j? / (2N −1). 

C. Simulation results 
1) Throughput 

a)  Throughput under uniform traffic 
Fig. 1 shows the throughput of EDRRM and DLAS with 

different service function under uniform Bernoulli i.i.d traffic. 
For the polynomial function we evaluate s = L1/3, s=L1/2, s 
= L3/4, and s = L. DLAS−a denotes the DLAS with service 
function s = Lα. 

The results show that EDRRM is sensitive to switch size. 
Its throughput first decreases and then increases with switch 
size. For 6×6 switch, its throughput decreases to around 90%. 
However, our scheme outperforms EDRRM in throughput 
performance even if we choose anyone of the service 

functions mentioned above. Except the DLAS-1.0 and DLAS-
0.75, the throughputs of DLAS all approach 100% (more than 
99.9%). The throughput of DLAS-0.75 is also larger than 
99.5%. We conjecture that for all s = Lα, 0 = a < 1, our 
scheme can achieve 100% throughput under uniform 
Bernoulli i.i.d traffic as long as the buffer is infinite. DLAS 
with appropriate service function is no longer sensitive to the 
switch size. This means our algorithm is more robust than 
EDRRM.  

b) Throughput under nonuniform traffic 

Figs. 2 and 3 present the simulation results under 
nonuniform i.i.d. traffic patterns 1 and 2. The performance of 
SLIP is quite poor. For DLAS, the throughput first increases 
and then decreases with a. We can see from these figures that 
when a = 0.75 or 0.5, the throughput is more than 95% for 
different switches. The throughputs of DLAS−0.75 and 
DLAS−0.5 are almost same for different switch size. 

This result prompts us to simplify our evaluation by 
omitting the DLAS with poor service functions. Next, we 
mainly compare the performance of DLAS−0.5 and 
DLAS−0.75 with those of the existing algorithms. 
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Fig.1. The throughput of DLAS and EDRRM under uniform traffic 
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Fig. 2. The throughput for different switch size under nonuniform pattern 1 
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Fig. 3. The throughput for different switch size under nonuniform pattern 2 



2) Average delay 

a)  Average delay under uniform traffic 
Fig. 4 compares the delay performance of SLIP, EDRRM 

and DLAS under uniform i.i.d traffic for a 16 × 16 switch. 
The delays of DLAS–0.75 and DLAS−0.5 are comparable. 
Both of them outperform SLIP and EDRRM. The delay of 
EDRRM increases rapidly when the load is more than 60%. 

Fig. 5 shows the average cell delay of DLAS−0.5, 
DLAS−0.75 and other algorithms under uniform burst traffic 
with average burst length of 16 cells for a 16 × 16 switch. The 
average cell delay for our algorithms is much smaller than 
those for other schemes.  

b)  Average delay under nonuniform traffic 

Figs. 6 and 7 show the average cell delay under nonuniform 
patterns for a 16 × 16 switch. DLAS is well adaptive to 
different traffic models and achieves better performance.  

3) Burstiness at the output ports 

The burstiness of traffic has a negative effect on the 
successive hops on the transmission path. We evaluate the 
burstiness at the output ports after the traffic passes through a 
switch. 
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Fig. 4. The average cell delay under uniform i.i.d traffic for a 16x16 switch 
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Fig. 5. The average cell delay under uniform burst traffic for a 16 × 16 switch 
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Fig. 6. Average cell delay under nonuniform pattern 1 for a 16 × 16 switch 
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Fig. 7. Average cell delay under nonuniform pattern 2 for a 16 × 16 switch 

a) Burstiness under uniform traffic 
Fig. 8 shows the average bursty length of the traffic at the 

output ports of a 16 × 16 switch under uniform i.i.d traffic. 
The average bursty length is near to 1 for SLIP. For other 
algorithms, it increases with the traffic load.  DLAS−0.75 and 
DLAS−0.5 usually keep the average bursty length less than 10. 
But EDRRM increases the average bursty length dramatically 
with the traffic load when the load becomes heavier. Fig. 9 
shows the average bursty length of the traffic at the output 
ports under uniform burst traffic with average burst length of 
16 cells. The average bursty length of output traffic for SLIP 
is monotonically decreasing with load. But for EDRRM, it is 
increasing. The DLAS−0.75 and DLAS−0.5 always keep 
burst length in a reasonable range.   

b) Burstiness under nonuniform traffic 

Fig. 10 and Fig. 11 show the average bursty length of the 
traffic at the output ports of a 16 × 16 switch under 
nonuniform Bernoulli traffic. The results show that under both 
nonuniform pattern 1 and nonuniform pattern 2, DLAS 
produces lower burst at the output ports.  

From all our simulations under different traffic patterns, we 
can draw a conclusion that when 0.5 < a <0.75, the DLAS 
achieves satisfactory performance. Choosing the value of   a 
is a tradeoff among the performances of burstiness, delay, 
throughput, and robustness. Our idea can easily be extended 
to other parallel iterative searching algorithms for input 
queued scheduling. Increasing the times of iteration will 
improve the performance. However, because of the limitation 
of space, we omit the evaluation of iterative DLAS. 
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Fig. 8. The burstiness for a 16 × 16 switch under uniform i.i.d traffic 
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Fig. 9.  The burstiness under uniform burst traffic for a 16 × 16 switch 
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Fig. 10. The burstiness under nonuniform pattern 1 for a 16 × 16 switch 
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Fig. 11.  The burstiness under nonuniform pattern 2 for a 16  × 16 switch 

IV. TRICKS FOR IMPLEMENTATION 
DLAS has the similar complexity to that of iSLIP. 

Calculation of service function can be implemented by fast 
table look-up. Simulation results show that DLAS can achieve 
satisfactory performance without producing large burst at 
output port. This implies that we can keep a table of small size. 

The algorithm proposed in this paper assumes the scheduler 
can finish the calculation of service function within one time 
slot. However, it is not always the case. In order to solve this 
problem, we can make the scheduler work in a Service and 
Break mode. The Service and Break means that once input i 
and output j are matched, the input starts the transmission of 
the cells queued in VOQij and counts cells transmitted. At the 
same time the scheduler starts to calculate the service function. 
The transmission will be terminated if there is no cell in VOQij 
or the scheduler has finished the calculation of service function 
and finds the input has used up its quota. If there are few cells 
in VOQ, this usually means the switch is in the state of light 
load. It does not matter whether the calculation can be finished 
in time, and transmitting all queued cells is also OK. When 
load is heavy, the queue length becomes long, and there will be 
a few time slots for calculation. So DLAS can work correctly 
under heavy load and we get its gain. 

In addition, we can improve the fairness by limiting the 
maximum value of counter ci and/or initializing ci to 1 instead 
of S(L(VOQij) when input i and output j match again after they 
just finished a time of continuous transmission between 
themselves. 

V. CONCLUSION 
In this paper, we propose a distributed load adaptive 

scheduling algorithm for high performance switches. We 
transfer our attention from finding a maximum weight 
matching to serving the input ports in round-robin manner 
with a dynamic weight, which reflects the occupancy of VOQ. 
The complexity of our scheme is similar to that of iSLIP, and 
it is easy to be implemented in a distributed manner.   

Simulation results show that if an appropriate service 
function is chosen, our scheme is robust and can achieve a 
throughput closing to 100% under admissible traffic even with 
single iteration. We propose DLAS−a with 0.5 = a = 0.75 as a 
good candidate. Our scheme outperforms some other known 
algorithms in terms of delay-throughput performance under 
various traffic patterns tested in simulation. The features of 
our algorithm, fast, simple to implement, and of high 
performance, promise us that it is quite suitable for high 
performance switches. 
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