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Abstract

S. Gersten and H. Short have proved that if a group has a presen-
tation which satisfies the algebraic C(4)&T (4) small-cancellation con-
dition then the group is automatic. Their proof contains a gap which
we aim to close. To do that we distinguish between algebraic small-
cancellation conditions and geometric small cancellation conditions
(which are conditions on the van Kampen diagrams). We show that,
under certain additional requirements, geometric C(4)&T (4) small-
cancellation conditions imply bi-automaticity. The additional require-
ments include a restriction on the labels of edges in minimal van
Kampen diagrams. This, together with the so-called barycentric sub-
division method proves the theorem.

1 Introduction

A group presentation P = 〈X | R 〉 satisfies the algebraic C(4)&T (4) small-
cancellation condition if the possible cancellations between the different re-
lators are limited. To be more rigorous we must first define the notion of a
piece. A piece in the presentation P is a word W over the alphabet X∪X−1

such that there are two different cyclic conjugates of relators such that W
is a prefix of both of them (see Section 2 for exact definitions of these nota-
tions). We say that the presentation P satisfies the algebraic C(4) and the
T (4) conditions if:

C(4) condition: If R is a cyclic conjugate of a relator in R and R =
P1P2 · · ·Pk is a decomposition of R into a product of k pieces (i.e., Pi

is a piece for i = 1, 2, . . . , k) then k ≥ 4.

T (4) condition: If R1, R2, and R3 are any three cyclic conjugates of rela-
tors in R then at least one of the following products is freely reduced
as written: R1R2, R2R3, or R3R1.

A group satisfies the algebraic C(4)&T (4) small-cancellation condition if it
has a presentation which satisfies these conditions.
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In the paper [3] of S. Gersten and H. Short it is proven that all groups
which satisfy the algebraic C(4)&T (4) conditions are automatic. The proof
outlined in the paper contains a gap that we intend to close in this work;
see the Appendix for a detailed explanation of the problems in the proof
given in [3]. The main contribution of the current work is a new proof of
the following theorem:

Theorem 1. Groups satisfying the algebraic C(4)&T (4) condition are bi-
automatic.

It is a well known fact that a minimal van Kampen diagram (see Section
3) over a presentation that satisfies the algebraic C(4)&T (4) conditions has
the property that every inner region has at least four neighbors and there
are no inner vertices of valance three. We call such diagrams C(4)&T (4)
diagrams. We say that a presentation satisfies the geometric C(4)&T (4)
small-cancellation condition if all minimal van Kampen diagrams over this
presentation are C(4)&T (4) diagrams. Thus, if a presentation satisfies the
algebraic condition it follows that it satisfies the geometric condition (the
other direction is not true). Notice that we used “C(4)&T (4)” in three
different objects (two types of presentations and one type of diagrams).

The proof of Theorem 1 in [3] starts by applying the so-called “barycen-
tric sub-division” (which we describe in Section 5). This is also the first
step we do. If this procedure is applied to a presentation which satisfies
the algebraic C(4)&T (4) conditions then the result is a presentation which
satisfies the geometric C(4)&T (4) small-cancellation condition (and other
important properties) but not the algebraic conditions. Thus, the technique
which is used for algebraic conditions must be generalized to handle the
weaker geometric conditions.

Let G be a group having a presentation P which satisfies the algebraic
C(4)&T (4) condition. S. Gersten and H. Short have shown in [4] that if
in addition all relators of P are of length four and all pieces of P are of
length one then the group G is automatic. The additional assumptions
on the length of pieces imply that minimal van Kampen diagrams over the
presentation P have the property that a path on the boundary of two regions
is labelled by a generator. To complete the proof of Theorem 1 we extend
the result from [4] to the geometric setup:

Theorem 2. Let G be a group and assume that it has a presentation P such
that the following conditions hold:

1. All relators of P are of length four and cyclically reduced.

2. If M is a minimal van Kampen diagram over the presentation P then:

(a) M is a C(4)&T (4) diagram.
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(b) If ρ is a path of M which is on the boundary of two regions then
ρ is labelled by a generator.

Then, G is a bi-automatic group.

The main difference between the algebraic conditions and the geomet-
ric conditions is that in the geometric setup there may be diagrams which
contain vertices of valence three (under the algebraic setup diagrams may
never contain vertices of valence three). However, vertices of valence three
appear only in non-minimal diagrams.

The rest of the paper is organized as follows. In Section 2 we give the
basic notations and definitions. In Section 3 we give the necessary back-
ground on van Kampen diagrams and of C(4)&T (4) diagrams. In Section
4 we prove Theorem 2. In Section 5 we describe the so-called “barycen-
tric sub-division” procedure and its properties when applied to an algebraic
C(4)&T (4) presentation. Finally, in the small Section 6 we give the proof
of Theorem 1. An appendix is included which analyze the problems in the
original proof of Gersten and Short in [3].

This work is part of the author’s Ph.D. research conducted under the
supervision of Professor Arye Juhász.

2 Perliminaries

Notation 3. Let 〈X | R 〉 be a finite presentation for a group G (we will
always assume that the elements of R are cyclically-reduced). Denote by
W(X) the set of all finite words with letters in X±1 = X ∪X−1. We denote
by ε the empty word. The elements of W(X) are not necessarily freely-
reduced. Let W and U be words in W(X). We use the following notations:

1. W denotes the element in G which W presents. The projection map
π : W(X) → G which sends W to W is called the natural map. We
will say that W = U in G if W = U .

2. |W | is the length of W (i.e., the number of letters in W ).

3. W is called geodesic in G if for every U ∈ W(X) such that W = U
we have |W | ≤ |U |.

4. W (n) is the prefix of W consisting of the first n letters of W . If
n > |W | then W (n) = W .

5. The symmetric closure of R is the finite subset ofW(X) which consists
of all cyclic conjugates of elements of R and their inverses. If R is
equal to its symmetric closure then we say that R is symmetrically
closed.



2 PERLIMINARIES 4

6. P ∈ W(X) is an R-piece (or simply a piece if R is fixed in the context)
if there are W1,W2 ∈ W(X) such that W1 6= W2 and PW1, PW2 are
relators in the symmetric closure of R (and PW1, PW2 are reduced as
written).

Definition 4 (Cayley Graph and the associated metric). The Cayley graph
of a group G with generating set X is the graph whose vertex set is G and
there is a directed edge from g1 to g2 labelled by x ∈ X±1 if and only if
g1x = g2. We denote this graph by Cay(G,X). The metric d(·, ·) = dX(·, ·)
in Cay(G,X) is the standard non-directed path metric (also called the word-
metric of G). Namely, d(g1, g2) is the edge length of the shortest path from
g1 to g2. Each word W = x1x2 · · ·xk in W(X) corresponds naturally to a
path in Cay(G,X) whose vertices are 1, x1, x1x2, x1x2x3, . . . ,W . For two
words W,U ∈ W(X) we denote by dX(W,U) the distance between W to U
in Cay(G,X).

Definition 5 (Fellow Travellers [2]). Let k be a positive number. Two
words W,U ∈ W(X) are called k-fellow-travelers if for all ` ∈ N we have:

dX (W (`), U(`)) ≤ k

Suppose L ⊆ W(X). L has the fellow-travelers property if there is a constant
k for which the following condition holds: if W and U are elements of L and
x, y ∈ X±1 ∪ { ε } such that xW = Uy in G then xW and Uy are k-fellow-
travelers.

Note that if W = UV in G then d(W,U) ≤ |V |. Next, the definition of
bi-automatic groups.

Definition 6 (Bi-automatic structure and Bi-automatic group [2]). A bi-
automatic structure of G with generating set X is a regular [6] subset of
W(X) which maps onto G under the natural map and which has the fellow-
traveler property. A group is bi-automatic if it has a bi-automatic structure.

Bi-automaticity is a property which does not depend on the generating
set [2, Thm. 2.4.1]. As evident from the definition above, fellow-traveling
property plays an important role when one tries to establish bi-automaticity
of a groups. The following observation will be useful for checking that prop-
erty.

Observation 7. Let G be a group finitely generated by X and let W and W ′

be two elements of W(X). Suppose W and W ′ decompose as W = V1UV2

and W ′ = V1U
′V2. In this case, W and W ′ are (|U |+ |U ′|)-fellow-travelers.

We next describe a technique known as ‘falsification by fellow-traveller’
due to Davis and Shapiro [1]. This technique was used several times to prove
bi-automaticity of different groups (see, for example, [9, 10]). We start with
a technical definition of a function that combine two words into a single
word. This will allows us to define the idea of regular orders.



3 VAN KAMPEN DIAGRAMS 5

Definition 8. Let Σ be a set not containing $. Denote by Σ(2, $) the set
Σ∪{ $ }×Σ∪{ $ }\{ ($, $) }. The map δΣ is the map δΣ : Σ∗×Σ∗ → Σ(2, $)∗

which is defined as follows. Let (W,U) ∈ Σ∗ × Σ∗ where W = x1 x2 · · · xn
and U = y1 y2 · · · ym. Then,

δΣ(W,U) =


(x1, y1) · · · (xn, yn)($, yn+1) . . . ($, ym) n < m
(x1, y1) · · · (xm, ym)(xm+1, $) . . . (xn, $) m < n
(x1, y1) · · · (xn, ym) m = n

Definition 9. A regular order on a set of words Σ∗ is an order S ⊆ Σ∗×Σ∗

such that δΣ(S) is a regular language.

Next, the ‘falsification by fellow-traveller’ technique.

Proposition 10 (Falsification by fellow-traveller; Lemma 29 of [9]). Let G
be finitely generated by X and let “≺” be a regular order on W(X) that has
minimal element for every non-empty subset of W(X). Assume there is a
positive constant k, such that for every word W that is not “≺”-minimal
there is a word V with the following properties:

1. V ≺W .

2. V = W in G.

3. V and W are k-fellow-travelers.

Then, the set of “≺”-minimal words is a regular set and maps onto G through
the natural map.

Proposition 10 will be used to prove regularity of a bi-automatic struc-
ture (this is required in Definition 6). Lemma 11 below is used to establish
the fellow-travelling property.

Lemma 11 (Lemma 3.2.3 of [2]). Let G be finitely presented by 〈X | R 〉,
let W,U ∈ W(X) be two geodesics, and let x, y ∈ X±1 ∪ { ε }. Assume that
xW = Uy in G and that there is a positive constant s ∈ N such that for every
prefix P1 of xW there is a prefix P2 of Uy and V ∈ W(X) with |V | ≤ s for
which P1V = P2 in G. Assume further that the same holds when the roles of
xW and Uy are exchanged. Then, xW and Uy are (2s+ 1)-fellow-travelers.

Remark 12. In the terminology of [2], the words xW and Uy in Lemma
11 are of s-Hausdorff distance (see [2]).

3 van Kampen diagrams

One of the basic tools of small cancellation theory is van Kampen diagrams.
We next give the usual definitions and notations taken mainly from [8, Chap-
ter V]. Lengths of paths in a van Kampen diagram may be used to estimate
distances in the Cayley graph. This is useful when trying to establish the
fellow-traveler property.
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Definition 13. A map M is a finite planar connected 2-complex (see [8,
Chapter V]). We use the common convention and refer to the 0-cells, 1-cells,
and 2-cells of M as vertices, edges, and regions, respectively.

All maps are assumed to be connected and simply connected unless we
note otherwise. Vertices of valence one or two are allowed. Regions are
open subset of the plane which are homeomorphic to open disk and edges
are images of open interval. A sub-map of M is a map whose vertices, edges,
and regions are also regions, edges, and regions ofM , respectively. Each edge
e of M is equipped with an orientation (i.e., a specific choice of beginning
and end) and we denote by e−1 the same edge but with reversed orientation;
i(e) will denote the beginning vertex of e and t(e) will denote the ending
vertex of e. A path in a map M is a sequence of edges e1, e2, . . . , ek such
that t(ei) = i(ei+1) for all i = 1, 2, . . . , k − 1. Given a path δ = e1e2 · · · ek
we define i(δ) to be i(e1) and t(δ) to be t(ek); we denote by δ−1 the reversed
path, namely, e−1

k e−1
k−1 · · · e

−1
1 . For a path δ we denote by |δ| the length of δ

which is the number of edges it contains. The case where a path ρ has length
zero is allowed and in this case ρ is a single vertex (which is the initial and
terminal vertex of ρ). If µ is the path e1 · · · er and ρ is the path er+1 · · · es
such that t(µ) = i(ρ) then the concatenation µρ of µ and ρ is defined and is
the path e1 · · · es. If µ = µ1µ2µ3 then µ1 is a prefix of µ, µ2 a sub-path of
µ, and µ3 a suffix of µ. A spike is a vertex of valence one in M . A boundary
path of a map M is a path that is contained in ∂M ; a boundary cycle is
a closed simple boundary path. The term neighbors, when referred to two
regions, means that the intersection of the regions’ boundaries contains an
edge; specifically, if the intersection contains only vertices, or is empty, then
the two regions are not neighbors. Boundary regions are regions with outer
boundary, i.e., the intersection of their boundary and the map’s boundary
contains at least one edge. Regions which are not boundary regions are
called inner regions. Boundary edges and boundary vertices are edges and
vertices on the boundary of the map. Inner edges and inner vertices are
edges and vertices not on the boundary of the map.

We next turn to van Kampen diagrams. These are maps with a specific
choice of labeling on the their edges.

Definition 14. Let M be a map. A labeling function on M with labels
in group F is a function Φ defined on the set of edges of M and which
sends each edge to a non-identity element of F such that Φ(e−1) = Φ(e)−1.
We naturally extends Φ to paths in the 1-skeleton of M by sending a path
e1e2 · · · ek to Φ(e1)Φ(e2) · · ·Φ(ek). Given a finite presentation P = 〈X | R 〉,
an R-diagram is a map M together with a labeling function Φ such that
Φ(e) ∈ W(X) and the images of boundary cycles of regions are elements of
the symmetric closure of R; the map M is the underlying map of the dia-
gram. R-diagrams will be also referred to as diagrams over the presentation
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P, van Kampen diagram, and sometimes as just diagram if the set R or the
presentation P are known.

We say that two diagrams M1 and M2 are equivalent if there is an isomor-
phism between the labelled 1-skeletons of M1 and M2 which can be extended
to the regions of M1 and M2. Essentially, two diagrams are equivalent is
they are equal up to homeomorphism of complexes.

Suppose we are given a group G with presentation 〈X | R 〉. van Kam-
pen theorem [8, Chap. V] states that a word W ∈ W(X) presents the
identity of G if and only if there is an R-diagram with a boundary cycle
labelled by W . A van Kampen diagram with boundary label W is called
minimal if it has the minimal number of regions out of all the R-diagrams
with boundary cycle labelled by W . Note that a diagram is minimal then
every sub-diagram of M is minimal. A van Kampen diagram is reduced
if for every two neighboring regions D1 and D2 such that ∂D1 = µρ and
∂D2 = ρ−1σ we have that the label of µσ cannot be freely reduced to 1. A
diagram which is not reduced is not minimal since we can remove regions
from it without changing the boundary label (i.e., it has a non-minimal sub-
diagram). Thus, a minimal diagram is reduced (but, reduced diagrams may
be non-minimal).

A map M with boundary cycle δµ−1 is (δ, µ)-thin if every region D has
at most two neighbors and its boundary ∂D intersects both δ and µ. A map
is thin if it is (δ, µ)-thin for some boundary paths δ and µ and a diagram
is thin if its underling map is thin. See Figure 1 for an illustration of a
thin map. If two elements W and U present the same element in a group
G then WU−1 = 1 in G and so by the van Kampen theorem there is a van
Kampen diagram M with boundary label WU−1. We call such diagram
equality diagram for W and U . If in addition the diagram is (δ, µ)-thin and
the labels of δ and µ are W and U , respectively, then we say that M is a
thin equality diagram for W and U .

δ

µ

Figure 1: An illustration of thin map

We next give two lemmas which connect the notion of thin diagrams to
the results we need in this work. The first is Lemma 21 from [9].



3 VAN KAMPEN DIAGRAMS 8

Lemma 15. Let G be a group which is finitely presented by 〈X | R 〉 and let
k be the length of the longest relator in R. Suppose W and U are elements
of W(X) such that W = U in G. Suppose further that M is a (δ, µ)-thin
diagram where δ is labelled by W and µ is labelled by U . Then, then one of
the following holds:

1. W and U are k-fellow-travellers.

2. There is a word W ′ such that W ′ and W are k-fellow-travellers, |W ′| <
|W | and W ′ = W in G.

3. There is a word U ′ such that U ′ and U are k-fellow-travellers, |U ′| <
|U | and U ′ = U in G.

The second lemma show when the conditions of Lemma 11 are satisfied.

Lemma 16. Let G be a group which is finitely presented by 〈X | R 〉. Sup-
pose that W and U are geodesic elements of W(X) and x, y ∈ X±1 ∪ { ε }
such that xW = Uy in G. Assume that M is a (δ, µ)-thin diagram where δ
is labelled by xW and µ is labelled by Uy and let s be the maximal length of
a relator in R. In this case the conditions of Lemma 11 hold for the given
s.

Proof. Let P1 be a prefix of xW . Then, there is a decomposition δ = δ1δ2

where δ1 is labelled by P1. Let ρ be the shortest path in M that connects
the terminal vertex t(δ1) to a vertex v of µ. Since M is thin then clearly
|ρ| ≤ s. Decompose µ = µ1µ2 where the terminal vertex of µ1 is v. Let P2

be the label of µ1. Then, V2 is a prefix of Uy. Let V be the label of ρ. We
have that since δ1ρµ

−1
1 is a closed loop in M that P1V P

−1
2 = 1 in G and so

P1V = P2 in G as needed.

The rest of this section is devoted to the definition of C(4)&T (4) maps
and their properties. We start with the definition.

Definition 17 (C(4)&T (4) maps and diagrams). Let M be a map. We say
that M is a C(4)&T (4) map if the following two conditions hold:

(a) If D is an inner region then D has at least four neighbors.

(b) If v is an inner vertex then v does not have valence three (however,
valence two is allowed).

A diagram is a C(4)&T (4) diagram if its underlying map is a C(4)&T (4)
map.

Remark 18. If P is an algebraic C(4)&T (4) presentation then a reduced
van Kampen diagram M over P is a C(4)&T (4) diagram. Condition (b)
of Definition 17 above hold for every diagram over P (regardless of it being
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reduced). Condition (a) of Definition 17 hold for the following reason. If
M is a reduced diagram then if D1 and D2 are two neighboring regions in
M and α is a connected path in ∂D1 ∩ ∂D2 then the label of α is a piece.
Consequently, using the fact that a boundary label of every region in M
cannot be decomposed into a product of less than four pieces, we get that
every inner region must have at least four neighbors (we are using here a
result from [7] stating that it is enough to check Condition (a) of Definition
17 for regions with simple boundary cycle).

One of the main contribution of this paper is the development of a tech-
nique which works with presentation where the second condition hold only
in minimal diagrams (but may not hold for all diagrams). Next, we refine
the definition of C(4)&T (4) maps as follows.

Definition 19 (Proper C(4)&T (4) maps and diagrams). Let M be a map.
We say that M is a proper C(4)&T (4) map if it is a C(4)&T (4) map and
the following two conditions hold:

(a) There are no inner vertices of valance two.

(b) If D is a region (not necessarily an inner region) then ∂D contains at
least four edges.

A diagram is a proper C(4)&T (4) diagram if its underlying map is a proper
C(4)&T (4) map.

Condition (a) of Definition 19 is a technical condition which we can
guarantee by removing all inner vertices of valence two. However, once
Condition (a) is satisfied one can count neighbors of an inner region D by
simply counting the number of edges in ∂D. Consequently, if there are no
inner vertices of valence two then the difference between C(4)&T (4) maps
which are not necessarily proper and proper C(4)&T (4) maps is that in
proper C(4)&T (4) maps we also assume that boundary regions have at least
four edges.

We complete the section with a characterization of thinness in proper
C(4)&T (4) maps. The characterization is done through the idea of “thick
configurations”.

Definition 20 (Thick configurations). Let M be a proper C(4)&T (4) map
and let α be a path on the boundary of M . A thick configuration in α is a
sub-diagram N of M where one of the following holds:

1. Thick configuration of the first type. N contains single region D
with ∂D = µσ−1 such that µ = ∂D∩α and |µ| > |σ|. See Figure 2(a).

2. Thick configuration of the second type. N has connected interior
and consists of two neighboring regions D1 and D2. The boundary of
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D2 decomposes as ∂D2 = µσ−1 where |µ| = |σ| = 2, µ is a sub-path
of α, and σ contains only inner edges. The boundary of D1 contains
an outer edge e such that eµ is a sub-path of α. See Figure 2(b).

If there is a thick configuration along α then we say that α contains a thick
configuration.

D1 D2

α

(b)

D

α

(a)

µ

σ σ

µ

Figure 2: Thick Configurations

The following theorem characterizes when a proper C(4)&T (4) diagram
is thin. This is a special case of Theorem 13 in [10] (we do not give here the
full statement of the theorem since it requires additional definitions which
are beyond the scope of this work).

Theorem 21. Let M be a proper C(4)&T (4) diagram with boundary cycle
σατ−1β−1 such that |σ| ≤ 1 and |τ | ≤ 1. If α and β do not contain thick
configurations then M is (σα, βτ)-thin.

4 From geometric conditions to bi-automaticity

In this section we prove Theorem 2. Let G be a group and let P = 〈X | R 〉
be a presentation of G for which the properties of Theorem 2 hold. The
group G and the presentation P are fixed throughout this section. Recall
that the assumption of Theorem 2 are that the presentation P satisfies the
following two hypotheses:

(H1) All relators of P are of length four and cyclically reduced.

(H2) If M is a minimal van Kampen diagram over the presentation P then:

(a) M is a C(4)&T (4) diagram.

(b) If ρ is a path of M which is on the boundary of two regions then
ρ is labelled by a generator.
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We will additionally assume that all diagrams have the property that
outer edges are labelled by a generator (consequently, lengths of a paths
and the length of their labels coincide). This assumption can be guaranteed
by introducing vertices of valence two along the boundary.

A key element of the proof is showing that the requirements of Proposi-
tion 10 hold. Thus, we need to construct an order “≺” on W(X) for which
we need to show that for every non-minimal element W ∈ W(X) we can
find another element V ∈ W(X) such that

1. V ≺W ;

2. V = W in G;

3. V and W are k-fellow-travelers.

For brevity, we would say in this case that V k-refutes W and also that W
can be refuted. A large part of the proof will be concerned with showing
that the non-minimal elements of W(X) can be refuted (according to an
order we construct later). One of important characteristics of the order we
construct is the property that if a word V ∈ W(X) is shorter then a word
W ∈ W(X) then V precedes W in the order. Thus, we start with the
following definition.

Definition 22 (Shortable paths and words). Let M be a minimal diagram
over P with boundary label αβ−1. We say that the path α is shortable if
there is a sub-diagram N of M with ∂N = µσ−1 such that µ is a sub-path
of α, |µ| > |σ|, and N has connected interior and consists of at most two
regions. A word W ∈ W(X) is called shortable if there is a a minimal
diagram M over P with boundary cycle αβ−1 such that α is labelled by W
and α is shortable.

Clearly, labels of shortable paths are not geodesic. Similarly, shortable
words are not geodesics (since they are the label of a shortable path in some
diagram).

Lemma 23. If W is shortable or is not freely-reduced then there is an
element V such that |V | < |W |, V = W in G, and V and W are 6-fellow-
travellers.

Proof. Assume that W is shortable. Let M be a minimal diagram over P
with boundary cycle αβ−1 such that α is labelled by W and α is shortable.
Let N a sub diagram of M containing at most two regions with ∂N = µσ−1,
µ is a sub-path of α, and |µ| > |σ|. Note that since N contains at most two
regions we have |µ| + |σ| ≤ 6 (since N has connected interior and using
hypothesis H1). Suppose that α = α1µα2 and W = W1W2W3 where α1 is
labelled by W1, µ is labelled by W2, and α2 is labelled by W3. Let V be the
label of σ and let U = W1VW3. Then, |V | < |W2| and so |U | < |W |. Since
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V = W2 in G we also get that U = W in G. Finally by Observation 7 we get
that U and W and 6-fellow-travellers. Similarly, if W is not freely-reduced
then we can write W = W1xx

−1W2 for x ∈ X±1. Let, U = W1W2. The
conclusion now follows along the same lines.

We next remark on two implications of hypothesis H2.

d

a b

cd

a b

c

Figure 3: Inner vertex of valence two and a possible fix

Remark 24. There are two examples of non-minimal diagrams (over the
presentation P) which occur frequently. In these cases the assumption is
that the boundary label is freely-reduced and that the diagrams are reduced.

The first examples is of a diagram with two regions and one inner vertex
of valence two; see the left side of Figure 3. By the second condition of
hypothesis H2, paths in the boundary of two regions in a minimal diagram
are labelled by a generator. But, in this case the inner path is labelled by
two generators. Thus, the diagram is not minimal. Since we are assuming
that the diagram is reduced it follows that the only way to reduce the number
of regions is by replacing them with a single region; this is illustrated in the
right side of Figure 3.

The second examples is of a diagram with three regions and one inner
vertex of valence three; see the top part of Figure 4. Due to the vertex of
valence three, the diagram is not a C(4)&T (4) diagrams. It follows from
the first condition of hypothesis H2 that this diagram is not minimal. In the
bottom of the figure we illustrate three possible diagrams which have the same
boundary label but with two regions (clearly, reducing the number of regions
to one is impossible due to the length of the boundary). It is important to
note that since we assumed that the boundary label of the top diagram is
freely-reduced we get that one of these examples is a diagram that can be
constructed over the presentation P. Notice however that not necessarily all
of the three diagrams can be constructed over the presentation P (because
there my not be enough relations in P to construct these diagrams).

The main difference between the presentation P and a presentation sat-
isfying the algebraic C(4)&T (4) conditions lays in the fact that one can
construct reduced diagrams with inner vertices of valence three. As shown
in Figure 4 there may be up to three ways to reduce the number of regions
in such diagrams. If there are at least two different ways to minimize such a
diagram then we get two diagrams that have the same boundary label but
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Figure 4: Inner vertex of valence three and possible fixes

which are not equivalent (in the bottom of Figure 4 we illustrate three dia-
grams with the same boundary label which are not equivalent). As we shall
see later, it is important to understand this situation. We thus introduce
the following terminology.

Definition 25 (Domino diagram). A domino diagram is a diagramM which
contains two regions, its boundary is of length six, and there is a single inner
edge. A biased domino is a couple (M,µ) where M is a domino diagram
M and µ is a boundary cycle of M . We will also say that the domino M
is biased through the boundary cycle µ. Also, we will sometimes abuse the
notation and say that M is biased when µ is known from the context. A
biased domino (M,µ) has three possible types:

1. 3-Typed. When the first three edges of µ lay on one region. See
Figure 5(a).

2. 2-Typed. When the first two edges of µ lay on one region but not
the first three. See Figure 5(b).

3. 1-Typed. When the first edge of µ lays on one region but not the
first two edges. See Figure 5(c).

Next we define the important notion of a stable domino. The idea is
that a domino is stable if we cannot replace its interior without changing
its boundary (see below for a rigorous definition). One reason why stable
dominos are important comes from the fact that if the presentation P satis-
fies the algebraic T (4) condition then all dominos are stable (this is an easy
fact which follows from the definitions).



4 FROM GEOMETRIC CONDITIONS TO BI-AUTOMATICITY 14

(c)(a)

µ

µ

(b)

µ

Figure 5: The three types of biased dominos

Definition 26 (Stable Domino). Let M be a domino diagram. M is a stable
domino if any other domino with the same boundary label is equivalent to
M (see the discussion after Definition 14). In other words, if µ is a boundary
cycle of M and we are given a biased domino (M ′, µ′) such that µ and µ′

have the same label then we have that (M,µ) and (M ′, µ′) have the same
type. A domino which is not stable will be called unstable.

As an example, if two of the dominos at the bottom of Figure 4 can be
constructed over the presentation P then these two dominos are not stable
(since they have the same boundary label but are not equivalent). On the
other hand, if only one of the dominos at the bottom of Figure 4 can be
constructed then this domino is stable. We emphasis this point since it may
very well be that not all three diagrams on the bottom can be constructed
over P (they are just drawn for illustration purposes)

We turn to define an order on the elements of W(X). We begin by
identifying triplets of generators which appear as labels of stable dominos.

Definition 27 (Stable triplets). Let x, y, z ∈ X±1. We say that the triplet
(x, y, z) is stable if there is a stable domino N were its boundary cycle
contains two consecutive edges e1 and e2 which are labelled by x and y,
respectively. Also, the terminal vertex of e1 (which is also the initial vertex
of e2) is of valence three and the inner edge e3 that emanate from it is
labelled by z; see Figure 6.

z

x y

e2
e3

e1

Figure 6: Illustration of a stable triplet

Using the definition of stable triplets we can attach a special graph to
each generator in X±1.
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Definition 28 (The Stability Graph Γx). Let x ∈ X±1. We define the
directed graph Γx = (Vx, Ex) with vertex set Vx and edge set Ex. The
vertex set Vx is the set X±1. Let y and z be two elements of Vx (i.e., two
generators). There is a directed edge (y, z) ∈ Ex (i.e., an edge from y to x)
if and only if (x, y, z) is a stable triplet.

We claim that the stability graph Γx induces a linear order ‘<x’ on X±1

such that if (x, y, z) is a stable triplet then ‘z <x y’. It will only be true if
the graph Γx contains no cycles. This is the content of the next proposition,
whose proof is postponed to Sub-Section 4.2.

Proposition 29. Let x ∈ X±1. The graph Γx is cycle-free.

Proof. See Sub-Section 4.2.

Corollary 30. There exist a linear order ‘<x’ defined on X±1 such that if
(x, y, z) is a stable triplet for y and z in X±1 then z <x y.

Proof. This follows since a cycle-free directed graph induce a partial order
on the set of vertices. This partial order can be completed into a linear order
on the vertices.

Definition 31 (Grading function). A grading functions for x ∈ X±1 is a
function Gx : X±1 → { 1, . . . , 2 | X| } such that if y and z are in X±1 and
(x, y, z) is a stable triplet then Gx(z) < Gx(y).

The following lemma is clear from Corollary 30.

Lemma 32. For each x ∈ X±1 there is a grading function.

For the rest of the section we fix a set
{
Gx

∣∣ x ∈ X±1
}

of grading func-
tions. Next, the order on W(X).

Definition 33 (Peifer vector). Let W = x1x2 · · ·xn ∈ W(X) be a word of
length n. We assign a vector κW = (a1, a2, . . . , an) ∈ Nn to W . The first
entry a1 is zero (i.e., a1 = 0) and ai = Gxi−1(xi) for 1 < i ≤ n.

There is a natural lexicographical order on the elements of N∗, the finite
vectors over the natural numbers. Also, by fixing some—arbitrary—order
on X±1 we can assign a lexicographical order on W(X). We use these to
define an order on W(X).

Definition 34 (Order “≺” on W(X)). Let W and U be two elements of
W(X). We say that W ≺ U if either:

1. κW precedes κU in lexicographical order.

2. κW = κU and W precedes U in lexicographical order.
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It is straightforward to show that the Peifer order is regular (Definition
9). Thus, the proof of the following lemma is omitted.

Lemma 35. The order “≺” is regular.

Our next goal is to show that the conditions of Proposition 10 hold for
the order “≺”. We start with two definitions: the definition of a domino that
is contained in a path and the definition of a domino that is well-positioned.

Definition 36 (Domino contained in a path). Let M be a diagram over
the presentation P with boundary cycle αβ−1 and let N be a domino sub-
diagram of M . Suppose that the boundary cycle of N decomposes as ∂N =
µσ−1. We say that N is contained in α (resp., in β) if |µ| = |σ| = 3 and the
following hold:

1. ∂N ∩ α = µ (resp., ∂N ∩ β = µ).

2. α = α1µα2 (resp., β = β1µβ2).

3. The last edge of σ is an inner edge (this is the fourth edge in the
boundary cycle of M which start with µ).

If the domino N is contained in α (resp., β) then, using the above notation,
it is by default made biased through the boundary cycle µσ−1.

In words, a domino N is contained in a boundary path α if exactly half
of the boundary cycle ∂N is contained in the path α. Also, the last edge of
boundary cycle which is not on the path α is an inner edge.

Definition 37 (Well-positioned domino). Let M be a diagram over the
presentation P with boundary cycle αβ−1 and let N be a domino sub-
diagram of N . Suppose that N is made biased through a boundary cycle
∂N = µσ−1 where µ = α ∩ ∂N . Suppose further that the domino N is
contained in α (resp., β). We say that N is well-positioned in α (resp., in
β) if either:

1. N is 3-typed or 2-typed.

2. N is 1-typed and N is a stable domino.

So, if a domino N is 1-typed and is well-positioned then it follows that
it is also stable. Also, if a domino is contained in a path and is not well-
positioned then it is 1-typed and is not stable. With these definitions we
can give the first result toward showing that non-“≺”-minimal elements can
be refuted.

Proposition 38. Let M be a minimal diagram with boundary cycle αβ−1.
Assume that all dominos contained in α are well-positioned. Let W ∈ W(X)
be the label of α and assume that W is not shortable (Definition 22). If α
contains a thick configuration (Definition 20) then W can be 4-refuted.
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Proof. Let N be the thick configuration in M that is contained in α. Since
W is not shortable the thick configuration is of the second type. N has
connected interior and consists of two neighboring regions, D1 and D2, such
that D2 has two inner edges and two outer edges; see Figure 7. Since
W is not shortable, the region D1 has one outer edge in α. Assume that
∂D2 = δρ−1 where δ = ∂D2 ∩ α is the outer boundary of D2 and ρ is the
inner boundary. Let v1 the boundary vertex that belong to both ∂D1 and
∂D2. Then, v1 is of valence three. Let e−1

1 , e2, and e3 be the three edges
which emanate from v1: e1 is an edge of D1, e2 is an inner edge, and e3 is an
edge of D2. Let v2 be the other vertex of e1. By hypothesis H1 every relator
is of length four so we get that N is a domino. We make N biased through
the boundary cycle that begins in the edge e1. In this case N is 1-typed and
the domino N is contained in α (the three outer edges of N are contained
in α and the last edge of ∂N \ α is an inner edge). Since by assumption N
is well-positioned we get that N is stable (see Part 2 of Definition 37).

Now, assume that µ is labelled by xya and that ρ is labelled by zb (x,
y, z, a, and b are elements of X±1). Decompose W as W = W1xyaW2

and let U = W1xzbW2. Notice that ya = zb in G (because yab−1z−1 is
the boundary label of D2) so U = W in G. Notice also that U and W
are 4-fellow-travellers (Observation 7). Since N is a stable domino we get
that (x, y, z) is a stable triplet (Definition 27). Hence by the definition of a
grading function (Definition 31) we get that Gx(z) < Gx(y). Consequently,
we get that the |W1|+1-th coordinate for κU is strictly less than the |W1|+1-
th coordinate for κW . The coordinates before the (|W1| + 1)-th one in κW
and in κU are the same. Hence, we established that U ≺ W (because κU
precedes κW in lexicographical order). Consequently, U 4-refute W .

b

v1v2 x y

z
aD2

e1 e2

e3D1

Figure 7: Refuting through a thick configuration of second type

The following proposition, whose proof is postponed to Sub-Section 4.1,
shows that we can usually assume that all dominos contained in a path are
well-positioned.

Proposition 39. Let W,U ∈ W(X) and x, y ∈ X±1∪{ ε } such that xW =
Uy in G and assume that W and U are freely-reduced and not shortable.
Then, there is a minimal diagram M with boundary cycle σατ−1β−1 such
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that α is labelled by W , β is labelled by U , σ is labelled by x, and τ is labelled
by y (σ is empty if x = ε and similarly τ is empty if y = ε) such that all
dominos contained in α and in β are well-positioned.

Proof. See Sub-Section 4.1.

Using Proposition 39 we next show how to refute non-“≺”-minimal ele-
ments.

Lemma 40. If W is not “≺”-minimal then we can 6-refute W .

Proof. By Lemma 23 we can assume that W is not shortable and freely-
reduced. Let U be “≺”-minimal such that W = U in G. Again by Lemma
23, since U is “≺”-minimal it is not shortable and freely-reduced. Thus, by
Proposition 39 there is a minimal diagram M over P with boundary cycle
αβ−1 such that α is labelled by W , β is labelled by U , and all dominos
in both paths are well-positioned. By Proposition 38 the path β does not
contain thick configurations (since U is “≺”-minimal). If the path α contain
a thick configuration then by Proposition 38 we can 4-refute W . Thus,
we can assume that also the path α does not contain thick configurations.
It follows therefore by Theorem 21 that M is an (α, β)-thin-diagram. By
Lemma 15 either W and U are 4-fellow-travellers or there is W ′ ∈ W(X)
such that |W ′| < |W |, W ′ = W in G, and W ′ and W are 4-fellow-traveller.
In the first case U 4-refute W and in the second case W ′ 4-refute W (since
|W ′| < |W | implies that W ′ ≺W ). Thus, W can be 6-refuted.

To satisfy the conditions of Proposition 10 we need a regular order where
each non-minimal element can be refuted and such that there is a minimal
element for every non-empty subset of W(X). These requirements are sat-
isfied for the order “≺”: by Lemma 35 the order “≺” is regular; by Lemma
40 each non-minimal element can be refuted; and, since lexicographical or-
der is a well-order each non-empty subset of W(X) has a minimal element.
Consequently we get the following result:

Proposition 41. Let L be the set of “≺”-minimal elements. Then, L is
regular and maps onto G through the natural map.

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. Let L be the set of “≺”-minimal elements. It follows
from Proposition 41 that L is a regular set and maps onto G though the
natural map. To complete the proof of the theorem by showing that L has
the fellow-traveller property (see Definition 5) and thus it is a bi-automatic
structure of G. Let W and U be two elements of L and assume that there
are x, y ∈ X±1 ∪ { ε } such that xW = Uy in G. By Proposition 39 there is
a minimal diagram M with boundary cycle σατ−1β such that α is labelled
by W , β is labelled by U , σ is labelled by x, τ is labelled by y, and all
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dominos in α and in β are well-positioned. By Proposition 38 there are no
thick configuration in α or in β and thus by Theorem 21 the diagram M
is (σα, βτ)-thin diagram. Now, since W and U are “≺”-minimal they are
geodesics and consequently the conditions of Lemma 11 are satisfied where
the constant s can be taken to be 4 (see Lemma 16). Consequently, xW
and Uy are 9-fellow-travellers. This show that L has the fellow-traveller
property and the proof of the theorem is completed.

4.1 Well-Positioning dominos

In this sub-section we prove Proposition 39. The reader may want to recall
the definition of a domino and a biased domino (Definition 25) and also
the definition of a stable domino (Definition 26). Recall that we are given
W,U ∈ W(X) and x, y ∈ X±1 ∪ { ε } such that xW = Uy in G and the
assumption is that W and U are freely-reduced and not shortable (Definition
22). We need to show that there is a minimal diagram M with boundary
cycle σατ−1β−1 such that α is labelled by W , β is labelled by U , σ is labelled
by x, and τ is labelled by y (σ is empty of x = ε and similarly τ is empty
if y = ε) such that all dominos contained in α and in β are well-positioned.
We repeat two of the needed definitions here:

1. Domino contained in a path (Definition 36): a domino M is contained
in a path α if µ = ∂M ∩ α contains exactly half of ∂M and the next
edge in ∂M after µ is an inner edge.

2. Well-positioned domino (Definition 37): a domino M is well-positioned
in a path α if it is contained in α (this automatically makes M a biased
domino by the boundary cycle that start with α∩∂M) and it is 1-typed
(see definition 25) only when it is stable (see definition 26).

Naively, one would take any minimal diagram with a needed bound-
ary label and simply change the interior of dominos which are not well-
positioned. However, this approach is problematic since there may be over-
lapping dominos (so, fixing one domino may introduce other dominos which
are not well-positioned). Thus, we start with an analysis of how two dominos
can overlap.

We remark that if N is a domino that is contained in a path α and
the path is not shortable then the domino cannot be 3-typed (because you
cannot have three consecutive edges of a single region in α). Also, if a
domino N that is contained in a path α is not well-positioned then it is
1-typed and unstable. It follows that if we assume that the label of the path
α is not shortable then the domino N can be only be replaced with a domino
N ′ which is 2-typed.

Using the notation of Definition 36, if N is a domino that is contained
in α (resp., in β) then it make sense to order the regions in N . The region
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which its boundary contains the first edge of µ will be called the first region
and the other region (the one that its boundary contains the last edge of σ)
will be called the second region.

Lemma 42. Let M be a minimal diagram over P with boundary label
σατ−1β−1, connected interior, and no spikes. Assume that the paths α
and β are not shortable. Let N1 and N2 be two domino sub-diagrams of M
which are contained in α and β, respectively. Assume that ∂N1 = µ1ρ

−1
1

and ∂N2 = µ2ρ
−1
2 where µ1 = α ∩ ∂N1 and µ2 = β ∩ ∂N2. If the interior of

N1 and N2 are not disjoint then the following hold:

1. µ1 is a prefix of α and µ2 is a prefix of β.

2. σ is an empty path.

3. The first region of N1 and the first region of N2 are equal.

Proof. Let D1 and D2 be the first and second regions of N1. Similarly, let
E1 and E2 be the first and second regions of N2. First notice that we cannot
have that N1 = N2 since then the last edges of ρ1 and ρ2 (which in this case
are equal to µ2 and µ1, respectively) will not be inner edges of M . The case
that D2 = E1 is impossible, as illustrated in Figure 8(a) and Figure 8(b),
since either α is shortable or the first edge of µ2 is an inner edge. Similarly,
we cannot have that D1 = E2. Note that in general, since both α and β are
not shortable we cannot have that µ1 or µ2 would be the outer boundary
of a single region (like µ1 in Figure 8(a)). The case that D2 = E2 is also
impossible since the last edge of ρ1 and the last edge of ρ2 are not inner
edges of M ; see Figure 8(c). Thus, we are left with the case that D1 = E1

and D2 6= E2, as illustrated in Figure 8(d). This also shows that the initial
vertices of µ1 and µ2 are equal, i.e., i(µ1) = i(µ2). Consequently, using the
assumption that M has connected interior and no spikes, we get that σ is
empty, µ1 is a prefix of α, and µ2 is a prefix of β.

(a)

µ1

µ2

D1 E2

D2/
E1

(b)

D2/
E2

E1

D1

(c)

D1/
E1

µ1

µ2

D2

E2

(d)

µ2

µ1

E1

D2/

µ1

µ2

E2

D1

Figure 8: Possible overlaps between dominos

Next lemma states that if we fix an unstable 1-typed domino N then we
never form a new domino to the right of N (where we think on α as going
from left to right).
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Lemma 43. Let M be a minimal diagram over P with boundary label αβ−1,
connected interior, and no spikes. Assume that the path α and its label are
not shortable. Let N be a domino sub-diagram of M which is contained in
α. Assume further that ∂N = µσ−1 where µ is a sub-path of α. Finally,
assume that N is biased through µσ−1, that N is 1-typed, and that N is not
stable. Denote the first and second regions of N by D1 and D2, respectively.
Let D3 be a boundary region which its boundary contain the terminal vertex
t(µ). Since N is not stable there is a domino N ′ with boundary cycle ∂N ′ =
µ′(σ′)−1 which has the same label as the label of µσ−1 but µ′ is 2-typed.
Suppose we form the diagram M ′ by replacing N with N ′ in the diagram
M . Then, the region D3 is not the last region of a domino in M ′ which is
contained in α.

µ

D1

D2

D3 D3
D′

1

(a) (b)

D′
2

Figure 9: An overlaps between dominos in the same path

Proof. First notice that since N is 1-typed we have that D2 has two outer
edges in α, i.e., |∂D2∩α| = 2. Suppose by contradiction that in the diagram
M ′ the region D3 is the last region of a domino in α (in this case the terminal
vertex t(µ) is of valence three). Let D′1 and D′2 be the regions of N ′; see
Figure 9(b). Then, the domino that D3 is its last region consists of the
regions D′2 and D3. Since N ′ is 2-typed we get that |∂D′2 ∩ α| = 1 so by
the fact that D′2 and D3 form a domino in M ′ that is contained in α we get
that |∂D3 ∩ α| = 2. This shows that |∂(D2 ∪D3) ∩ α| = 4 (see Figure 9(a))
and consequently α is shortable in contradiction to our assumptions.

Using the notation of Lemma 43, if α = α1µα2 then after replacing N
with N ′ there is no domino in the path µ′α2 (namely, to the right of N ′)
which its interior intersects the interior of N ′. We use this for the inductive
prove of the next lemma, which is as an intermediate step before the final
proof of Proposition 39.

Lemma 44. Assume the conditions of Proposition 39 and suppose that W =
W1W2 and U = U1U2 where |W2| + |U2| < |W | + |U |. Then, there exists a
minimal diagram M with boundary cycle σατ−1β−1 such that:

1. α is labelled by W , β is labelled by U , σ is labelled by x, and τ is
labelled by y.

2. The path α decomposes as α = α1α2 and αi is labelled by Wi for
i = 1, 2. In addition, all dominos contained in α2 are well-positioned.
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3. The path β decomposes as β = β1β2 and βi is labelled by Ui for i = 1, 2.
In addition, all dominos contained in β2 are well-positioned.

The statement of Lemma 44 is almost identical to the statement of
Proposition 39 with the exception that we only require that dominos will
be well-positioned if they are contained in the parts of α and β which are
labelled by W2 or U2. The proof follows. Before we give the proof we re-
mark that it is enough to prove the lemma for connected components of
the interior of the diagram M . The reason is that the lemma would hold if
it holds for each of the component of the interior. Thus, the general case
follows from the the case that the interior is connected and the diagram has
no spikes.

Proof of Lemma 44. As remarked above, we will assume that the diagrams
have connected interior and no spikes. The proof is by induction on |W2|+
|U2|. The base case where |W2|+ |U2| ≤ 1 follows trivially. Assume that the
claim is true for |W2|+ |U2| = n and consider the case where |W2|+ |U2| =
n + 1 < |W | + |U |. Assume w.l.o.g. that |W2| ≥ 2 and write W2 = zW ′2
where z ∈ X±1. Since, |W ′2|+ |U2| = n we get that by induction hypothesis
there is a minimal diagram M with boundary cycle σατ−1β−1 for which the
following conditions hold:

1. α is labelled by W , β is labelled by U , σ is labelled by x, and τ is
labelled by y.

2. The path α decomposes as α = α1eα2 where α1 is labelled by W1, e is
labelled by z, and α2 is labelled by W ′2. Also, all dominos contained
in α2 are well-positioned.

3. The path β decomposes as β = β1β2 and βi is labelled by Ui for
i = 1, 2. In addition, all dominos contained in β2 are well-positioned.

We are done if all dominos in eα2 and β2 are well-positioned. So, assume that
there is a domino N which is contained in eα2 which is not well-positioned
(in this case the boundary cycle of N must contains the edge e). Suppose we
generate the diagram M ′ from the diagram M by replacing the domino N
with another domino which is well-positioned (i.e., by replacing an unstable
1-typed domino with a 2-typed domino). By Lemma 43 all dominos of M ′

which are contained in eα2 will be well-positioned (since the lemma say
that there is no overlap between the domino we replaced and the rest of
the dominos contained in α2). By Lemma 42 the dominos of M ′ which
are contained in β2 do not overlap with the dominos in eα2 (using the
assumption that |W2|+ |U2| < |W |+ |U | so either α2 6= α or β2 6= β). Thus,
all the dominos in β2 are well-positioned. Consequently, the diagram M ′

has all the needed properties and the claim is proved.

Next the proof of the proposition.
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Proof of Proposition 39. Since the case that W = U = ε is trivial, assume
w.l.o.g. that |W | ≥ 1 and let W = zW ′ for z ∈ X±1. We have that |W ′| +
|U | < |W |+ |U | and thus by Lemma 44 there exists a minimal diagram M
with boundary cycle σατ−1β−1 such that:

1. α is labelled by W , β is labelled by U , σ is labelled by x, and τ is
labelled by y.

2. The path α decomposes as α = eα′ where e is an edge labelled by z
and α′ is labelled by W ′.

3. All dominos contained in α′ and β are well-positioned.

We are done if all dominos contained in α are well-positioned. Thus, sup-
pose that there is a domino N contained in α which is not well-positioned.
Namely, N is an unstable 1-type domino. In this case the boundary cycle of
N must contain the edge e. We generate a new diagram M ′ by replacing the
domino N with a well-positioned domino N ′ (i.e., N ′ is a 2-typed domino).
We claim that the the new diagram M ′ has all the needed properties. This
is obvious if the interior of N does not overlap with a domino that is con-
tained in β. Thus, assume that there is a domino Q which is contained in
β and which overlap with the domino N (in this case σ is empty). Denote
the first and second regions of N by D1 and D2, respectively, and the last
region of Q by D3. Recall that by Lemma 42 we have that D1 is also the
first region of Q; see Figure 10(a). Denote the first and second regions of N ′

by D′1 and D′2, respectively; see Figure 10(b). The last edge of β in M ′ is
not part of the boundary cycle of a domino which is contained in β. Thus,
all the dominos of M ′ which are contained in β are well-positioned (since
they are well-positioned in M). By Lemma 43 all dominos of M ′ that are
contained in α are well-positioned since they do not overlap with N ′. Thus,
all dominos in M ′ which are contained in α and β are well-positioned and
the proposition is proved.

D′
2

D1

D3

D2

M

α

β

(a)

D3

M ′

β

(b)

α
D′

1

Figure 10: An overlaps between dominos at the beginning of the paths
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4.2 Stability graph is cycle-free

In this subsection we prove Proposition 29, namely that the stability graph
is cycle-free. We start with a simple lemma.

Lemma 45. Let N be a stable domino with boundary cycle µ = µ1µ2.
Suppose that µ1 is labelled by xy, that µ2 is labelled by abcd, and that xy =
zw in G (all letters are generators in X±1 and the boundary label is freely-
reduced). See the left side of Figure 11. Then, there is a domino N ′ with
boundary cycle µ′ such that µ′ is labelled by zwabcd (see the upper right side
of Figure 11). Moreover, the biased dominos (N,µ) and (N ′, µ′) have the
same type.

Proof. First, since there is a relation xyw−1z−1 we can form a diagram with
inner vertex of valence three with boundary label zwabcd (see the left side
of Figure 11). This diagram is not a C(4)&T (4) diagram (due to the inner
vertex of valence three) and so it is not minimal. Consequently, there is a
domino N ′ with boundary cycle µ′ such that µ′ is labelled by zwabcd (as
explained in Remark 24). If the biased dominos (N,µ) and (N ′, µ′) have
different type then the two letters zw appear on the boundary of the same
region in N ′ (as in the lower right side of Figure 11). Consequently, we can
form a biased domino (N ′′, µ′′) where µ′′ has the label xyabcd and such that
(N,µ) and (N ′′, µ′′) have different type. This would contradict the fact that
N is stable.

?

bc

d
a

z w

z

w

a

b

c

d

z w

x y

bc

d
a

x

y

Figure 11: A stable domino and an inner vertex of valence three

Remark 46. Note that in the previous lemma, we can’t have that d = z−1 or
a = w−1. The reason is that if d = z−1 then abcw = abcdzw = abcdxy = 1
and xyw−1d = xyw−1z−1 = 1 in G so abcw and xyw−1d are relators in P.
Thus, we can construct a domino with boundary label xyabcd which is not
equivalent to the domino N and that would contradict the stability of N . We
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are using here a standard argument regarding proper C(4)&T (4) diagrams
(which can be found, for example, in [8]) stating that such diagram with
more one region must have boundary cycle of length larger than four. Thus,
if abcd = 1 in G then there is a minimal C(4)&T (4) diagram with boundary
cycle labelled by abcd and consequently this diagram must contain just one
region.

Next the proof of the proposition. For clarity we prove that there are no
cycles of length four. It is straightforward to generalize this proof to show
that there are no cycles of any length.

Proof of Proposition 29. Let x ∈ X±1 and suppose that there is a series of
edges in Ex

y1 → y2 → y3 → y4

where y1, y2, y3, and y4 are in Vx. We claim that there is no edge in Ex

from y4 to y1. The edges (y1, y2), (y2, y3), and (y3, y4) in Ex imply that the
triplets (x, y1, y2), (x, y2, y3), and (x, y3, y4) are stable (see Definition 28 of
the stability graph Γx). Hence, by the definition of stable triplet (Definition
27) there are three stable biased domino (N1, µ1), (N2, µ2), and (N3, µ3)
such that for i = 1, 2, 3

1. µi is labelled by xyiaibicidi.

2. The inner edge of Ni is labelled by yi+1.

See the left side of Figure 12. Now, assume by that there is another bi-
ased domino (N4, µ4) where µ4 labelled by xy4a4b4c4d4 and the inner edge
labelled by y1 (see the lower left side of Figure 12). We construct a biased
domino (Q, ρ) (the lower right side of Figure 12) where ρ is also labelled
by xy4a4b4c4d4 but the two biased dominos (N4, µ4) and (Q, ρ) have differ-
ent type (i.e., they are not equivalent). This would show that the domino
N4 cannot be stable and consequently, the triplet (x, y4, y1) is not stable so
there is no edge (y4, y1) in Ex.

The first region of N4 is labelled by d−1
4 c−1

4 y−1
1 x. Hence, we have that

d−1
4 c−1

4 = xy1 in G and so by Lemma 45 we have that there is a biased
domino (M1, σ1) where σ1 is labelled by d−1

4 c−1
4 a1b1c1d1 and the two biased

dominos (N1, µ1) and (M1, σ1) have the same type. Suppose the inner edge
of M1 is labelled by m1. The domino M1 contains a region with boundary
label d−1

4 m1c1d1 (see the upper right part of Figure 12) so d−1
4 m1 = d−1

1 c−1
1

in G. The domino N1 contain a region labelled by xyc1d1 so d−1
1 c−1

1 = xy2

and thus d−1
4 m1 = xy2 in G. We next repeat the argument for the domino

N2. Since d−1
4 m1 = xy2 in G we get that by Lemma 45 there is a biased

domino (M2, σ2) where σ2 is labelled by d−1
4 m−1

1 a2b2c2d2 and the two biased
dominos (N2, µ2) and (M2, σ2) have the same type. Suppose the inner edge
of M2 is labelled by m2 ∈ X±1 then we have that d−1

4 m2 = xy2 in G. Finally,
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repeating the same process we get that there is a biased domino (M3, σ3)
where σ3 is labelled by d−1

4 m−1
2 a3b3c3d3 and the two biased dominos (N3, µ3)

and (M3, σ3) have the same type. Also, if the inner edge of M3 is labelled
by some m3 ∈ X±1 then d−1

4 m3 = xy4 in G. This shows that d−1
4 m3y

−1
4 x−1

is a relation in R (see the top region of the domino Q).

m3

d4

x y1

b1c1

d1 a1
y2

y2

c4

c1 b1

a1
m1

d4 c4

xN1 M1

d4

x y2

b2c2

d2 a2
y3

m1

N2

d4

x y3

b3c3

d3 a3
y4

m2

N3

dk

c4 b4

a4
y1

x y4

N4

d1

d2

c2 b2

a2
m2

d4 m1

y3

x M2

d3

c3 b3

a3
m3

d4 m2

y4

x M3

b4

x

y4

a4c4

d4

Q

Figure 12: No cycles in Γx

For i = 1, 2, 3, the domino Ni have a region labelled by aibiy
−1
i+1yi. Hence,

aibi = y−1
i yi+1 in G for i = 1, 2, 3. The domino N4 has a region labelled by

a4b4y
−1
1 y4 and so a4b4 = y−1

4 y1 in G. Thus,

(a1b1)(a2b2)(a3b3)(a4b4) = 1 in G (1)

and by rearranging we get

(a1b1)(a2b2)(a3b3) = b−1
4 a−1

4 in G (2)

The domino M1 has a region labelled by a1b1m
−1
1 c4 so a1b1 = c−1

4 m1 in G.
For i = 2, 3 the domino Mi has a region labelled by aibim

−1
i m−1

i−1 and so we

have a2b2 = m−1
1 m2 and a3b3 = m−1

2 m3 in G. Combining this with (2) we
get

b−1
4 a−1

4 = (c4m1)(m−1
1 m2)(m−1

2 m3) = c4m3 in G (3)

Thus, from (3) there is a relation m3a4b4c4 in R (see the bottom region
of Q). Consequently we can construct the biased domino (Q, ρ) where ρ is
labelled by xy4a4b4c4d4 but the two biased dominos (N4, µ4) and (Q, ρ) have
different types. This shows that N4 is not stable as claimed.
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5 Barycentric Sub-Division

In this section we describe the “barycentric sub-division” procedure (BSD
procedure, for short) which origins in folklore and is described in [3]. The
proof of Theorem 1 start by applying this procedure.

Let P = 〈X | R 〉 be a presentation of a group G where the set of
relations R is symmetrically closed and that each generator in X is a piece.
The presentation P and the group G are fixed throughout this section. The
result of the BSD procedure is a new presentation P̃ = 〈 E | T 〉 of G ∗ F
where F is a free group of finite rank (the rank of F is the number of relations
in R). We start with the generators E. Let R = x1x2 · · ·xn be a relator
in R. We define n new symbols: eR1 , e

R
2 , . . . , e

R
n which will be part of the

generating set. We say that a generator eRi comes from the relator R. The
set E of generators is the following set:

E =
{
eRi
∣∣ R ∈ R, 1 ≤ i ≤ |R| }

Next, we describe the set T of relations. Let P be a piece of the presentation
P and let R1 = x1x2 · · ·xn and R2 = y1y2 · · · ym be two relators in R.
Assume that R′1 and R′2 are cyclic permutation of R1 and R2, respectively,
such that P is prefix of both R′1 and R′2. Assume also that R′1 6= R′2.
Let R′1 = PU . In this decomposition, the prefix P of R′1 starts with the
generator xi and ends with the generator xj−1 (note that j may be less than
i). Similarly, if R′2 = PV then the prefix P of R′2 starts with the generator
yk and ends with the generator y`−1. When all the above holds, then T
consists of the following relator:(

eR1
i

)−1
eR1
j

(
eR2
`

)−1
eR2
k

We will say that the above relator corresponds to the piece P . We will also
say that the sub-words (eR1

i )−1eR1
j and (eR2

` )−1eR2
k corresponds to the piece

P .

Observation 47. The relator (eR1
i )−1eR1

j (eR2
` )−1eR2

k is determined by the
following data:

R1, R2, i, j, k, `

where: R1, R2 in R; 1 ≤ i, j ≤ |R1|; 1 ≤ k, ` ≤ |R2|; i 6= j; k 6= `.

We will need the following lemma which follows from Observation 47.

Lemma 48. The pieces of the presentation P̃ have length at most two.

Proof. Suppose W = (eR1
i )−1eR1

j (eR2
` )−1eR2

k is a relator in T . Let U be
prefix of a cyclic conjugate V of W of length three. U must either contain
(eR1

i )−1eR1
j or (eR2

` )−1eR2
k . In the second case U must also contain one of the
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letters eR1
i or eR1

j (or their inverses). In the first case U must also contain one

of the letters eR2
k or eR2

` (or their inverses). Thus, from U we can recover
the corresponding piece P , the two relators R1 and R2, and three of the
four indices i, j, k, and `. Now, from this information we can recover all
four indices i, j, k, and `. Thus, it follows that if U is a prefix of a cyclic
conjugate V ′ of an element of T then V = V ′. Consequently, there are no
pieces of length three.

In the rest of this section we describe the general properties of the new
presentation P̃ and its properties when P satisfies the algebraic C(4)&T (4)
conditions. These properties were already observed in [3]. The following is
clear.

Observation 49. All relations in T are of length four and cyclically-red-
uced.

The set
{
eR1
∣∣ R ∈ R } has size |R| and it generate a free group of rank

|R|. Thus, the presentation〈
X ∪

{
eR1
∣∣ R ∈ R } ∣∣ R 〉

is a presentation of G∗F where F is a free group of rank |R|. It follows from
the above construction that by starting from this presentation one can get
the presentation P̃ = 〈 E | T 〉 by Tietze transformations [8]. This implies
the following lemma.

Lemma 50. The presentation P̃ presents the group G∗F where F is a free
group of rank |R|.

To simplify the arguments below, let us adopt the following notation and
definition.

Definition 51 (Rewrite function). The presentation P̃ is a presentation of
G ∗ F so both the set E and the set Γ = X ∪

{
eR1
∣∣ R ∈ R } are generating

sets for G ∗ F . We define the rewrite function φ :W(E)→W(Γ). Let

Y =
{

(eRi )−1eRj
∣∣ R ∈ R and 1 ≤ i, j ≤ |R|

}
We first describe an auxiliary function ψ from Y to X±1. Let (eRi )−1eRj be
an element of Y for some R ∈ R and 1 ≤ i, j ≤ |R|. Suppose R ∈ R can be
written as x1x2 · · ·xn and R′ is a cyclic conjugate of R which start with xi.
Let W be the prefix of R′ which ends with xj−1. Then,

ψ
(
(eRi )−1eRj

)
= W

The function φ takes a word in W(E) and produces a word in W(Γ). We
define φ recursively. If W ∈ W(E) is a word of length one or zero then
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φ(W ) = W . Suppose W ∈ W(E) is of length at least two. Write W = abW ′.
Then

φ(W ) =

{
ψ(ab)φ(W ′) if ab ∈ Y
aφ(bW ′) otherwise

In words, the function φ scans the word W from left to right and replaces
each occurrence of an element of Y with a corresponding element of W(W ).

It follows from the definition that if φ((eRi )−1eRj ) = W ∈ W(X) then W
is a sub-word of a cyclic conjugate of R ∈ R (or inverse of R). Also, if R′

is a cyclic conjugate of R = x1x2 · · ·xn ∈ R and R′ = W1W2W3 where W1

starts with xi, W2 starts with xj and W3 starts with xk then

φ((eRi )−1eRk ) = φ((eRi )−1eRj )φ((eRj )−1eRk )

Finally, since φ sends each relator in T to a relator in R (this is a matter of
a routine check) we get that

φ(W ) = φ(W )

is a homomorphism from G ∗ F to itself. Thus, if W ∈ W(E) is equal to 1
in G ∗ F then also φ(W ) = 1 in G ∗ F .

Notation 52 (Sides and middle segment). If D is a region in a diagram M
over P̃ then its boundary is labelled by(

eR1
i

)−1
eR1
j

(
eR2
`

)−1
eR2
k

for some R1, R2 ∈ R and some indices i, j, k, and `. See Figure 13.
Assume that (eR1

i )−1eR1
j corresponds to the piece P ∈ W(X). The boundary

of D decomposes as ∂D = µσ−1 where µ is labelled by (eR1
i )−1eR1

j and σ

is labelled by (eR2
k )−1eR2

` . We shall call µ and σ the sides of D and we
shall say that the region D corresponds to the piece P . We add to D an
auxiliary segment, which is not originally part of the diagram, as follows.
The auxiliary segment, denoted here by ρ, is a segment labelled by P going
from i(µ) to t(µ) inside the interior of D. We call ρ the middle segment
of D. Note once again that the middle segment is an auxiliary construction
which we add to the diagram M . The initial and terminal vertices of µ (and
also of σ) will be called vertices of Type A and the other two vertices in ∂D
will be called vertices of Type B.

Suppose that D1 and D2 are two neighboring regions in a diagram M
over the presentation P̃ and that v is a vertex in ∂D1 ∩ ∂D2. It follows
routinely from the structure of the relators in P̃ that if v is Type A in the
boundary of D1 then it is also of Type A in the boundary of D2 and vice
versa. Thus, the notion of a type for all vertices of a diagram over P̃ is well
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Type A

eR1
i

eR2
`

P

eR1
j

eR2
k

Type B

Figure 13: Different parts of a region in the new presentation P̃

defined. One may alternatively view a type A vertex as a sink vertex and
view a type B vertex as a source vertex. Thus, every vertex in a diagram
over P̃ is either a source or a sink. Namely, the set of inner vertices of a
diagram over P̃ split into two disjoint sets consisting of Type A/sink vertices
and Type B/source vertices.

Remark 53. We remark that by the construction of the relations in P̃,
if two regions D1 and D2 are neighbors in a diagram M and ∂D1 ∩ ∂D2

contains three edges then M is not reduced since, as shown in Lemma 48,
three letters determine a relator of P̃ up to cyclic conjugation.

Next, we show that in a minimal diagram over P̃ each inner region has
four neighbors. Also, if P satisfies the algebraic C(4)&T (4) conditions and
M is a minimal diagram over the presentation P̃ then M is a C(4)&T (4)
diagram where edges are labelled by a generator.

Lemma 54. Let M be a van Kampen diagram over P̃ with two regions and
with connected interior. Then, one of the following holds:

1. The inner path of M is labelled by a generator.

2. M is not minimal.

P1P2

eR1
i eR1

k

eR2
t

eR1
i eR1

k

eR2
s

eR2
t

P1

eR1
j

eR2
r eR2

r

P1

Figure 14: Type A inner vertex of valence two

Proof. Suppose D1 and D2 are the two regions of M . Let µσ−1 be the
boundary cycle of M and ρ the inner path such that µρ−1 is a boundary
cycle of D1 and σρ−1 is a boundary cycle of D2. Assume that ρ is labelled
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by W . We can assume that the diagram has a boundary of positive length
and so we have that |W | ∈ { 1, 2, 3 }. If |W | = 1 then the first case of the
lemma holds. If |W | = 3 then it follows from Remark 53 that M is not
reduced and thus it is not minimal. So, let’s assume that |W | = 2 and that
the diagram is reduced. In this case M has one inner vertex v of valance
two which is a middle vertex of ρ. There are two cases to consider, the first
is when v is a Type A vertex and the second is when v is a Type B vertex.
These cases are illustrated in Figure 14 for Type A and in Figure 15 for
Type B (the labels of the middle segments are noted). Having these figures
in mind, it is routine to check that in all cases one may form a diagram with
single region, as illustrated in the figures, such that its boundary label is the
same as the boundary label of M (this is also done in [3]). Consequently,
M is not minimal.

eR2
s

eR1
i

eR3
`

eR2
r

eR1
i

eR3
`

P

eR1
j

eR3
k

eR1
j

eR3
k

P

P

Figure 15: Type B inner vertex of valence two

Lemma 55. Suppose that P satisfies the algebraic C(4)&T (4) conditions.
Let M be a van Kampen diagram over P̃ which contain an inner vertex v
of valance three. Then, M is not minimal.

eR3
k1

P1

P3

P2 eR1
i3eR1

i2

eR3
k2

eR2
j1

eR2
j2

eR2
j3

eR1
i1

eR3
k3

Figure 16: Type A inner vertex of valence three

Proof. If M is not reduced the it is not minimal. Thus, we will assume that
M is reduced. Let v be an inner vertex of valance three and let D1, D2,
and D3 be the three regions which contain v in their boundaries. Let N
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be the sub-map of M which contain the three regions. Using Lemma 54 we
can assume that the inner edges of N are labelled by a generator (because
otherwise by the lemma the sub-diagram N is not minimal and thus the
diagram M is not minimal). There are two cases to consider depending on
v being a vertex of Type A (Figure 16) or a vertex of Type B (Figure 17).

We start from the case that v is a Type A vertex. Assume that the three
regions are labelled by the relators

(RR2
j2

)−1RR2
j1

(RR1
i3

)−1RR1
i2

,

(RR1
i2

)−1RR1
i1

(RR3
k3

)−1RR3
k2

, and

(RR3
k2

)−1RR3
k1

(RR2
j3

)−1RR2
j2

which correspond to the pieces P1, P2, and P3, respectively. We also assume
that the above pieces are the labels of the middle segments (for convenience
we regard these segments as directed outward from v). We get that

φ
(

(eR1
i3

)−1eR1
i1

)
= P−1

1 P2 or φ
(

(eR1
i1

)−1eR1
i3

)
= P−1

2 P1;

φ
(

(eR3
k3

)−1eR3
k1

)
= P−1

2 P3 or φ
(

(eR3
k1

)−1eR3
k3

)
= P−1

3 P2;

φ
(

(eR2
j3

)−1eR2
j1

)
= P−1

3 P1 or φ
(

(eR2
j1

)−1eR2
j3

)
= P−1

1 P3

Thus, P−1
1 P2, P−1

2 P3, and P−1
3 P1 are sub-words of a cyclic conjugates of R1,

R2, and R2, respectively, or their inverses. Since R is symmetrically closed,
we have relators in R of the form P1W1P

−1
2 , P2W2P

−1
3 , and P3W3P

−1
1 .

This violate the T (4) condition. Consequently, there are no inner vertices
of valance three in M which are Type A vertices.

eR3
k2

P1

P2

P3

P1

P2

eR1
i1

eR1
i2

eR2
j1

eR2
j2

eR3
k2

eR4
`1

eR4
`2

eR4
`3

eR3
k1

eR3
k1

eR3
t eR1

i1

eR1
i2

eR2
j1

eR2
j2

Figure 17: Type B inner vertex of valence three

Suppose now that v is a Type B vertex. Assume that the three regions
are labelled by the relators

(RR1
i1

)−1RR1
i2

(RR4
`2

)−1RR4
`1

,
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(RR2
j1

)−1RR2
j2

(RR4
`3

)−1RR4
`2

, and

(RR3
k1

)−1RR3
k2

(RR4
`1

)−1RR4
`3

which correspond to the pieces P1, P2, and P3, respectively. We also assume
that the above pieces are the labels of the middle segments and that these
segments form a closed cycle of length three (for convenience, we regard them
as directed counter-clockwise around v). Finally, we assume that the edges
emanating from v are labelled by RR4

`1
, RR4

`2
, and RR4

`3
(in counter-clockwise

order). First, notice that since (RR4
`1

)−1RR4
`2

(RR4
`2

)−1RR4
`3

(RR4
`3

)−1RR4
`1

is freely
equal to 1 we get that

P1P2P3 = φ
(

(RR4
`1

)−1RR4
`2

(RR4
`2

)−1RR4
`3

(RR4
`3

)−1RR4
`1

)
= 1 in G

Now, it is a well known fact (e.g., by Greendlinger’s Lemma) that in a
presentation which satisfies the algebraic C(4)&T (4) condition a freely-
reduced product of less than four pieces is never equal to 1 (since there
is no van Kampen diagram with boundary cycle of length three). Thus,
by possibly re-ordering the indices, we get that P1P2 = P−1

3 . Hence,
φ((ER3

k2
)−1ER3

k1
) = P1P2. Let t be an index such that φ((ER3

k2
)−1ER3

t ) = P1

and φ((ER3
t )−1ER3

k1
) = P2. Then, we can replace the diagram N with a new

diagram N ′ which contain two regions labelled by

(RR1
i1

)−1RR1
i2

(RR3
t )−1RR3

k2
and

(RR2
j1

)−1RR2
j2

(RR3
k1

)−1RR3
t

and which has the same boundary label as N ; see the right side of Figure
17. This shows that N is not minimal and thus the diagram M is not
minimal.

Remark 56. If follows from the proof of Lemma 55 that it is possible to
construct a diagram which contains a vertex of valance three (see Figure 17).
This happen if there is a piece P ∈ W(X) of the presentation P with |P | ≥ 2
and such that there are at least four different relators in R that contain P
as a prefix. In this case, the presentation P̃ does not satisfy the algebraic
C(4)&T (4) conditions (under which, in every van Kampen diagram there
are no vertices of valence three). As a concrete example one may consider
the following presentation which satisfies the algebraic C(4)&T (4) condition:〈

a, b
∣∣ ababab−1a−1b−1a−1b−1 = 1

〉
The symmetric closure of

{
ababab−1a−1b−1a−1b−1

}
contains 20 elements

where ab is a prefix of four of them.

Next theorem summarize the properties of the presentation P̃.
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Theorem 57. Let P = 〈X | R 〉 be a presentation of a group G which sat-
isfies the algebraic C(4)&T (4) conditions. Suppose that the set of relations
R is symmetrically closed and that each generator in X is a piece. Let P̃ be
the presentation we get by applying the BSD procedure to the presentation
P. Then, the following hold:

1. P̃ presents the group G ∗ F where F is a free group of rank |R|.

2. All relators of P̃ are of length four and cyclically reduced.

3. If M is a minimal van Kampen diagram over the presentation P̃ then:

(a) M is a C(4)&T (4) diagram.

(b) If e is an inner edge of M then e is labelled by a generator.

In other words, the presentation P̃ is a presentation of the group G ∗ F for
which the condition of Theorem 2 hold.

Proof. Property 1 follows from Lemma 50. Property 2 follows from Obser-
vation 49. Property 3(a) follows from Lemma 55 (the T (4) condition) and
Lemma 54 (the C(4) condition which hold since each edge is labelled by a
generator and each relation is of length four so each inner region has four
neighbors). Finally, Property 3(b) follows also from Lemma 54.

6 Algebraic Condition Imply Bi-Automaticity

In this short section we prove Theorem 1. Let G be a group which has a
presentation P for which the algebraic C(4)&T (4) condition hold and the
set of relations is symmetrically closed (this may always be assumed). The
first step is to apply the BSD procedure.

We note first that one may assume that each generator is a piece since
otherwise we can write G as G = G′ ∗ F where:

(a) G′ has a presentation where the algebraic C(4)&T (4) conditions hold
and every generator is a piece; and,

(b) F is a free group of finite rank.

The free product H1 ∗ H2 is bi-automatic if and only if both H1 and H2

are bi-automatic [5, Cor. 4.6]. Thus, since a free group is bi-automatic, to
show that G is bi-automatic it is enough to show that a G′ is bi-automatic.
Consequently, we can assume that in the presentation P each generator is a
piece.

Let P̃ the presentation resulting from applying the BSD procedure to
the presentation P. By Theorem 57 the conditions of Theorem 2 hold and
consequently the group presented by P̃ is bi-automatic. Now, the group
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presented by P̃ is the group G ∗ F where F is a free group of finite rank.
As above, since G ∗ F is bi-automatic also G is bi-automatic and the proof
is completed.

7 Appendix

In this appendix we discuss the problems in the automaticity proof of groups
having a presentation 〈X | R 〉 which satisfies the algebraic C(4)&T (4) small
cancellation conditions due to S. Gersten and H. Short [3]. The proof spans
over pg 650–655 of [3]. It starts by recalling some basic definition (pg 650).
Then, the idea of barycentric subdivision is introduced (top of pg 651) and it
is noticed that the construction produces a presentation of the free product
G ∗ F where F is a free group (Lemma 5.1).

The construction of the barycentric subdivision is a bit different from
the construction we describe in Section 5. We outline the differences. In
their construction a new presentation is constructed in which the relations
have the form (eRi )−1eRj = P where P ∈ W(X) is a piece (the generators of
the presentation are the original generators plus the new generators of the
form eRi ). To handle the new relations the idea of “admissible diagrams” is
introduced (the first definition at pg 652). There is one to one correspon-
dence between admissible diagrams and the diagrams we describe in Section
5. If one starts from a diagram of the presentation described in Section
5 and add all the middle segments (Notation 52) the result is an admissi-
ble diagram over the presentation in [3]. On the other hand, is one starts
from an admissible diagram and remove all the paths labelled by pieces in
W(X) the result is a diagram over the presentation described in Section
5. Thus, considering only admissible diagrams essentially means that they
concentrate on the same diagrams which we describe in Section 5.

Right after the idea of admissible diagram, the definition of “allowed
word” is introduced (second definition in pg 652). The lemma that follows
(Lemma 5.2) states that allowed words which are equal to 1 in the group can
be read on the boundary cycle of an admissible diagram which its interior
vertices have non-positive curvature. The proof of the lemma is in fact a
proof that in a minimal admissible diagrams all inner vertices have non-
positive curvature. Specifically, the ‘allowed word’ assumption is never used
(this is stated at the last paragraph of the proof). Notice that although the
proof refers to “reduced diagrams” (as assumed in the second paragraph of
pg 652) it actually assumes that the diagrams are minimal. We also give a
proof of non-positive curvature of inner vertices at Section 5. Our arguments
are more combinatorial and they refer to a slightly different presentation (as
described in previous paragraph) but nevertheless they are essentially the
same.

The bulk of the proof is outlined at the end of pg 655. The automatic
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structure consists of “allowed representatives”. These are elements which
are geodesics and for which the so-called “B2 turning angle condition” holds
(see the first paragraph after the end of the proof at pg 655). It is written
that every element of the group has an allowed representative where the
proof is “As in the B2 case” which is done in Proposition 2.1 (pg 645). The
problem in this statement can most clearly seen from the last paragraph of
pg 645:

“Notice that if the subword ai−1ai occurs in another reduced disc
diagram, then the turning angle between ai−1 and ai cannot be
π/2. If this were the case, the the non-positive curvature condi-
tion would be violated.”

The statement is indeed correct under the conditions assumed in Proposition
2.1. It is also crucial to the proof if Proposition 2.1 (because, if a word is
included in one diagram and is fixed to make sure the “B2 turning angle
condition” is maintained then the fix hold for any diagram that include the
word). However, the same statement it is no longer true in the context of the
proof for algebraic C(4)&T (4) presentations. In Remark 56 we discuss how
one may form an inner vertex of valence three. The example there shows
that it is possible to construct two minimal diagrams M1 and M2, which
their boundary label contains a word ai−1ai where:

i) in M1 the angle along ai−1ai is π/2;

ii) in M2 the angle along ai−1ai is zero.

(angles as defined in [4, 3]). Consequently, the proof that all elements of the
group have an allowed representative is not complete. To be more clear, the
proof of the B2 case, which is given in Proposition 2.1, uses the fact that a
boundary vertex of valence three cannot become an inner vertex by gluing
some region over it. However, in the proof given in pg 655 a boundary vertex
of valence three can indeed become an inner vertex by gluing some region
over it. In other words, the the definition of “allowed representatives” uses
a condition which should hold for every admissible diagram which includes
the representative by referring to the angles along the representative. It
follows that vertices of valence three along a possible representative in one
diagram which includes it may become vertices of valence two when the rep-
resentative is included in a different diagram. Thus, one cannot be sure that
“allowed representatives” actually exist as the “B2 turning angle condition”
may never holds.

We would like to point out another small problem. It is indicated that,
since there are only finitely many configurations which are used to define
the allowed representatives, the language of allowed representatives is reg-
ular (forth paragraph of pg 655). However, the assumption that allowed
representatives are geodesics is problematic in this regard since one cannot
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readily verify that a given word is a geodesic. Nevertheless, it is not clear
how the assumption that all allowed representatives are geodesic is used (it
is possible that it may be dropped).
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